xref: /linux/mm/memcontrol.c (revision 02091cbe9cc4f18167208eec1d6de636cc731817)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72 
73 #include <linux/uaccess.h>
74 
75 #include <trace/events/vmscan.h>
76 
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79 
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81 
82 /* Active memory cgroup to use from an interrupt context */
83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85 
86 /* Socket memory accounting disabled? */
87 static bool cgroup_memory_nosocket __ro_after_init;
88 
89 /* Kernel memory accounting disabled? */
90 static bool cgroup_memory_nokmem __ro_after_init;
91 
92 /* BPF memory accounting disabled? */
93 static bool cgroup_memory_nobpf __ro_after_init;
94 
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98 
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103 }
104 
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107 
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112 
113 struct mem_cgroup_tree_per_node {
114 	struct rb_root rb_root;
115 	struct rb_node *rb_rightmost;
116 	spinlock_t lock;
117 };
118 
119 struct mem_cgroup_tree {
120 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122 
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124 
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 	struct list_head list;
128 	struct eventfd_ctx *eventfd;
129 };
130 
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135 	/*
136 	 * memcg which the event belongs to.
137 	 */
138 	struct mem_cgroup *memcg;
139 	/*
140 	 * eventfd to signal userspace about the event.
141 	 */
142 	struct eventfd_ctx *eventfd;
143 	/*
144 	 * Each of these stored in a list by the cgroup.
145 	 */
146 	struct list_head list;
147 	/*
148 	 * register_event() callback will be used to add new userspace
149 	 * waiter for changes related to this event.  Use eventfd_signal()
150 	 * on eventfd to send notification to userspace.
151 	 */
152 	int (*register_event)(struct mem_cgroup *memcg,
153 			      struct eventfd_ctx *eventfd, const char *args);
154 	/*
155 	 * unregister_event() callback will be called when userspace closes
156 	 * the eventfd or on cgroup removing.  This callback must be set,
157 	 * if you want provide notification functionality.
158 	 */
159 	void (*unregister_event)(struct mem_cgroup *memcg,
160 				 struct eventfd_ctx *eventfd);
161 	/*
162 	 * All fields below needed to unregister event when
163 	 * userspace closes eventfd.
164 	 */
165 	poll_table pt;
166 	wait_queue_head_t *wqh;
167 	wait_queue_entry_t wait;
168 	struct work_struct remove;
169 };
170 
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173 
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON	0x1U
179 #define MOVE_FILE	0x2U
180 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181 
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 	spinlock_t	  lock; /* for from, to */
185 	struct mm_struct  *mm;
186 	struct mem_cgroup *from;
187 	struct mem_cgroup *to;
188 	unsigned long flags;
189 	unsigned long precharge;
190 	unsigned long moved_charge;
191 	unsigned long moved_swap;
192 	struct task_struct *moving_task;	/* a task moving charges */
193 	wait_queue_head_t waitq;		/* a waitq for other context */
194 } mc = {
195 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198 
199 /*
200  * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205 
206 /* for encoding cft->private value on file */
207 enum res_type {
208 	_MEM,
209 	_MEMSWAP,
210 	_KMEM,
211 	_TCP,
212 };
213 
214 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
215 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
216 #define MEMFILE_ATTR(val)	((val) & 0xffff)
217 
218 /*
219  * Iteration constructs for visiting all cgroups (under a tree).  If
220  * loops are exited prematurely (break), mem_cgroup_iter_break() must
221  * be used for reference counting.
222  */
223 #define for_each_mem_cgroup_tree(iter, root)		\
224 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
225 	     iter != NULL;				\
226 	     iter = mem_cgroup_iter(root, iter, NULL))
227 
228 #define for_each_mem_cgroup(iter)			\
229 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
230 	     iter != NULL;				\
231 	     iter = mem_cgroup_iter(NULL, iter, NULL))
232 
233 static inline bool task_is_dying(void)
234 {
235 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 		(current->flags & PF_EXITING);
237 }
238 
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242 	if (!memcg)
243 		memcg = root_mem_cgroup;
244 	return &memcg->vmpressure;
245 }
246 
247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248 {
249 	return container_of(vmpr, struct mem_cgroup, vmpressure);
250 }
251 
252 #ifdef CONFIG_MEMCG_KMEM
253 static DEFINE_SPINLOCK(objcg_lock);
254 
255 bool mem_cgroup_kmem_disabled(void)
256 {
257 	return cgroup_memory_nokmem;
258 }
259 
260 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261 				      unsigned int nr_pages);
262 
263 static void obj_cgroup_release(struct percpu_ref *ref)
264 {
265 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266 	unsigned int nr_bytes;
267 	unsigned int nr_pages;
268 	unsigned long flags;
269 
270 	/*
271 	 * At this point all allocated objects are freed, and
272 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
273 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274 	 *
275 	 * The following sequence can lead to it:
276 	 * 1) CPU0: objcg == stock->cached_objcg
277 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278 	 *          PAGE_SIZE bytes are charged
279 	 * 3) CPU1: a process from another memcg is allocating something,
280 	 *          the stock if flushed,
281 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
282 	 * 5) CPU0: we do release this object,
283 	 *          92 bytes are added to stock->nr_bytes
284 	 * 6) CPU0: stock is flushed,
285 	 *          92 bytes are added to objcg->nr_charged_bytes
286 	 *
287 	 * In the result, nr_charged_bytes == PAGE_SIZE.
288 	 * This page will be uncharged in obj_cgroup_release().
289 	 */
290 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292 	nr_pages = nr_bytes >> PAGE_SHIFT;
293 
294 	if (nr_pages)
295 		obj_cgroup_uncharge_pages(objcg, nr_pages);
296 
297 	spin_lock_irqsave(&objcg_lock, flags);
298 	list_del(&objcg->list);
299 	spin_unlock_irqrestore(&objcg_lock, flags);
300 
301 	percpu_ref_exit(ref);
302 	kfree_rcu(objcg, rcu);
303 }
304 
305 static struct obj_cgroup *obj_cgroup_alloc(void)
306 {
307 	struct obj_cgroup *objcg;
308 	int ret;
309 
310 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 	if (!objcg)
312 		return NULL;
313 
314 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 			      GFP_KERNEL);
316 	if (ret) {
317 		kfree(objcg);
318 		return NULL;
319 	}
320 	INIT_LIST_HEAD(&objcg->list);
321 	return objcg;
322 }
323 
324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 				  struct mem_cgroup *parent)
326 {
327 	struct obj_cgroup *objcg, *iter;
328 
329 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330 
331 	spin_lock_irq(&objcg_lock);
332 
333 	/* 1) Ready to reparent active objcg. */
334 	list_add(&objcg->list, &memcg->objcg_list);
335 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
336 	list_for_each_entry(iter, &memcg->objcg_list, list)
337 		WRITE_ONCE(iter->memcg, parent);
338 	/* 3) Move already reparented objcgs to the parent's list */
339 	list_splice(&memcg->objcg_list, &parent->objcg_list);
340 
341 	spin_unlock_irq(&objcg_lock);
342 
343 	percpu_ref_kill(&objcg->refcnt);
344 }
345 
346 /*
347  * A lot of the calls to the cache allocation functions are expected to be
348  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
349  * conditional to this static branch, we'll have to allow modules that does
350  * kmem_cache_alloc and the such to see this symbol as well
351  */
352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353 EXPORT_SYMBOL(memcg_kmem_online_key);
354 
355 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356 EXPORT_SYMBOL(memcg_bpf_enabled_key);
357 #endif
358 
359 /**
360  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361  * @folio: folio of interest
362  *
363  * If memcg is bound to the default hierarchy, css of the memcg associated
364  * with @folio is returned.  The returned css remains associated with @folio
365  * until it is released.
366  *
367  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368  * is returned.
369  */
370 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
371 {
372 	struct mem_cgroup *memcg = folio_memcg(folio);
373 
374 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
375 		memcg = root_mem_cgroup;
376 
377 	return &memcg->css;
378 }
379 
380 /**
381  * page_cgroup_ino - return inode number of the memcg a page is charged to
382  * @page: the page
383  *
384  * Look up the closest online ancestor of the memory cgroup @page is charged to
385  * and return its inode number or 0 if @page is not charged to any cgroup. It
386  * is safe to call this function without holding a reference to @page.
387  *
388  * Note, this function is inherently racy, because there is nothing to prevent
389  * the cgroup inode from getting torn down and potentially reallocated a moment
390  * after page_cgroup_ino() returns, so it only should be used by callers that
391  * do not care (such as procfs interfaces).
392  */
393 ino_t page_cgroup_ino(struct page *page)
394 {
395 	struct mem_cgroup *memcg;
396 	unsigned long ino = 0;
397 
398 	rcu_read_lock();
399 	/* page_folio() is racy here, but the entire function is racy anyway */
400 	memcg = folio_memcg_check(page_folio(page));
401 
402 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
403 		memcg = parent_mem_cgroup(memcg);
404 	if (memcg)
405 		ino = cgroup_ino(memcg->css.cgroup);
406 	rcu_read_unlock();
407 	return ino;
408 }
409 
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411 					 struct mem_cgroup_tree_per_node *mctz,
412 					 unsigned long new_usage_in_excess)
413 {
414 	struct rb_node **p = &mctz->rb_root.rb_node;
415 	struct rb_node *parent = NULL;
416 	struct mem_cgroup_per_node *mz_node;
417 	bool rightmost = true;
418 
419 	if (mz->on_tree)
420 		return;
421 
422 	mz->usage_in_excess = new_usage_in_excess;
423 	if (!mz->usage_in_excess)
424 		return;
425 	while (*p) {
426 		parent = *p;
427 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428 					tree_node);
429 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
430 			p = &(*p)->rb_left;
431 			rightmost = false;
432 		} else {
433 			p = &(*p)->rb_right;
434 		}
435 	}
436 
437 	if (rightmost)
438 		mctz->rb_rightmost = &mz->tree_node;
439 
440 	rb_link_node(&mz->tree_node, parent, p);
441 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
442 	mz->on_tree = true;
443 }
444 
445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446 					 struct mem_cgroup_tree_per_node *mctz)
447 {
448 	if (!mz->on_tree)
449 		return;
450 
451 	if (&mz->tree_node == mctz->rb_rightmost)
452 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
453 
454 	rb_erase(&mz->tree_node, &mctz->rb_root);
455 	mz->on_tree = false;
456 }
457 
458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459 				       struct mem_cgroup_tree_per_node *mctz)
460 {
461 	unsigned long flags;
462 
463 	spin_lock_irqsave(&mctz->lock, flags);
464 	__mem_cgroup_remove_exceeded(mz, mctz);
465 	spin_unlock_irqrestore(&mctz->lock, flags);
466 }
467 
468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469 {
470 	unsigned long nr_pages = page_counter_read(&memcg->memory);
471 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472 	unsigned long excess = 0;
473 
474 	if (nr_pages > soft_limit)
475 		excess = nr_pages - soft_limit;
476 
477 	return excess;
478 }
479 
480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481 {
482 	unsigned long excess;
483 	struct mem_cgroup_per_node *mz;
484 	struct mem_cgroup_tree_per_node *mctz;
485 
486 	if (lru_gen_enabled()) {
487 		if (soft_limit_excess(memcg))
488 			lru_gen_soft_reclaim(memcg, nid);
489 		return;
490 	}
491 
492 	mctz = soft_limit_tree.rb_tree_per_node[nid];
493 	if (!mctz)
494 		return;
495 	/*
496 	 * Necessary to update all ancestors when hierarchy is used.
497 	 * because their event counter is not touched.
498 	 */
499 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
500 		mz = memcg->nodeinfo[nid];
501 		excess = soft_limit_excess(memcg);
502 		/*
503 		 * We have to update the tree if mz is on RB-tree or
504 		 * mem is over its softlimit.
505 		 */
506 		if (excess || mz->on_tree) {
507 			unsigned long flags;
508 
509 			spin_lock_irqsave(&mctz->lock, flags);
510 			/* if on-tree, remove it */
511 			if (mz->on_tree)
512 				__mem_cgroup_remove_exceeded(mz, mctz);
513 			/*
514 			 * Insert again. mz->usage_in_excess will be updated.
515 			 * If excess is 0, no tree ops.
516 			 */
517 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
518 			spin_unlock_irqrestore(&mctz->lock, flags);
519 		}
520 	}
521 }
522 
523 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524 {
525 	struct mem_cgroup_tree_per_node *mctz;
526 	struct mem_cgroup_per_node *mz;
527 	int nid;
528 
529 	for_each_node(nid) {
530 		mz = memcg->nodeinfo[nid];
531 		mctz = soft_limit_tree.rb_tree_per_node[nid];
532 		if (mctz)
533 			mem_cgroup_remove_exceeded(mz, mctz);
534 	}
535 }
536 
537 static struct mem_cgroup_per_node *
538 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
539 {
540 	struct mem_cgroup_per_node *mz;
541 
542 retry:
543 	mz = NULL;
544 	if (!mctz->rb_rightmost)
545 		goto done;		/* Nothing to reclaim from */
546 
547 	mz = rb_entry(mctz->rb_rightmost,
548 		      struct mem_cgroup_per_node, tree_node);
549 	/*
550 	 * Remove the node now but someone else can add it back,
551 	 * we will to add it back at the end of reclaim to its correct
552 	 * position in the tree.
553 	 */
554 	__mem_cgroup_remove_exceeded(mz, mctz);
555 	if (!soft_limit_excess(mz->memcg) ||
556 	    !css_tryget(&mz->memcg->css))
557 		goto retry;
558 done:
559 	return mz;
560 }
561 
562 static struct mem_cgroup_per_node *
563 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
564 {
565 	struct mem_cgroup_per_node *mz;
566 
567 	spin_lock_irq(&mctz->lock);
568 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
569 	spin_unlock_irq(&mctz->lock);
570 	return mz;
571 }
572 
573 /*
574  * memcg and lruvec stats flushing
575  *
576  * Many codepaths leading to stats update or read are performance sensitive and
577  * adding stats flushing in such codepaths is not desirable. So, to optimize the
578  * flushing the kernel does:
579  *
580  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581  *    rstat update tree grow unbounded.
582  *
583  * 2) Flush the stats synchronously on reader side only when there are more than
584  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586  *    only for 2 seconds due to (1).
587  */
588 static void flush_memcg_stats_dwork(struct work_struct *w);
589 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
590 static DEFINE_PER_CPU(unsigned int, stats_updates);
591 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
592 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
593 static u64 flush_next_time;
594 
595 #define FLUSH_TIME (2UL*HZ)
596 
597 /*
598  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599  * not rely on this as part of an acquired spinlock_t lock. These functions are
600  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601  * is sufficient.
602  */
603 static void memcg_stats_lock(void)
604 {
605 	preempt_disable_nested();
606 	VM_WARN_ON_IRQS_ENABLED();
607 }
608 
609 static void __memcg_stats_lock(void)
610 {
611 	preempt_disable_nested();
612 }
613 
614 static void memcg_stats_unlock(void)
615 {
616 	preempt_enable_nested();
617 }
618 
619 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
620 {
621 	unsigned int x;
622 
623 	if (!val)
624 		return;
625 
626 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
627 
628 	x = __this_cpu_add_return(stats_updates, abs(val));
629 	if (x > MEMCG_CHARGE_BATCH) {
630 		/*
631 		 * If stats_flush_threshold exceeds the threshold
632 		 * (>num_online_cpus()), cgroup stats update will be triggered
633 		 * in __mem_cgroup_flush_stats(). Increasing this var further
634 		 * is redundant and simply adds overhead in atomic update.
635 		 */
636 		if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637 			atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
638 		__this_cpu_write(stats_updates, 0);
639 	}
640 }
641 
642 static void do_flush_stats(void)
643 {
644 	/*
645 	 * We always flush the entire tree, so concurrent flushers can just
646 	 * skip. This avoids a thundering herd problem on the rstat global lock
647 	 * from memcg flushers (e.g. reclaim, refault, etc).
648 	 */
649 	if (atomic_read(&stats_flush_ongoing) ||
650 	    atomic_xchg(&stats_flush_ongoing, 1))
651 		return;
652 
653 	WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
654 
655 	cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
656 
657 	atomic_set(&stats_flush_threshold, 0);
658 	atomic_set(&stats_flush_ongoing, 0);
659 }
660 
661 void mem_cgroup_flush_stats(void)
662 {
663 	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
664 		do_flush_stats();
665 }
666 
667 void mem_cgroup_flush_stats_ratelimited(void)
668 {
669 	if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
670 		mem_cgroup_flush_stats();
671 }
672 
673 static void flush_memcg_stats_dwork(struct work_struct *w)
674 {
675 	/*
676 	 * Always flush here so that flushing in latency-sensitive paths is
677 	 * as cheap as possible.
678 	 */
679 	do_flush_stats();
680 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
681 }
682 
683 /* Subset of vm_event_item to report for memcg event stats */
684 static const unsigned int memcg_vm_event_stat[] = {
685 	PGPGIN,
686 	PGPGOUT,
687 	PGSCAN_KSWAPD,
688 	PGSCAN_DIRECT,
689 	PGSCAN_KHUGEPAGED,
690 	PGSTEAL_KSWAPD,
691 	PGSTEAL_DIRECT,
692 	PGSTEAL_KHUGEPAGED,
693 	PGFAULT,
694 	PGMAJFAULT,
695 	PGREFILL,
696 	PGACTIVATE,
697 	PGDEACTIVATE,
698 	PGLAZYFREE,
699 	PGLAZYFREED,
700 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
701 	ZSWPIN,
702 	ZSWPOUT,
703 #endif
704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
705 	THP_FAULT_ALLOC,
706 	THP_COLLAPSE_ALLOC,
707 #endif
708 };
709 
710 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
711 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
712 
713 static void init_memcg_events(void)
714 {
715 	int i;
716 
717 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
718 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
719 }
720 
721 static inline int memcg_events_index(enum vm_event_item idx)
722 {
723 	return mem_cgroup_events_index[idx] - 1;
724 }
725 
726 struct memcg_vmstats_percpu {
727 	/* Local (CPU and cgroup) page state & events */
728 	long			state[MEMCG_NR_STAT];
729 	unsigned long		events[NR_MEMCG_EVENTS];
730 
731 	/* Delta calculation for lockless upward propagation */
732 	long			state_prev[MEMCG_NR_STAT];
733 	unsigned long		events_prev[NR_MEMCG_EVENTS];
734 
735 	/* Cgroup1: threshold notifications & softlimit tree updates */
736 	unsigned long		nr_page_events;
737 	unsigned long		targets[MEM_CGROUP_NTARGETS];
738 };
739 
740 struct memcg_vmstats {
741 	/* Aggregated (CPU and subtree) page state & events */
742 	long			state[MEMCG_NR_STAT];
743 	unsigned long		events[NR_MEMCG_EVENTS];
744 
745 	/* Non-hierarchical (CPU aggregated) page state & events */
746 	long			state_local[MEMCG_NR_STAT];
747 	unsigned long		events_local[NR_MEMCG_EVENTS];
748 
749 	/* Pending child counts during tree propagation */
750 	long			state_pending[MEMCG_NR_STAT];
751 	unsigned long		events_pending[NR_MEMCG_EVENTS];
752 };
753 
754 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
755 {
756 	long x = READ_ONCE(memcg->vmstats->state[idx]);
757 #ifdef CONFIG_SMP
758 	if (x < 0)
759 		x = 0;
760 #endif
761 	return x;
762 }
763 
764 /**
765  * __mod_memcg_state - update cgroup memory statistics
766  * @memcg: the memory cgroup
767  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
768  * @val: delta to add to the counter, can be negative
769  */
770 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
771 {
772 	if (mem_cgroup_disabled())
773 		return;
774 
775 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
776 	memcg_rstat_updated(memcg, val);
777 }
778 
779 /* idx can be of type enum memcg_stat_item or node_stat_item. */
780 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
781 {
782 	long x = READ_ONCE(memcg->vmstats->state_local[idx]);
783 
784 #ifdef CONFIG_SMP
785 	if (x < 0)
786 		x = 0;
787 #endif
788 	return x;
789 }
790 
791 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
792 			      int val)
793 {
794 	struct mem_cgroup_per_node *pn;
795 	struct mem_cgroup *memcg;
796 
797 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
798 	memcg = pn->memcg;
799 
800 	/*
801 	 * The caller from rmap relay on disabled preemption becase they never
802 	 * update their counter from in-interrupt context. For these two
803 	 * counters we check that the update is never performed from an
804 	 * interrupt context while other caller need to have disabled interrupt.
805 	 */
806 	__memcg_stats_lock();
807 	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
808 		switch (idx) {
809 		case NR_ANON_MAPPED:
810 		case NR_FILE_MAPPED:
811 		case NR_ANON_THPS:
812 		case NR_SHMEM_PMDMAPPED:
813 		case NR_FILE_PMDMAPPED:
814 			WARN_ON_ONCE(!in_task());
815 			break;
816 		default:
817 			VM_WARN_ON_IRQS_ENABLED();
818 		}
819 	}
820 
821 	/* Update memcg */
822 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
823 
824 	/* Update lruvec */
825 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
826 
827 	memcg_rstat_updated(memcg, val);
828 	memcg_stats_unlock();
829 }
830 
831 /**
832  * __mod_lruvec_state - update lruvec memory statistics
833  * @lruvec: the lruvec
834  * @idx: the stat item
835  * @val: delta to add to the counter, can be negative
836  *
837  * The lruvec is the intersection of the NUMA node and a cgroup. This
838  * function updates the all three counters that are affected by a
839  * change of state at this level: per-node, per-cgroup, per-lruvec.
840  */
841 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
842 			int val)
843 {
844 	/* Update node */
845 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
846 
847 	/* Update memcg and lruvec */
848 	if (!mem_cgroup_disabled())
849 		__mod_memcg_lruvec_state(lruvec, idx, val);
850 }
851 
852 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
853 			     int val)
854 {
855 	struct page *head = compound_head(page); /* rmap on tail pages */
856 	struct mem_cgroup *memcg;
857 	pg_data_t *pgdat = page_pgdat(page);
858 	struct lruvec *lruvec;
859 
860 	rcu_read_lock();
861 	memcg = page_memcg(head);
862 	/* Untracked pages have no memcg, no lruvec. Update only the node */
863 	if (!memcg) {
864 		rcu_read_unlock();
865 		__mod_node_page_state(pgdat, idx, val);
866 		return;
867 	}
868 
869 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
870 	__mod_lruvec_state(lruvec, idx, val);
871 	rcu_read_unlock();
872 }
873 EXPORT_SYMBOL(__mod_lruvec_page_state);
874 
875 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
876 {
877 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
878 	struct mem_cgroup *memcg;
879 	struct lruvec *lruvec;
880 
881 	rcu_read_lock();
882 	memcg = mem_cgroup_from_slab_obj(p);
883 
884 	/*
885 	 * Untracked pages have no memcg, no lruvec. Update only the
886 	 * node. If we reparent the slab objects to the root memcg,
887 	 * when we free the slab object, we need to update the per-memcg
888 	 * vmstats to keep it correct for the root memcg.
889 	 */
890 	if (!memcg) {
891 		__mod_node_page_state(pgdat, idx, val);
892 	} else {
893 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
894 		__mod_lruvec_state(lruvec, idx, val);
895 	}
896 	rcu_read_unlock();
897 }
898 
899 /**
900  * __count_memcg_events - account VM events in a cgroup
901  * @memcg: the memory cgroup
902  * @idx: the event item
903  * @count: the number of events that occurred
904  */
905 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
906 			  unsigned long count)
907 {
908 	int index = memcg_events_index(idx);
909 
910 	if (mem_cgroup_disabled() || index < 0)
911 		return;
912 
913 	memcg_stats_lock();
914 	__this_cpu_add(memcg->vmstats_percpu->events[index], count);
915 	memcg_rstat_updated(memcg, count);
916 	memcg_stats_unlock();
917 }
918 
919 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
920 {
921 	int index = memcg_events_index(event);
922 
923 	if (index < 0)
924 		return 0;
925 	return READ_ONCE(memcg->vmstats->events[index]);
926 }
927 
928 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929 {
930 	int index = memcg_events_index(event);
931 
932 	if (index < 0)
933 		return 0;
934 
935 	return READ_ONCE(memcg->vmstats->events_local[index]);
936 }
937 
938 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
939 					 int nr_pages)
940 {
941 	/* pagein of a big page is an event. So, ignore page size */
942 	if (nr_pages > 0)
943 		__count_memcg_events(memcg, PGPGIN, 1);
944 	else {
945 		__count_memcg_events(memcg, PGPGOUT, 1);
946 		nr_pages = -nr_pages; /* for event */
947 	}
948 
949 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
950 }
951 
952 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 				       enum mem_cgroup_events_target target)
954 {
955 	unsigned long val, next;
956 
957 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
958 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
959 	/* from time_after() in jiffies.h */
960 	if ((long)(next - val) < 0) {
961 		switch (target) {
962 		case MEM_CGROUP_TARGET_THRESH:
963 			next = val + THRESHOLDS_EVENTS_TARGET;
964 			break;
965 		case MEM_CGROUP_TARGET_SOFTLIMIT:
966 			next = val + SOFTLIMIT_EVENTS_TARGET;
967 			break;
968 		default:
969 			break;
970 		}
971 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
972 		return true;
973 	}
974 	return false;
975 }
976 
977 /*
978  * Check events in order.
979  *
980  */
981 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
982 {
983 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
984 		return;
985 
986 	/* threshold event is triggered in finer grain than soft limit */
987 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 						MEM_CGROUP_TARGET_THRESH))) {
989 		bool do_softlimit;
990 
991 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
992 						MEM_CGROUP_TARGET_SOFTLIMIT);
993 		mem_cgroup_threshold(memcg);
994 		if (unlikely(do_softlimit))
995 			mem_cgroup_update_tree(memcg, nid);
996 	}
997 }
998 
999 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1000 {
1001 	/*
1002 	 * mm_update_next_owner() may clear mm->owner to NULL
1003 	 * if it races with swapoff, page migration, etc.
1004 	 * So this can be called with p == NULL.
1005 	 */
1006 	if (unlikely(!p))
1007 		return NULL;
1008 
1009 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1010 }
1011 EXPORT_SYMBOL(mem_cgroup_from_task);
1012 
1013 static __always_inline struct mem_cgroup *active_memcg(void)
1014 {
1015 	if (!in_task())
1016 		return this_cpu_read(int_active_memcg);
1017 	else
1018 		return current->active_memcg;
1019 }
1020 
1021 /**
1022  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1023  * @mm: mm from which memcg should be extracted. It can be NULL.
1024  *
1025  * Obtain a reference on mm->memcg and returns it if successful. If mm
1026  * is NULL, then the memcg is chosen as follows:
1027  * 1) The active memcg, if set.
1028  * 2) current->mm->memcg, if available
1029  * 3) root memcg
1030  * If mem_cgroup is disabled, NULL is returned.
1031  */
1032 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1033 {
1034 	struct mem_cgroup *memcg;
1035 
1036 	if (mem_cgroup_disabled())
1037 		return NULL;
1038 
1039 	/*
1040 	 * Page cache insertions can happen without an
1041 	 * actual mm context, e.g. during disk probing
1042 	 * on boot, loopback IO, acct() writes etc.
1043 	 *
1044 	 * No need to css_get on root memcg as the reference
1045 	 * counting is disabled on the root level in the
1046 	 * cgroup core. See CSS_NO_REF.
1047 	 */
1048 	if (unlikely(!mm)) {
1049 		memcg = active_memcg();
1050 		if (unlikely(memcg)) {
1051 			/* remote memcg must hold a ref */
1052 			css_get(&memcg->css);
1053 			return memcg;
1054 		}
1055 		mm = current->mm;
1056 		if (unlikely(!mm))
1057 			return root_mem_cgroup;
1058 	}
1059 
1060 	rcu_read_lock();
1061 	do {
1062 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1063 		if (unlikely(!memcg))
1064 			memcg = root_mem_cgroup;
1065 	} while (!css_tryget(&memcg->css));
1066 	rcu_read_unlock();
1067 	return memcg;
1068 }
1069 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1070 
1071 static __always_inline bool memcg_kmem_bypass(void)
1072 {
1073 	/* Allow remote memcg charging from any context. */
1074 	if (unlikely(active_memcg()))
1075 		return false;
1076 
1077 	/* Memcg to charge can't be determined. */
1078 	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1079 		return true;
1080 
1081 	return false;
1082 }
1083 
1084 /**
1085  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1086  * @root: hierarchy root
1087  * @prev: previously returned memcg, NULL on first invocation
1088  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1089  *
1090  * Returns references to children of the hierarchy below @root, or
1091  * @root itself, or %NULL after a full round-trip.
1092  *
1093  * Caller must pass the return value in @prev on subsequent
1094  * invocations for reference counting, or use mem_cgroup_iter_break()
1095  * to cancel a hierarchy walk before the round-trip is complete.
1096  *
1097  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1098  * in the hierarchy among all concurrent reclaimers operating on the
1099  * same node.
1100  */
1101 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1102 				   struct mem_cgroup *prev,
1103 				   struct mem_cgroup_reclaim_cookie *reclaim)
1104 {
1105 	struct mem_cgroup_reclaim_iter *iter;
1106 	struct cgroup_subsys_state *css = NULL;
1107 	struct mem_cgroup *memcg = NULL;
1108 	struct mem_cgroup *pos = NULL;
1109 
1110 	if (mem_cgroup_disabled())
1111 		return NULL;
1112 
1113 	if (!root)
1114 		root = root_mem_cgroup;
1115 
1116 	rcu_read_lock();
1117 
1118 	if (reclaim) {
1119 		struct mem_cgroup_per_node *mz;
1120 
1121 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1122 		iter = &mz->iter;
1123 
1124 		/*
1125 		 * On start, join the current reclaim iteration cycle.
