1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/pagevec.h> 37 #include <linux/vm_event_item.h> 38 #include <linux/smp.h> 39 #include <linux/page-flags.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bit_spinlock.h> 42 #include <linux/rcupdate.h> 43 #include <linux/limits.h> 44 #include <linux/export.h> 45 #include <linux/mutex.h> 46 #include <linux/rbtree.h> 47 #include <linux/slab.h> 48 #include <linux/swap.h> 49 #include <linux/swapops.h> 50 #include <linux/spinlock.h> 51 #include <linux/eventfd.h> 52 #include <linux/poll.h> 53 #include <linux/sort.h> 54 #include <linux/fs.h> 55 #include <linux/seq_file.h> 56 #include <linux/vmpressure.h> 57 #include <linux/memremap.h> 58 #include <linux/mm_inline.h> 59 #include <linux/swap_cgroup.h> 60 #include <linux/cpu.h> 61 #include <linux/oom.h> 62 #include <linux/lockdep.h> 63 #include <linux/file.h> 64 #include <linux/resume_user_mode.h> 65 #include <linux/psi.h> 66 #include <linux/seq_buf.h> 67 #include <linux/sched/isolation.h> 68 #include <linux/kmemleak.h> 69 #include "internal.h" 70 #include <net/sock.h> 71 #include <net/ip.h> 72 #include "slab.h" 73 #include "swap.h" 74 75 #include <linux/uaccess.h> 76 77 #include <trace/events/vmscan.h> 78 79 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 80 EXPORT_SYMBOL(memory_cgrp_subsys); 81 82 struct mem_cgroup *root_mem_cgroup __read_mostly; 83 84 /* Active memory cgroup to use from an interrupt context */ 85 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 86 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 87 88 /* Socket memory accounting disabled? */ 89 static bool cgroup_memory_nosocket __ro_after_init; 90 91 /* Kernel memory accounting disabled? */ 92 static bool cgroup_memory_nokmem __ro_after_init; 93 94 /* BPF memory accounting disabled? */ 95 static bool cgroup_memory_nobpf __ro_after_init; 96 97 #ifdef CONFIG_CGROUP_WRITEBACK 98 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 99 #endif 100 101 /* Whether legacy memory+swap accounting is active */ 102 static bool do_memsw_account(void) 103 { 104 return !cgroup_subsys_on_dfl(memory_cgrp_subsys); 105 } 106 107 #define THRESHOLDS_EVENTS_TARGET 128 108 #define SOFTLIMIT_EVENTS_TARGET 1024 109 110 /* 111 * Cgroups above their limits are maintained in a RB-Tree, independent of 112 * their hierarchy representation 113 */ 114 115 struct mem_cgroup_tree_per_node { 116 struct rb_root rb_root; 117 struct rb_node *rb_rightmost; 118 spinlock_t lock; 119 }; 120 121 struct mem_cgroup_tree { 122 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 123 }; 124 125 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 126 127 /* for OOM */ 128 struct mem_cgroup_eventfd_list { 129 struct list_head list; 130 struct eventfd_ctx *eventfd; 131 }; 132 133 /* 134 * cgroup_event represents events which userspace want to receive. 135 */ 136 struct mem_cgroup_event { 137 /* 138 * memcg which the event belongs to. 139 */ 140 struct mem_cgroup *memcg; 141 /* 142 * eventfd to signal userspace about the event. 143 */ 144 struct eventfd_ctx *eventfd; 145 /* 146 * Each of these stored in a list by the cgroup. 147 */ 148 struct list_head list; 149 /* 150 * register_event() callback will be used to add new userspace 151 * waiter for changes related to this event. Use eventfd_signal() 152 * on eventfd to send notification to userspace. 153 */ 154 int (*register_event)(struct mem_cgroup *memcg, 155 struct eventfd_ctx *eventfd, const char *args); 156 /* 157 * unregister_event() callback will be called when userspace closes 158 * the eventfd or on cgroup removing. This callback must be set, 159 * if you want provide notification functionality. 160 */ 161 void (*unregister_event)(struct mem_cgroup *memcg, 162 struct eventfd_ctx *eventfd); 163 /* 164 * All fields below needed to unregister event when 165 * userspace closes eventfd. 166 */ 167 poll_table pt; 168 wait_queue_head_t *wqh; 169 wait_queue_entry_t wait; 170 struct work_struct remove; 171 }; 172 173 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 174 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 175 176 /* Stuffs for move charges at task migration. */ 177 /* 178 * Types of charges to be moved. 