1126 		 * Exit when a concurrent walker completes it.
1127 		 */
1128 		if (!prev)
1129 			reclaim->generation = iter->generation;
1130 		else if (reclaim->generation != iter->generation)
1131 			goto out_unlock;
1132 
1133 		while (1) {
1134 			pos = READ_ONCE(iter->position);
1135 			if (!pos || css_tryget(&pos->css))
1136 				break;
1137 			/*
1138 			 * css reference reached zero, so iter->position will
1139 			 * be cleared by ->css_released. However, we should not
1140 			 * rely on this happening soon, because ->css_released
1141 			 * is called from a work queue, and by busy-waiting we
1142 			 * might block it. So we clear iter->position right
1143 			 * away.
1144 			 */
1145 			(void)cmpxchg(&iter->position, pos, NULL);
1146 		}
1147 	} else if (prev) {
1148 		pos = prev;
1149 	}
1150 
1151 	if (pos)
1152 		css = &pos->css;
1153 
1154 	for (;;) {
1155 		css = css_next_descendant_pre(css, &root->css);
1156 		if (!css) {
1157 			/*
1158 			 * Reclaimers share the hierarchy walk, and a
1159 			 * new one might jump in right at the end of
1160 			 * the hierarchy - make sure they see at least
1161 			 * one group and restart from the beginning.
1162 			 */
1163 			if (!prev)
1164 				continue;
1165 			break;
1166 		}
1167 
1168 		/*
1169 		 * Verify the css and acquire a reference.  The root
1170 		 * is provided by the caller, so we know it's alive
1171 		 * and kicking, and don't take an extra reference.
1172 		 */
1173 		if (css == &root->css || css_tryget(css)) {
1174 			memcg = mem_cgroup_from_css(css);
1175 			break;
1176 		}
1177 	}
1178 
1179 	if (reclaim) {
1180 		/*
1181 		 * The position could have already been updated by a competing
1182 		 * thread, so check that the value hasn't changed since we read
1183 		 * it to avoid reclaiming from the same cgroup twice.
1184 		 */
1185 		(void)cmpxchg(&iter->position, pos, memcg);
1186 
1187 		if (pos)
1188 			css_put(&pos->css);
1189 
1190 		if (!memcg)
1191 			iter->generation++;
1192 	}
1193 
1194 out_unlock:
1195 	rcu_read_unlock();
1196 	if (prev && prev != root)
1197 		css_put(&prev->css);
1198 
1199 	return memcg;
1200 }
1201 
1202 /**
1203  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1204  * @root: hierarchy root
1205  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1206  */
1207 void mem_cgroup_iter_break(struct mem_cgroup *root,
1208 			   struct mem_cgroup *prev)
1209 {
1210 	if (!root)
1211 		root = root_mem_cgroup;
1212 	if (prev && prev != root)
1213 		css_put(&prev->css);
1214 }
1215 
1216 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1217 					struct mem_cgroup *dead_memcg)
1218 {
1219 	struct mem_cgroup_reclaim_iter *iter;
1220 	struct mem_cgroup_per_node *mz;
1221 	int nid;
1222 
1223 	for_each_node(nid) {
1224 		mz = from->nodeinfo[nid];
1225 		iter = &mz->iter;
1226 		cmpxchg(&iter->position, dead_memcg, NULL);
1227 	}
1228 }
1229 
1230 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1231 {
1232 	struct mem_cgroup *memcg = dead_memcg;
1233 	struct mem_cgroup *last;
1234 
1235 	do {
1236 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1237 		last = memcg;
1238 	} while ((memcg = parent_mem_cgroup(memcg)));
1239 
1240 	/*
1241 	 * When cgroup1 non-hierarchy mode is used,
1242 	 * parent_mem_cgroup() does not walk all the way up to the
1243 	 * cgroup root (root_mem_cgroup). So we have to handle
1244 	 * dead_memcg from cgroup root separately.
1245 	 */
1246 	if (!mem_cgroup_is_root(last))
1247 		__invalidate_reclaim_iterators(root_mem_cgroup,
1248 						dead_memcg);
1249 }
1250 
1251 /**
1252  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1253  * @memcg: hierarchy root
1254  * @fn: function to call for each task
1255  * @arg: argument passed to @fn
1256  *
1257  * This function iterates over tasks attached to @memcg or to any of its
1258  * descendants and calls @fn for each task. If @fn returns a non-zero
1259  * value, the function breaks the iteration loop. Otherwise, it will iterate
1260  * over all tasks and return 0.
1261  *
1262  * This function must not be called for the root memory cgroup.
1263  */
1264 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1265 			   int (*fn)(struct task_struct *, void *), void *arg)
1266 {
1267 	struct mem_cgroup *iter;
1268 	int ret = 0;
1269 
1270 	BUG_ON(mem_cgroup_is_root(memcg));
1271 
1272 	for_each_mem_cgroup_tree(iter, memcg) {
1273 		struct css_task_iter it;
1274 		struct task_struct *task;
1275 
1276 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1277 		while (!ret && (task = css_task_iter_next(&it)))
1278 			ret = fn(task, arg);
1279 		css_task_iter_end(&it);
1280 		if (ret) {
1281 			mem_cgroup_iter_break(memcg, iter);
1282 			break;
1283 		}
1284 	}
1285 }
1286 
1287 #ifdef CONFIG_DEBUG_VM
1288 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1289 {
1290 	struct mem_cgroup *memcg;
1291 
1292 	if (mem_cgroup_disabled())
1293 		return;
1294 
1295 	memcg = folio_memcg(folio);
1296 
1297 	if (!memcg)
1298 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1299 	else
1300 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1301 }
1302 #endif
1303 
1304 /**
1305  * folio_lruvec_lock - Lock the lruvec for a folio.
1306  * @folio: Pointer to the folio.
1307  *
1308  * These functions are safe to use under any of the following conditions:
1309  * - folio locked
1310  * - folio_test_lru false
1311  * - folio_memcg_lock()
1312  * - folio frozen (refcount of 0)
1313  *
1314  * Return: The lruvec this folio is on with its lock held.
1315  */
1316 struct lruvec *folio_lruvec_lock(struct folio *folio)
1317 {
1318 	struct lruvec *lruvec = folio_lruvec(folio);
1319 
1320 	spin_lock(&lruvec->lru_lock);
1321 	lruvec_memcg_debug(lruvec, folio);
1322 
1323 	return lruvec;
1324 }
1325 
1326 /**
1327  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1328  * @folio: Pointer to the folio.
1329  *
1330  * These functions are safe to use under any of the following conditions:
1331  * - folio locked
1332  * - folio_test_lru false
1333  * - folio_memcg_lock()
1334  * - folio frozen (refcount of 0)
1335  *
1336  * Return: The lruvec this folio is on with its lock held and interrupts
1337  * disabled.
1338  */
1339 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1340 {
1341 	struct lruvec *lruvec = folio_lruvec(folio);
1342 
1343 	spin_lock_irq(&lruvec->lru_lock);
1344 	lruvec_memcg_debug(lruvec, folio);
1345 
1346 	return lruvec;
1347 }
1348 
1349 /**
1350  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1351  * @folio: Pointer to the folio.
1352  * @flags: Pointer to irqsave flags.
1353  *
1354  * These functions are safe to use under any of the following conditions:
1355  * - folio locked
1356  * - folio_test_lru false
1357  * - folio_memcg_lock()
1358  * - folio frozen (refcount of 0)
1359  *
1360  * Return: The lruvec this folio is on with its lock held and interrupts
1361  * disabled.
1362  */
1363 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1364 		unsigned long *flags)
1365 {
1366 	struct lruvec *lruvec = folio_lruvec(folio);
1367 
1368 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1369 	lruvec_memcg_debug(lruvec, folio);
1370 
1371 	return lruvec;
1372 }
1373 
1374 /**
1375  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1376  * @lruvec: mem_cgroup per zone lru vector
1377  * @lru: index of lru list the page is sitting on
1378  * @zid: zone id of the accounted pages
1379  * @nr_pages: positive when adding or negative when removing
1380  *
1381  * This function must be called under lru_lock, just before a page is added
1382  * to or just after a page is removed from an lru list.
1383  */
1384 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1385 				int zid, int nr_pages)
1386 {
1387 	struct mem_cgroup_per_node *mz;
1388 	unsigned long *lru_size;
1389 	long size;
1390 
1391 	if (mem_cgroup_disabled())
1392 		return;
1393 
1394 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1395 	lru_size = &mz->lru_zone_size[zid][lru];
1396 
1397 	if (nr_pages < 0)
1398 		*lru_size += nr_pages;
1399 
1400 	size = *lru_size;
1401 	if (WARN_ONCE(size < 0,
1402 		"%s(%p, %d, %d): lru_size %ld\n",
1403 		__func__, lruvec, lru, nr_pages, size)) {
1404 		VM_BUG_ON(1);
1405 		*lru_size = 0;
1406 	}
1407 
1408 	if (nr_pages > 0)
1409 		*lru_size += nr_pages;
1410 }
1411 
1412 /**
1413  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1414  * @memcg: the memory cgroup
1415  *
1416  * Returns the maximum amount of memory @mem can be charged with, in
1417  * pages.
1418  */
1419 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1420 {
1421 	unsigned long margin = 0;
1422 	unsigned long count;
1423 	unsigned long limit;
1424 
1425 	count = page_counter_read(&memcg->memory);
1426 	limit = READ_ONCE(memcg->memory.max);
1427 	if (count < limit)
1428 		margin = limit - count;
1429 
1430 	if (do_memsw_account()) {
1431 		count = page_counter_read(&memcg->memsw);
1432 		limit = READ_ONCE(memcg->memsw.max);
1433 		if (count < limit)
1434 			margin = min(margin, limit - count);
1435 		else
1436 			margin = 0;
1437 	}
1438 
1439 	return margin;
1440 }
1441 
1442 /*
1443  * A routine for checking "mem" is under move_account() or not.
1444  *
1445  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1446  * moving cgroups. This is for waiting at high-memory pressure
1447  * caused by "move".
1448  */
1449 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1450 {
1451 	struct mem_cgroup *from;
1452 	struct mem_cgroup *to;
1453 	bool ret = false;
1454 	/*
1455 	 * Unlike task_move routines, we access mc.to, mc.from not under
1456 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1457 	 */
1458 	spin_lock(&mc.lock);
1459 	from = mc.from;
1460 	to = mc.to;
1461 	if (!from)
1462 		goto unlock;
1463 
1464 	ret = mem_cgroup_is_descendant(from, memcg) ||
1465 		mem_cgroup_is_descendant(to, memcg);
1466 unlock:
1467 	spin_unlock(&mc.lock);
1468 	return ret;
1469 }
1470 
1471 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1472 {
1473 	if (mc.moving_task && current != mc.moving_task) {
1474 		if (mem_cgroup_under_move(memcg)) {
1475 			DEFINE_WAIT(wait);
1476 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1477 			/* moving charge context might have finished. */
1478 			if (mc.moving_task)
1479 				schedule();
1480 			finish_wait(&mc.waitq, &wait);
1481 			return true;
1482 		}
1483 	}
1484 	return false;
1485 }
1486 
1487 struct memory_stat {
1488 	const char *name;
1489 	unsigned int idx;
1490 };
1491 
1492 static const struct memory_stat memory_stats[] = {
1493 	{ "anon",			NR_ANON_MAPPED			},
1494 	{ "file",			NR_FILE_PAGES			},
1495 	{ "kernel",			MEMCG_KMEM			},
1496 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1497 	{ "pagetables",			NR_PAGETABLE			},
1498 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1499 	{ "percpu",			MEMCG_PERCPU_B			},
1500 	{ "sock",			MEMCG_SOCK			},
1501 	{ "vmalloc",			MEMCG_VMALLOC			},
1502 	{ "shmem",			NR_SHMEM			},
1503 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1504 	{ "zswap",			MEMCG_ZSWAP_B			},
1505 	{ "zswapped",			MEMCG_ZSWAPPED			},
1506 #endif
1507 	{ "file_mapped",		NR_FILE_MAPPED			},
1508 	{ "file_dirty",			NR_FILE_DIRTY			},
1509 	{ "file_writeback",		NR_WRITEBACK			},
1510 #ifdef CONFIG_SWAP
1511 	{ "swapcached",			NR_SWAPCACHE			},
1512 #endif
1513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1514 	{ "anon_thp",			NR_ANON_THPS			},
1515 	{ "file_thp",			NR_FILE_THPS			},
1516 	{ "shmem_thp",			NR_SHMEM_THPS			},
1517 #endif
1518 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1519 	{ "active_anon",		NR_ACTIVE_ANON			},
1520 	{ "inactive_file",		NR_INACTIVE_FILE		},
1521 	{ "active_file",		NR_ACTIVE_FILE			},
1522 	{ "unevictable",		NR_UNEVICTABLE			},
1523 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1524 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1525 
1526 	/* The memory events */
1527 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1528 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1529 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1530 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1531 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1532 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1533 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1534 };
1535 
1536 /* Translate stat items to the correct unit for memory.stat output */
1537 static int memcg_page_state_unit(int item)
1538 {
1539 	switch (item) {
1540 	case MEMCG_PERCPU_B:
1541 	case MEMCG_ZSWAP_B:
1542 	case NR_SLAB_RECLAIMABLE_B:
1543 	case NR_SLAB_UNRECLAIMABLE_B:
1544 	case WORKINGSET_REFAULT_ANON:
1545 	case WORKINGSET_REFAULT_FILE:
1546 	case WORKINGSET_ACTIVATE_ANON:
1547 	case WORKINGSET_ACTIVATE_FILE:
1548 	case WORKINGSET_RESTORE_ANON:
1549 	case WORKINGSET_RESTORE_FILE:
1550 	case WORKINGSET_NODERECLAIM:
1551 		return 1;
1552 	case NR_KERNEL_STACK_KB:
1553 		return SZ_1K;
1554 	default:
1555 		return PAGE_SIZE;
1556 	}
1557 }
1558 
1559 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1560 						    int item)
1561 {
1562 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1563 }
1564 
1565 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1566 {
1567 	int i;
1568 
1569 	/*
1570 	 * Provide statistics on the state of the memory subsystem as
1571 	 * well as cumulative event counters that show past behavior.
1572 	 *
1573 	 * This list is ordered following a combination of these gradients:
1574 	 * 1) generic big picture -> specifics and details
1575 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1576 	 *
1577 	 * Current memory state:
1578 	 */
1579 	mem_cgroup_flush_stats();
1580 
1581 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1582 		u64 size;
1583 
1584 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1585 		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1586 
1587 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1588 			size += memcg_page_state_output(memcg,
1589 							NR_SLAB_RECLAIMABLE_B);
1590 			seq_buf_printf(s, "slab %llu\n", size);
1591 		}
1592 	}
1593 
1594 	/* Accumulated memory events */
1595 	seq_buf_printf(s, "pgscan %lu\n",
1596 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1597 		       memcg_events(memcg, PGSCAN_DIRECT) +
1598 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1599 	seq_buf_printf(s, "pgsteal %lu\n",
1600 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1601 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1602 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1603 
1604 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1605 		if (memcg_vm_event_stat[i] == PGPGIN ||
1606 		    memcg_vm_event_stat[i] == PGPGOUT)
1607 			continue;
1608 
1609 		seq_buf_printf(s, "%s %lu\n",
1610 			       vm_event_name(memcg_vm_event_stat[i]),
1611 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1612 	}
1613 
1614 	/* The above should easily fit into one page */
1615 	WARN_ON_ONCE(seq_buf_has_overflowed(s));
1616 }
1617 
1618 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1619 
1620 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1621 {
1622 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1623 		memcg_stat_format(memcg, s);
1624 	else
1625 		memcg1_stat_format(memcg, s);
1626 	WARN_ON_ONCE(seq_buf_has_overflowed(s));
1627 }
1628 
1629 /**
1630  * mem_cgroup_print_oom_context: Print OOM information relevant to
1631  * memory controller.
1632  * @memcg: The memory cgroup that went over limit
1633  * @p: Task that is going to be killed
1634  *
1635  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1636  * enabled
1637  */
1638 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1639 {
1640 	rcu_read_lock();
1641 
1642 	if (memcg) {
1643 		pr_cont(",oom_memcg=");
1644 		pr_cont_cgroup_path(memcg->css.cgroup);
1645 	} else
1646 		pr_cont(",global_oom");
1647 	if (p) {
1648 		pr_cont(",task_memcg=");
1649 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1650 	}
1651 	rcu_read_unlock();
1652 }
1653 
1654 /**
1655  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1656  * memory controller.
1657  * @memcg: The memory cgroup that went over limit
1658  */
1659 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1660 {
1661 	/* Use static buffer, for the caller is holding oom_lock. */
1662 	static char buf[PAGE_SIZE];
1663 	struct seq_buf s;
1664 
1665 	lockdep_assert_held(&oom_lock);
1666 
1667 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1668 		K((u64)page_counter_read(&memcg->memory)),
1669 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1670 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1671 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1672 			K((u64)page_counter_read(&memcg->swap)),
1673 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1674 	else {
1675 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1676 			K((u64)page_counter_read(&memcg->memsw)),
1677 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1678 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1679 			K((u64)page_counter_read(&memcg->kmem)),
1680 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1681 	}
1682 
1683 	pr_info("Memory cgroup stats for ");
1684 	pr_cont_cgroup_path(memcg->css.cgroup);
1685 	pr_cont(":");
1686 	seq_buf_init(&s, buf, sizeof(buf));
1687 	memory_stat_format(memcg, &s);
1688 	seq_buf_do_printk(&s, KERN_INFO);
1689 }
1690 
1691 /*
1692  * Return the memory (and swap, if configured) limit for a memcg.
1693  */
1694 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1695 {
1696 	unsigned long max = READ_ONCE(memcg->memory.max);
1697 
1698 	if (do_memsw_account()) {
1699 		if (mem_cgroup_swappiness(memcg)) {
1700 			/* Calculate swap excess capacity from memsw limit */
1701 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1702 
1703 			max += min(swap, (unsigned long)total_swap_pages);
1704 		}
1705 	} else {
1706 		if (mem_cgroup_swappiness(memcg))
1707 			max += min(READ_ONCE(memcg->swap.max),
1708 				   (unsigned long)total_swap_pages);
1709 	}
1710 	return max;
1711 }
1712 
1713 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1714 {
1715 	return page_counter_read(&memcg->memory);
1716 }
1717 
1718 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1719 				     int order)
1720 {
1721 	struct oom_control oc = {
1722 		.zonelist = NULL,
1723 		.nodemask = NULL,
1724 		.memcg = memcg,
1725 		.gfp_mask = gfp_mask,
1726 		.order = order,
1727 	};
1728 	bool ret = true;
1729 
1730 	if (mutex_lock_killable(&oom_lock))
1731 		return true;
1732 
1733 	if (mem_cgroup_margin(memcg) >= (1 << order))
1734 		goto unlock;
1735 
1736 	/*
1737 	 * A few threads which were not waiting at mutex_lock_killable() can
1738 	 * fail to bail out. Therefore, check again after holding oom_lock.
1739 	 */
1740 	ret = task_is_dying() || out_of_memory(&oc);
1741 
1742 unlock:
1743 	mutex_unlock(&oom_lock);
1744 	return ret;
1745 }
1746 
1747 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1748 				   pg_data_t *pgdat,
1749 				   gfp_t gfp_mask,
1750 				   unsigned long *total_scanned)
1751 {
1752 	struct mem_cgroup *victim = NULL;
1753 	int total = 0;
1754 	int loop = 0;
1755 	unsigned long excess;
1756 	unsigned long nr_scanned;
1757 	struct mem_cgroup_reclaim_cookie reclaim = {
1758 		.pgdat = pgdat,
1759 	};
1760 
1761 	excess = soft_limit_excess(root_memcg);
1762 
1763 	while (1) {
1764 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1765 		if (!victim) {
1766 			loop++;
1767 			if (loop >= 2) {
1768 				/*
1769 				 * If we have not been able to reclaim
1770 				 * anything, it might because there are
1771 				 * no reclaimable pages under this hierarchy
1772 				 */
1773 				if (!total)
1774 					break;
1775 				/*
1776 				 * We want to do more targeted reclaim.
1777 				 * excess >> 2 is not to excessive so as to
1778 				 * reclaim too much, nor too less that we keep
1779 				 * coming back to reclaim from this cgroup
1780 				 */
1781 				if (total >= (excess >> 2) ||
1782 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1783 					break;
1784 			}
1785 			continue;
1786 		}
1787 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1788 					pgdat, &nr_scanned);
1789 		*total_scanned += nr_scanned;
1790 		if (!soft_limit_excess(root_memcg))
1791 			break;
1792 	}
1793 	mem_cgroup_iter_break(root_memcg, victim);
1794 	return total;
1795 }
1796 
1797 #ifdef CONFIG_LOCKDEP
1798 static struct lockdep_map memcg_oom_lock_dep_map = {
1799 	.name = "memcg_oom_lock",
1800 };
1801 #endif
1802 
1803 static DEFINE_SPINLOCK(memcg_oom_lock);
1804 
1805 /*
1806  * Check OOM-Killer is already running under our hierarchy.
1807  * If someone is running, return false.
1808  */
1809 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1810 {
1811 	struct mem_cgroup *iter, *failed = NULL;
1812 
1813 	spin_lock(&memcg_oom_lock);
1814 
1815 	for_each_mem_cgroup_tree(iter, memcg) {
1816 		if (iter->oom_lock) {
1817 			/*
1818 			 * this subtree of our hierarchy is already locked
1819 			 * so we cannot give a lock.
1820 			 */
1821 			failed = iter;
1822 			mem_cgroup_iter_break(memcg, iter);
1823 			break;
1824 		} else
1825 			iter->oom_lock = true;
1826 	}
1827 
1828 	if (failed) {
1829 		/*
1830 		 * OK, we failed to lock the whole subtree so we have
1831 		 * to clean up what we set up to the failing subtree
1832 		 */
1833 		for_each_mem_cgroup_tree(iter, memcg) {
1834 			if (iter == failed) {
1835 				mem_cgroup_iter_break(memcg, iter);
1836 				break;
1837 			}
1838 			iter->oom_lock = false;
1839 		}
1840 	} else
1841 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1842 
1843 	spin_unlock(&memcg_oom_lock);
1844 
1845 	return !failed;
1846 }
1847 
1848 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1849 {
1850 	struct mem_cgroup *iter;
1851 
1852 	spin_lock(&memcg_oom_lock);
1853 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1854 	for_each_mem_cgroup_tree(iter, memcg)
1855 		iter->oom_lock = false;
1856 	spin_unlock(&memcg_oom_lock);
1857 }
1858 
1859 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1860 {
1861 	struct mem_cgroup *iter;
1862 
1863 	spin_lock(&memcg_oom_lock);
1864 	for_each_mem_cgroup_tree(iter, memcg)
1865 		iter->under_oom++;
1866 	spin_unlock(&memcg_oom_lock);
1867 }
1868 
1869 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1870 {
1871 	struct mem_cgroup *iter;
1872 
1873 	/*
1874 	 * Be careful about under_oom underflows because a child memcg
1875 	 * could have been added after mem_cgroup_mark_under_oom.
1876 	 */
1877 	spin_lock(&memcg_oom_lock);
1878 	for_each_mem_cgroup_tree(iter, memcg)
1879 		if (iter->under_oom > 0)
1880 			iter->under_oom--;
1881 	spin_unlock(&memcg_oom_lock);
1882 }
1883 
1884 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1885 
1886 struct oom_wait_info {
1887 	struct mem_cgroup *memcg;
1888 	wait_queue_entry_t	wait;
1889 };
1890 
1891 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1892 	unsigned mode, int sync, void *arg)
1893 {
1894 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1895 	struct mem_cgroup *oom_wait_memcg;
1896 	struct oom_wait_info *oom_wait_info;
1897 
1898 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1899 	oom_wait_memcg = oom_wait_info->memcg;
1900 
1901 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1902 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1903 		return 0;
1904 	return autoremove_wake_function(wait, mode, sync, arg);
1905 }
1906 
1907 static void memcg_oom_recover(struct mem_cgroup *memcg)
1908 {
1909 	/*
1910 	 * For the following lockless ->under_oom test, the only required
1911 	 * guarantee is that it must see the state asserted by an OOM when
1912 	 * this function is called as a result of userland actions
1913 	 * triggered by the notification of the OOM.  This is trivially
1914 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1915 	 * triggering notification.
1916 	 */
1917 	if (memcg && memcg->under_oom)
1918 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1919 }
1920 
1921 /*
1922  * Returns true if successfully killed one or more processes. Though in some
1923  * corner cases it can return true even without killing any process.
1924  */
1925 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1926 {
1927 	bool locked, ret;
1928 
1929 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1930 		return false;
1931 
1932 	memcg_memory_event(memcg, MEMCG_OOM);
1933 
1934 	/*
1935 	 * We are in the middle of the charge context here, so we
1936 	 * don't want to block when potentially sitting on a callstack
1937 	 * that holds all kinds of filesystem and mm locks.
1938 	 *
1939 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1940 	 * handling until the charge can succeed; remember the context and put
1941 	 * the task to sleep at the end of the page fault when all locks are
1942 	 * released.
1943 	 *
1944 	 * On the other hand, in-kernel OOM killer allows for an async victim
1945 	 * memory reclaim (oom_reaper) and that means that we are not solely
1946 	 * relying on the oom victim to make a forward progress and we can
1947 	 * invoke the oom killer here.
1948 	 *
1949 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1950 	 * victim and then we have to bail out from the charge path.
1951 	 */
1952 	if (READ_ONCE(memcg->oom_kill_disable)) {
1953 		if (current->in_user_fault) {
1954 			css_get(&memcg->css);
1955 			current->memcg_in_oom = memcg;
1956 			current->memcg_oom_gfp_mask = mask;
1957 			current->memcg_oom_order = order;
1958 		}
1959 		return false;
1960 	}
1961 
1962 	mem_cgroup_mark_under_oom(memcg);
1963 
1964 	locked = mem_cgroup_oom_trylock(memcg);
1965 
1966 	if (locked)
1967 		mem_cgroup_oom_notify(memcg);
1968 
1969 	mem_cgroup_unmark_under_oom(memcg);
1970 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1971 
1972 	if (locked)
1973 		mem_cgroup_oom_unlock(memcg);
1974 
1975 	return ret;
1976 }
1977 
1978 /**
1979  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1980  * @handle: actually kill/wait or just clean up the OOM state
1981  *
1982  * This has to be called at the end of a page fault if the memcg OOM
1983  * handler was enabled.
1984  *
1985  * Memcg supports userspace OOM handling where failed allocations must
1986  * sleep on a waitqueue until the userspace task resolves the
1987  * situation.  Sleeping directly in the charge context with all kinds
1988  * of locks held is not a good idea, instead we remember an OOM state
1989  * in the task and mem_cgroup_oom_synchronize() has to be called at
1990  * the end of the page fault to complete the OOM handling.
1991  *
1992  * Returns %true if an ongoing memcg OOM situation was detected and
1993  * completed, %false otherwise.
1994  */
1995 bool mem_cgroup_oom_synchronize(bool handle)
1996 {
1997 	struct mem_cgroup *memcg = current->memcg_in_oom;
1998 	struct oom_wait_info owait;
1999 	bool locked;
2000 
2001 	/* OOM is global, do not handle */
2002 	if (!memcg)
2003 		return false;
2004 
2005 	if (!handle)
2006 		goto cleanup;
2007 
2008 	owait.memcg = memcg;
2009 	owait.wait.flags = 0;
2010 	owait.wait.func = memcg_oom_wake_function;
2011 	owait.wait.private = current;
2012 	INIT_LIST_HEAD(&owait.wait.entry);
2013 
2014 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2015 	mem_cgroup_mark_under_oom(memcg);
2016 
2017 	locked = mem_cgroup_oom_trylock(memcg);
2018 
2019 	if (locked)
2020 		mem_cgroup_oom_notify(memcg);
2021 
2022 	schedule();
2023 	mem_cgroup_unmark_under_oom(memcg);
2024 	finish_wait(&memcg_oom_waitq, &owait.wait);
2025 
2026 	if (locked)
2027 		mem_cgroup_oom_unlock(memcg);
2028 cleanup:
2029 	current->memcg_in_oom = NULL;
2030 	css_put(&memcg->css);
2031 	return true;
2032 }
2033 
2034 /**
2035  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2036  * @victim: task to be killed by the OOM killer
2037  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2038  *
2039  * Returns a pointer to a memory cgroup, which has to be cleaned up
2040  * by killing all belonging OOM-killable tasks.
2041  *
2042  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2043  */
2044 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2045 					    struct mem_cgroup *oom_domain)
2046 {
2047 	struct mem_cgroup *oom_group = NULL;
2048 	struct mem_cgroup *memcg;
2049 
2050 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2051 		return NULL;
2052 
2053 	if (!oom_domain)
2054 		oom_domain = root_mem_cgroup;
2055 
2056 	rcu_read_lock();
2057 
2058 	memcg = mem_cgroup_from_task(victim);
2059 	if (mem_cgroup_is_root(memcg))
2060 		goto out;
2061 
2062 	/*
2063 	 * If the victim task has been asynchronously moved to a different
2064 	 * memory cgroup, we might end up killing tasks outside oom_domain.
2065 	 * In this case it's better to ignore memory.group.oom.
2066 	 */
2067 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2068 		goto out;
2069 
2070 	/*
2071 	 * Traverse the memory cgroup hierarchy from the victim task's
2072 	 * cgroup up to the OOMing cgroup (or root) to find the
2073 	 * highest-level memory cgroup with oom.group set.
2074 	 */
2075 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2076 		if (READ_ONCE(memcg->oom_group))
2077 			oom_group = memcg;
2078 
2079 		if (memcg == oom_domain)
2080 			break;
2081 	}
2082 
2083 	if (oom_group)
2084 		css_get(&oom_group->css);
2085 out:
2086 	rcu_read_unlock();
2087 
2088 	return oom_group;
2089 }
2090 
2091 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2092 {
2093 	pr_info("Tasks in ");
2094 	pr_cont_cgroup_path(memcg->css.cgroup);
2095 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2096 }
2097 
2098 /**
2099  * folio_memcg_lock - Bind a folio to its memcg.
2100  * @folio: The folio.
2101  *
2102  * This function prevents unlocked LRU folios from being moved to
2103  * another cgroup.
2104  *
2105  * It ensures lifetime of the bound memcg.  The caller is responsible
2106  * for the lifetime of the folio.
2107  */
2108 void folio_memcg_lock(struct folio *folio)
2109 {
2110 	struct mem_cgroup *memcg;
2111 	unsigned long flags;
2112 
2113 	/*
2114 	 * The RCU lock is held throughout the transaction.  The fast
2115 	 * path can get away without acquiring the memcg->move_lock
2116 	 * because page moving starts with an RCU grace period.
2117          */
2118 	rcu_read_lock();
2119 
2120 	if (mem_cgroup_disabled())
2121 		return;
2122 again:
2123 	memcg = folio_memcg(folio);
2124 	if (unlikely(!memcg))
2125 		return;
2126 
2127 #ifdef CONFIG_PROVE_LOCKING
2128 	local_irq_save(flags);
2129 	might_lock(&memcg->move_lock);
2130 	local_irq_restore(flags);
2131 #endif
2132 
2133 	if (atomic_read(&memcg->moving_account) <= 0)
2134 		return;
2135 
2136 	spin_lock_irqsave(&memcg->move_lock, flags);
2137 	if (memcg != folio_memcg(folio)) {
2138 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2139 		goto again;
2140 	}
2141 
2142 	/*
2143 	 * When charge migration first begins, we can have multiple
2144 	 * critical sections holding the fast-path RCU lock and one
2145 	 * holding the slowpath move_lock. Track the task who has the
2146 	 * move_lock for folio_memcg_unlock().
2147 	 */
2148 	memcg->move_lock_task = current;
2149 	memcg->move_lock_flags = flags;
2150 }
2151 
2152 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2153 {
2154 	if (memcg && memcg->move_lock_task == current) {
2155 		unsigned long flags = memcg->move_lock_flags;
2156 
2157 		memcg->move_lock_task = NULL;
2158 		memcg->move_lock_flags = 0;
2159 
2160 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2161 	}
2162 
2163 	rcu_read_unlock();
2164 }
2165 
2166 /**
2167  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2168  * @folio: The folio.
2169  *
2170  * This releases the binding created by folio_memcg_lock().  This does
2171  * not change the accounting of this folio to its memcg, but it does
2172  * permit others to change it.
2173  */
2174 void folio_memcg_unlock(struct folio *folio)
2175 {
2176 	__folio_memcg_unlock(folio_memcg(folio));
2177 }
2178 
2179 struct memcg_stock_pcp {
2180 	local_lock_t stock_lock;
2181 	struct mem_cgroup *cached; /* this never be root cgroup */
2182 	unsigned int nr_pages;
2183 
2184 #ifdef CONFIG_MEMCG_KMEM
2185 	struct obj_cgroup *cached_objcg;
2186 	struct pglist_data *cached_pgdat;
2187 	unsigned int nr_bytes;
2188 	int nr_slab_reclaimable_b;
2189 	int nr_slab_unreclaimable_b;
2190 #endif
2191 
2192 	struct work_struct work;
2193 	unsigned long flags;
2194 #define FLUSHING_CACHED_CHARGE	0
2195 };
2196 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2197 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
2198 };
2199 static DEFINE_MUTEX(percpu_charge_mutex);
2200 
2201 #ifdef CONFIG_MEMCG_KMEM
2202 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2203 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2204 				     struct mem_cgroup *root_memcg);
2205 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2206 
2207 #else
2208 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2209 {
2210 	return NULL;
2211 }
2212 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2213 				     struct mem_cgroup *root_memcg)
2214 {
2215 	return false;
2216 }
2217 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2218 {
2219 }
2220 #endif
2221 
2222 /**
2223  * consume_stock: Try to consume stocked charge on this cpu.
2224  * @memcg: memcg to consume from.
2225  * @nr_pages: how many pages to charge.
2226  *
2227  * The charges will only happen if @memcg matches the current cpu's memcg
2228  * stock, and at least @nr_pages are available in that stock.  Failure to
2229  * service an allocation will refill the stock.
2230  *
2231  * returns true if successful, false otherwise.
2232  */
2233 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2234 {
2235 	struct memcg_stock_pcp *stock;
2236 	unsigned long flags;
2237 	bool ret = false;
2238 
2239 	if (nr_pages > MEMCG_CHARGE_BATCH)
2240 		return ret;
2241 
2242 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2243 
2244 	stock = this_cpu_ptr(&memcg_stock);
2245 	if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2246 		stock->nr_pages -= nr_pages;
2247 		ret = true;
2248 	}
2249 
2250 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2251 
2252 	return ret;
2253 }
2254 
2255 /*
2256  * Returns stocks cached in percpu and reset cached information.
2257  */
2258 static void drain_stock(struct memcg_stock_pcp *stock)
2259 {
2260 	struct mem_cgroup *old = READ_ONCE(stock->cached);
2261 
2262 	if (!old)
2263 		return;
2264 
2265 	if (stock->nr_pages) {
2266 		page_counter_uncharge(&old->memory, stock->nr_pages);
2267 		if (do_memsw_account())
2268 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2269 		stock->nr_pages = 0;
2270 	}
2271 
2272 	css_put(&old->css);
2273 	WRITE_ONCE(stock->cached, NULL);
2274 }
2275 
2276 static void drain_local_stock(struct work_struct *dummy)
2277 {
2278 	struct memcg_stock_pcp *stock;
2279 	struct obj_cgroup *old = NULL;
2280 	unsigned long flags;
2281 
2282 	/*
2283 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2284 	 * drain_stock races is that we always operate on local CPU stock
2285 	 * here with IRQ disabled
2286 	 */
2287 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2288 
2289 	stock = this_cpu_ptr(&memcg_stock);
2290 	old = drain_obj_stock(stock);
2291 	drain_stock(stock);
2292 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2293 
2294 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2295 	if (old)
2296 		obj_cgroup_put(old);
2297 }
2298 
2299 /*
2300  * Cache charges(val) to local per_cpu area.
2301  * This will be consumed by consume_stock() function, later.
2302  */
2303 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2304 {
2305 	struct memcg_stock_pcp *stock;
2306 
2307 	stock = this_cpu_ptr(&memcg_stock);
2308 	if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2309 		drain_stock(stock);
2310 		css_get(&memcg->css);
2311 		WRITE_ONCE(stock->cached, memcg);
2312 	}
2313 	stock->nr_pages += nr_pages;
2314 
2315 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2316 		drain_stock(stock);
2317 }
2318 
2319 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2320 {
2321 	unsigned long flags;
2322 
2323 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2324 	__refill_stock(memcg, nr_pages);
2325 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2326 }
2327 
2328 /*
2329  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2330  * of the hierarchy under it.
2331  */
2332 static void drain_all_stock(struct mem_cgroup *root_memcg)
2333 {
2334 	int cpu, curcpu;
2335 
2336 	/* If someone's already draining, avoid adding running more workers. */
2337 	if (!mutex_trylock(&percpu_charge_mutex))
2338 		return;
2339 	/*
2340 	 * Notify other cpus that system-wide "drain" is running
2341 	 * We do not care about races with the cpu hotplug because cpu down
2342 	 * as well as workers from this path always operate on the local
2343 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2344 	 */
2345 	migrate_disable();
2346 	curcpu = smp_processor_id();
2347 	for_each_online_cpu(cpu) {
2348 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2349 		struct mem_cgroup *memcg;
2350 		bool flush = false;
2351 
2352 		rcu_read_lock();
2353 		memcg = READ_ONCE(stock->cached);
2354 		if (memcg && stock->nr_pages &&
2355 		    mem_cgroup_is_descendant(memcg, root_memcg))
2356 			flush = true;
2357 		else if (obj_stock_flush_required(stock, root_memcg))
2358 			flush = true;
2359 		rcu_read_unlock();
2360 
2361 		if (flush &&
2362 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2363 			if (cpu == curcpu)
2364 				drain_local_stock(&stock->work);
2365 			else if (!cpu_is_isolated(cpu))
2366 				schedule_work_on(cpu, &stock->work);
2367 		}
2368 	}
2369 	migrate_enable();
2370 	mutex_unlock(&percpu_charge_mutex);
2371 }
2372 
2373 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2374 {
2375 	struct memcg_stock_pcp *stock;
2376 
2377 	stock = &per_cpu(memcg_stock, cpu);
2378 	drain_stock(stock);
2379 
2380 	return 0;
2381 }
2382 
2383 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2384 				  unsigned int nr_pages,
2385 				  gfp_t gfp_mask)
2386 {
2387 	unsigned long nr_reclaimed = 0;
2388 
2389 	do {
2390 		unsigned long pflags;
2391 
2392 		if (page_counter_read(&memcg->memory) <=
2393 		    READ_ONCE(memcg->memory.high))
2394 			continue;
2395 
2396 		memcg_memory_event(memcg, MEMCG_HIGH);
2397 
2398 		psi_memstall_enter(&pflags);
2399 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2400 							gfp_mask,
2401 							MEMCG_RECLAIM_MAY_SWAP);
2402 		psi_memstall_leave(&pflags);
2403 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2404 		 !mem_cgroup_is_root(memcg));
2405 
2406 	return nr_reclaimed;
2407 }
2408 
2409 static void high_work_func(struct work_struct *work)
2410 {
2411 	struct mem_cgroup *memcg;
2412 
2413 	memcg = container_of(work, struct mem_cgroup, high_work);
2414 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2415 }
2416 
2417 /*
2418  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2419  * enough to still cause a significant slowdown in most cases, while still
2420  * allowing diagnostics and tracing to proceed without becoming stuck.
2421  */
2422 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2423 
2424 /*
2425  * When calculating the delay, we use these either side of the exponentiation to
2426  * maintain precision and scale to a reasonable number of jiffies (see the table
2427  * below.
2428  *
2429  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2430  *   overage ratio to a delay.
2431  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2432  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2433  *   to produce a reasonable delay curve.
2434  *
2435  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2436  * reasonable delay curve compared to precision-adjusted overage, not
2437  * penalising heavily at first, but still making sure that growth beyond the
2438  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2439  * example, with a high of 100 megabytes:
2440  *
2441  *  +-------+------------------------+
2442  *  | usage | time to allocate in ms |
2443  *  +-------+------------------------+
2444  *  | 100M  |                      0 |
2445  *  | 101M  |                      6 |
2446  *  | 102M  |                     25 |
2447  *  | 103M  |                     57 |
2448  *  | 104M  |                    102 |
2449  *  | 105M  |                    159 |
2450  *  | 106M  |                    230 |
2451  *  | 107M  |                    313 |
2452  *  | 108M  |                    409 |
2453  *  | 109M  |                    518 |
2454  *  | 110M  |                    639 |
2455  *  | 111M  |                    774 |
2456  *  | 112M  |                    921 |
2457  *  | 113M  |                   1081 |
2458  *  | 114M  |                   1254 |
2459  *  | 115M  |                   1439 |
2460  *  | 116M  |                   1638 |
2461  *  | 117M  |                   1849 |
2462  *  | 118M  |                   2000 |
2463  *  | 119M  |                   2000 |
2464  *  | 120M  |                   2000 |
2465  *  +-------+------------------------+
2466  */
2467  #define MEMCG_DELAY_PRECISION_SHIFT 20
2468  #define MEMCG_DELAY_SCALING_SHIFT 14
2469 
2470 static u64 calculate_overage(unsigned long usage, unsigned long high)
2471 {
2472 	u64 overage;
2473 
2474 	if (usage <= high)
2475 		return 0;
2476 
2477 	/*
2478 	 * Prevent division by 0 in overage calculation by acting as if
2479 	 * it was a threshold of 1 page
2480 	 */
2481 	high = max(high, 1UL);
2482 
2483 	overage = usage - high;
2484 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2485 	return div64_u64(overage, high);
2486 }
2487 
2488 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2489 {
2490 	u64 overage, max_overage = 0;
2491 
2492 	do {
2493 		overage = calculate_overage(page_counter_read(&memcg->memory),
2494 					    READ_ONCE(memcg->memory.high));
2495 		max_overage = max(overage, max_overage);
2496 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2497 		 !mem_cgroup_is_root(memcg));
2498 
2499 	return max_overage;
2500 }
2501 
2502 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2503 {
2504 	u64 overage, max_overage = 0;
2505 
2506 	do {
2507 		overage = calculate_overage(page_counter_read(&memcg->swap),
2508 					    READ_ONCE(memcg->swap.high));
2509 		if (overage)
2510 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2511 		max_overage = max(overage, max_overage);
2512 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2513 		 !mem_cgroup_is_root(memcg));
2514 
2515 	return max_overage;
2516 }
2517 
2518 /*
2519  * Get the number of jiffies that we should penalise a mischievous cgroup which
2520  * is exceeding its memory.high by checking both it and its ancestors.
2521  */
2522 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2523 					  unsigned int nr_pages,
2524 					  u64 max_overage)
2525 {
2526 	unsigned long penalty_jiffies;
2527 
2528 	if (!max_overage)
2529 		return 0;
2530 
2531 	/*
2532 	 * We use overage compared to memory.high to calculate the number of
2533 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2534 	 * fairly lenient on small overages, and increasingly harsh when the
2535 	 * memcg in question makes it clear that it has no intention of stopping
2536 	 * its crazy behaviour, so we exponentially increase the delay based on
2537 	 * overage amount.
2538 	 */
2539 	penalty_jiffies = max_overage * max_overage * HZ;
2540 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2541 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2542 
2543 	/*
2544 	 * Factor in the task's own contribution to the overage, such that four
2545 	 * N-sized allocations are throttled approximately the same as one
2546 	 * 4N-sized allocation.
2547 	 *
2548 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2549 	 * larger the current charge patch is than that.
2550 	 */
2551 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2552 }
2553 
2554 /*
2555  * Scheduled by try_charge() to be executed from the userland return path
2556  * and reclaims memory over the high limit.
2557  */
2558 void mem_cgroup_handle_over_high(void)
2559 {
2560 	unsigned long penalty_jiffies;
2561 	unsigned long pflags;
2562 	unsigned long nr_reclaimed;
2563 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2564 	int nr_retries = MAX_RECLAIM_RETRIES;
2565 	struct mem_cgroup *memcg;
2566 	bool in_retry = false;
2567 
2568 	if (likely(!nr_pages))
2569 		return;
2570 
2571 	memcg = get_mem_cgroup_from_mm(current->mm);
2572 	current->memcg_nr_pages_over_high = 0;
2573 
2574 retry_reclaim:
2575 	/*
2576 	 * The allocating task should reclaim at least the batch size, but for
2577 	 * subsequent retries we only want to do what's necessary to prevent oom
2578 	 * or breaching resource isolation.
2579 	 *
2580 	 * This is distinct from memory.max or page allocator behaviour because
2581 	 * memory.high is currently batched, whereas memory.max and the page
2582 	 * allocator run every time an allocation is made.
2583 	 */
2584 	nr_reclaimed = reclaim_high(memcg,
2585 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2586 				    GFP_KERNEL);
2587 
2588 	/*
2589 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2590 	 * allocators proactively to slow down excessive growth.
2591 	 */
2592 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2593 					       mem_find_max_overage(memcg));
2594 
2595 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2596 						swap_find_max_overage(memcg));
2597 
2598 	/*
2599 	 * Clamp the max delay per usermode return so as to still keep the
2600 	 * application moving forwards and also permit diagnostics, albeit
2601 	 * extremely slowly.
2602 	 */
2603 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2604 
2605 	/*
2606 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2607 	 * that it's not even worth doing, in an attempt to be nice to those who
2608 	 * go only a small amount over their memory.high value and maybe haven't
2609 	 * been aggressively reclaimed enough yet.
2610 	 */
2611 	if (penalty_jiffies <= HZ / 100)
2612 		goto out;
2613 
2614 	/*
2615 	 * If reclaim is making forward progress but we're still over
2616 	 * memory.high, we want to encourage that rather than doing allocator
2617 	 * throttling.
2618 	 */
2619 	if (nr_reclaimed || nr_retries--) {
2620 		in_retry = true;
2621 		goto retry_reclaim;
2622 	}
2623 
2624 	/*
2625 	 * If we exit early, we're guaranteed to die (since
2626 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2627 	 * need to account for any ill-begotten jiffies to pay them off later.
2628 	 */
2629 	psi_memstall_enter(&pflags);
2630 	schedule_timeout_killable(penalty_jiffies);
2631 	psi_memstall_leave(&pflags);
2632 
2633 out:
2634 	css_put(&memcg->css);
2635 }
2636 
2637 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2638 			unsigned int nr_pages)
2639 {
2640 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2641 	int nr_retries = MAX_RECLAIM_RETRIES;
2642 	struct mem_cgroup *mem_over_limit;
2643 	struct page_counter *counter;
2644 	unsigned long nr_reclaimed;
2645 	bool passed_oom = false;
2646 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2647 	bool drained = false;
2648 	bool raised_max_event = false;
2649 	unsigned long pflags;
2650 
2651 retry:
2652 	if (consume_stock(memcg, nr_pages))
2653 		return 0;
2654 
2655 	if (!do_memsw_account() ||
2656 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2657 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2658 			goto done_restock;
2659 		if (do_memsw_account())
2660 			page_counter_uncharge(&memcg->memsw, batch);
2661 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2662 	} else {
2663 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2664 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2665 	}
2666 
2667 	if (batch > nr_pages) {
2668 		batch = nr_pages;
2669 		goto retry;
2670 	}
2671 
2672 	/*
2673 	 * Prevent unbounded recursion when reclaim operations need to
2674 	 * allocate memory. This might exceed the limits temporarily,
2675 	 * but we prefer facilitating memory reclaim and getting back
2676 	 * under the limit over triggering OOM kills in these cases.
2677 	 */
2678 	if (unlikely(current->flags & PF_MEMALLOC))
2679 		goto force;
2680 
2681 	if (unlikely(task_in_memcg_oom(current)))
2682 		goto nomem;
2683 
2684 	if (!gfpflags_allow_blocking(gfp_mask))
2685 		goto nomem;
2686 
2687 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2688 	raised_max_event = true;
2689 
2690 	psi_memstall_enter(&pflags);
2691 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2692 						    gfp_mask, reclaim_options);
2693 	psi_memstall_leave(&pflags);
2694 
2695 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2696 		goto retry;
2697 
2698 	if (!drained) {
2699 		drain_all_stock(mem_over_limit);
2700 		drained = true;
2701 		goto retry;
2702 	}
2703 
2704 	if (gfp_mask & __GFP_NORETRY)
2705 		goto nomem;
2706 	/*
2707 	 * Even though the limit is exceeded at this point, reclaim
2708 	 * may have been able to free some pages.  Retry the charge
2709 	 * before killing the task.
2710 	 *
2711 	 * Only for regular pages, though: huge pages are rather
2712 	 * unlikely to succeed so close to the limit, and we fall back
2713 	 * to regular pages anyway in case of failure.
2714 	 */
2715 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2716 		goto retry;
2717 	/*
2718 	 * At task move, charge accounts can be doubly counted. So, it's
2719 	 * better to wait until the end of task_move if something is going on.
2720 	 */
2721 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2722 		goto retry;
2723 
2724 	if (nr_retries--)
2725 		goto retry;
2726 
2727 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2728 		goto nomem;
2729 
2730 	/* Avoid endless loop for tasks bypassed by the oom killer */
2731 	if (passed_oom && task_is_dying())
2732 		goto nomem;
2733 
2734 	/*
2735 	 * keep retrying as long as the memcg oom killer is able to make
2736 	 * a forward progress or bypass the charge if the oom killer
2737 	 * couldn't make any progress.
2738 	 */
2739 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2740 			   get_order(nr_pages * PAGE_SIZE))) {
2741 		passed_oom = true;
2742 		nr_retries = MAX_RECLAIM_RETRIES;
2743 		goto retry;
2744 	}
2745 nomem:
2746 	/*
2747 	 * Memcg doesn't have a dedicated reserve for atomic
2748 	 * allocations. But like the global atomic pool, we need to
2749 	 * put the burden of reclaim on regular allocation requests
2750 	 * and let these go through as privileged allocations.
2751 	 */
2752 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2753 		return -ENOMEM;
2754 force:
2755 	/*
2756 	 * If the allocation has to be enforced, don't forget to raise
2757 	 * a MEMCG_MAX event.
2758 	 */
2759 	if (!raised_max_event)
2760 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2761 
2762 	/*
2763 	 * The allocation either can't fail or will lead to more memory
2764 	 * being freed very soon.  Allow memory usage go over the limit
2765 	 * temporarily by force charging it.
2766 	 */
2767 	page_counter_charge(&memcg->memory, nr_pages);
2768 	if (do_memsw_account())
2769 		page_counter_charge(&memcg->memsw, nr_pages);
2770 
2771 	return 0;
2772 
2773 done_restock:
2774 	if (batch > nr_pages)
2775 		refill_stock(memcg, batch - nr_pages);
2776 
2777 	/*
2778 	 * If the hierarchy is above the normal consumption range, schedule
2779 	 * reclaim on returning to userland.  We can perform reclaim here
2780 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2781 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2782 	 * not recorded as it most likely matches current's and won't
2783 	 * change in the meantime.  As high limit is checked again before
2784 	 * reclaim, the cost of mismatch is negligible.
2785 	 */
2786 	do {
2787 		bool mem_high, swap_high;
2788 
2789 		mem_high = page_counter_read(&memcg->memory) >
2790 			READ_ONCE(memcg->memory.high);
2791 		swap_high = page_counter_read(&memcg->swap) >
2792 			READ_ONCE(memcg->swap.high);
2793 
2794 		/* Don't bother a random interrupted task */
2795 		if (!in_task()) {
2796 			if (mem_high) {
2797 				schedule_work(&memcg->high_work);
2798 				break;
2799 			}
2800 			continue;
2801 		}
2802 
2803 		if (mem_high || swap_high) {
2804 			/*
2805 			 * The allocating tasks in this cgroup will need to do
2806 			 * reclaim or be throttled to prevent further growth
2807 			 * of the memory or swap footprints.
2808 			 *
2809 			 * Target some best-effort fairness between the tasks,
2810 			 * and distribute reclaim work and delay penalties
2811 			 * based on how much each task is actually allocating.
2812 			 */
2813 			current->memcg_nr_pages_over_high += batch;
2814 			set_notify_resume(current);
2815 			break;
2816 		}
2817 	} while ((memcg = parent_mem_cgroup(memcg)));
2818 
2819 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2820 	    !(current->flags & PF_MEMALLOC) &&
2821 	    gfpflags_allow_blocking(gfp_mask)) {
2822 		mem_cgroup_handle_over_high();
2823 	}
2824 	return 0;
2825 }
2826 
2827 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2828 			     unsigned int nr_pages)
2829 {
2830 	if (mem_cgroup_is_root(memcg))
2831 		return 0;
2832 
2833 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2834 }
2835 
2836 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2837 {
2838 	if (mem_cgroup_is_root(memcg))
2839 		return;
2840 
2841 	page_counter_uncharge(&memcg->memory, nr_pages);
2842 	if (do_memsw_account())
2843 		page_counter_uncharge(&memcg->memsw, nr_pages);
2844 }
2845 
2846 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2847 {
2848 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2849 	/*
2850 	 * Any of the following ensures page's memcg stability:
2851 	 *
2852 	 * - the page lock
2853 	 * - LRU isolation
2854 	 * - folio_memcg_lock()
2855 	 * - exclusive reference
2856 	 * - mem_cgroup_trylock_pages()
2857 	 */
2858 	folio->memcg_data = (unsigned long)memcg;
2859 }
2860 
2861 #ifdef CONFIG_MEMCG_KMEM
2862 /*
2863  * The allocated objcg pointers array is not accounted directly.
2864  * Moreover, it should not come from DMA buffer and is not readily
2865  * reclaimable. So those GFP bits should be masked off.
2866  */
2867 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2868 
2869 /*
2870  * mod_objcg_mlstate() may be called with irq enabled, so
2871  * mod_memcg_lruvec_state() should be used.
2872  */
2873 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2874 				     struct pglist_data *pgdat,
2875 				     enum node_stat_item idx, int nr)
2876 {
2877 	struct mem_cgroup *memcg;
2878 	struct lruvec *lruvec;
2879 
2880 	rcu_read_lock();
2881 	memcg = obj_cgroup_memcg(objcg);
2882 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2883 	mod_memcg_lruvec_state(lruvec, idx, nr);
2884 	rcu_read_unlock();
2885 }
2886 
2887 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2888 				 gfp_t gfp, bool new_slab)
2889 {
2890 	unsigned int objects = objs_per_slab(s, slab);
2891 	unsigned long memcg_data;
2892 	void *vec;
2893 
2894 	gfp &= ~OBJCGS_CLEAR_MASK;
2895 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2896 			   slab_nid(slab));
2897 	if (!vec)
2898 		return -ENOMEM;
2899 
2900 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2901 	if (new_slab) {
2902 		/*
2903 		 * If the slab is brand new and nobody can yet access its
2904 		 * memcg_data, no synchronization is required and memcg_data can
2905 		 * be simply assigned.
2906 		 */
2907 		slab->memcg_data = memcg_data;
2908 	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2909 		/*
2910 		 * If the slab is already in use, somebody can allocate and
2911 		 * assign obj_cgroups in parallel. In this case the existing
2912 		 * objcg vector should be reused.
2913 		 */
2914 		kfree(vec);
2915 		return 0;
2916 	}
2917 
2918 	kmemleak_not_leak(vec);
2919 	return 0;
2920 }
2921 
2922 static __always_inline
2923 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2924 {
2925 	/*
2926 	 * Slab objects are accounted individually, not per-page.
2927 	 * Memcg membership data for each individual object is saved in
2928 	 * slab->memcg_data.
2929 	 */
2930 	if (folio_test_slab(folio)) {
2931 		struct obj_cgroup **objcgs;
2932 		struct slab *slab;
2933 		unsigned int off;
2934 
2935 		slab = folio_slab(folio);
2936 		objcgs = slab_objcgs(slab);
2937 		if (!objcgs)
2938 			return NULL;
2939 
2940 		off = obj_to_index(slab->slab_cache, slab, p);
2941 		if (objcgs[off])
2942 			return obj_cgroup_memcg(objcgs[off]);
2943 
2944 		return NULL;
2945 	}
2946 
2947 	/*
2948 	 * folio_memcg_check() is used here, because in theory we can encounter
2949 	 * a folio where the slab flag has been cleared already, but
2950 	 * slab->memcg_data has not been freed yet
2951 	 * folio_memcg_check() will guarantee that a proper memory
2952 	 * cgroup pointer or NULL will be returned.
2953 	 */
2954 	return folio_memcg_check(folio);
2955 }
2956 
2957 /*
2958  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2959  *
2960  * A passed kernel object can be a slab object, vmalloc object or a generic
2961  * kernel page, so different mechanisms for getting the memory cgroup pointer
2962  * should be used.
2963  *
2964  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2965  * can not know for sure how the kernel object is implemented.
2966  * mem_cgroup_from_obj() can be safely used in such cases.
2967  *
2968  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2969  * cgroup_mutex, etc.
2970  */
2971 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2972 {
2973 	struct folio *folio;
2974 
2975 	if (mem_cgroup_disabled())
2976 		return NULL;
2977 
2978 	if (unlikely(is_vmalloc_addr(p)))
2979 		folio = page_folio(vmalloc_to_page(p));
2980 	else
2981 		folio = virt_to_folio(p);
2982 
2983 	return mem_cgroup_from_obj_folio(folio, p);
2984 }
2985 
2986 /*
2987  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2988  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2989  * allocated using vmalloc().
2990  *
2991  * A passed kernel object must be a slab object or a generic kernel page.
2992  *
2993  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2994  * cgroup_mutex, etc.