179 */ 180 #define MOVE_ANON 0x1U 181 #define MOVE_FILE 0x2U 182 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 183 184 /* "mc" and its members are protected by cgroup_mutex */ 185 static struct move_charge_struct { 186 spinlock_t lock; /* for from, to */ 187 struct mm_struct *mm; 188 struct mem_cgroup *from; 189 struct mem_cgroup *to; 190 unsigned long flags; 191 unsigned long precharge; 192 unsigned long moved_charge; 193 unsigned long moved_swap; 194 struct task_struct *moving_task; /* a task moving charges */ 195 wait_queue_head_t waitq; /* a waitq for other context */ 196 } mc = { 197 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 198 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 199 }; 200 201 /* 202 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft 203 * limit reclaim to prevent infinite loops, if they ever occur. 204 */ 205 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 206 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 207 208 /* for encoding cft->private value on file */ 209 enum res_type { 210 _MEM, 211 _MEMSWAP, 212 _KMEM, 213 _TCP, 214 }; 215 216 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 217 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 218 #define MEMFILE_ATTR(val) ((val) & 0xffff) 219 220 /* 221 * Iteration constructs for visiting all cgroups (under a tree). If 222 * loops are exited prematurely (break), mem_cgroup_iter_break() must 223 * be used for reference counting. 224 */ 225 #define for_each_mem_cgroup_tree(iter, root) \ 226 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 227 iter != NULL; \ 228 iter = mem_cgroup_iter(root, iter, NULL)) 229 230 #define for_each_mem_cgroup(iter) \ 231 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 232 iter != NULL; \ 233 iter = mem_cgroup_iter(NULL, iter, NULL)) 234 235 static inline bool task_is_dying(void) 236 { 237 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 238 (current->flags & PF_EXITING); 239 } 240 241 /* Some nice accessors for the vmpressure. */ 242 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 243 { 244 if (!memcg) 245 memcg = root_mem_cgroup; 246 return &memcg->vmpressure; 247 } 248 249 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 250 { 251 return container_of(vmpr, struct mem_cgroup, vmpressure); 252 } 253 254 #define CURRENT_OBJCG_UPDATE_BIT 0 255 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 256 257 #ifdef CONFIG_MEMCG_KMEM 258 static DEFINE_SPINLOCK(objcg_lock); 259 260 bool mem_cgroup_kmem_disabled(void) 261 { 262 return cgroup_memory_nokmem; 263 } 264 265 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 266 unsigned int nr_pages); 267 268 static void obj_cgroup_release(struct percpu_ref *ref) 269 { 270 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 271 unsigned int nr_bytes; 272 unsigned int nr_pages; 273 unsigned long flags; 274 275 /* 276 * At this point all allocated objects are freed, and 277 * objcg->nr_charged_bytes can't have an arbitrary byte value. 278 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 279 * 280 * The following sequence can lead to it: 281 * 1) CPU0: objcg == stock->cached_objcg 282 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 283 * PAGE_SIZE bytes are charged 284 * 3) CPU1: a process from another memcg is allocating something, 285 * the stock if flushed, 286 * objcg->nr_charged_bytes = PAGE_SIZE - 92 287 * 5) CPU0: we do release this object, 288 * 92 bytes are added to stock->nr_bytes 289 * 6) CPU0: stock is flushed, 290 * 92 bytes are added to objcg->nr_charged_bytes 291 * 292 * In the result, nr_charged_bytes == PAGE_SIZE. 293 * This page will be uncharged in obj_cgroup_release(). 