2995  */
2996 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2997 {
2998 	if (mem_cgroup_disabled())
2999 		return NULL;
3000 
3001 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3002 }
3003 
3004 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3005 {
3006 	struct obj_cgroup *objcg = NULL;
3007 
3008 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3009 		objcg = rcu_dereference(memcg->objcg);
3010 		if (objcg && obj_cgroup_tryget(objcg))
3011 			break;
3012 		objcg = NULL;
3013 	}
3014 	return objcg;
3015 }
3016 
3017 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3018 {
3019 	struct obj_cgroup *objcg = NULL;
3020 	struct mem_cgroup *memcg;
3021 
3022 	if (memcg_kmem_bypass())
3023 		return NULL;
3024 
3025 	rcu_read_lock();
3026 	if (unlikely(active_memcg()))
3027 		memcg = active_memcg();
3028 	else
3029 		memcg = mem_cgroup_from_task(current);
3030 	objcg = __get_obj_cgroup_from_memcg(memcg);
3031 	rcu_read_unlock();
3032 	return objcg;
3033 }
3034 
3035 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3036 {
3037 	struct obj_cgroup *objcg;
3038 
3039 	if (!memcg_kmem_online())
3040 		return NULL;
3041 
3042 	if (folio_memcg_kmem(folio)) {
3043 		objcg = __folio_objcg(folio);
3044 		obj_cgroup_get(objcg);
3045 	} else {
3046 		struct mem_cgroup *memcg;
3047 
3048 		rcu_read_lock();
3049 		memcg = __folio_memcg(folio);
3050 		if (memcg)
3051 			objcg = __get_obj_cgroup_from_memcg(memcg);
3052 		else
3053 			objcg = NULL;
3054 		rcu_read_unlock();
3055 	}
3056 	return objcg;
3057 }
3058 
3059 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3060 {
3061 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3062 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3063 		if (nr_pages > 0)
3064 			page_counter_charge(&memcg->kmem, nr_pages);
3065 		else
3066 			page_counter_uncharge(&memcg->kmem, -nr_pages);
3067 	}
3068 }
3069 
3070 
3071 /*
3072  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3073  * @objcg: object cgroup to uncharge
3074  * @nr_pages: number of pages to uncharge
3075  */
3076 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3077 				      unsigned int nr_pages)
3078 {
3079 	struct mem_cgroup *memcg;
3080 
3081 	memcg = get_mem_cgroup_from_objcg(objcg);
3082 
3083 	memcg_account_kmem(memcg, -nr_pages);
3084 	refill_stock(memcg, nr_pages);
3085 
3086 	css_put(&memcg->css);
3087 }
3088 
3089 /*
3090  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3091  * @objcg: object cgroup to charge
3092  * @gfp: reclaim mode
3093  * @nr_pages: number of pages to charge
3094  *
3095  * Returns 0 on success, an error code on failure.
3096  */
3097 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3098 				   unsigned int nr_pages)
3099 {
3100 	struct mem_cgroup *memcg;
3101 	int ret;
3102 
3103 	memcg = get_mem_cgroup_from_objcg(objcg);
3104 
3105 	ret = try_charge_memcg(memcg, gfp, nr_pages);
3106 	if (ret)
3107 		goto out;
3108 
3109 	memcg_account_kmem(memcg, nr_pages);
3110 out:
3111 	css_put(&memcg->css);
3112 
3113 	return ret;
3114 }
3115 
3116 /**
3117  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3118  * @page: page to charge
3119  * @gfp: reclaim mode
3120  * @order: allocation order
3121  *
3122  * Returns 0 on success, an error code on failure.
3123  */
3124 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3125 {
3126 	struct obj_cgroup *objcg;
3127 	int ret = 0;
3128 
3129 	objcg = get_obj_cgroup_from_current();
3130 	if (objcg) {
3131 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3132 		if (!ret) {
3133 			page->memcg_data = (unsigned long)objcg |
3134 				MEMCG_DATA_KMEM;
3135 			return 0;
3136 		}
3137 		obj_cgroup_put(objcg);
3138 	}
3139 	return ret;
3140 }
3141 
3142 /**
3143  * __memcg_kmem_uncharge_page: uncharge a kmem page
3144  * @page: page to uncharge
3145  * @order: allocation order
3146  */
3147 void __memcg_kmem_uncharge_page(struct page *page, int order)
3148 {
3149 	struct folio *folio = page_folio(page);
3150 	struct obj_cgroup *objcg;
3151 	unsigned int nr_pages = 1 << order;
3152 
3153 	if (!folio_memcg_kmem(folio))
3154 		return;
3155 
3156 	objcg = __folio_objcg(folio);
3157 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3158 	folio->memcg_data = 0;
3159 	obj_cgroup_put(objcg);
3160 }
3161 
3162 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3163 		     enum node_stat_item idx, int nr)
3164 {
3165 	struct memcg_stock_pcp *stock;
3166 	struct obj_cgroup *old = NULL;
3167 	unsigned long flags;
3168 	int *bytes;
3169 
3170 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3171 	stock = this_cpu_ptr(&memcg_stock);
3172 
3173 	/*
3174 	 * Save vmstat data in stock and skip vmstat array update unless
3175 	 * accumulating over a page of vmstat data or when pgdat or idx
3176 	 * changes.
3177 	 */
3178 	if (READ_ONCE(stock->cached_objcg) != objcg) {
3179 		old = drain_obj_stock(stock);
3180 		obj_cgroup_get(objcg);
3181 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3182 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3183 		WRITE_ONCE(stock->cached_objcg, objcg);
3184 		stock->cached_pgdat = pgdat;
3185 	} else if (stock->cached_pgdat != pgdat) {
3186 		/* Flush the existing cached vmstat data */
3187 		struct pglist_data *oldpg = stock->cached_pgdat;
3188 
3189 		if (stock->nr_slab_reclaimable_b) {
3190 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3191 					  stock->nr_slab_reclaimable_b);
3192 			stock->nr_slab_reclaimable_b = 0;
3193 		}
3194 		if (stock->nr_slab_unreclaimable_b) {
3195 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3196 					  stock->nr_slab_unreclaimable_b);
3197 			stock->nr_slab_unreclaimable_b = 0;
3198 		}
3199 		stock->cached_pgdat = pgdat;
3200 	}
3201 
3202 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3203 					       : &stock->nr_slab_unreclaimable_b;
3204 	/*
3205 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3206 	 * cached locally at least once before pushing it out.
3207 	 */
3208 	if (!*bytes) {
3209 		*bytes = nr;
3210 		nr = 0;
3211 	} else {
3212 		*bytes += nr;
3213 		if (abs(*bytes) > PAGE_SIZE) {
3214 			nr = *bytes;
3215 			*bytes = 0;
3216 		} else {
3217 			nr = 0;
3218 		}
3219 	}
3220 	if (nr)
3221 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3222 
3223 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3224 	if (old)
3225 		obj_cgroup_put(old);
3226 }
3227 
3228 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3229 {
3230 	struct memcg_stock_pcp *stock;
3231 	unsigned long flags;
3232 	bool ret = false;
3233 
3234 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3235 
3236 	stock = this_cpu_ptr(&memcg_stock);
3237 	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3238 		stock->nr_bytes -= nr_bytes;
3239 		ret = true;
3240 	}
3241 
3242 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3243 
3244 	return ret;
3245 }
3246 
3247 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3248 {
3249 	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3250 
3251 	if (!old)
3252 		return NULL;
3253 
3254 	if (stock->nr_bytes) {
3255 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3256 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3257 
3258 		if (nr_pages) {
3259 			struct mem_cgroup *memcg;
3260 
3261 			memcg = get_mem_cgroup_from_objcg(old);
3262 
3263 			memcg_account_kmem(memcg, -nr_pages);
3264 			__refill_stock(memcg, nr_pages);
3265 
3266 			css_put(&memcg->css);
3267 		}
3268 
3269 		/*
3270 		 * The leftover is flushed to the centralized per-memcg value.
3271 		 * On the next attempt to refill obj stock it will be moved
3272 		 * to a per-cpu stock (probably, on an other CPU), see
3273 		 * refill_obj_stock().
3274 		 *
3275 		 * How often it's flushed is a trade-off between the memory
3276 		 * limit enforcement accuracy and potential CPU contention,
3277 		 * so it might be changed in the future.
3278 		 */
3279 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3280 		stock->nr_bytes = 0;
3281 	}
3282 
3283 	/*
3284 	 * Flush the vmstat data in current stock
3285 	 */
3286 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3287 		if (stock->nr_slab_reclaimable_b) {
3288 			mod_objcg_mlstate(old, stock->cached_pgdat,
3289 					  NR_SLAB_RECLAIMABLE_B,
3290 					  stock->nr_slab_reclaimable_b);
3291 			stock->nr_slab_reclaimable_b = 0;
3292 		}
3293 		if (stock->nr_slab_unreclaimable_b) {
3294 			mod_objcg_mlstate(old, stock->cached_pgdat,
3295 					  NR_SLAB_UNRECLAIMABLE_B,
3296 					  stock->nr_slab_unreclaimable_b);
3297 			stock->nr_slab_unreclaimable_b = 0;
3298 		}
3299 		stock->cached_pgdat = NULL;
3300 	}
3301 
3302 	WRITE_ONCE(stock->cached_objcg, NULL);
3303 	/*
3304 	 * The `old' objects needs to be released by the caller via
3305 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3306 	 */
3307 	return old;
3308 }
3309 
3310 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3311 				     struct mem_cgroup *root_memcg)
3312 {
3313 	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3314 	struct mem_cgroup *memcg;
3315 
3316 	if (objcg) {
3317 		memcg = obj_cgroup_memcg(objcg);
3318 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3319 			return true;
3320 	}
3321 
3322 	return false;
3323 }
3324 
3325 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3326 			     bool allow_uncharge)
3327 {
3328 	struct memcg_stock_pcp *stock;
3329 	struct obj_cgroup *old = NULL;
3330 	unsigned long flags;
3331 	unsigned int nr_pages = 0;
3332 
3333 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3334 
3335 	stock = this_cpu_ptr(&memcg_stock);
3336 	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3337 		old = drain_obj_stock(stock);
3338 		obj_cgroup_get(objcg);
3339 		WRITE_ONCE(stock->cached_objcg, objcg);
3340 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3341 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3342 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3343 	}
3344 	stock->nr_bytes += nr_bytes;
3345 
3346 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3347 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3348 		stock->nr_bytes &= (PAGE_SIZE - 1);
3349 	}
3350 
3351 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3352 	if (old)
3353 		obj_cgroup_put(old);
3354 
3355 	if (nr_pages)
3356 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3357 }
3358 
3359 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3360 {
3361 	unsigned int nr_pages, nr_bytes;
3362 	int ret;
3363 
3364 	if (consume_obj_stock(objcg, size))
3365 		return 0;
3366 
3367 	/*
3368 	 * In theory, objcg->nr_charged_bytes can have enough
3369 	 * pre-charged bytes to satisfy the allocation. However,
3370 	 * flushing objcg->nr_charged_bytes requires two atomic
3371 	 * operations, and objcg->nr_charged_bytes can't be big.
3372 	 * The shared objcg->nr_charged_bytes can also become a
3373 	 * performance bottleneck if all tasks of the same memcg are
3374 	 * trying to update it. So it's better to ignore it and try
3375 	 * grab some new pages. The stock's nr_bytes will be flushed to
3376 	 * objcg->nr_charged_bytes later on when objcg changes.
3377 	 *
3378 	 * The stock's nr_bytes may contain enough pre-charged bytes
3379 	 * to allow one less page from being charged, but we can't rely
3380 	 * on the pre-charged bytes not being changed outside of
3381 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3382 	 * pre-charged bytes as well when charging pages. To avoid a
3383 	 * page uncharge right after a page charge, we set the
3384 	 * allow_uncharge flag to false when calling refill_obj_stock()
3385 	 * to temporarily allow the pre-charged bytes to exceed the page
3386 	 * size limit. The maximum reachable value of the pre-charged
3387 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3388 	 * race.
3389 	 */
3390 	nr_pages = size >> PAGE_SHIFT;
3391 	nr_bytes = size & (PAGE_SIZE - 1);
3392 
3393 	if (nr_bytes)
3394 		nr_pages += 1;
3395 
3396 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3397 	if (!ret && nr_bytes)
3398 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3399 
3400 	return ret;
3401 }
3402 
3403 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3404 {
3405 	refill_obj_stock(objcg, size, true);
3406 }
3407 
3408 #endif /* CONFIG_MEMCG_KMEM */
3409 
3410 /*
3411  * Because page_memcg(head) is not set on tails, set it now.
3412  */
3413 void split_page_memcg(struct page *head, unsigned int nr)
3414 {
3415 	struct folio *folio = page_folio(head);
3416 	struct mem_cgroup *memcg = folio_memcg(folio);
3417 	int i;
3418 
3419 	if (mem_cgroup_disabled() || !memcg)
3420 		return;
3421 
3422 	for (i = 1; i < nr; i++)
3423 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3424 
3425 	if (folio_memcg_kmem(folio))
3426 		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3427 	else
3428 		css_get_many(&memcg->css, nr - 1);
3429 }
3430 
3431 #ifdef CONFIG_SWAP
3432 /**
3433  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3434  * @entry: swap entry to be moved
3435  * @from:  mem_cgroup which the entry is moved from
3436  * @to:  mem_cgroup which the entry is moved to
3437  *
3438  * It succeeds only when the swap_cgroup's record for this entry is the same
3439  * as the mem_cgroup's id of @from.
3440  *
3441  * Returns 0 on success, -EINVAL on failure.
3442  *
3443  * The caller must have charged to @to, IOW, called page_counter_charge() about
3444  * both res and memsw, and called css_get().
3445  */
3446 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3447 				struct mem_cgroup *from, struct mem_cgroup *to)
3448 {
3449 	unsigned short old_id, new_id;
3450 
3451 	old_id = mem_cgroup_id(from);
3452 	new_id = mem_cgroup_id(to);
3453 
3454 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3455 		mod_memcg_state(from, MEMCG_SWAP, -1);
3456 		mod_memcg_state(to, MEMCG_SWAP, 1);
3457 		return 0;
3458 	}
3459 	return -EINVAL;
3460 }
3461 #else
3462 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3463 				struct mem_cgroup *from, struct mem_cgroup *to)
3464 {
3465 	return -EINVAL;
3466 }
3467 #endif
3468 
3469 static DEFINE_MUTEX(memcg_max_mutex);
3470 
3471 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3472 				 unsigned long max, bool memsw)
3473 {
3474 	bool enlarge = false;
3475 	bool drained = false;
3476 	int ret;
3477 	bool limits_invariant;
3478 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3479 
3480 	do {
3481 		if (signal_pending(current)) {
3482 			ret = -EINTR;
3483 			break;
3484 		}
3485 
3486 		mutex_lock(&memcg_max_mutex);
3487 		/*
3488 		 * Make sure that the new limit (memsw or memory limit) doesn't
3489 		 * break our basic invariant rule memory.max <= memsw.max.
3490 		 */
3491 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3492 					   max <= memcg->memsw.max;
3493 		if (!limits_invariant) {
3494 			mutex_unlock(&memcg_max_mutex);
3495 			ret = -EINVAL;
3496 			break;
3497 		}
3498 		if (max > counter->max)
3499 			enlarge = true;
3500 		ret = page_counter_set_max(counter, max);
3501 		mutex_unlock(&memcg_max_mutex);
3502 
3503 		if (!ret)
3504 			break;
3505 
3506 		if (!drained) {
3507 			drain_all_stock(memcg);
3508 			drained = true;
3509 			continue;
3510 		}
3511 
3512 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3513 					memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3514 			ret = -EBUSY;
3515 			break;
3516 		}
3517 	} while (true);
3518 
3519 	if (!ret && enlarge)
3520 		memcg_oom_recover(memcg);
3521 
3522 	return ret;
3523 }
3524 
3525 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3526 					    gfp_t gfp_mask,
3527 					    unsigned long *total_scanned)
3528 {
3529 	unsigned long nr_reclaimed = 0;
3530 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3531 	unsigned long reclaimed;
3532 	int loop = 0;
3533 	struct mem_cgroup_tree_per_node *mctz;
3534 	unsigned long excess;
3535 
3536 	if (lru_gen_enabled())
3537 		return 0;
3538 
3539 	if (order > 0)
3540 		return 0;
3541 
3542 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3543 
3544 	/*
3545 	 * Do not even bother to check the largest node if the root
3546 	 * is empty. Do it lockless to prevent lock bouncing. Races
3547 	 * are acceptable as soft limit is best effort anyway.
3548 	 */
3549 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3550 		return 0;
3551 
3552 	/*
3553 	 * This loop can run a while, specially if mem_cgroup's continuously
3554 	 * keep exceeding their soft limit and putting the system under
3555 	 * pressure
3556 	 */
3557 	do {
3558 		if (next_mz)
3559 			mz = next_mz;
3560 		else
3561 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3562 		if (!mz)
3563 			break;
3564 
3565 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3566 						    gfp_mask, total_scanned);
3567 		nr_reclaimed += reclaimed;
3568 		spin_lock_irq(&mctz->lock);
3569 
3570 		/*
3571 		 * If we failed to reclaim anything from this memory cgroup
3572 		 * it is time to move on to the next cgroup
3573 		 */
3574 		next_mz = NULL;
3575 		if (!reclaimed)
3576 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3577 
3578 		excess = soft_limit_excess(mz->memcg);
3579 		/*
3580 		 * One school of thought says that we should not add
3581 		 * back the node to the tree if reclaim returns 0.
3582 		 * But our reclaim could return 0, simply because due
3583 		 * to priority we are exposing a smaller subset of
3584 		 * memory to reclaim from. Consider this as a longer
3585 		 * term TODO.
3586 		 */
3587 		/* If excess == 0, no tree ops */
3588 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3589 		spin_unlock_irq(&mctz->lock);
3590 		css_put(&mz->memcg->css);
3591 		loop++;
3592 		/*
3593 		 * Could not reclaim anything and there are no more
3594 		 * mem cgroups to try or we seem to be looping without
3595 		 * reclaiming anything.
3596 		 */
3597 		if (!nr_reclaimed &&
3598 			(next_mz == NULL ||
3599 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3600 			break;
3601 	} while (!nr_reclaimed);
3602 	if (next_mz)
3603 		css_put(&next_mz->memcg->css);
3604 	return nr_reclaimed;
3605 }
3606 
3607 /*
3608  * Reclaims as many pages from the given memcg as possible.
3609  *
3610  * Caller is responsible for holding css reference for memcg.
3611  */
3612 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3613 {
3614 	int nr_retries = MAX_RECLAIM_RETRIES;
3615 
3616 	/* we call try-to-free pages for make this cgroup empty */
3617 	lru_add_drain_all();
3618 
3619 	drain_all_stock(memcg);
3620 
3621 	/* try to free all pages in this cgroup */
3622 	while (nr_retries && page_counter_read(&memcg->memory)) {
3623 		if (signal_pending(current))
3624 			return -EINTR;
3625 
3626 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3627 						  MEMCG_RECLAIM_MAY_SWAP))
3628 			nr_retries--;
3629 	}
3630 
3631 	return 0;
3632 }
3633 
3634 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3635 					    char *buf, size_t nbytes,
3636 					    loff_t off)
3637 {
3638 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3639 
3640 	if (mem_cgroup_is_root(memcg))
3641 		return -EINVAL;
3642 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3643 }
3644 
3645 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3646 				     struct cftype *cft)
3647 {
3648 	return 1;
3649 }
3650 
3651 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3652 				      struct cftype *cft, u64 val)
3653 {
3654 	if (val == 1)
3655 		return 0;
3656 
3657 	pr_warn_once("Non-hierarchical mode is deprecated. "
3658 		     "Please report your usecase to linux-mm@kvack.org if you "
3659 		     "depend on this functionality.\n");
3660 
3661 	return -EINVAL;
3662 }
3663 
3664 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3665 {
3666 	unsigned long val;
3667 
3668 	if (mem_cgroup_is_root(memcg)) {
3669 		/*
3670 		 * Approximate root's usage from global state. This isn't
3671 		 * perfect, but the root usage was always an approximation.
3672 		 */
3673 		val = global_node_page_state(NR_FILE_PAGES) +
3674 			global_node_page_state(NR_ANON_MAPPED);
3675 		if (swap)
3676 			val += total_swap_pages - get_nr_swap_pages();
3677 	} else {
3678 		if (!swap)
3679 			val = page_counter_read(&memcg->memory);
3680 		else
3681 			val = page_counter_read(&memcg->memsw);
3682 	}
3683 	return val;
3684 }
3685 
3686 enum {
3687 	RES_USAGE,
3688 	RES_LIMIT,
3689 	RES_MAX_USAGE,
3690 	RES_FAILCNT,
3691 	RES_SOFT_LIMIT,
3692 };
3693 
3694 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3695 			       struct cftype *cft)
3696 {
3697 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3698 	struct page_counter *counter;
3699 
3700 	switch (MEMFILE_TYPE(cft->private)) {
3701 	case _MEM:
3702 		counter = &memcg->memory;
3703 		break;
3704 	case _MEMSWAP:
3705 		counter = &memcg->memsw;
3706 		break;
3707 	case _KMEM:
3708 		counter = &memcg->kmem;
3709 		break;
3710 	case _TCP:
3711 		counter = &memcg->tcpmem;
3712 		break;
3713 	default:
3714 		BUG();
3715 	}
3716 
3717 	switch (MEMFILE_ATTR(cft->private)) {
3718 	case RES_USAGE:
3719 		if (counter == &memcg->memory)
3720 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3721 		if (counter == &memcg->memsw)
3722 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3723 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3724 	case RES_LIMIT:
3725 		return (u64)counter->max * PAGE_SIZE;
3726 	case RES_MAX_USAGE:
3727 		return (u64)counter->watermark * PAGE_SIZE;
3728 	case RES_FAILCNT:
3729 		return counter->failcnt;
3730 	case RES_SOFT_LIMIT:
3731 		return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3732 	default:
3733 		BUG();
3734 	}
3735 }
3736 
3737 /*
3738  * This function doesn't do anything useful. Its only job is to provide a read
3739  * handler for a file so that cgroup_file_mode() will add read permissions.
3740  */
3741 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3742 				     __always_unused void *v)
3743 {
3744 	return -EINVAL;
3745 }
3746 
3747 #ifdef CONFIG_MEMCG_KMEM
3748 static int memcg_online_kmem(struct mem_cgroup *memcg)
3749 {
3750 	struct obj_cgroup *objcg;
3751 
3752 	if (mem_cgroup_kmem_disabled())
3753 		return 0;
3754 
3755 	if (unlikely(mem_cgroup_is_root(memcg)))
3756 		return 0;
3757 
3758 	objcg = obj_cgroup_alloc();
3759 	if (!objcg)
3760 		return -ENOMEM;
3761 
3762 	objcg->memcg = memcg;
3763 	rcu_assign_pointer(memcg->objcg, objcg);
3764 
3765 	static_branch_enable(&memcg_kmem_online_key);
3766 
3767 	memcg->kmemcg_id = memcg->id.id;
3768 
3769 	return 0;
3770 }
3771 
3772 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3773 {
3774 	struct mem_cgroup *parent;
3775 
3776 	if (mem_cgroup_kmem_disabled())
3777 		return;
3778 
3779 	if (unlikely(mem_cgroup_is_root(memcg)))
3780 		return;
3781 
3782 	parent = parent_mem_cgroup(memcg);
3783 	if (!parent)
3784 		parent = root_mem_cgroup;
3785 
3786 	memcg_reparent_objcgs(memcg, parent);
3787 
3788 	/*
3789 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3790 	 * corresponding to this cgroup are guaranteed to remain empty.
3791 	 * The ordering is imposed by list_lru_node->lock taken by
3792 	 * memcg_reparent_list_lrus().
3793 	 */
3794 	memcg_reparent_list_lrus(memcg, parent);
3795 }
3796 #else
3797 static int memcg_online_kmem(struct mem_cgroup *memcg)
3798 {
3799 	return 0;
3800 }
3801 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3802 {
3803 }
3804 #endif /* CONFIG_MEMCG_KMEM */
3805 
3806 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3807 {
3808 	int ret;
3809 
3810 	mutex_lock(&memcg_max_mutex);
3811 
3812 	ret = page_counter_set_max(&memcg->tcpmem, max);
3813 	if (ret)
3814 		goto out;
3815 
3816 	if (!memcg->tcpmem_active) {
3817 		/*
3818 		 * The active flag needs to be written after the static_key
3819 		 * update. This is what guarantees that the socket activation
3820 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3821 		 * for details, and note that we don't mark any socket as
3822 		 * belonging to this memcg until that flag is up.
3823 		 *
3824 		 * We need to do this, because static_keys will span multiple
3825 		 * sites, but we can't control their order. If we mark a socket
3826 		 * as accounted, but the accounting functions are not patched in
3827 		 * yet, we'll lose accounting.
3828 		 *
3829 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3830 		 * because when this value change, the code to process it is not
3831 		 * patched in yet.
3832 		 */
3833 		static_branch_inc(&memcg_sockets_enabled_key);
3834 		memcg->tcpmem_active = true;
3835 	}
3836 out:
3837 	mutex_unlock(&memcg_max_mutex);
3838 	return ret;
3839 }
3840 
3841 /*
3842  * The user of this function is...
3843  * RES_LIMIT.
3844  */
3845 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3846 				char *buf, size_t nbytes, loff_t off)
3847 {
3848 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3849 	unsigned long nr_pages;
3850 	int ret;
3851 
3852 	buf = strstrip(buf);
3853 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3854 	if (ret)
3855 		return ret;
3856 
3857 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3858 	case RES_LIMIT:
3859 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3860 			ret = -EINVAL;
3861 			break;
3862 		}
3863 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3864 		case _MEM:
3865 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3866 			break;
3867 		case _MEMSWAP:
3868 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3869 			break;
3870 		case _TCP:
3871 			ret = memcg_update_tcp_max(memcg, nr_pages);
3872 			break;
3873 		}
3874 		break;
3875 	case RES_SOFT_LIMIT:
3876 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3877 			ret = -EOPNOTSUPP;
3878 		} else {
3879 			WRITE_ONCE(memcg->soft_limit, nr_pages);
3880 			ret = 0;
3881 		}
3882 		break;
3883 	}
3884 	return ret ?: nbytes;
3885 }
3886 
3887 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3888 				size_t nbytes, loff_t off)
3889 {
3890 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3891 	struct page_counter *counter;
3892 
3893 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3894 	case _MEM:
3895 		counter = &memcg->memory;
3896 		break;
3897 	case _MEMSWAP:
3898 		counter = &memcg->memsw;
3899 		break;
3900 	case _KMEM:
3901 		counter = &memcg->kmem;
3902 		break;
3903 	case _TCP:
3904 		counter = &memcg->tcpmem;
3905 		break;
3906 	default:
3907 		BUG();
3908 	}
3909 
3910 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3911 	case RES_MAX_USAGE:
3912 		page_counter_reset_watermark(counter);
3913 		break;
3914 	case RES_FAILCNT:
3915 		counter->failcnt = 0;
3916 		break;
3917 	default:
3918 		BUG();
3919 	}
3920 
3921 	return nbytes;
3922 }
3923 
3924 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3925 					struct cftype *cft)
3926 {
3927 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3928 }
3929 
3930 #ifdef CONFIG_MMU
3931 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3932 					struct cftype *cft, u64 val)
3933 {
3934 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3935 
3936 	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3937 		     "Please report your usecase to linux-mm@kvack.org if you "
3938 		     "depend on this functionality.\n");
3939 
3940 	if (val & ~MOVE_MASK)
3941 		return -EINVAL;
3942 
3943 	/*
3944 	 * No kind of locking is needed in here, because ->can_attach() will
3945 	 * check this value once in the beginning of the process, and then carry
3946 	 * on with stale data. This means that changes to this value will only
3947 	 * affect task migrations starting after the change.
3948 	 */
3949 	memcg->move_charge_at_immigrate = val;
3950 	return 0;
3951 }
3952 #else
3953 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3954 					struct cftype *cft, u64 val)
3955 {
3956 	return -ENOSYS;
3957 }
3958 #endif
3959 
3960 #ifdef CONFIG_NUMA
3961 
3962 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3963 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3964 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3965 
3966 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3967 				int nid, unsigned int lru_mask, bool tree)
3968 {
3969 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3970 	unsigned long nr = 0;
3971 	enum lru_list lru;
3972 
3973 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3974 
3975 	for_each_lru(lru) {
3976 		if (!(BIT(lru) & lru_mask))
3977 			continue;
3978 		if (tree)
3979 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3980 		else
3981 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3982 	}
3983 	return nr;
3984 }
3985 
3986 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3987 					     unsigned int lru_mask,
3988 					     bool tree)
3989 {
3990 	unsigned long nr = 0;
3991 	enum lru_list lru;
3992 
3993 	for_each_lru(lru) {
3994 		if (!(BIT(lru) & lru_mask))
3995 			continue;
3996 		if (tree)
3997 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3998 		else
3999 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4000 	}
4001 	return nr;
4002 }
4003 
4004 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4005 {
4006 	struct numa_stat {
4007 		const char *name;
4008 		unsigned int lru_mask;
4009 	};
4010 
4011 	static const struct numa_stat stats[] = {
4012 		{ "total", LRU_ALL },
4013 		{ "file", LRU_ALL_FILE },
4014 		{ "anon", LRU_ALL_ANON },
4015 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
4016 	};
4017 	const struct numa_stat *stat;
4018 	int nid;
4019 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4020 
4021 	mem_cgroup_flush_stats();
4022 
4023 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4024 		seq_printf(m, "%s=%lu", stat->name,
4025 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4026 						   false));
4027 		for_each_node_state(nid, N_MEMORY)
4028 			seq_printf(m, " N%d=%lu", nid,
4029 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4030 							stat->lru_mask, false));
4031 		seq_putc(m, '\n');
4032 	}
4033 
4034 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4035 
4036 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4037 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4038 						   true));
4039 		for_each_node_state(nid, N_MEMORY)
4040 			seq_printf(m, " N%d=%lu", nid,
4041 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4042 							stat->lru_mask, true));
4043 		seq_putc(m, '\n');
4044 	}
4045 
4046 	return 0;
4047 }
4048 #endif /* CONFIG_NUMA */
4049 
4050 static const unsigned int memcg1_stats[] = {
4051 	NR_FILE_PAGES,
4052 	NR_ANON_MAPPED,
4053 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4054 	NR_ANON_THPS,
4055 #endif
4056 	NR_SHMEM,
4057 	NR_FILE_MAPPED,
4058 	NR_FILE_DIRTY,
4059 	NR_WRITEBACK,
4060 	WORKINGSET_REFAULT_ANON,
4061 	WORKINGSET_REFAULT_FILE,
4062 	MEMCG_SWAP,
4063 };
4064 
4065 static const char *const memcg1_stat_names[] = {
4066 	"cache",
4067 	"rss",
4068 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4069 	"rss_huge",
4070 #endif
4071 	"shmem",
4072 	"mapped_file",
4073 	"dirty",
4074 	"writeback",
4075 	"workingset_refault_anon",
4076 	"workingset_refault_file",
4077 	"swap",
4078 };
4079 
4080 /* Universal VM events cgroup1 shows, original sort order */
4081 static const unsigned int memcg1_events[] = {
4082 	PGPGIN,
4083 	PGPGOUT,
4084 	PGFAULT,
4085 	PGMAJFAULT,
4086 };
4087 
4088 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4089 {
4090 	unsigned long memory, memsw;
4091 	struct mem_cgroup *mi;
4092 	unsigned int i;
4093 
4094 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4095 
4096 	mem_cgroup_flush_stats();
4097 
4098 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4099 		unsigned long nr;
4100 
4101 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4102 			continue;
4103 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4104 		seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
4105 			   nr * memcg_page_state_unit(memcg1_stats[i]));
4106 	}
4107 
4108 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4109 		seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4110 			       memcg_events_local(memcg, memcg1_events[i]));
4111 
4112 	for (i = 0; i < NR_LRU_LISTS; i++)
4113 		seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4114 			       memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4115 			       PAGE_SIZE);
4116 
4117 	/* Hierarchical information */
4118 	memory = memsw = PAGE_COUNTER_MAX;
4119 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4120 		memory = min(memory, READ_ONCE(mi->memory.max));
4121 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4122 	}
4123 	seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4124 		       (u64)memory * PAGE_SIZE);
4125 	if (do_memsw_account())
4126 		seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4127 			       (u64)memsw * PAGE_SIZE);
4128 
4129 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4130 		unsigned long nr;
4131 
4132 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4133 			continue;
4134 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4135 		seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4136 			   (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4137 	}
4138 
4139 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4140 		seq_buf_printf(s, "total_%s %llu\n",
4141 			       vm_event_name(memcg1_events[i]),
4142 			       (u64)memcg_events(memcg, memcg1_events[i]));
4143 
4144 	for (i = 0; i < NR_LRU_LISTS; i++)
4145 		seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4146 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4147 			       PAGE_SIZE);
4148 
4149 #ifdef CONFIG_DEBUG_VM
4150 	{
4151 		pg_data_t *pgdat;
4152 		struct mem_cgroup_per_node *mz;
4153 		unsigned long anon_cost = 0;
4154 		unsigned long file_cost = 0;
4155 
4156 		for_each_online_pgdat(pgdat) {
4157 			mz = memcg->nodeinfo[pgdat->node_id];
4158 
4159 			anon_cost += mz->lruvec.anon_cost;
4160 			file_cost += mz->lruvec.file_cost;
4161 		}
4162 		seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4163 		seq_buf_printf(s, "file_cost %lu\n", file_cost);
4164 	}
4165 #endif
4166 }
4167 
4168 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4169 				      struct cftype *cft)
4170 {
4171 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4172 
4173 	return mem_cgroup_swappiness(memcg);
4174 }
4175 
4176 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4177 				       struct cftype *cft, u64 val)
4178 {
4179 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4180 
4181 	if (val > 200)
4182 		return -EINVAL;
4183 
4184 	if (!mem_cgroup_is_root(memcg))
4185 		WRITE_ONCE(memcg->swappiness, val);
4186 	else
4187 		WRITE_ONCE(vm_swappiness, val);
4188 
4189 	return 0;
4190 }
4191 
4192 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4193 {
4194 	struct mem_cgroup_threshold_ary *t;
4195 	unsigned long usage;
4196 	int i;
4197 
4198 	rcu_read_lock();
4199 	if (!swap)
4200 		t = rcu_dereference(memcg->thresholds.primary);
4201 	else
4202 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4203 
4204 	if (!t)
4205 		goto unlock;
4206 
4207 	usage = mem_cgroup_usage(memcg, swap);
4208 
4209 	/*
4210 	 * current_threshold points to threshold just below or equal to usage.
4211 	 * If it's not true, a threshold was crossed after last
4212 	 * call of __mem_cgroup_threshold().
4213 	 */
4214 	i = t->current_threshold;
4215 
4216 	/*
4217 	 * Iterate backward over array of thresholds starting from
4218 	 * current_threshold and check if a threshold is crossed.
4219 	 * If none of thresholds below usage is crossed, we read
4220 	 * only one element of the array here.
4221 	 */
4222 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4223 		eventfd_signal(t->entries[i].eventfd, 1);
4224 
4225 	/* i = current_threshold + 1 */
4226 	i++;
4227 
4228 	/*
4229 	 * Iterate forward over array of thresholds starting from
4230 	 * current_threshold+1 and check if a threshold is crossed.
4231 	 * If none of thresholds above usage is crossed, we read
4232 	 * only one element of the array here.
4233 	 */
4234 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4235 		eventfd_signal(t->entries[i].eventfd, 1);
4236 
4237 	/* Update current_threshold */
4238 	t->current_threshold = i - 1;
4239 unlock:
4240 	rcu_read_unlock();
4241 }
4242 
4243 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4244 {
4245 	while (memcg) {
4246 		__mem_cgroup_threshold(memcg, false);
4247 		if (do_memsw_account())
4248 			__mem_cgroup_threshold(memcg, true);
4249 
4250 		memcg = parent_mem_cgroup(memcg);
4251 	}
4252 }
4253 
4254 static int compare_thresholds(const void *a, const void *b)
4255 {
4256 	const struct mem_cgroup_threshold *_a = a;
4257 	const struct mem_cgroup_threshold *_b = b;
4258 
4259 	if (_a->threshold > _b->threshold)
4260 		return 1;
4261 
4262 	if (_a->threshold < _b->threshold)
4263 		return -1;
4264 
4265 	return 0;
4266 }
4267 
4268 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4269 {
4270 	struct mem_cgroup_eventfd_list *ev;
4271 
4272 	spin_lock(&memcg_oom_lock);
4273 
4274 	list_for_each_entry(ev, &memcg->oom_notify, list)
4275 		eventfd_signal(ev->eventfd, 1);
4276 
4277 	spin_unlock(&memcg_oom_lock);
4278 	return 0;
4279 }
4280 
4281 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4282 {
4283 	struct mem_cgroup *iter;
4284 
4285 	for_each_mem_cgroup_tree(iter, memcg)
4286 		mem_cgroup_oom_notify_cb(iter);
4287 }
4288 
4289 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4290 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4291 {
4292 	struct mem_cgroup_thresholds *thresholds;
4293 	struct mem_cgroup_threshold_ary *new;
4294 	unsigned long threshold;
4295 	unsigned long usage;
4296 	int i, size, ret;
4297 
4298 	ret = page_counter_memparse(args, "-1", &threshold);
4299 	if (ret)
4300 		return ret;
4301 
4302 	mutex_lock(&memcg->thresholds_lock);
4303 
4304 	if (type == _MEM) {
4305 		thresholds = &memcg->thresholds;
4306 		usage = mem_cgroup_usage(memcg, false);
4307 	} else if (type == _MEMSWAP) {
4308 		thresholds = &memcg->memsw_thresholds;
4309 		usage = mem_cgroup_usage(memcg, true);
4310 	} else
4311 		BUG();
4312 
4313 	/* Check if a threshold crossed before adding a new one */
4314 	if (thresholds->primary)
4315 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4316 
4317 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4318 
4319 	/* Allocate memory for new array of thresholds */
4320 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4321 	if (!new) {
4322 		ret = -ENOMEM;
4323 		goto unlock;
4324 	}
4325 	new->size = size;
4326 
4327 	/* Copy thresholds (if any) to new array */
4328 	if (thresholds->primary)
4329 		memcpy(new->entries, thresholds->primary->entries,
4330 		       flex_array_size(new, entries, size - 1));
4331 
4332 	/* Add new threshold */
4333 	new->entries[size - 1].eventfd = eventfd;
4334 	new->entries[size - 1].threshold = threshold;
4335 
4336 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4337 	sort(new->entries, size, sizeof(*new->entries),
4338 			compare_thresholds, NULL);
4339 
4340 	/* Find current threshold */
4341 	new->current_threshold = -1;
4342 	for (i = 0; i < size; i++) {
4343 		if (new->entries[i].threshold <= usage) {
4344 			/*
4345 			 * new->current_threshold will not be used until
4346 			 * rcu_assign_pointer(), so it's safe to increment
4347 			 * it here.
4348 			 */
4349 			++new->current_threshold;
4350 		} else
4351 			break;
4352 	}
4353 
4354 	/* Free old spare buffer and save old primary buffer as spare */
4355 	kfree(thresholds->spare);
4356 	thresholds->spare = thresholds->primary;
4357 
4358 	rcu_assign_pointer(thresholds->primary, new);
4359 
4360 	/* To be sure that nobody uses thresholds */
4361 	synchronize_rcu();
4362 
4363 unlock:
4364 	mutex_unlock(&memcg->thresholds_lock);
4365 
4366 	return ret;
4367 }
4368 
4369 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4370 	struct eventfd_ctx *eventfd, const char *args)
4371 {
4372 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4373 }
4374 
4375 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4376 	struct eventfd_ctx *eventfd, const char *args)
4377 {
4378 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4379 }
4380 
4381 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4382 	struct eventfd_ctx *eventfd, enum res_type type)
4383 {
4384 	struct mem_cgroup_thresholds *thresholds;
4385 	struct mem_cgroup_threshold_ary *new;
4386 	unsigned long usage;
4387 	int i, j, size, entries;
4388 
4389 	mutex_lock(&memcg->thresholds_lock);
4390 
4391 	if (type == _MEM) {
4392 		thresholds = &memcg->thresholds;
4393 		usage = mem_cgroup_usage(memcg, false);
4394 	} else if (type == _MEMSWAP) {
4395 		thresholds = &memcg->memsw_thresholds;
4396 		usage = mem_cgroup_usage(memcg, true);
4397 	} else
4398 		BUG();
4399 
4400 	if (!thresholds->primary)
4401 		goto unlock;
4402 
4403 	/* Check if a threshold crossed before removing */
4404 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4405 
4406 	/* Calculate new number of threshold */
4407 	size = entries = 0;
4408 	for (i = 0; i < thresholds->primary->size; i++) {
4409 		if (thresholds->primary->entries[i].eventfd != eventfd)
4410 			size++;
4411 		else
4412 			entries++;
4413 	}
4414 
4415 	new = thresholds->spare;
4416 
4417 	/* If no items related to eventfd have been cleared, nothing to do */
4418 	if (!entries)
4419 		goto unlock;
4420 
4421 	/* Set thresholds array to NULL if we don't have thresholds */
4422 	if (!size) {
4423 		kfree(new);
4424 		new = NULL;
4425 		goto swap_buffers;
4426 	}
4427 
4428 	new->size = size;
4429 
4430 	/* Copy thresholds and find current threshold */
4431 	new->current_threshold = -1;
4432 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4433 		if (thresholds->primary->entries[i].eventfd == eventfd)
4434 			continue;
4435 
4436 		new->entries[j] = thresholds->primary->entries[i];
4437 		if (new->entries[j].threshold <= usage) {
4438 			/*
4439 			 * new->current_threshold will not be used
4440 			 * until rcu_assign_pointer(), so it's safe to increment
4441 			 * it here.
4442 			 */
4443 			++new->current_threshold;
4444 		}
4445 		j++;
4446 	}
4447 
4448 swap_buffers:
4449 	/* Swap primary and spare array */
4450 	thresholds->spare = thresholds->primary;
4451 
4452 	rcu_assign_pointer(thresholds->primary, new);
4453 
4454 	/* To be sure that nobody uses thresholds */
4455 	synchronize_rcu();
4456 
4457 	/* If all events are unregistered, free the spare array */
4458 	if (!new) {
4459 		kfree(thresholds->spare);
4460 		thresholds->spare = NULL;
4461 	}
4462 unlock:
4463 	mutex_unlock(&memcg->thresholds_lock);
4464 }
4465 
4466 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4467 	struct eventfd_ctx *eventfd)
4468 {
4469 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4470 }
4471 
4472 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4473 	struct eventfd_ctx *eventfd)
4474 {
4475 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4476 }
4477 
4478 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4479 	struct eventfd_ctx *eventfd, const char *args)
4480 {
4481 	struct mem_cgroup_eventfd_list *event;
4482 
4483 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4484 	if (!event)
4485 		return -ENOMEM;
4486 
4487 	spin_lock(&memcg_oom_lock);
4488 
4489 	event->eventfd = eventfd;
4490 	list_add(&event->list, &memcg->oom_notify);
4491 
4492 	/* already in OOM ? */
4493 	if (memcg->under_oom)
4494 		eventfd_signal(eventfd, 1);
4495 	spin_unlock(&memcg_oom_lock);
4496 
4497 	return 0;
4498 }
4499 
4500 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4501 	struct eventfd_ctx *eventfd)
4502 {
4503 	struct mem_cgroup_eventfd_list *ev, *tmp;
4504 
4505 	spin_lock(&memcg_oom_lock);
4506 
4507 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4508 		if (ev->eventfd == eventfd) {
4509 			list_del(&ev->list);
4510 			kfree(ev);
4511 		}
4512 	}
4513 
4514 	spin_unlock(&memcg_oom_lock);
4515 }
4516 
4517 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4518 {
4519 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4520 
4521 	seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4522 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4523 	seq_printf(sf, "oom_kill %lu\n",
4524 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4525 	return 0;
4526 }
4527 
4528 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4529 	struct cftype *cft, u64 val)
4530 {
4531 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4532 
4533 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4534 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4535 		return -EINVAL;
4536 
4537 	WRITE_ONCE(memcg->oom_kill_disable, val);
4538 	if (!val)
4539 		memcg_oom_recover(memcg);
4540 
4541 	return 0;
4542 }
4543 
4544 #ifdef CONFIG_CGROUP_WRITEBACK
4545 
4546 #include <trace/events/writeback.h>
4547 
4548 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4549 {
4550 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4551 }
4552 
4553 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4554 {
4555 	wb_domain_exit(&memcg->cgwb_domain);
4556 }
4557 
4558 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4559 {
4560 	wb_domain_size_changed(&memcg->cgwb_domain);
4561 }
4562 
4563 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4564 {
4565 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4566 
4567 	if (!memcg->css.parent)
4568 		return NULL;
4569 
4570 	return &memcg->cgwb_domain;
4571 }
4572 
4573 /**
4574  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4575  * @wb: bdi_writeback in question
4576  * @pfilepages: out parameter for number of file pages
4577  * @pheadroom: out parameter for number of allocatable pages according to memcg
4578  * @pdirty: out parameter for number of dirty pages
4579  * @pwriteback: out parameter for number of pages under writeback
4580  *
4581  * Determine the numbers of file, headroom, dirty, and writeback pages in
4582  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4583  * is a bit more involved.
4584  *
4585  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4586  * headroom is calculated as the lowest headroom of itself and the
4587  * ancestors.  Note that this doesn't consider the actual amount of
4588  * available memory in the system.  The caller should further cap
4589  * *@pheadroom accordingly.
4590  */
4591 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4592 			 unsigned long *pheadroom, unsigned long *pdirty,
4593 			 unsigned long *pwriteback)
4594 {
4595 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4596 	struct mem_cgroup *parent;
4597 
4598 	mem_cgroup_flush_stats();
4599 
4600 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4601 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4602 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4603 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4604 
4605 	*pheadroom = PAGE_COUNTER_MAX;
4606 	while ((parent = parent_mem_cgroup(memcg))) {
4607 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4608 					    READ_ONCE(memcg->memory.high));
4609 		unsigned long used = page_counter_read(&memcg->memory);
4610 
4611 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4612 		memcg = parent;
4613 	}
4614 }
4615 
4616 /*
4617  * Foreign dirty flushing
4618  *
4619  * There's an inherent mismatch between memcg and writeback.  The former
4620  * tracks ownership per-page while the latter per-inode.  This was a
4621  * deliberate design decision because honoring per-page ownership in the
4622  * writeback path is complicated, may lead to higher CPU and IO overheads
4623  * and deemed unnecessary given that write-sharing an inode across
4624  * different cgroups isn't a common use-case.
4625  *
4626  * Combined with inode majority-writer ownership switching, this works well
4627  * enough in most cases but there are some pathological cases.  For
4628  * example, let's say there are two cgroups A and B which keep writing to
4629  * different but confined parts of the same inode.  B owns the inode and
4630  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4631  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4632  * triggering background writeback.  A will be slowed down without a way to
4633  * make writeback of the dirty pages happen.
4634  *
4635  * Conditions like the above can lead to a cgroup getting repeatedly and
4636  * severely throttled after making some progress after each
4637  * dirty_expire_interval while the underlying IO device is almost
4638  * completely idle.
4639  *
4640  * Solving this problem completely requires matching the ownership tracking
4641  * granularities between memcg and writeback in either direction.  However,
4642  * the more egregious behaviors can be avoided by simply remembering the
4643  * most recent foreign dirtying events and initiating remote flushes on
4644  * them when local writeback isn't enough to keep the memory clean enough.
4645  *
4646  * The following two functions implement such mechanism.  When a foreign
4647  * page - a page whose memcg and writeback ownerships don't match - is
4648  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4649  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4650  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4651  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4652  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4653  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4654  * limited to MEMCG_CGWB_FRN_CNT.
4655  *
4656  * The mechanism only remembers IDs and doesn't hold any object references.
4657  * As being wrong occasionally doesn't matter, updates and accesses to the
4658  * records are lockless and racy.
4659  */
4660 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4661 					     struct bdi_writeback *wb)
4662 {
4663 	struct mem_cgroup *memcg = folio_memcg(folio);
4664 	struct memcg_cgwb_frn *frn;
4665 	u64 now = get_jiffies_64();
4666 	u64 oldest_at = now;
4667 	int oldest = -1;
4668 	int i;
4669 
4670 	trace_track_foreign_dirty(folio, wb);
4671 
4672 	/*
4673 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4674 	 * using it.  If not replace the oldest one which isn't being
4675 	 * written out.
4676 	 */
4677 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4678 		frn = &memcg->cgwb_frn[i];
4679 		if (frn->bdi_id == wb->bdi->id &&
4680 		    frn->memcg_id == wb->memcg_css->id)
4681 			break;
4682 		if (time_before64(frn->at, oldest_at) &&
4683 		    atomic_read(&frn->done.cnt) == 1) {
4684 			oldest = i;
4685 			oldest_at = frn->at;
4686 		}
4687 	}
4688 
4689 	if (i < MEMCG_CGWB_FRN_CNT) {
4690 		/*
4691 		 * Re-using an existing one.  Update timestamp lazily to
4692 		 * avoid making the cacheline hot.  We want them to be
4693 		 * reasonably up-to-date and significantly shorter than
4694 		 * dirty_expire_interval as that's what expires the record.
4695 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4696 		 */
4697 		unsigned long update_intv =
4698 			min_t(unsigned long, HZ,
4699 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4700 
4701 		if (time_before64(frn->at, now - update_intv))
4702 			frn->at = now;
4703 	} else if (oldest >= 0) {
4704 		/* replace the oldest free one */
4705 		frn = &memcg->cgwb_frn[oldest];
4706 		frn->bdi_id = wb->bdi->id;
4707 		frn->memcg_id = wb->memcg_css->id;
4708 		frn->at = now;
4709 	}
4710 }
4711 
4712 /* issue foreign writeback flushes for recorded foreign dirtying events */
4713 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4714 {
4715 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4716 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4717 	u64 now = jiffies_64;
4718 	int i;
4719 
4720 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4721 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4722 
4723 		/*
4724 		 * If the record is older than dirty_expire_interval,
4725 		 * writeback on it has already started.  No need to kick it
4726 		 * off again.  Also, don't start a new one if there's
4727 		 * already one in flight.
4728 		 */
4729 		if (time_after64(frn->at, now - intv) &&
4730 		    atomic_read(&frn->done.cnt) == 1) {
4731 			frn->at = 0;
4732 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4733 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4734 					       WB_REASON_FOREIGN_FLUSH,
4735 					       &frn->done);
4736 		}
4737 	}
4738 }
4739 
4740 #else	/* CONFIG_CGROUP_WRITEBACK */
4741 
4742 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4743 {
4744 	return 0;
4745 }
4746 
4747 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4748 {
4749 }
4750 
4751 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4752 {
4753 }
4754 
4755 #endif	/* CONFIG_CGROUP_WRITEBACK */
4756 
4757 /*
4758  * DO NOT USE IN NEW FILES.
4759  *
4760  * "cgroup.event_control" implementation.
4761  *
4762  * This is way over-engineered.  It tries to support fully configurable
4763  * events for each user.  Such level of flexibility is completely
4764  * unnecessary especially in the light of the planned unified hierarchy.
4765  *
4766  * Please deprecate this and replace with something simpler if at all
4767  * possible.
4768  */
4769 
4770 /*
4771  * Unregister event and free resources.
4772  *
4773  * Gets called from workqueue.
4774  */
4775 static void memcg_event_remove(struct work_struct *work)
4776 {
4777 	struct mem_cgroup_event *event =
4778 		container_of(work, struct mem_cgroup_event, remove);
4779 	struct mem_cgroup *memcg = event->memcg;
4780 
4781 	remove_wait_queue(event->wqh, &event->wait);
4782 
4783 	event->unregister_event(memcg, event->eventfd);
4784 
4785 	/* Notify userspace the event is going away. */
4786 	eventfd_signal(event->eventfd, 1);
4787 
4788 	eventfd_ctx_put(event->eventfd);
4789 	kfree(event);
4790 	css_put(&memcg->css);
4791 }
4792 
4793 /*
4794  * Gets called on EPOLLHUP on eventfd when user closes it.
4795  *
4796  * Called with wqh->lock held and interrupts disabled.
4797  */
4798 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4799 			    int sync, void *key)
4800 {
4801 	struct mem_cgroup_event *event =
4802 		container_of(wait, struct mem_cgroup_event, wait);
4803 	struct mem_cgroup *memcg = event->memcg;
4804 	__poll_t flags = key_to_poll(key);
4805 
4806 	if (flags & EPOLLHUP) {
4807 		/*
4808 		 * If the event has been detached at cgroup removal, we
4809 		 * can simply return knowing the other side will cleanup
4810 		 * for us.
4811 		 *
4812 		 * We can't race against event freeing since the other
4813 		 * side will require wqh->lock via remove_wait_queue(),
4814 		 * which we hold.
4815 		 */
4816 		spin_lock(&memcg->event_list_lock);
4817 		if (!list_empty(&event->list)) {
4818 			list_del_init(&event->list);
4819 			/*
4820 			 * We are in atomic context, but cgroup_event_remove()
4821 			 * may sleep, so we have to call it in workqueue.
4822 			 */
4823 			schedule_work(&event->remove);
4824 		}
4825 		spin_unlock(&memcg->event_list_lock);
4826 	}
4827 
4828 	return 0;
4829 }
4830 
4831 static void memcg_event_ptable_queue_proc(struct file *file,
4832 		wait_queue_head_t *wqh, poll_table *pt)
4833 {
4834 	struct mem_cgroup_event *event =
4835 		container_of(pt, struct mem_cgroup_event, pt);
4836 
4837 	event->wqh = wqh;
4838 	add_wait_queue(wqh, &event->wait);
4839 }
4840 
4841 /*
4842  * DO NOT USE IN NEW FILES.
4843  *
4844  * Parse input and register new cgroup event handler.
4845  *
4846  * Input must be in format '<event_fd> <control_fd> <args>'.
4847  * Interpretation of args is defined by control file implementation.
4848  */
4849 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4850 					 char *buf, size_t nbytes, loff_t off)
4851 {
4852 	struct cgroup_subsys_state *css = of_css(of);
4853 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4854 	struct mem_cgroup_event *event;
4855 	struct cgroup_subsys_state *cfile_css;
4856 	unsigned int efd, cfd;
4857 	struct fd efile;
4858 	struct fd cfile;
4859 	struct dentry *cdentry;
4860 	const char *name;
4861 	char *endp;
4862 	int ret;
4863 
4864 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
4865 		return -EOPNOTSUPP;
4866 
4867 	buf = strstrip(buf);
4868 
4869 	efd = simple_strtoul(buf, &endp, 10);
4870 	if (*endp != ' ')
4871 		return -EINVAL;
4872 	buf = endp + 1;
4873 
4874 	cfd = simple_strtoul(buf, &endp, 10);
4875 	if ((*endp != ' ') && (*endp != '\0'))
4876 		return -EINVAL;
4877 	buf = endp + 1;
4878 
4879 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4880 	if (!event)
4881 		return -ENOMEM;
4882 
4883 	event->memcg = memcg;
4884 	INIT_LIST_HEAD(&event->list);
4885 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4886 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4887 	INIT_WORK(&event->remove, memcg_event_remove);
4888 
4889 	efile = fdget(efd);
4890 	if (!efile.file) {
4891 		ret = -EBADF;
4892 		goto out_kfree;
4893 	}
4894 
4895 	event->eventfd = eventfd_ctx_fileget(efile.file);
4896 	if (IS_ERR(event->eventfd)) {
4897 		ret = PTR_ERR(event->eventfd);
4898 		goto out_put_efile;
4899 	}
4900 
4901 	cfile = fdget(cfd);
4902 	if (!cfile.file) {
4903 		ret = -EBADF;
4904 		goto out_put_eventfd;
4905 	}
4906 
4907 	/* the process need read permission on control file */
4908 	/* AV: shouldn't we check that it's been opened for read instead? */
4909 	ret = file_permission(cfile.file, MAY_READ);
4910 	if (ret < 0)
4911 		goto out_put_cfile;
4912 
4913 	/*
4914 	 * The control file must be a regular cgroup1 file. As a regular cgroup
4915 	 * file can't be renamed, it's safe to access its name afterwards.
4916 	 */
4917 	cdentry = cfile.file->f_path.dentry;
4918 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4919 		ret = -EINVAL;
4920 		goto out_put_cfile;
4921 	}
4922 
4923 	/*
4924 	 * Determine the event callbacks and set them in @event.  This used
4925 	 * to be done via struct cftype but cgroup core no longer knows
4926 	 * about these events.  The following is crude but the whole thing
4927 	 * is for compatibility anyway.
4928 	 *
4929 	 * DO NOT ADD NEW FILES.
4930 	 */
4931 	name = cdentry->d_name.name;
4932 
4933 	if (!strcmp(name, "memory.usage_in_bytes")) {
4934 		event->register_event = mem_cgroup_usage_register_event;
4935 		event->unregister_event = mem_cgroup_usage_unregister_event;
4936 	} else if (!strcmp(name, "memory.oom_control")) {
4937 		event->register_event = mem_cgroup_oom_register_event;
4938 		event->unregister_event = mem_cgroup_oom_unregister_event;
4939 	} else if (!strcmp(name, "memory.pressure_level")) {
4940 		event->register_event = vmpressure_register_event;
4941 		event->unregister_event = vmpressure_unregister_event;
4942 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4943 		event->register_event = memsw_cgroup_usage_register_event;
4944 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4945 	} else {
4946 		ret = -EINVAL;
4947 		goto out_put_cfile;
4948 	}
4949 
4950 	/*
4951 	 * Verify @cfile should belong to @css.  Also, remaining events are
4952 	 * automatically removed on cgroup destruction but the removal is
4953 	 * asynchronous, so take an extra ref on @css.
4954 	 */
4955 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4956 					       &memory_cgrp_subsys);
4957 	ret = -EINVAL;
4958 	if (IS_ERR(cfile_css))
4959 		goto out_put_cfile;
4960 	if (cfile_css != css) {
4961 		css_put(cfile_css);
4962 		goto out_put_cfile;
4963 	}
4964 
4965 	ret = event->register_event(memcg, event->eventfd, buf);
4966 	if (ret)
4967 		goto out_put_css;
4968 
4969 	vfs_poll(efile.file, &event->pt);
4970 
4971 	spin_lock_irq(&memcg->event_list_lock);
4972 	list_add(&event->list, &memcg->event_list);
4973 	spin_unlock_irq(&memcg->event_list_lock);
4974 
4975 	fdput(cfile);
4976 	fdput(efile);
4977 
4978 	return nbytes;
4979 
4980 out_put_css:
4981 	css_put(css);
4982 out_put_cfile:
4983 	fdput(cfile);
4984 out_put_eventfd:
4985 	eventfd_ctx_put(event->eventfd);
4986 out_put_efile:
4987 	fdput(efile);
4988 out_kfree:
4989 	kfree(event);
4990 
4991 	return ret;
4992 }
4993 
4994 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4995 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4996 {
4997 	/*
4998 	 * Deprecated.