294 */ 295 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 296 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 297 nr_pages = nr_bytes >> PAGE_SHIFT; 298 299 if (nr_pages) 300 obj_cgroup_uncharge_pages(objcg, nr_pages); 301 302 spin_lock_irqsave(&objcg_lock, flags); 303 list_del(&objcg->list); 304 spin_unlock_irqrestore(&objcg_lock, flags); 305 306 percpu_ref_exit(ref); 307 kfree_rcu(objcg, rcu); 308 } 309 310 static struct obj_cgroup *obj_cgroup_alloc(void) 311 { 312 struct obj_cgroup *objcg; 313 int ret; 314 315 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 316 if (!objcg) 317 return NULL; 318 319 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 320 GFP_KERNEL); 321 if (ret) { 322 kfree(objcg); 323 return NULL; 324 } 325 INIT_LIST_HEAD(&objcg->list); 326 return objcg; 327 } 328 329 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 330 struct mem_cgroup *parent) 331 { 332 struct obj_cgroup *objcg, *iter; 333 334 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 335 336 spin_lock_irq(&objcg_lock); 337 338 /* 1) Ready to reparent active objcg. */ 339 list_add(&objcg->list, &memcg->objcg_list); 340 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 341 list_for_each_entry(iter, &memcg->objcg_list, list) 342 WRITE_ONCE(iter->memcg, parent); 343 /* 3) Move already reparented objcgs to the parent's list */ 344 list_splice(&memcg->objcg_list, &parent->objcg_list); 345 346 spin_unlock_irq(&objcg_lock); 347 348 percpu_ref_kill(&objcg->refcnt); 349 } 350 351 /* 352 * A lot of the calls to the cache allocation functions are expected to be 353 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 354 * conditional to this static branch, we'll have to allow modules that does 355 * kmem_cache_alloc and the such to see this symbol as well 356 */ 357 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 358 EXPORT_SYMBOL(memcg_kmem_online_key); 359 360 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 361 EXPORT_SYMBOL(memcg_bpf_enabled_key); 362 #endif 363 364 /** 365 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 366 * @folio: folio of interest 367 * 368 * If memcg is bound to the default hierarchy, css of the memcg associated 369 * with @folio is returned. The returned css remains associated with @folio 370 * until it is released. 371 * 372 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 373 * is returned. 374 */ 375 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 376 { 377 struct mem_cgroup *memcg = folio_memcg(folio); 378 379 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 380 memcg = root_mem_cgroup; 381 382 return &memcg->css; 383 } 384 385 /** 386 * page_cgroup_ino - return inode number of the memcg a page is charged to 387 * @page: the page 388 * 389 * Look up the closest online ancestor of the memory cgroup @page is charged to 390 * and return its inode number or 0 if @page is not charged to any cgroup. It 391 * is safe to call this function without holding a reference to @page. 392 * 393 * Note, this function is inherently racy, because there is nothing to prevent 394 * the cgroup inode from getting torn down and potentially reallocated a moment 395 * after page_cgroup_ino() returns, so it only should be used by callers that 396 * do not care (such as procfs interfaces). 397 */ 398 ino_t page_cgroup_ino(struct page *page) 399 { 400 struct mem_cgroup *memcg; 401 unsigned long ino = 0; 402 403 rcu_read_lock(); 404 /* page_folio() is racy here, but the entire function is racy anyway */ 405 memcg = folio_memcg_check(page_folio(page)); 406 407 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 408 memcg = parent_mem_cgroup(memcg); 409 if (memcg) 410 ino = cgroup_ino(memcg->css.cgroup); 411 rcu_read_unlock(); 412 return ino; 413 } 414 415 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 416 struct mem_cgroup_tree_per_node *mctz, 417 unsigned long new_usage_in_excess) 418 { 419 struct rb_node **p = &mctz->rb_root.rb_node; 420 struct rb_node *parent = NULL; 421 struct mem_cgroup_per_node *mz_node; 422 bool rightmost = true; 423 424 if (mz->on_tree) 425 return; 426 427 mz->usage_in_excess = new_usage_in_excess; 428 if (!mz->usage_in_excess) 429 return; 430 while (*p) { 431 parent = *p; 432 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 433 tree_node); 434 if (mz->usage_in_excess < mz_node->usage_in_excess) { 435 p = &(*p)->rb_left; 436 rightmost = false; 437 } else { 438 p = &(*p)->rb_right; 439 } 440 } 441 442 if (rightmost) 443 mctz->rb_rightmost = &mz->tree_node; 444 445 rb_link_node(&mz->tree_node, parent, p); 446 rb_insert_color(&mz->tree_node, &mctz->rb_root); 447 mz->on_tree = true; 448 } 449 450 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 451 struct mem_cgroup_tree_per_node *mctz) 452 { 453 if (!mz->on_tree) 454 return; 455 456 if (&mz->tree_node == mctz->rb_rightmost) 457 mctz->rb_rightmost = rb_prev(&mz->tree_node); 458 459 rb_erase(&mz->tree_node, &mctz->rb_root); 460 mz->on_tree = false; 461 } 462 463 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 464 struct mem_cgroup_tree_per_node *mctz) 465 { 466 unsigned long flags; 467 468 spin_lock_irqsave(&mctz->lock, flags); 469 __mem_cgroup_remove_exceeded(mz, mctz); 470 spin_unlock_irqrestore(&mctz->lock, flags); 471 } 472 473 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 474 { 475 unsigned long nr_pages = page_counter_read(&memcg->memory); 476 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 477 unsigned long excess = 0; 478 479 if (nr_pages > soft_limit) 480 excess = nr_pages - soft_limit; 481 482 return excess; 483 } 484 485 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 486 { 487 unsigned long excess; 488 struct mem_cgroup_per_node *mz; 489 struct mem_cgroup_tree_per_node *mctz; 490 491 if (lru_gen_enabled()) { 492 if (soft_limit_excess(memcg)) 493 lru_gen_soft_reclaim(memcg, nid); 494 return; 495 } 496 497 mctz = soft_limit_tree.rb_tree_per_node[nid]; 498 if (!mctz) 499 return; 500 /* 501 * Necessary to update all ancestors when hierarchy is used. 502 * because their event counter is not touched. 503 */ 504 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 505 mz = memcg->nodeinfo[nid]; 506 excess = soft_limit_excess(memcg); 507 /* 508 * We have to update the tree if mz is on RB-tree or 509 * mem is over its softlimit. 510 */ 511 if (excess || mz->on_tree) { 512 unsigned long flags; 513 514 spin_lock_irqsave(&mctz->lock, flags); 515 /* if on-tree, remove it */ 516 if (mz->on_tree) 517 __mem_cgroup_remove_exceeded(mz, mctz); 518 /* 519 * Insert again. mz->usage_in_excess will be updated. 520 * If excess is 0, no tree ops. 521 */ 522 __mem_cgroup_insert_exceeded(mz, mctz, excess); 523 spin_unlock_irqrestore(&mctz->lock, flags); 524 } 525 } 526 } 527 528 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 529 { 530 struct mem_cgroup_tree_per_node *mctz; 531 struct mem_cgroup_per_node *mz; 532 int nid; 533 534 for_each_node(nid) { 535 mz = memcg->nodeinfo[nid]; 536 mctz = soft_limit_tree.rb_tree_per_node[nid]; 537 if (mctz) 538 mem_cgroup_remove_exceeded(mz, mctz); 539 } 540 } 541 542 static struct mem_cgroup_per_node * 543 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 544 { 545 struct mem_cgroup_per_node *mz; 546 547 retry: 548 mz = NULL; 549 if (!mctz->rb_rightmost) 550 goto done; /* Nothing to reclaim from */ 551 552 mz = rb_entry(mctz->rb_rightmost, 553 struct mem_cgroup_per_node, tree_node); 554 /* 555 * Remove the node now but someone else can add it back, 556 * we will to add it back at the end of reclaim to its correct 557 * position in the tree. 558 */ 559 __mem_cgroup_remove_exceeded(mz, mctz); 560 if (!soft_limit_excess(mz->memcg) || 561 !css_tryget(&mz->memcg->css)) 562 goto retry; 563 done: 564 return mz; 565 } 566 567 static struct mem_cgroup_per_node * 568 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 569 { 570 struct mem_cgroup_per_node *mz; 571 572 spin_lock_irq(&mctz->lock); 573 mz = __mem_cgroup_largest_soft_limit_node(mctz); 574 spin_unlock_irq(&mctz->lock); 575 return mz; 576 } 577 578 /* Subset of node_stat_item for memcg stats */ 579 static const unsigned int memcg_node_stat_items[] = { 580 NR_INACTIVE_ANON, 581 NR_ACTIVE_ANON, 582 NR_INACTIVE_FILE, 583 NR_ACTIVE_FILE, 584 NR_UNEVICTABLE, 585 NR_SLAB_RECLAIMABLE_B, 586 NR_SLAB_UNRECLAIMABLE_B, 587 WORKINGSET_REFAULT_ANON, 588 WORKINGSET_REFAULT_FILE, 589 WORKINGSET_ACTIVATE_ANON, 590 WORKINGSET_ACTIVATE_FILE, 591 WORKINGSET_RESTORE_ANON, 592 WORKINGSET_RESTORE_FILE, 593 WORKINGSET_NODERECLAIM, 594 NR_ANON_MAPPED, 595 NR_FILE_MAPPED, 596 NR_FILE_PAGES, 597 NR_FILE_DIRTY, 598 NR_WRITEBACK, 599 NR_SHMEM, 600 NR_SHMEM_THPS, 601 NR_FILE_THPS, 602 NR_ANON_THPS, 603 NR_KERNEL_STACK_KB, 604 NR_PAGETABLE, 605 NR_SECONDARY_PAGETABLE, 606 #ifdef CONFIG_SWAP 607 NR_SWAPCACHE, 608 #endif 609 }; 610 611 static const unsigned int memcg_stat_items[] = { 612 MEMCG_SWAP, 613 MEMCG_SOCK, 614 MEMCG_PERCPU_B, 615 MEMCG_VMALLOC, 616 MEMCG_KMEM, 