4999 	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5000 	 */
5001 	return 0;
5002 }
5003 #endif
5004 
5005 static int memory_stat_show(struct seq_file *m, void *v);
5006 
5007 static struct cftype mem_cgroup_legacy_files[] = {
5008 	{
5009 		.name = "usage_in_bytes",
5010 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5011 		.read_u64 = mem_cgroup_read_u64,
5012 	},
5013 	{
5014 		.name = "max_usage_in_bytes",
5015 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5016 		.write = mem_cgroup_reset,
5017 		.read_u64 = mem_cgroup_read_u64,
5018 	},
5019 	{
5020 		.name = "limit_in_bytes",
5021 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5022 		.write = mem_cgroup_write,
5023 		.read_u64 = mem_cgroup_read_u64,
5024 	},
5025 	{
5026 		.name = "soft_limit_in_bytes",
5027 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5028 		.write = mem_cgroup_write,
5029 		.read_u64 = mem_cgroup_read_u64,
5030 	},
5031 	{
5032 		.name = "failcnt",
5033 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5034 		.write = mem_cgroup_reset,
5035 		.read_u64 = mem_cgroup_read_u64,
5036 	},
5037 	{
5038 		.name = "stat",
5039 		.seq_show = memory_stat_show,
5040 	},
5041 	{
5042 		.name = "force_empty",
5043 		.write = mem_cgroup_force_empty_write,
5044 	},
5045 	{
5046 		.name = "use_hierarchy",
5047 		.write_u64 = mem_cgroup_hierarchy_write,
5048 		.read_u64 = mem_cgroup_hierarchy_read,
5049 	},
5050 	{
5051 		.name = "cgroup.event_control",		/* XXX: for compat */
5052 		.write = memcg_write_event_control,
5053 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5054 	},
5055 	{
5056 		.name = "swappiness",
5057 		.read_u64 = mem_cgroup_swappiness_read,
5058 		.write_u64 = mem_cgroup_swappiness_write,
5059 	},
5060 	{
5061 		.name = "move_charge_at_immigrate",
5062 		.read_u64 = mem_cgroup_move_charge_read,
5063 		.write_u64 = mem_cgroup_move_charge_write,
5064 	},
5065 	{
5066 		.name = "oom_control",
5067 		.seq_show = mem_cgroup_oom_control_read,
5068 		.write_u64 = mem_cgroup_oom_control_write,
5069 	},
5070 	{
5071 		.name = "pressure_level",
5072 		.seq_show = mem_cgroup_dummy_seq_show,
5073 	},
5074 #ifdef CONFIG_NUMA
5075 	{
5076 		.name = "numa_stat",
5077 		.seq_show = memcg_numa_stat_show,
5078 	},
5079 #endif
5080 	{
5081 		.name = "kmem.usage_in_bytes",
5082 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5083 		.read_u64 = mem_cgroup_read_u64,
5084 	},
5085 	{
5086 		.name = "kmem.failcnt",
5087 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5088 		.write = mem_cgroup_reset,
5089 		.read_u64 = mem_cgroup_read_u64,
5090 	},
5091 	{
5092 		.name = "kmem.max_usage_in_bytes",
5093 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5094 		.write = mem_cgroup_reset,
5095 		.read_u64 = mem_cgroup_read_u64,
5096 	},
5097 #if defined(CONFIG_MEMCG_KMEM) && \
5098 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5099 	{
5100 		.name = "kmem.slabinfo",
5101 		.seq_show = mem_cgroup_slab_show,
5102 	},
5103 #endif
5104 	{
5105 		.name = "kmem.tcp.limit_in_bytes",
5106 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5107 		.write = mem_cgroup_write,
5108 		.read_u64 = mem_cgroup_read_u64,
5109 	},
5110 	{
5111 		.name = "kmem.tcp.usage_in_bytes",
5112 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5113 		.read_u64 = mem_cgroup_read_u64,
5114 	},
5115 	{
5116 		.name = "kmem.tcp.failcnt",
5117 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5118 		.write = mem_cgroup_reset,
5119 		.read_u64 = mem_cgroup_read_u64,
5120 	},
5121 	{
5122 		.name = "kmem.tcp.max_usage_in_bytes",
5123 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5124 		.write = mem_cgroup_reset,
5125 		.read_u64 = mem_cgroup_read_u64,
5126 	},
5127 	{ },	/* terminate */
5128 };
5129 
5130 /*
5131  * Private memory cgroup IDR
5132  *
5133  * Swap-out records and page cache shadow entries need to store memcg
5134  * references in constrained space, so we maintain an ID space that is
5135  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5136  * memory-controlled cgroups to 64k.
5137  *
5138  * However, there usually are many references to the offline CSS after
5139  * the cgroup has been destroyed, such as page cache or reclaimable
5140  * slab objects, that don't need to hang on to the ID. We want to keep
5141  * those dead CSS from occupying IDs, or we might quickly exhaust the
5142  * relatively small ID space and prevent the creation of new cgroups
5143  * even when there are much fewer than 64k cgroups - possibly none.
5144  *
5145  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5146  * be freed and recycled when it's no longer needed, which is usually
5147  * when the CSS is offlined.
5148  *
5149  * The only exception to that are records of swapped out tmpfs/shmem
5150  * pages that need to be attributed to live ancestors on swapin. But
5151  * those references are manageable from userspace.
5152  */
5153 
5154 #define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5155 static DEFINE_IDR(mem_cgroup_idr);
5156 
5157 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5158 {
5159 	if (memcg->id.id > 0) {
5160 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5161 		memcg->id.id = 0;
5162 	}
5163 }
5164 
5165 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5166 						  unsigned int n)
5167 {
5168 	refcount_add(n, &memcg->id.ref);
5169 }
5170 
5171 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5172 {
5173 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5174 		mem_cgroup_id_remove(memcg);
5175 
5176 		/* Memcg ID pins CSS */
5177 		css_put(&memcg->css);
5178 	}
5179 }
5180 
5181 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5182 {
5183 	mem_cgroup_id_put_many(memcg, 1);
5184 }
5185 
5186 /**
5187  * mem_cgroup_from_id - look up a memcg from a memcg id
5188  * @id: the memcg id to look up
5189  *
5190  * Caller must hold rcu_read_lock().
5191  */
5192 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5193 {
5194 	WARN_ON_ONCE(!rcu_read_lock_held());
5195 	return idr_find(&mem_cgroup_idr, id);
5196 }
5197 
5198 #ifdef CONFIG_SHRINKER_DEBUG
5199 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5200 {
5201 	struct cgroup *cgrp;
5202 	struct cgroup_subsys_state *css;
5203 	struct mem_cgroup *memcg;
5204 
5205 	cgrp = cgroup_get_from_id(ino);
5206 	if (IS_ERR(cgrp))
5207 		return ERR_CAST(cgrp);
5208 
5209 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5210 	if (css)
5211 		memcg = container_of(css, struct mem_cgroup, css);
5212 	else
5213 		memcg = ERR_PTR(-ENOENT);
5214 
5215 	cgroup_put(cgrp);
5216 
5217 	return memcg;
5218 }
5219 #endif
5220 
5221 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5222 {
5223 	struct mem_cgroup_per_node *pn;
5224 
5225 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5226 	if (!pn)
5227 		return 1;
5228 
5229 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5230 						   GFP_KERNEL_ACCOUNT);
5231 	if (!pn->lruvec_stats_percpu) {
5232 		kfree(pn);
5233 		return 1;
5234 	}
5235 
5236 	lruvec_init(&pn->lruvec);
5237 	pn->memcg = memcg;
5238 
5239 	memcg->nodeinfo[node] = pn;
5240 	return 0;
5241 }
5242 
5243 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5244 {
5245 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5246 
5247 	if (!pn)
5248 		return;
5249 
5250 	free_percpu(pn->lruvec_stats_percpu);
5251 	kfree(pn);
5252 }
5253 
5254 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5255 {
5256 	int node;
5257 
5258 	for_each_node(node)
5259 		free_mem_cgroup_per_node_info(memcg, node);
5260 	kfree(memcg->vmstats);
5261 	free_percpu(memcg->vmstats_percpu);
5262 	kfree(memcg);
5263 }
5264 
5265 static void mem_cgroup_free(struct mem_cgroup *memcg)
5266 {
5267 	lru_gen_exit_memcg(memcg);
5268 	memcg_wb_domain_exit(memcg);
5269 	__mem_cgroup_free(memcg);
5270 }
5271 
5272 static struct mem_cgroup *mem_cgroup_alloc(void)
5273 {
5274 	struct mem_cgroup *memcg;
5275 	int node;
5276 	int __maybe_unused i;
5277 	long error = -ENOMEM;
5278 
5279 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5280 	if (!memcg)
5281 		return ERR_PTR(error);
5282 
5283 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5284 				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5285 	if (memcg->id.id < 0) {
5286 		error = memcg->id.id;
5287 		goto fail;
5288 	}
5289 
5290 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5291 	if (!memcg->vmstats)
5292 		goto fail;
5293 
5294 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5295 						 GFP_KERNEL_ACCOUNT);
5296 	if (!memcg->vmstats_percpu)
5297 		goto fail;
5298 
5299 	for_each_node(node)
5300 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5301 			goto fail;
5302 
5303 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5304 		goto fail;
5305 
5306 	INIT_WORK(&memcg->high_work, high_work_func);
5307 	INIT_LIST_HEAD(&memcg->oom_notify);
5308 	mutex_init(&memcg->thresholds_lock);
5309 	spin_lock_init(&memcg->move_lock);
5310 	vmpressure_init(&memcg->vmpressure);
5311 	INIT_LIST_HEAD(&memcg->event_list);
5312 	spin_lock_init(&memcg->event_list_lock);
5313 	memcg->socket_pressure = jiffies;
5314 #ifdef CONFIG_MEMCG_KMEM
5315 	memcg->kmemcg_id = -1;
5316 	INIT_LIST_HEAD(&memcg->objcg_list);
5317 #endif
5318 #ifdef CONFIG_CGROUP_WRITEBACK
5319 	INIT_LIST_HEAD(&memcg->cgwb_list);
5320 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5321 		memcg->cgwb_frn[i].done =
5322 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5323 #endif
5324 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5325 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5326 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5327 	memcg->deferred_split_queue.split_queue_len = 0;
5328 #endif
5329 	lru_gen_init_memcg(memcg);
5330 	return memcg;
5331 fail:
5332 	mem_cgroup_id_remove(memcg);
5333 	__mem_cgroup_free(memcg);
5334 	return ERR_PTR(error);
5335 }
5336 
5337 static struct cgroup_subsys_state * __ref
5338 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5339 {
5340 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5341 	struct mem_cgroup *memcg, *old_memcg;
5342 
5343 	old_memcg = set_active_memcg(parent);
5344 	memcg = mem_cgroup_alloc();
5345 	set_active_memcg(old_memcg);
5346 	if (IS_ERR(memcg))
5347 		return ERR_CAST(memcg);
5348 
5349 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5350 	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5351 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5352 	memcg->zswap_max = PAGE_COUNTER_MAX;
5353 #endif
5354 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5355 	if (parent) {
5356 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5357 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5358 
5359 		page_counter_init(&memcg->memory, &parent->memory);
5360 		page_counter_init(&memcg->swap, &parent->swap);
5361 		page_counter_init(&memcg->kmem, &parent->kmem);
5362 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5363 	} else {
5364 		init_memcg_events();
5365 		page_counter_init(&memcg->memory, NULL);
5366 		page_counter_init(&memcg->swap, NULL);
5367 		page_counter_init(&memcg->kmem, NULL);
5368 		page_counter_init(&memcg->tcpmem, NULL);
5369 
5370 		root_mem_cgroup = memcg;
5371 		return &memcg->css;
5372 	}
5373 
5374 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5375 		static_branch_inc(&memcg_sockets_enabled_key);
5376 
5377 #if defined(CONFIG_MEMCG_KMEM)
5378 	if (!cgroup_memory_nobpf)
5379 		static_branch_inc(&memcg_bpf_enabled_key);
5380 #endif
5381 
5382 	return &memcg->css;
5383 }
5384 
5385 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5386 {
5387 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5388 
5389 	if (memcg_online_kmem(memcg))
5390 		goto remove_id;
5391 
5392 	/*
5393 	 * A memcg must be visible for expand_shrinker_info()
5394 	 * by the time the maps are allocated. So, we allocate maps
5395 	 * here, when for_each_mem_cgroup() can't skip it.
5396 	 */
5397 	if (alloc_shrinker_info(memcg))
5398 		goto offline_kmem;
5399 
5400 	if (unlikely(mem_cgroup_is_root(memcg)))
5401 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5402 				   FLUSH_TIME);
5403 	lru_gen_online_memcg(memcg);
5404 
5405 	/* Online state pins memcg ID, memcg ID pins CSS */
5406 	refcount_set(&memcg->id.ref, 1);
5407 	css_get(css);
5408 
5409 	/*
5410 	 * Ensure mem_cgroup_from_id() works once we're fully online.
5411 	 *
5412 	 * We could do this earlier and require callers to filter with
5413 	 * css_tryget_online(). But right now there are no users that
5414 	 * need earlier access, and the workingset code relies on the
5415 	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5416 	 * publish it here at the end of onlining. This matches the
5417 	 * regular ID destruction during offlining.
5418 	 */
5419 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5420 
5421 	return 0;
5422 offline_kmem:
5423 	memcg_offline_kmem(memcg);
5424 remove_id:
5425 	mem_cgroup_id_remove(memcg);
5426 	return -ENOMEM;
5427 }
5428 
5429 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5430 {
5431 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5432 	struct mem_cgroup_event *event, *tmp;
5433 
5434 	/*
5435 	 * Unregister events and notify userspace.
5436 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5437 	 * directory to avoid race between userspace and kernelspace.
5438 	 */
5439 	spin_lock_irq(&memcg->event_list_lock);
5440 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5441 		list_del_init(&event->list);
5442 		schedule_work(&event->remove);
5443 	}
5444 	spin_unlock_irq(&memcg->event_list_lock);
5445 
5446 	page_counter_set_min(&memcg->memory, 0);
5447 	page_counter_set_low(&memcg->memory, 0);
5448 
5449 	memcg_offline_kmem(memcg);
5450 	reparent_shrinker_deferred(memcg);
5451 	wb_memcg_offline(memcg);
5452 	lru_gen_offline_memcg(memcg);
5453 
5454 	drain_all_stock(memcg);
5455 
5456 	mem_cgroup_id_put(memcg);
5457 }
5458 
5459 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5460 {
5461 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5462 
5463 	invalidate_reclaim_iterators(memcg);
5464 	lru_gen_release_memcg(memcg);
5465 }
5466 
5467 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5468 {
5469 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5470 	int __maybe_unused i;
5471 
5472 #ifdef CONFIG_CGROUP_WRITEBACK
5473 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5474 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5475 #endif
5476 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5477 		static_branch_dec(&memcg_sockets_enabled_key);
5478 
5479 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5480 		static_branch_dec(&memcg_sockets_enabled_key);
5481 
5482 #if defined(CONFIG_MEMCG_KMEM)
5483 	if (!cgroup_memory_nobpf)
5484 		static_branch_dec(&memcg_bpf_enabled_key);
5485 #endif
5486 
5487 	vmpressure_cleanup(&memcg->vmpressure);
5488 	cancel_work_sync(&memcg->high_work);
5489 	mem_cgroup_remove_from_trees(memcg);
5490 	free_shrinker_info(memcg);
5491 	mem_cgroup_free(memcg);
5492 }
5493 
5494 /**
5495  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5496  * @css: the target css
5497  *
5498  * Reset the states of the mem_cgroup associated with @css.  This is
5499  * invoked when the userland requests disabling on the default hierarchy
5500  * but the memcg is pinned through dependency.  The memcg should stop
5501  * applying policies and should revert to the vanilla state as it may be
5502  * made visible again.
5503  *
5504  * The current implementation only resets the essential configurations.
5505  * This needs to be expanded to cover all the visible parts.
5506  */
5507 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5508 {
5509 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5510 
5511 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5512 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5513 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5514 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5515 	page_counter_set_min(&memcg->memory, 0);
5516 	page_counter_set_low(&memcg->memory, 0);
5517 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5518 	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5519 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5520 	memcg_wb_domain_size_changed(memcg);
5521 }
5522 
5523 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5524 {
5525 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5526 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5527 	struct memcg_vmstats_percpu *statc;
5528 	long delta, delta_cpu, v;
5529 	int i, nid;
5530 
5531 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5532 
5533 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5534 		/*
5535 		 * Collect the aggregated propagation counts of groups
5536 		 * below us. We're in a per-cpu loop here and this is
5537 		 * a global counter, so the first cycle will get them.
5538 		 */
5539 		delta = memcg->vmstats->state_pending[i];
5540 		if (delta)
5541 			memcg->vmstats->state_pending[i] = 0;
5542 
5543 		/* Add CPU changes on this level since the last flush */
5544 		delta_cpu = 0;
5545 		v = READ_ONCE(statc->state[i]);
5546 		if (v != statc->state_prev[i]) {
5547 			delta_cpu = v - statc->state_prev[i];
5548 			delta += delta_cpu;
5549 			statc->state_prev[i] = v;
5550 		}
5551 
5552 		/* Aggregate counts on this level and propagate upwards */
5553 		if (delta_cpu)
5554 			memcg->vmstats->state_local[i] += delta_cpu;
5555 
5556 		if (delta) {
5557 			memcg->vmstats->state[i] += delta;
5558 			if (parent)
5559 				parent->vmstats->state_pending[i] += delta;
5560 		}
5561 	}
5562 
5563 	for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5564 		delta = memcg->vmstats->events_pending[i];
5565 		if (delta)
5566 			memcg->vmstats->events_pending[i] = 0;
5567 
5568 		delta_cpu = 0;
5569 		v = READ_ONCE(statc->events[i]);
5570 		if (v != statc->events_prev[i]) {
5571 			delta_cpu = v - statc->events_prev[i];
5572 			delta += delta_cpu;
5573 			statc->events_prev[i] = v;
5574 		}
5575 
5576 		if (delta_cpu)
5577 			memcg->vmstats->events_local[i] += delta_cpu;
5578 
5579 		if (delta) {
5580 			memcg->vmstats->events[i] += delta;
5581 			if (parent)
5582 				parent->vmstats->events_pending[i] += delta;
5583 		}
5584 	}
5585 
5586 	for_each_node_state(nid, N_MEMORY) {
5587 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5588 		struct mem_cgroup_per_node *ppn = NULL;
5589 		struct lruvec_stats_percpu *lstatc;
5590 
5591 		if (parent)
5592 			ppn = parent->nodeinfo[nid];
5593 
5594 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5595 
5596 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5597 			delta = pn->lruvec_stats.state_pending[i];
5598 			if (delta)
5599 				pn->lruvec_stats.state_pending[i] = 0;
5600 
5601 			delta_cpu = 0;
5602 			v = READ_ONCE(lstatc->state[i]);
5603 			if (v != lstatc->state_prev[i]) {
5604 				delta_cpu = v - lstatc->state_prev[i];
5605 				delta += delta_cpu;
5606 				lstatc->state_prev[i] = v;
5607 			}
5608 
5609 			if (delta_cpu)
5610 				pn->lruvec_stats.state_local[i] += delta_cpu;
5611 
5612 			if (delta) {
5613 				pn->lruvec_stats.state[i] += delta;
5614 				if (ppn)
5615 					ppn->lruvec_stats.state_pending[i] += delta;
5616 			}
5617 		}
5618 	}
5619 }
5620 
5621 #ifdef CONFIG_MMU
5622 /* Handlers for move charge at task migration. */
5623 static int mem_cgroup_do_precharge(unsigned long count)
5624 {
5625 	int ret;
5626 
5627 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5628 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5629 	if (!ret) {
5630 		mc.precharge += count;
5631 		return ret;
5632 	}
5633 
5634 	/* Try charges one by one with reclaim, but do not retry */
5635 	while (count--) {
5636 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5637 		if (ret)
5638 			return ret;
5639 		mc.precharge++;
5640 		cond_resched();
5641 	}
5642 	return 0;
5643 }
5644 
5645 union mc_target {
5646 	struct page	*page;
5647 	swp_entry_t	ent;
5648 };
5649 
5650 enum mc_target_type {
5651 	MC_TARGET_NONE = 0,
5652 	MC_TARGET_PAGE,
5653 	MC_TARGET_SWAP,
5654 	MC_TARGET_DEVICE,
5655 };
5656 
5657 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5658 						unsigned long addr, pte_t ptent)
5659 {
5660 	struct page *page = vm_normal_page(vma, addr, ptent);
5661 
5662 	if (!page)
5663 		return NULL;
5664 	if (PageAnon(page)) {
5665 		if (!(mc.flags & MOVE_ANON))
5666 			return NULL;
5667 	} else {
5668 		if (!(mc.flags & MOVE_FILE))
5669 			return NULL;
5670 	}
5671 	get_page(page);
5672 
5673 	return page;
5674 }
5675 
5676 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5677 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5678 			pte_t ptent, swp_entry_t *entry)
5679 {
5680 	struct page *page = NULL;
5681 	swp_entry_t ent = pte_to_swp_entry(ptent);
5682 
5683 	if (!(mc.flags & MOVE_ANON))
5684 		return NULL;
5685 
5686 	/*
5687 	 * Handle device private pages that are not accessible by the CPU, but
5688 	 * stored as special swap entries in the page table.
5689 	 */
5690 	if (is_device_private_entry(ent)) {
5691 		page = pfn_swap_entry_to_page(ent);
5692 		if (!get_page_unless_zero(page))
5693 			return NULL;
5694 		return page;
5695 	}
5696 
5697 	if (non_swap_entry(ent))
5698 		return NULL;
5699 
5700 	/*
5701 	 * Because swap_cache_get_folio() updates some statistics counter,
5702 	 * we call find_get_page() with swapper_space directly.
5703 	 */
5704 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5705 	entry->val = ent.val;
5706 
5707 	return page;
5708 }
5709 #else
5710 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5711 			pte_t ptent, swp_entry_t *entry)
5712 {
5713 	return NULL;
5714 }
5715 #endif
5716 
5717 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5718 			unsigned long addr, pte_t ptent)
5719 {
5720 	unsigned long index;
5721 	struct folio *folio;
5722 
5723 	if (!vma->vm_file) /* anonymous vma */
5724 		return NULL;
5725 	if (!(mc.flags & MOVE_FILE))
5726 		return NULL;
5727 
5728 	/* folio is moved even if it's not RSS of this task(page-faulted). */
5729 	/* shmem/tmpfs may report page out on swap: account for that too. */
5730 	index = linear_page_index(vma, addr);
5731 	folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5732 	if (IS_ERR(folio))
5733 		return NULL;
5734 	return folio_file_page(folio, index);
5735 }
5736 
5737 /**
5738  * mem_cgroup_move_account - move account of the page
5739  * @page: the page
5740  * @compound: charge the page as compound or small page
5741  * @from: mem_cgroup which the page is moved from.
5742  * @to:	mem_cgroup which the page is moved to. @from != @to.
5743  *
5744  * The page must be locked and not on the LRU.
5745  *
5746  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5747  * from old cgroup.
5748  */
5749 static int mem_cgroup_move_account(struct page *page,
5750 				   bool compound,
5751 				   struct mem_cgroup *from,
5752 				   struct mem_cgroup *to)
5753 {
5754 	struct folio *folio = page_folio(page);
5755 	struct lruvec *from_vec, *to_vec;
5756 	struct pglist_data *pgdat;
5757 	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5758 	int nid, ret;
5759 
5760 	VM_BUG_ON(from == to);
5761 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5762 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5763 	VM_BUG_ON(compound && !folio_test_large(folio));
5764 
5765 	ret = -EINVAL;
5766 	if (folio_memcg(folio) != from)
5767 		goto out;
5768 
5769 	pgdat = folio_pgdat(folio);
5770 	from_vec = mem_cgroup_lruvec(from, pgdat);
5771 	to_vec = mem_cgroup_lruvec(to, pgdat);
5772 
5773 	folio_memcg_lock(folio);
5774 
5775 	if (folio_test_anon(folio)) {
5776 		if (folio_mapped(folio)) {
5777 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5778 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5779 			if (folio_test_pmd_mappable(folio)) {
5780 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5781 						   -nr_pages);
5782 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5783 						   nr_pages);
5784 			}
5785 		}
5786 	} else {
5787 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5788 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5789 
5790 		if (folio_test_swapbacked(folio)) {
5791 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5792 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5793 		}
5794 
5795 		if (folio_mapped(folio)) {
5796 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5797 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5798 		}
5799 
5800 		if (folio_test_dirty(folio)) {
5801 			struct address_space *mapping = folio_mapping(folio);
5802 
5803 			if (mapping_can_writeback(mapping)) {
5804 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5805 						   -nr_pages);
5806 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5807 						   nr_pages);
5808 			}
5809 		}
5810 	}
5811 
5812 #ifdef CONFIG_SWAP
5813 	if (folio_test_swapcache(folio)) {
5814 		__mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5815 		__mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5816 	}
5817 #endif
5818 	if (folio_test_writeback(folio)) {
5819 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5820 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5821 	}
5822 
5823 	/*
5824 	 * All state has been migrated, let's switch to the new memcg.
5825 	 *
5826 	 * It is safe to change page's memcg here because the page
5827 	 * is referenced, charged, isolated, and locked: we can't race
5828 	 * with (un)charging, migration, LRU putback, or anything else
5829 	 * that would rely on a stable page's memory cgroup.
5830 	 *
5831 	 * Note that folio_memcg_lock is a memcg lock, not a page lock,
5832 	 * to save space. As soon as we switch page's memory cgroup to a
5833 	 * new memcg that isn't locked, the above state can change
5834 	 * concurrently again. Make sure we're truly done with it.
5835 	 */
5836 	smp_mb();
5837 
5838 	css_get(&to->css);
5839 	css_put(&from->css);
5840 
5841 	folio->memcg_data = (unsigned long)to;
5842 
5843 	__folio_memcg_unlock(from);
5844 
5845 	ret = 0;
5846 	nid = folio_nid(folio);
5847 
5848 	local_irq_disable();
5849 	mem_cgroup_charge_statistics(to, nr_pages);
5850 	memcg_check_events(to, nid);
5851 	mem_cgroup_charge_statistics(from, -nr_pages);
5852 	memcg_check_events(from, nid);
5853 	local_irq_enable();
5854 out:
5855 	return ret;
5856 }
5857 
5858 /**
5859  * get_mctgt_type - get target type of moving charge
5860  * @vma: the vma the pte to be checked belongs
5861  * @addr: the address corresponding to the pte to be checked
5862  * @ptent: the pte to be checked
5863  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5864  *
5865  * Context: Called with pte lock held.
5866  * Return:
5867  * * MC_TARGET_NONE - If the pte is not a target for move charge.
5868  * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
5869  *   move charge. If @target is not NULL, the page is stored in target->page
5870  *   with extra refcnt taken (Caller should release it).
5871  * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
5872  *   target for charge migration.  If @target is not NULL, the entry is
5873  *   stored in target->ent.
5874  * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
5875  *   thus not on the lru.  For now such page is charged like a regular page
5876  *   would be as it is just special memory taking the place of a regular page.
5877  *   See Documentations/vm/hmm.txt and include/linux/hmm.h
5878  */
5879 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5880 		unsigned long addr, pte_t ptent, union mc_target *target)
5881 {
5882 	struct page *page = NULL;
5883 	enum mc_target_type ret = MC_TARGET_NONE;
5884 	swp_entry_t ent = { .val = 0 };
5885 
5886 	if (pte_present(ptent))
5887 		page = mc_handle_present_pte(vma, addr, ptent);
5888 	else if (pte_none_mostly(ptent))
5889 		/*
5890 		 * PTE markers should be treated as a none pte here, separated
5891 		 * from other swap handling below.
5892 		 */
5893 		page = mc_handle_file_pte(vma, addr, ptent);
5894 	else if (is_swap_pte(ptent))
5895 		page = mc_handle_swap_pte(vma, ptent, &ent);
5896 
5897 	if (target && page) {
5898 		if (!trylock_page(page)) {
5899 			put_page(page);
5900 			return ret;
5901 		}
5902 		/*
5903 		 * page_mapped() must be stable during the move. This
5904 		 * pte is locked, so if it's present, the page cannot
5905 		 * become unmapped. If it isn't, we have only partial
5906 		 * control over the mapped state: the page lock will
5907 		 * prevent new faults against pagecache and swapcache,
5908 		 * so an unmapped page cannot become mapped. However,
5909 		 * if the page is already mapped elsewhere, it can
5910 		 * unmap, and there is nothing we can do about it.
5911 		 * Alas, skip moving the page in this case.
5912 		 */
5913 		if (!pte_present(ptent) && page_mapped(page)) {
5914 			unlock_page(page);
5915 			put_page(page);
5916 			return ret;
5917 		}
5918 	}
5919 
5920 	if (!page && !ent.val)
5921 		return ret;
5922 	if (page) {
5923 		/*
5924 		 * Do only loose check w/o serialization.
5925 		 * mem_cgroup_move_account() checks the page is valid or
5926 		 * not under LRU exclusion.
5927 		 */
5928 		if (page_memcg(page) == mc.from) {
5929 			ret = MC_TARGET_PAGE;
5930 			if (is_device_private_page(page) ||
5931 			    is_device_coherent_page(page))
5932 				ret = MC_TARGET_DEVICE;
5933 			if (target)
5934 				target->page = page;
5935 		}
5936 		if (!ret || !target) {
5937 			if (target)
5938 				unlock_page(page);
5939 			put_page(page);
5940 		}
5941 	}
5942 	/*
5943 	 * There is a swap entry and a page doesn't exist or isn't charged.
5944 	 * But we cannot move a tail-page in a THP.
5945 	 */
5946 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5947 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5948 		ret = MC_TARGET_SWAP;
5949 		if (target)
5950 			target->ent = ent;
5951 	}
5952 	return ret;
5953 }
5954 
5955 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5956 /*
5957  * We don't consider PMD mapped swapping or file mapped pages because THP does
5958  * not support them for now.
5959  * Caller should make sure that pmd_trans_huge(pmd) is true.
5960  */
5961 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5962 		unsigned long addr, pmd_t pmd, union mc_target *target)
5963 {
5964 	struct page *page = NULL;
5965 	enum mc_target_type ret = MC_TARGET_NONE;
5966 
5967 	if (unlikely(is_swap_pmd(pmd))) {
5968 		VM_BUG_ON(thp_migration_supported() &&
5969 				  !is_pmd_migration_entry(pmd));
5970 		return ret;
5971 	}
5972 	page = pmd_page(pmd);
5973 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5974 	if (!(mc.flags & MOVE_ANON))
5975 		return ret;
5976 	if (page_memcg(page) == mc.from) {
5977 		ret = MC_TARGET_PAGE;
5978 		if (target) {
5979 			get_page(page);
5980 			if (!trylock_page(page)) {
5981 				put_page(page);
5982 				return MC_TARGET_NONE;
5983 			}
5984 			target->page = page;
5985 		}
5986 	}
5987 	return ret;
5988 }
5989 #else
5990 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5991 		unsigned long addr, pmd_t pmd, union mc_target *target)
5992 {
5993 	return MC_TARGET_NONE;
5994 }
5995 #endif
5996 
5997 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5998 					unsigned long addr, unsigned long end,
5999 					struct mm_walk *walk)
6000 {
6001 	struct vm_area_struct *vma = walk->vma;
6002 	pte_t *pte;
6003 	spinlock_t *ptl;
6004 
6005 	ptl = pmd_trans_huge_lock(pmd, vma);
6006 	if (ptl) {
6007 		/*
6008 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
6009 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6010 		 * this might change.
6011 		 */
6012 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6013 			mc.precharge += HPAGE_PMD_NR;
6014 		spin_unlock(ptl);
6015 		return 0;
6016 	}
6017 
6018 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6019 	if (!pte)
6020 		return 0;
6021 	for (; addr != end; pte++, addr += PAGE_SIZE)
6022 		if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6023 			mc.precharge++;	/* increment precharge temporarily */
6024 	pte_unmap_unlock(pte - 1, ptl);
6025 	cond_resched();
6026 
6027 	return 0;
6028 }
6029 
6030 static const struct mm_walk_ops precharge_walk_ops = {
6031 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
6032 	.walk_lock	= PGWALK_RDLOCK,
6033 };
6034 
6035 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6036 {
6037 	unsigned long precharge;
6038 
6039 	mmap_read_lock(mm);
6040 	walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6041 	mmap_read_unlock(mm);
6042 
6043 	precharge = mc.precharge;
6044 	mc.precharge = 0;
6045 
6046 	return precharge;
6047 }
6048 
6049 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6050 {
6051 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6052 
6053 	VM_BUG_ON(mc.moving_task);
6054 	mc.moving_task = current;
6055 	return mem_cgroup_do_precharge(precharge);
6056 }
6057 
6058 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6059 static void __mem_cgroup_clear_mc(void)
6060 {
6061 	struct mem_cgroup *from = mc.from;
6062 	struct mem_cgroup *to = mc.to;
6063 
6064 	/* we must uncharge all the leftover precharges from mc.to */
6065 	if (mc.precharge) {
6066 		cancel_charge(mc.to, mc.precharge);
6067 		mc.precharge = 0;
6068 	}
6069 	/*
6070 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6071 	 * we must uncharge here.
6072 	 */
6073 	if (mc.moved_charge) {
6074 		cancel_charge(mc.from, mc.moved_charge);
6075 		mc.moved_charge = 0;
6076 	}
6077 	/* we must fixup refcnts and charges */
6078 	if (mc.moved_swap) {
6079 		/* uncharge swap account from the old cgroup */
6080 		if (!mem_cgroup_is_root(mc.from))
6081 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6082 
6083 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6084 
6085 		/*
6086 		 * we charged both to->memory and to->memsw, so we
6087 		 * should uncharge to->memory.
6088 		 */
6089 		if (!mem_cgroup_is_root(mc.to))
6090 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6091 
6092 		mc.moved_swap = 0;
6093 	}
6094 	memcg_oom_recover(from);
6095 	memcg_oom_recover(to);
6096 	wake_up_all(&mc.waitq);
6097 }
6098 
6099 static void mem_cgroup_clear_mc(void)
6100 {
6101 	struct mm_struct *mm = mc.mm;
6102 
6103 	/*
6104 	 * we must clear moving_task before waking up waiters at the end of
6105 	 * task migration.
6106 	 */
6107 	mc.moving_task = NULL;
6108 	__mem_cgroup_clear_mc();
6109 	spin_lock(&mc.lock);
6110 	mc.from = NULL;
6111 	mc.to = NULL;
6112 	mc.mm = NULL;
6113 	spin_unlock(&mc.lock);
6114 
6115 	mmput(mm);
6116 }
6117 
6118 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6119 {
6120 	struct cgroup_subsys_state *css;
6121 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6122 	struct mem_cgroup *from;
6123 	struct task_struct *leader, *p;
6124 	struct mm_struct *mm;
6125 	unsigned long move_flags;
6126 	int ret = 0;
6127 
6128 	/* charge immigration isn't supported on the default hierarchy */
6129 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6130 		return 0;
6131 
6132 	/*
6133 	 * Multi-process migrations only happen on the default hierarchy
6134 	 * where charge immigration is not used.  Perform charge
6135 	 * immigration if @tset contains a leader and whine if there are
6136 	 * multiple.
6137 	 */
6138 	p = NULL;
6139 	cgroup_taskset_for_each_leader(leader, css, tset) {
6140 		WARN_ON_ONCE(p);
6141 		p = leader;
6142 		memcg = mem_cgroup_from_css(css);
6143 	}
6144 	if (!p)
6145 		return 0;
6146 
6147 	/*
6148 	 * We are now committed to this value whatever it is. Changes in this
6149 	 * tunable will only affect upcoming migrations, not the current one.
6150 	 * So we need to save it, and keep it going.
6151 	 */
6152 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6153 	if (!move_flags)
6154 		return 0;
6155 
6156 	from = mem_cgroup_from_task(p);
6157 
6158 	VM_BUG_ON(from == memcg);
6159 
6160 	mm = get_task_mm(p);
6161 	if (!mm)
6162 		return 0;
6163 	/* We move charges only when we move a owner of the mm */
6164 	if (mm->owner == p) {
6165 		VM_BUG_ON(mc.from);
6166 		VM_BUG_ON(mc.to);
6167 		VM_BUG_ON(mc.precharge);
6168 		VM_BUG_ON(mc.moved_charge);
6169 		VM_BUG_ON(mc.moved_swap);
6170 
6171 		spin_lock(&mc.lock);
6172 		mc.mm = mm;
6173 		mc.from = from;
6174 		mc.to = memcg;
6175 		mc.flags = move_flags;
6176 		spin_unlock(&mc.lock);
6177 		/* We set mc.moving_task later */
6178 
6179 		ret = mem_cgroup_precharge_mc(mm);
6180 		if (ret)
6181 			mem_cgroup_clear_mc();
6182 	} else {
6183 		mmput(mm);
6184 	}
6185 	return ret;
6186 }
6187 
6188 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6189 {
6190 	if (mc.to)
6191 		mem_cgroup_clear_mc();
6192 }
6193 
6194 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6195 				unsigned long addr, unsigned long end,
6196 				struct mm_walk *walk)
6197 {
6198 	int ret = 0;
6199 	struct vm_area_struct *vma = walk->vma;
6200 	pte_t *pte;
6201 	spinlock_t *ptl;
6202 	enum mc_target_type target_type;
6203 	union mc_target target;
6204 	struct page *page;
6205 
6206 	ptl = pmd_trans_huge_lock(pmd, vma);
6207 	if (ptl) {
6208 		if (mc.precharge < HPAGE_PMD_NR) {
6209 			spin_unlock(ptl);
6210 			return 0;
6211 		}
6212 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6213 		if (target_type == MC_TARGET_PAGE) {
6214 			page = target.page;
6215 			if (isolate_lru_page(page)) {
6216 				if (!mem_cgroup_move_account(page, true,
6217 							     mc.from, mc.to)) {
6218 					mc.precharge -= HPAGE_PMD_NR;
6219 					mc.moved_charge += HPAGE_PMD_NR;
6220 				}
6221 				putback_lru_page(page);
6222 			}
6223 			unlock_page(page);
6224 			put_page(page);
6225 		} else if (target_type == MC_TARGET_DEVICE) {
6226 			page = target.page;
6227 			if (!mem_cgroup_move_account(page, true,
6228 						     mc.from, mc.to)) {
6229 				mc.precharge -= HPAGE_PMD_NR;
6230 				mc.moved_charge += HPAGE_PMD_NR;
6231 			}
6232 			unlock_page(page);
6233 			put_page(page);
6234 		}
6235 		spin_unlock(ptl);
6236 		return 0;
6237 	}
6238 
6239 retry:
6240 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6241 	if (!pte)
6242 		return 0;
6243 	for (; addr != end; addr += PAGE_SIZE) {
6244 		pte_t ptent = ptep_get(pte++);
6245 		bool device = false;
6246 		swp_entry_t ent;
6247 
6248 		if (!mc.precharge)
6249 			break;
6250 
6251 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6252 		case MC_TARGET_DEVICE:
6253 			device = true;
6254 			fallthrough;
6255 		case MC_TARGET_PAGE:
6256 			page = target.page;
6257 			/*
6258 			 * We can have a part of the split pmd here. Moving it
6259 			 * can be done but it would be too convoluted so simply
6260 			 * ignore such a partial THP and keep it in original
6261 			 * memcg. There should be somebody mapping the head.
6262 			 */
6263 			if (PageTransCompound(page))
6264 				goto put;
6265 			if (!device && !isolate_lru_page(page))
6266 				goto put;
6267 			if (!mem_cgroup_move_account(page, false,
6268 						mc.from, mc.to)) {
6269 				mc.precharge--;
6270 				/* we uncharge from mc.from later. */
6271 				mc.moved_charge++;
6272 			}
6273 			if (!device)
6274 				putback_lru_page(page);
6275 put:			/* get_mctgt_type() gets & locks the page */
6276 			unlock_page(page);
6277 			put_page(page);
6278 			break;
6279 		case MC_TARGET_SWAP:
6280 			ent = target.ent;
6281 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6282 				mc.precharge--;
6283 				mem_cgroup_id_get_many(mc.to, 1);
6284 				/* we fixup other refcnts and charges later. */
6285 				mc.moved_swap++;
6286 			}
6287 			break;
6288 		default:
6289 			break;
6290 		}
6291 	}
6292 	pte_unmap_unlock(pte - 1, ptl);
6293 	cond_resched();
6294 
6295 	if (addr != end) {
6296 		/*
6297 		 * We have consumed all precharges we got in can_attach().
6298 		 * We try charge one by one, but don't do any additional
6299 		 * charges to mc.to if we have failed in charge once in attach()
6300 		 * phase.
6301 		 */
6302 		ret = mem_cgroup_do_precharge(1);
6303 		if (!ret)
6304 			goto retry;
6305 	}
6306 
6307 	return ret;
6308 }
6309 
6310 static const struct mm_walk_ops charge_walk_ops = {
6311 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6312 	.walk_lock	= PGWALK_RDLOCK,
6313 };
6314 
6315 static void mem_cgroup_move_charge(void)
6316 {
6317 	lru_add_drain_all();
6318 	/*
6319 	 * Signal folio_memcg_lock() to take the memcg's move_lock
6320 	 * while we're moving its pages to another memcg. Then wait
6321 	 * for already started RCU-only updates to finish.
6322 	 */
6323 	atomic_inc(&mc.from->moving_account);
6324 	synchronize_rcu();
6325 retry:
6326 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6327 		/*
6328 		 * Someone who are holding the mmap_lock might be waiting in
6329 		 * waitq. So we cancel all extra charges, wake up all waiters,
6330 		 * and retry. Because we cancel precharges, we might not be able
6331 		 * to move enough charges, but moving charge is a best-effort
6332 		 * feature anyway, so it wouldn't be a big problem.
6333 		 */
6334 		__mem_cgroup_clear_mc();
6335 		cond_resched();
6336 		goto retry;
6337 	}
6338 	/*
6339 	 * When we have consumed all precharges and failed in doing
6340 	 * additional charge, the page walk just aborts.
6341 	 */
6342 	walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6343 	mmap_read_unlock(mc.mm);
6344 	atomic_dec(&mc.from->moving_account);
6345 }
6346 
6347 static void mem_cgroup_move_task(void)
6348 {
6349 	if (mc.to) {
6350 		mem_cgroup_move_charge();
6351 		mem_cgroup_clear_mc();
6352 	}
6353 }
6354 #else	/* !CONFIG_MMU */
6355 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6356 {
6357 	return 0;
6358 }
6359 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6360 {
6361 }
6362 static void mem_cgroup_move_task(void)
6363 {
6364 }
6365 #endif
6366 
6367 #ifdef CONFIG_LRU_GEN
6368 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6369 {
6370 	struct task_struct *task;
6371 	struct cgroup_subsys_state *css;
6372 
6373 	/* find the first leader if there is any */
6374 	cgroup_taskset_for_each_leader(task, css, tset)
6375 		break;
6376 
6377 	if (!task)
6378 		return;
6379 
6380 	task_lock(task);
6381 	if (task->mm && READ_ONCE(task->mm->owner) == task)
6382 		lru_gen_migrate_mm(task->mm);
6383 	task_unlock(task);
6384 }
6385 #else
6386 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6387 {
6388 }
6389 #endif /* CONFIG_LRU_GEN */
6390 
6391 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6392 {
6393 	if (value == PAGE_COUNTER_MAX)
6394 		seq_puts(m, "max\n");
6395 	else
6396 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6397 
6398 	return 0;
6399 }
6400 
6401 static u64 memory_current_read(struct cgroup_subsys_state *css,
6402 			       struct cftype *cft)
6403 {
6404 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6405 
6406 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6407 }
6408 
6409 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6410 			    struct cftype *cft)
6411 {
6412 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6413 
6414 	return (u64)memcg->memory.watermark * PAGE_SIZE;
6415 }
6416 
6417 static int memory_min_show(struct seq_file *m, void *v)
6418 {
6419 	return seq_puts_memcg_tunable(m,
6420 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6421 }
6422 
6423 static ssize_t memory_min_write(struct kernfs_open_file *of,
6424 				char *buf, size_t nbytes, loff_t off)
6425 {
6426 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6427 	unsigned long min;
6428 	int err;
6429 
6430 	buf = strstrip(buf);
6431 	err = page_counter_memparse(buf, "max", &min);
6432 	if (err)
6433 		return err;
6434 
6435 	page_counter_set_min(&memcg->memory, min);
6436 
6437 	return nbytes;
6438 }
6439 
6440 static int memory_low_show(struct seq_file *m, void *v)
6441 {
6442 	return seq_puts_memcg_tunable(m,
6443 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6444 }
6445 
6446 static ssize_t memory_low_write(struct kernfs_open_file *of,
6447 				char *buf, size_t nbytes, loff_t off)
6448 {
6449 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6450 	unsigned long low;
6451 	int err;
6452 
6453 	buf = strstrip(buf);
6454 	err = page_counter_memparse(buf, "max", &low);
6455 	if (err)
6456 		return err;
6457 
6458 	page_counter_set_low(&memcg->memory, low);
6459 
6460 	return nbytes;
6461 }
6462 
6463 static int memory_high_show(struct seq_file *m, void *v)
6464 {
6465 	return seq_puts_memcg_tunable(m,
6466 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6467 }
6468 
6469 static ssize_t memory_high_write(struct kernfs_open_file *of,
6470 				 char *buf, size_t nbytes, loff_t off)
6471 {
6472 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6473 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6474 	bool drained = false;
6475 	unsigned long high;
6476 	int err;
6477 
6478 	buf = strstrip(buf);
6479 	err = page_counter_memparse(buf, "max", &high);
6480 	if (err)
6481 		return err;
6482 
6483 	page_counter_set_high(&memcg->memory, high);
6484 
6485 	for (;;) {
6486 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6487 		unsigned long reclaimed;
6488 
6489 		if (nr_pages <= high)
6490 			break;
6491 
6492 		if (signal_pending(current))
6493 			break;
6494 
6495 		if (!drained) {
6496 			drain_all_stock(memcg);
6497 			drained = true;
6498 			continue;
6499 		}
6500 
6501 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6502 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6503 
6504 		if (!reclaimed && !nr_retries--)
6505 			break;
6506 	}
6507 
6508 	memcg_wb_domain_size_changed(memcg);
6509 	return nbytes;
6510 }
6511 
6512 static int memory_max_show(struct seq_file *m, void *v)
6513 {
6514 	return seq_puts_memcg_tunable(m,
6515 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6516 }
6517 
6518 static ssize_t memory_max_write(struct kernfs_open_file *of,
6519 				char *buf, size_t nbytes, loff_t off)
6520 {
6521 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6522 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6523 	bool drained = false;
6524 	unsigned long max;
6525 	int err;
6526 
6527 	buf = strstrip(buf);
6528 	err = page_counter_memparse(buf, "max", &max);
6529 	if (err)
6530 		return err;
6531 
6532 	xchg(&memcg->memory.max, max);
6533 
6534 	for (;;) {
6535 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6536 
6537 		if (nr_pages <= max)
6538 			break;
6539 
6540 		if (signal_pending(current))
6541 			break;
6542 
6543 		if (!drained) {
6544 			drain_all_stock(memcg);
6545 			drained = true;
6546 			continue;
6547 		}
6548 
6549 		if (nr_reclaims) {
6550 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6551 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6552 				nr_reclaims--;
6553 			continue;
6554 		}
6555 
6556 		memcg_memory_event(memcg, MEMCG_OOM);
6557 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6558 			break;
6559 	}
6560 
6561 	memcg_wb_domain_size_changed(memcg);
6562 	return nbytes;
6563 }
6564 
6565 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6566 {
6567 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6568 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6569 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6570 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6571 	seq_printf(m, "oom_kill %lu\n",
6572 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6573 	seq_printf(m, "oom_group_kill %lu\n",
6574 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6575 }
6576 
6577 static int memory_events_show(struct seq_file *m, void *v)
6578 {
6579 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6580 
6581 	__memory_events_show(m, memcg->memory_events);
6582 	return 0;
6583 }
6584 
6585 static int memory_events_local_show(struct seq_file *m, void *v)
6586 {
6587 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6588 
6589 	__memory_events_show(m, memcg->memory_events_local);
6590 	return 0;
6591 }
6592 
6593 static int memory_stat_show(struct seq_file *m, void *v)
6594 {
6595 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6596 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6597 	struct seq_buf s;
6598 
6599 	if (!buf)
6600 		return -ENOMEM;
6601 	seq_buf_init(&s, buf, PAGE_SIZE);
6602 	memory_stat_format(memcg, &s);
6603 	seq_puts(m, buf);
6604 	kfree(buf);
6605 	return 0;
6606 }
6607 
6608 #ifdef CONFIG_NUMA
6609 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6610 						     int item)
6611 {
6612 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6613 }
6614 
6615 static int memory_numa_stat_show(struct seq_file *m, void *v)
6616 {
6617 	int i;
6618 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6619 
6620 	mem_cgroup_flush_stats();
6621 
6622 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6623 		int nid;
6624 
6625 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6626 			continue;
6627 
6628 		seq_printf(m, "%s", memory_stats[i].name);
6629 		for_each_node_state(nid, N_MEMORY) {
6630 			u64 size;
6631 			struct lruvec *lruvec;
6632 
6633 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6634 			size = lruvec_page_state_output(lruvec,
6635 							memory_stats[i].idx);
6636 			seq_printf(m, " N%d=%llu", nid, size);
6637 		}
6638 		seq_putc(m, '\n');
6639 	}
6640 
6641 	return 0;
6642 }
6643 #endif
6644 
6645 static int memory_oom_group_show(struct seq_file *m, void *v)
6646 {
6647 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6648 
6649 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6650 
6651 	return 0;
6652 }
6653 
6654 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6655 				      char *buf, size_t nbytes, loff_t off)
6656 {
6657 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6658 	int ret, oom_group;
6659 
6660 	buf = strstrip(buf);
6661 	if (!buf)
6662 		return -EINVAL;
6663 
6664 	ret = kstrtoint(buf, 0, &oom_group);
6665 	if (ret)
6666 		return ret;
6667 
6668 	if (oom_group != 0 && oom_group != 1)
6669 		return -EINVAL;
6670 
6671 	WRITE_ONCE(memcg->oom_group, oom_group);
6672 
6673 	return nbytes;
6674 }
6675 
6676 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6677 			      size_t nbytes, loff_t off)
6678 {
6679 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6680 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6681 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
6682 	unsigned int reclaim_options;
6683 	int err;
6684 
6685 	buf = strstrip(buf);
6686 	err = page_counter_memparse(buf, "", &nr_to_reclaim);
6687 	if (err)
6688 		return err;
6689 
6690 	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6691 	while (nr_reclaimed < nr_to_reclaim) {
6692 		unsigned long reclaimed;
6693 
6694 		if (signal_pending(current))
6695 			return -EINTR;
6696 
6697 		/*
6698 		 * This is the final attempt, drain percpu lru caches in the
6699 		 * hope of introducing more evictable pages for
6700 		 * try_to_free_mem_cgroup_pages().
6701 		 */
6702 		if (!nr_retries)
6703 			lru_add_drain_all();
6704 
6705 		reclaimed = try_to_free_mem_cgroup_pages(memcg,
6706 					min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6707 					GFP_KERNEL, reclaim_options);
6708 
6709 		if (!reclaimed && !nr_retries--)
6710 			return -EAGAIN;
6711 
6712 		nr_reclaimed += reclaimed;
6713 	}
6714 
6715 	return nbytes;
6716 }
6717 
6718 static struct cftype memory_files[] = {
6719 	{
6720 		.name = "current",
6721 		.flags = CFTYPE_NOT_ON_ROOT,
6722 		.read_u64 = memory_current_read,
6723 	},
6724 	{
6725 		.name = "peak",
6726 		.flags = CFTYPE_NOT_ON_ROOT,
6727 		.read_u64 = memory_peak_read,
6728 	},
6729 	{
6730 		.name = "min",
6731 		.flags = CFTYPE_NOT_ON_ROOT,
6732 		.seq_show = memory_min_show,
6733 		.write = memory_min_write,
6734 	},
6735 	{
6736 		.name = "low",
6737 		.flags = CFTYPE_NOT_ON_ROOT,
6738 		.seq_show = memory_low_show,
6739 		.write = memory_low_write,
6740 	},
6741 	{
6742 		.name = "high",
6743 		.flags = CFTYPE_NOT_ON_ROOT,
6744 		.seq_show = memory_high_show,
6745 		.write = memory_high_write,
6746 	},
6747 	{
6748 		.name = "max",
6749 		.flags = CFTYPE_NOT_ON_ROOT,
6750 		.seq_show = memory_max_show,
6751 		.write = memory_max_write,
6752 	},
6753 	{
6754 		.name = "events",
6755 		.flags = CFTYPE_NOT_ON_ROOT,
6756 		.file_offset = offsetof(struct mem_cgroup, events_file),
6757 		.seq_show = memory_events_show,
6758 	},
6759 	{
6760 		.name = "events.local",
6761 		.flags = CFTYPE_NOT_ON_ROOT,
6762 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6763 		.seq_show = memory_events_local_show,
6764 	},
6765 	{
6766 		.name = "stat",
6767 		.seq_show = memory_stat_show,
6768 	},
6769 #ifdef CONFIG_NUMA
6770 	{
6771 		.name = "numa_stat",
6772 		.seq_show = memory_numa_stat_show,
6773 	},
6774 #endif
6775 	{
6776 		.name = "oom.group",
6777 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6778 		.seq_show = memory_oom_group_show,
6779 		.write = memory_oom_group_write,
6780 	},
6781 	{
6782 		.name = "reclaim",
6783 		.flags = CFTYPE_NS_DELEGATABLE,
6784 		.write = memory_reclaim,
6785 	},
6786 	{ }	/* terminate */
6787 };
6788 
6789 struct cgroup_subsys memory_cgrp_subsys = {
6790 	.css_alloc = mem_cgroup_css_alloc,
6791 	.css_online = mem_cgroup_css_online,
6792 	.css_offline = mem_cgroup_css_offline,
6793 	.css_released = mem_cgroup_css_released,
6794 	.css_free = mem_cgroup_css_free,
6795 	.css_reset = mem_cgroup_css_reset,
6796 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6797 	.can_attach = mem_cgroup_can_attach,
6798 	.attach = mem_cgroup_attach,
6799 	.cancel_attach = mem_cgroup_cancel_attach,
6800 	.post_attach = mem_cgroup_move_task,
6801 	.dfl_cftypes = memory_files,
6802 	.legacy_cftypes = mem_cgroup_legacy_files,
6803 	.early_init = 0,
6804 };
6805 
6806 /*
6807  * This function calculates an individual cgroup's effective
6808  * protection which is derived from its own memory.min/low, its
6809  * parent's and siblings' settings, as well as the actual memory
6810  * distribution in the tree.
6811  *
6812  * The following rules apply to the effective protection values:
6813  *
6814  * 1. At the first level of reclaim, effective protection is equal to
6815  *    the declared protection in memory.min and memory.low.
6816  *
6817  * 2. To enable safe delegation of the protection configuration, at
6818  *    subsequent levels the effective protection is capped to the
6819  *    parent's effective protection.
6820  *
6821  * 3. To make complex and dynamic subtrees easier to configure, the
6822  *    user is allowed to overcommit the declared protection at a given
6823  *    level. If that is the case, the parent's effective protection is
6824  *    distributed to the children in proportion to how much protection
6825  *    they have declared and how much of it they are utilizing.
6826  *
6827  *    This makes distribution proportional, but also work-conserving:
6828  *    if one cgroup claims much more protection than it uses memory,
6829  *    the unused remainder is available to its siblings.
6830  *
6831  * 4. Conversely, when the declared protection is undercommitted at a
6832  *    given level, the distribution of the larger parental protection
6833  *    budget is NOT proportional. A cgroup's protection from a sibling
6834  *    is capped to its own memory.min/low setting.
6835  *
6836  * 5. However, to allow protecting recursive subtrees from each other
6837  *    without having to declare each individual cgroup's fixed share
6838  *    of the ancestor's claim to protection, any unutilized -
6839  *    "floating" - protection from up the tree is distributed in
6840  *    proportion to each cgroup's *usage*. This makes the protection
6841  *    neutral wrt sibling cgroups and lets them compete freely over
6842  *    the shared parental protection budget, but it protects the
6843  *    subtree as a whole from neighboring subtrees.
6844  *
6845  * Note that 4. and 5. are not in conflict: 4. is about protecting
6846  * against immediate siblings whereas 5. is about protecting against
6847  * neighboring subtrees.
6848  */
6849 static unsigned long effective_protection(unsigned long usage,
6850 					  unsigned long parent_usage,
6851 					  unsigned long setting,
6852 					  unsigned long parent_effective,
6853 					  unsigned long siblings_protected)
6854 {
6855 	unsigned long protected;
6856 	unsigned long ep;
6857 
6858 	protected = min(usage, setting);
6859 	/*
6860 	 * If all cgroups at this level combined claim and use more
6861 	 * protection than what the parent affords them, distribute
6862 	 * shares in proportion to utilization.
6863 	 *
6864 	 * We are using actual utilization rather than the statically
6865 	 * claimed protection in order to be work-conserving: claimed
6866 	 * but unused protection is available to siblings that would
6867 	 * otherwise get a smaller chunk than what they claimed.
6868 	 */
6869 	if (siblings_protected > parent_effective)
6870 		return protected * parent_effective / siblings_protected;
6871 
6872 	/*
6873 	 * Ok, utilized protection of all children is within what the
6874 	 * parent affords them, so we know whatever this child claims
6875 	 * and utilizes is effectively protected.
6876 	 *
6877 	 * If there is unprotected usage beyond this value, reclaim
6878 	 * will apply pressure in proportion to that amount.
6879 	 *
6880 	 * If there is unutilized protection, the cgroup will be fully
6881 	 * shielded from reclaim, but we do return a smaller value for
6882 	 * protection than what the group could enjoy in theory. This
6883 	 * is okay. With the overcommit distribution above, effective
6884 	 * protection is always dependent on how memory is actually
6885 	 * consumed among the siblings anyway.
6886 	 */
6887 	ep = protected;
6888 
6889 	/*
6890 	 * If the children aren't claiming (all of) the protection
6891 	 * afforded to them by the parent, distribute the remainder in
6892 	 * proportion to the (unprotected) memory of each cgroup. That
6893 	 * way, cgroups that aren't explicitly prioritized wrt each
6894 	 * other compete freely over the allowance, but they are
6895 	 * collectively protected from neighboring trees.
6896 	 *
6897 	 * We're using unprotected memory for the weight so that if
6898 	 * some cgroups DO claim explicit protection, we don't protect
6899 	 * the same bytes twice.
6900 	 *
6901 	 * Check both usage and parent_usage against the respective
6902 	 * protected values. One should imply the other, but they
6903 	 * aren't read atomically - make sure the division is sane.
6904 	 */
6905 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6906 		return ep;
6907 	if (parent_effective > siblings_protected &&
6908 	    parent_usage > siblings_protected &&
6909 	    usage > protected) {
6910 		unsigned long unclaimed;
6911 
6912 		unclaimed = parent_effective - siblings_protected;
6913 		unclaimed *= usage - protected;
6914 		unclaimed /= parent_usage - siblings_protected;
6915 
6916 		ep += unclaimed;
6917 	}
6918 
6919 	return ep;
6920 }
6921 
6922 /**
6923  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6924  * @root: the top ancestor of the sub-tree being checked
6925  * @memcg: the memory cgroup to check
6926  *
6927  * WARNING: This function is not stateless! It can only be used as part
6928  *          of a top-down tree iteration, not for isolated queries.
6929  */
6930 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6931 				     struct mem_cgroup *memcg)
6932 {
6933 	unsigned long usage, parent_usage;
6934 	struct mem_cgroup *parent;
6935 
6936 	if (mem_cgroup_disabled())
6937 		return;
6938 
6939 	if (!root)
6940 		root = root_mem_cgroup;
6941 
6942 	/*
6943 	 * Effective values of the reclaim targets are ignored so they
6944 	 * can be stale. Have a look at mem_cgroup_protection for more
6945 	 * details.
6946 	 * TODO: calculation should be more robust so that we do not need
6947 	 * that special casing.
6948 	 */
6949 	if (memcg == root)
6950 		return;
6951 
6952 	usage = page_counter_read(&memcg->memory);
6953 	if (!usage)
6954 		return;
6955 
6956 	parent = parent_mem_cgroup(memcg);
6957 
6958 	if (parent == root) {
6959 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6960 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6961 		return;
6962 	}
6963 
6964 	parent_usage = page_counter_read(&parent->memory);
6965 
6966 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6967 			READ_ONCE(memcg->memory.min),
6968 			READ_ONCE(parent->memory.emin),
6969 			atomic_long_read(&parent->memory.children_min_usage)));
6970 
6971 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6972 			READ_ONCE(memcg->memory.low),
6973 			READ_ONCE(parent->memory.elow),
6974 			atomic_long_read(&parent->memory.children_low_usage)));
6975 }
6976 
6977 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6978 			gfp_t gfp)
6979 {
6980 	long nr_pages = folio_nr_pages(folio);
6981 	int ret;
6982 
6983 	ret = try_charge(memcg, gfp, nr_pages);
6984 	if (ret)
6985 		goto out;
6986 
6987 	css_get(&memcg->css);
6988 	commit_charge(folio, memcg);
6989 
6990 	local_irq_disable();
6991 	mem_cgroup_charge_statistics(memcg, nr_pages);
6992 	memcg_check_events(memcg, folio_nid(folio));
6993 	local_irq_enable();
6994 out:
6995 	return ret;
6996 }
6997 
6998 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6999 {
7000 	struct mem_cgroup *memcg;
7001 	int ret;
7002 
7003 	memcg = get_mem_cgroup_from_mm(mm);
7004 	ret = charge_memcg(folio, memcg, gfp);
7005 	css_put(&memcg->css);
7006 
7007 	return ret;
7008 }
7009 
7010 /**
7011  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7012  * @folio: folio to charge.
7013  * @mm: mm context of the victim
7014  * @gfp: reclaim mode
7015  * @entry: swap entry for which the folio is allocated
7016  *
7017  * This function charges a folio allocated for swapin. Please call this before
7018  * adding the folio to the swapcache.
7019  *
7020  * Returns 0 on success. Otherwise, an error code is returned.
7021  */
7022 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7023 				  gfp_t gfp, swp_entry_t entry)
7024 {
7025 	struct mem_cgroup *memcg;
7026 	unsigned short id;
7027 	int ret;
7028 
7029 	if (mem_cgroup_disabled())
7030 		return 0;
7031 
7032 	id = lookup_swap_cgroup_id(entry);
7033 	rcu_read_lock();
7034 	memcg = mem_cgroup_from_id(id);
7035 	if (!memcg || !css_tryget_online(&memcg->css))
7036 		memcg = get_mem_cgroup_from_mm(mm);
7037 	rcu_read_unlock();
7038 
7039 	ret = charge_memcg(folio, memcg, gfp);
7040 
7041 	css_put(&memcg->css);
7042 	return ret;
7043 }
7044 
7045 /*
7046  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7047  * @entry: swap entry for which the page is charged
7048  *
7049  * Call this function after successfully adding the charged page to swapcache.
7050  *
7051  * Note: This function assumes the page for which swap slot is being uncharged
7052  * is order 0 page.
7053  */
7054 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7055 {
7056 	/*
7057 	 * Cgroup1's unified memory+swap counter has been charged with the
7058 	 * new swapcache page, finish the transfer by uncharging the swap
7059 	 * slot. The swap slot would also get uncharged when it dies, but
7060 	 * it can stick around indefinitely and we'd count the page twice
7061 	 * the entire time.
7062 	 *
7063 	 * Cgroup2 has separate resource counters for memory and swap,
7064 	 * so this is a non-issue here. Memory and swap charge lifetimes
7065 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
7066 	 * page to memory here, and uncharge swap when the slot is freed.
7067 	 */
7068 	if (!mem_cgroup_disabled() && do_memsw_account()) {
7069 		/*
7070 		 * The swap entry might not get freed for a long time,
7071 		 * let's not wait for it.  The page already received a
7072 		 * memory+swap charge, drop the swap entry duplicate.
7073 		 */
7074 		mem_cgroup_uncharge_swap(entry, 1);
7075 	}
7076 }
7077 
7078 struct uncharge_gather {
7079 	struct mem_cgroup *memcg;
7080 	unsigned long nr_memory;
7081 	unsigned long pgpgout;
7082 	unsigned long nr_kmem;
7083 	int nid;
7084 };
7085 
7086 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7087 {
7088 	memset(ug, 0, sizeof(*ug));
7089 }
7090 
7091 static void uncharge_batch(const struct uncharge_gather *ug)
7092 {
7093 	unsigned long flags;
7094 
7095 	if (ug->nr_memory) {
7096 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7097 		if (do_memsw_account())
7098 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7099 		if (ug->nr_kmem)
7100 			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7101 		memcg_oom_recover(ug->memcg);
7102 	}
7103 
7104 	local_irq_save(flags);
7105 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7106 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7107 	memcg_check_events(ug->memcg, ug->nid);
7108 	local_irq_restore(flags);
7109 
7110 	/* drop reference from uncharge_folio */
7111 	css_put(&ug->memcg->css);
7112 }
7113 
7114 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7115 {
7116 	long nr_pages;
7117 	struct mem_cgroup *memcg;
7118 	struct obj_cgroup *objcg;
7119 
7120 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7121 
7122 	/*
7123 	 * Nobody should be changing or seriously looking at
7124 	 * folio memcg or objcg at this point, we have fully
7125 	 * exclusive access to the folio.
7126 	 */
7127 	if (folio_memcg_kmem(folio)) {
7128 		objcg = __folio_objcg(folio);
7129 		/*
7130 		 * This get matches the put at the end of the function and
7131 		 * kmem pages do not hold memcg references anymore.
7132 		 */
7133 		memcg = get_mem_cgroup_from_objcg(objcg);
7134 	} else {
7135 		memcg = __folio_memcg(folio);
7136 	}
7137 
7138 	if (!memcg)
7139 		return;
7140 
7141 	if (ug->memcg != memcg) {
7142 		if (ug->memcg) {
7143 			uncharge_batch(ug);
7144 			uncharge_gather_clear(ug);
7145 		}
7146 		ug->memcg = memcg;
7147 		ug->nid = folio_nid(folio);
7148 
7149 		/* pairs with css_put in uncharge_batch */
7150 		css_get(&memcg->css);
7151 	}
7152 
7153 	nr_pages = folio_nr_pages(folio);
7154 
7155 	if (folio_memcg_kmem(folio)) {
7156 		ug->nr_memory += nr_pages;
7157 		ug->nr_kmem += nr_pages;
7158 
7159 		folio->memcg_data = 0;
7160 		obj_cgroup_put(objcg);
7161 	} else {
7162 		/* LRU pages aren't accounted at the root level */
7163 		if (!mem_cgroup_is_root(memcg))
7164 			ug->nr_memory += nr_pages;
7165 		ug->pgpgout++;
7166 
7167 		folio->memcg_data = 0;
7168 	}
7169 
7170 	css_put(&memcg->css);
7171 }
7172 
7173 void __mem_cgroup_uncharge(struct folio *folio)
7174 {
7175 	struct uncharge_gather ug;
7176 
7177 	/* Don't touch folio->lru of any random page, pre-check: */
7178 	if (!folio_memcg(folio))
7179 		return;
7180 
7181 	uncharge_gather_clear(&ug);
7182 	uncharge_folio(folio, &ug);
7183 	uncharge_batch(&ug);
7184 }
7185 
7186 /**
7187  * __mem_cgroup_uncharge_list - uncharge a list of page
7188  * @page_list: list of pages to uncharge
7189  *
7190  * Uncharge a list of pages previously charged with
7191  * __mem_cgroup_charge().
7192  */
7193 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7194 {
7195 	struct uncharge_gather ug;
7196 	struct folio *folio;
7197 
7198 	uncharge_gather_clear(&ug);
7199 	list_for_each_entry(folio, page_list, lru)
7200 		uncharge_folio(folio, &ug);
7201 	if (ug.memcg)
7202 		uncharge_batch(&ug);
7203 }
7204 
7205 /**
7206  * mem_cgroup_migrate - Charge a folio's replacement.
7207  * @old: Currently circulating folio.
7208  * @new: Replacement folio.
7209  *
7210  * Charge @new as a replacement folio for @old. @old will
7211  * be uncharged upon free.
7212  *
7213  * Both folios must be locked, @new->mapping must be set up.
7214  */
7215 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7216 {
7217 	struct mem_cgroup *memcg;
7218 	long nr_pages = folio_nr_pages(new);
7219 	unsigned long flags;
7220 
7221 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7222 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7223 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7224 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7225 
7226 	if (mem_cgroup_disabled())
7227 		return;
7228 
7229 	/* Page cache replacement: new folio already charged? */
7230 	if (folio_memcg(new))
7231 		return;
7232 
7233 	memcg = folio_memcg(old);
7234 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7235 	if (!memcg)
7236 		return;
7237 
7238 	/* Force-charge the new page. The old one will be freed soon */
7239 	if (!mem_cgroup_is_root(memcg)) {
7240 		page_counter_charge(&memcg->memory, nr_pages);
7241 		if (do_memsw_account())
7242 			page_counter_charge(&memcg->memsw, nr_pages);
7243 	}
7244 
7245 	css_get(&memcg->css);
7246 	commit_charge(new, memcg);
7247 
7248 	local_irq_save(flags);
7249 	mem_cgroup_charge_statistics(memcg, nr_pages);
7250 	memcg_check_events(memcg, folio_nid(new));
7251 	local_irq_restore(flags);
7252 }
7253 
7254 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7255 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7256 
7257 void mem_cgroup_sk_alloc(struct sock *sk)
7258 {
7259 	struct mem_cgroup *memcg;
7260 
7261 	if (!mem_cgroup_sockets_enabled)
7262 		return;
7263 
7264 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7265 	if (!in_task())
7266 		return;
7267 
7268 	rcu_read_lock();
7269 	memcg = mem_cgroup_from_task(current);
7270 	if (mem_cgroup_is_root(memcg))
7271 		goto out;
7272 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7273 		goto out;
7274 	if (css_tryget(&memcg->css))
7275 		sk->sk_memcg = memcg;
7276 out:
7277 	rcu_read_unlock();
7278 }
7279 
7280 void mem_cgroup_sk_free(struct sock *sk)
7281 {
7282 	if (sk->sk_memcg)
7283 		css_put(&sk->sk_memcg->css);
7284 }
7285 
7286 /**
7287  * mem_cgroup_charge_skmem - charge socket memory
7288  * @memcg: memcg to charge
7289  * @nr_pages: number of pages to charge
7290  * @gfp_mask: reclaim mode
7291  *
7292  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7293  * @memcg's configured limit, %false if it doesn't.
7294  */
7295 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7296 			     gfp_t gfp_mask)
7297 {
7298 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7299 		struct page_counter *fail;
7300 
7301 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7302 			memcg->tcpmem_pressure = 0;
7303 			return true;
7304 		}
7305 		memcg->tcpmem_pressure = 1;
7306 		if (gfp_mask & __GFP_NOFAIL) {
7307 			page_counter_charge(&memcg->tcpmem, nr_pages);
7308 			return true;
7309 		}
7310 		return false;
7311 	}
7312 
7313 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7314 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7315 		return true;
7316 	}
7317 
7318 	return false;
7319 }
7320 
7321 /**
7322  * mem_cgroup_uncharge_skmem - uncharge socket memory
7323  * @memcg: memcg to uncharge
7324  * @nr_pages: number of pages to uncharge
7325  */
7326 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7327 {
7328 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7329 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7330 		return;
7331 	}
7332 
7333 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7334 
7335 	refill_stock(memcg, nr_pages);
7336 }
7337 
7338 static int __init cgroup_memory(char *s)
7339 {
7340 	char *token;
7341 
7342 	while ((token = strsep(&s, ",")) != NULL) {
7343 		if (!*token)
7344 			continue;
7345 		if (!strcmp(token, "nosocket"))
7346 			cgroup_memory_nosocket = true;
7347 		if (!strcmp(token, "nokmem"))
7348 			cgroup_memory_nokmem = true;
7349 		if (!strcmp(token, "nobpf"))
7350 			cgroup_memory_nobpf = true;
7351 	}
7352 	return 1;
7353 }
7354 __setup("cgroup.memory=", cgroup_memory);
7355 
7356 /*
7357  * subsys_initcall() for memory controller.
7358  *
7359  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7360  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7361  * basically everything that doesn't depend on a specific mem_cgroup structure
7362  * should be initialized from here.
7363  */
7364 static int __init mem_cgroup_init(void)
7365 {
7366 	int cpu, node;
7367 
7368 	/*
7369 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7370 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7371 	 * to work fine, we should make sure that the overfill threshold can't
7372 	 * exceed S32_MAX / PAGE_SIZE.
7373 	 */
7374 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7375 
7376 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7377 				  memcg_hotplug_cpu_dead);
7378 
7379 	for_each_possible_cpu(cpu)
7380 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7381 			  drain_local_stock);
7382 
7383 	for_each_node(node) {
7384 		struct mem_cgroup_tree_per_node *rtpn;
7385 
7386 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7387 
7388 		rtpn->rb_root = RB_ROOT;
7389 		rtpn->rb_rightmost = NULL;
7390 		spin_lock_init(&rtpn->lock);
7391 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7392 	}
7393 
7394 	return 0;
7395 }
7396 subsys_initcall(mem_cgroup_init);
7397 
7398 #ifdef CONFIG_SWAP
7399 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7400 {
7401 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7402 		/*
7403 		 * The root cgroup cannot be destroyed, so it's refcount must
7404 		 * always be >= 1.
7405 		 */
7406 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7407 			VM_BUG_ON(1);
7408 			break;
7409 		}
7410 		memcg = parent_mem_cgroup(memcg);
7411 		if (!memcg)
7412 			memcg = root_mem_cgroup;
7413 	}
7414 	return memcg;
7415 }
7416 
7417 /**
7418  * mem_cgroup_swapout - transfer a memsw charge to swap
7419  * @folio: folio whose memsw charge to transfer
7420  * @entry: swap entry to move the charge to
7421  *
7422  * Transfer the memsw charge of @folio to @entry.
7423  */
7424 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7425 {
7426 	struct mem_cgroup *memcg, *swap_memcg;
7427 	unsigned int nr_entries;
7428 	unsigned short oldid;
7429 
7430 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7431 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7432 
7433 	if (mem_cgroup_disabled())
7434 		return;
7435 
7436 	if (!do_memsw_account())
7437 		return;
7438 
7439 	memcg = folio_memcg(folio);
7440 
7441 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7442 	if (!memcg)
7443 		return;
7444 
7445 	/*
7446 	 * In case the memcg owning these pages has been offlined and doesn't
7447 	 * have an ID allocated to it anymore, charge the closest online
7448 	 * ancestor for the swap instead and transfer the memory+swap charge.
7449 	 */
7450 	swap_memcg = mem_cgroup_id_get_online(memcg);
7451 	nr_entries = folio_nr_pages(folio);
7452 	/* Get references for the tail pages, too */
7453 	if (nr_entries > 1)
7454 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7455 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7456 				   nr_entries);
7457 	VM_BUG_ON_FOLIO(oldid, folio);
7458 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7459 
7460 	folio->memcg_data = 0;
7461 
7462 	if (!mem_cgroup_is_root(memcg))
7463 		page_counter_uncharge(&memcg->memory, nr_entries);
7464 
7465 	if (memcg != swap_memcg) {
7466 		if (!mem_cgroup_is_root(swap_memcg))
7467 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7468 		page_counter_uncharge(&memcg->memsw, nr_entries);
7469 	}
7470 
7471 	/*
7472 	 * Interrupts should be disabled here because the caller holds the
7473 	 * i_pages lock which is taken with interrupts-off. It is
7474 	 * important here to have the interrupts disabled because it is the
7475 	 * only synchronisation we have for updating the per-CPU variables.
7476 	 */
7477 	memcg_stats_lock();
7478 	mem_cgroup_charge_statistics(memcg, -nr_entries);
7479 	memcg_stats_unlock();
7480 	memcg_check_events(memcg, folio_nid(folio));
7481 
7482 	css_put(&memcg->css);
7483 }
7484 
7485 /**
7486  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7487  * @folio: folio being added to swap
7488  * @entry: swap entry to charge
7489  *
7490  * Try to charge @folio's memcg for the swap space at @entry.
7491  *
7492  * Returns 0 on success, -ENOMEM on failure.
7493  */
7494 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7495 {
7496 	unsigned int nr_pages = folio_nr_pages(folio);
7497 	struct page_counter *counter;
7498 	struct mem_cgroup *memcg;
7499 	unsigned short oldid;
7500 
7501 	if (do_memsw_account())
7502 		return 0;
7503 
7504 	memcg = folio_memcg(folio);
7505 
7506 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7507 	if (!memcg)
7508 		return 0;
7509 
7510 	if (!entry.val) {
7511 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7512 		return 0;
7513 	}
7514 
7515 	memcg = mem_cgroup_id_get_online(memcg);
7516 
7517 	if (!mem_cgroup_is_root(memcg) &&
7518 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7519 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7520 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7521 		mem_cgroup_id_put(memcg);
7522 		return -ENOMEM;
7523 	}
7524 
7525 	/* Get references for the tail pages, too */
7526 	if (nr_pages > 1)
7527 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7528 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7529 	VM_BUG_ON_FOLIO(oldid, folio);
7530 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7531 
7532 	return 0;
7533 }
7534 
7535 /**
7536  * __mem_cgroup_uncharge_swap - uncharge swap space
7537  * @entry: swap entry to uncharge
7538  * @nr_pages: the amount of swap space to uncharge
7539  */
7540 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7541 {
7542 	struct mem_cgroup *memcg;
7543 	unsigned short id;
7544 
7545 	id = swap_cgroup_record(entry, 0, nr_pages);
7546 	rcu_read_lock();
7547 	memcg = mem_cgroup_from_id(id);
7548 	if (memcg) {
7549 		if (!mem_cgroup_is_root(memcg)) {
7550 			if (do_memsw_account())
7551 				page_counter_uncharge(&memcg->memsw, nr_pages);
7552 			else
7553 				page_counter_uncharge(&memcg->swap, nr_pages);
7554 		}
7555 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7556 		mem_cgroup_id_put_many(memcg, nr_pages);
7557 	}
7558 	rcu_read_unlock();
7559 }
7560 
7561 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7562 {
7563 	long nr_swap_pages = get_nr_swap_pages();
7564 
7565 	if (mem_cgroup_disabled() || do_memsw_account())
7566 		return nr_swap_pages;
7567 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7568 		nr_swap_pages = min_t(long, nr_swap_pages,
7569 				      READ_ONCE(memcg->swap.max) -
7570 				      page_counter_read(&memcg->swap));
7571 	return nr_swap_pages;
7572 }
7573 
7574 bool mem_cgroup_swap_full(struct folio *folio)
7575 {
7576 	struct mem_cgroup *memcg;
7577 
7578 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7579 
7580 	if (vm_swap_full())
7581 		return true;
7582 	if (do_memsw_account())
7583 		return false;
7584 
7585 	memcg = folio_memcg(folio);
7586 	if (!memcg)
7587 		return false;
7588 
7589 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7590 		unsigned long usage = page_counter_read(&memcg->swap);
7591 
7592 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7593 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7594 			return true;
7595 	}
7596 
7597 	return false;
7598 }
7599 
7600 static int __init setup_swap_account(char *s)
7601 {
7602 	pr_warn_once("The swapaccount= commandline option is deprecated. "
7603 		     "Please report your usecase to linux-mm@kvack.org if you "
7604 		     "depend on this functionality.\n");
7605 	return 1;
7606 }
7607 __setup("swapaccount=", setup_swap_account);
7608 
7609 static u64 swap_current_read(struct cgroup_subsys_state *css,
7610 			     struct cftype *cft)
7611 {
7612 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7613 
7614 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7615 }
7616 
7617 static u64 swap_peak_read(struct cgroup_subsys_state *css,
7618 			  struct cftype *cft)
7619 {
7620 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7621 
7622 	return (u64)memcg->swap.watermark * PAGE_SIZE;
7623 }
7624 
7625 static int swap_high_show(struct seq_file *m, void *v)
7626 {
7627 	return seq_puts_memcg_tunable(m,
7628 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7629 }
7630 
7631 static ssize_t swap_high_write(struct kernfs_open_file *of,
7632 			       char *buf, size_t nbytes, loff_t off)
7633 {
7634 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7635 	unsigned long high;
7636 	int err;
7637 
7638 	buf = strstrip(buf);
7639 	err = page_counter_memparse(buf, "max", &high);
7640 	if (err)
7641 		return err;
7642 
7643 	page_counter_set_high(&memcg->swap, high);
7644 
7645 	return nbytes;
7646 }
7647 
7648 static int swap_max_show(struct seq_file *m, void *v)
7649 {
7650 	return seq_puts_memcg_tunable(m,
7651 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7652 }
7653 
7654 static ssize_t swap_max_write(struct kernfs_open_file *of,
7655 			      char *buf, size_t nbytes, loff_t off)
7656 {
7657 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7658 	unsigned long max;
7659 	int err;
7660 
7661 	buf = strstrip(buf);
7662 	err = page_counter_memparse(buf, "max", &max);
7663 	if (err)
7664 		return err;
7665 
7666 	xchg(&memcg->swap.max, max);
7667 
7668 	return nbytes;
7669 }
7670 
7671 static int swap_events_show(struct seq_file *m, void *v)
7672 {
7673 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7674 
7675 	seq_printf(m, "high %lu\n",
7676 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7677 	seq_printf(m, "max %lu\n",
7678 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7679 	seq_printf(m, "fail %lu\n",
7680 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7681 
7682 	return 0;
7683 }
7684 
7685 static struct cftype swap_files[] = {
7686 	{
7687 		.name = "swap.current",
7688 		.flags = CFTYPE_NOT_ON_ROOT,
7689 		.read_u64 = swap_current_read,
7690 	},
7691 	{
7692 		.name = "swap.high",
7693 		.flags = CFTYPE_NOT_ON_ROOT,
7694 		.seq_show = swap_high_show,
7695 		.write = swap_high_write,
7696 	},
7697 	{
7698 		.name = "swap.max",
7699 		.flags = CFTYPE_NOT_ON_ROOT,
7700 		.seq_show = swap_max_show,
7701 		.write = swap_max_write,
7702 	},
7703 	{
7704 		.name = "swap.peak",
7705 		.flags = CFTYPE_NOT_ON_ROOT,
7706 		.read_u64 = swap_peak_read,
7707 	},
7708 	{
7709 		.name = "swap.events",
7710 		.flags = CFTYPE_NOT_ON_ROOT,
7711 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7712 		.seq_show = swap_events_show,
7713 	},
7714 	{ }	/* terminate */
7715 };
7716 
7717 static struct cftype memsw_files[] = {
7718 	{
7719 		.name = "memsw.usage_in_bytes",
7720 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7721 		.read_u64 = mem_cgroup_read_u64,
7722 	},
7723 	{
7724 		.name = "memsw.max_usage_in_bytes",
7725 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7726 		.write = mem_cgroup_reset,
7727 		.read_u64 = mem_cgroup_read_u64,
7728 	},
7729 	{
7730 		.name = "memsw.limit_in_bytes",
7731 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7732 		.write = mem_cgroup_write,
7733 		.read_u64 = mem_cgroup_read_u64,
7734 	},
7735 	{
7736 		.name = "memsw.failcnt",
7737 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7738 		.write = mem_cgroup_reset,
7739 		.read_u64 = mem_cgroup_read_u64,
7740 	},
7741 	{ },	/* terminate */
7742 };
7743 
7744 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7745 /**
7746  * obj_cgroup_may_zswap - check if this cgroup can zswap
7747  * @objcg: the object cgroup
7748  *
7749  * Check if the hierarchical zswap limit has been reached.
7750  *
7751  * This doesn't check for specific headroom, and it is not atomic
7752  * either. But with zswap, the size of the allocation is only known
7753  * once compression has occured, and this optimistic pre-check avoids
7754  * spending cycles on compression when there is already no room left
7755  * or zswap is disabled altogether somewhere in the hierarchy.
7756  */
7757 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7758 {
7759 	struct mem_cgroup *memcg, *original_memcg;
7760 	bool ret = true;
7761 
7762 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7763 		return true;
7764 
7765 	original_memcg = get_mem_cgroup_from_objcg(objcg);
7766 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7767 	     memcg = parent_mem_cgroup(memcg)) {
7768 		unsigned long max = READ_ONCE(memcg->zswap_max);
7769 		unsigned long pages;
7770 
7771 		if (max == PAGE_COUNTER_MAX)
7772 			continue;
7773 		if (max == 0) {
7774 			ret = false;
7775 			break;
7776 		}
7777 
7778 		cgroup_rstat_flush(memcg->css.cgroup);
7779 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7780 		if (pages < max)
7781 			continue;
7782 		ret = false;
7783 		break;
7784 	}
7785 	mem_cgroup_put(original_memcg);
7786 	return ret;
7787 }
7788 
7789 /**
7790  * obj_cgroup_charge_zswap - charge compression backend memory
7791  * @objcg: the object cgroup
7792  * @size: size of compressed object
7793  *
7794  * This forces the charge after obj_cgroup_may_zswap() allowed
7795  * compression and storage in zwap for this cgroup to go ahead.
7796  */
7797 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7798 {
7799 	struct mem_cgroup *memcg;
7800 
7801 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7802 		return;
7803 
7804 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7805 
7806 	/* PF_MEMALLOC context, charging must succeed */
7807 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7808 		VM_WARN_ON_ONCE(1);
7809 
7810 	rcu_read_lock();
7811 	memcg = obj_cgroup_memcg(objcg);
7812 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7813 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7814 	rcu_read_unlock();
7815 }
7816 
7817 /**
7818  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7819  * @objcg: the object cgroup
7820  * @size: size of compressed object
7821  *
7822  * Uncharges zswap memory on page in.
7823  */
7824 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7825 {
7826 	struct mem_cgroup *memcg;
7827 
7828 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7829 		return;
7830 
7831 	obj_cgroup_uncharge(objcg, size);
7832 
7833 	rcu_read_lock();
7834 	memcg = obj_cgroup_memcg(objcg);
7835 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7836 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7837 	rcu_read_unlock();
7838 }
7839 
7840 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7841 			      struct cftype *cft)
7842 {
7843 	cgroup_rstat_flush(css->cgroup);
7844 	return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7845 }
7846 
7847 static int zswap_max_show(struct seq_file *m, void *v)
7848 {
7849 	return seq_puts_memcg_tunable(m,
7850 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7851 }
7852 
7853 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7854 			       char *buf, size_t nbytes, loff_t off)
7855 {
7856 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7857 	unsigned long max;
7858 	int err;
7859 
7860 	buf = strstrip(buf);
7861 	err = page_counter_memparse(buf, "max", &max);
7862 	if (err)
7863 		return err;
7864 
7865 	xchg(&memcg->zswap_max, max);
7866 
7867 	return nbytes;
7868 }
7869 
7870 static struct cftype zswap_files[] = {
7871 	{
7872 		.name = "zswap.current",
7873 		.flags = CFTYPE_NOT_ON_ROOT,
7874 		.read_u64 = zswap_current_read,
7875 	},
7876 	{
7877 		.name = "zswap.max",
7878 		.flags = CFTYPE_NOT_ON_ROOT,
7879 		.seq_show = zswap_max_show,
7880 		.write = zswap_max_write,
7881 	},
7882 	{ }	/* terminate */
7883 };
7884 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7885 
7886 static int __init mem_cgroup_swap_init(void)
7887 {
7888 	if (mem_cgroup_disabled())
7889 		return 0;
7890 
7891 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7892 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7893 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7894 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7895 #endif
7896 	return 0;
7897 }
7898 subsys_initcall(mem_cgroup_swap_init);
7899 
7900 #endif /* CONFIG_SWAP */
7901