617 MEMCG_ZSWAP_B, 618 MEMCG_ZSWAPPED, 619 }; 620 621 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 622 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 623 ARRAY_SIZE(memcg_stat_items)) 624 static int8_t mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 625 626 static void init_memcg_stats(void) 627 { 628 int8_t i, j = 0; 629 630 BUILD_BUG_ON(MEMCG_NR_STAT >= S8_MAX); 631 632 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i) 633 mem_cgroup_stats_index[memcg_node_stat_items[i]] = ++j; 634 635 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i) 636 mem_cgroup_stats_index[memcg_stat_items[i]] = ++j; 637 } 638 639 static inline int memcg_stats_index(int idx) 640 { 641 return mem_cgroup_stats_index[idx] - 1; 642 } 643 644 struct lruvec_stats_percpu { 645 /* Local (CPU and cgroup) state */ 646 long state[NR_MEMCG_NODE_STAT_ITEMS]; 647 648 /* Delta calculation for lockless upward propagation */ 649 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 650 }; 651 652 struct lruvec_stats { 653 /* Aggregated (CPU and subtree) state */ 654 long state[NR_MEMCG_NODE_STAT_ITEMS]; 655 656 /* Non-hierarchical (CPU aggregated) state */ 657 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 658 659 /* Pending child counts during tree propagation */ 660 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 661 }; 662 663 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 664 { 665 struct mem_cgroup_per_node *pn; 666 long x; 667 int i; 668 669 if (mem_cgroup_disabled()) 670 return node_page_state(lruvec_pgdat(lruvec), idx); 671 672 i = memcg_stats_index(idx); 673 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx)) 674 return 0; 675 676 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 677 x = READ_ONCE(pn->lruvec_stats->state[i]); 678 #ifdef CONFIG_SMP 679 if (x < 0) 680 x = 0; 681 #endif 682 return x; 683 } 684 685 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 686 enum node_stat_item idx) 687 { 688 struct mem_cgroup_per_node *pn; 689 long x; 690 int i; 691 692 if (mem_cgroup_disabled()) 693 return node_page_state(lruvec_pgdat(lruvec), idx); 694 695 i = memcg_stats_index(idx); 696 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx)) 697 return 0; 698 699 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 700 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 701 #ifdef CONFIG_SMP 702 if (x < 0) 703 x = 0; 704 #endif 705 return x; 706 } 707 708 /* Subset of vm_event_item to report for memcg event stats */ 709 static const unsigned int memcg_vm_event_stat[] = { 710 PGPGIN, 711 PGPGOUT, 712 PGSCAN_KSWAPD, 713 PGSCAN_DIRECT, 714 PGSCAN_KHUGEPAGED, 715 PGSTEAL_KSWAPD, 716 PGSTEAL_DIRECT, 717 PGSTEAL_KHUGEPAGED, 718 PGFAULT, 719 PGMAJFAULT, 720 PGREFILL, 721 PGACTIVATE, 722 PGDEACTIVATE, 723 PGLAZYFREE, 724 PGLAZYFREED, 725 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 726 ZSWPIN, 727 ZSWPOUT, 728 ZSWPWB, 729 #endif 730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 731 THP_FAULT_ALLOC, 732 THP_COLLAPSE_ALLOC, 733 THP_SWPOUT, 734 THP_SWPOUT_FALLBACK, 735 #endif 736 }; 737 738 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 739 static int8_t mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 740 741 static void init_memcg_events(void) 742 { 743 int8_t i; 744 745 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= S8_MAX); 746 747 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 748 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1; 749 } 750 751 static inline int memcg_events_index(enum vm_event_item idx) 752 { 753 return mem_cgroup_events_index[idx] - 1; 754 } 755 756 struct memcg_vmstats_percpu { 757 /* Stats updates since the last flush */ 758 unsigned int stats_updates; 759 760 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 761 struct memcg_vmstats_percpu *parent; 762 struct memcg_vmstats *vmstats; 763 764 /* The above should fit a single cacheline for memcg_rstat_updated() */ 765 766 /* Local (CPU and cgroup) page state & events */ 767 long state[MEMCG_VMSTAT_SIZE]; 768 unsigned long events[NR_MEMCG_EVENTS]; 769 770 /* Delta calculation for lockless upward propagation */ 771 long state_prev[MEMCG_VMSTAT_SIZE]; 772 unsigned long events_prev[NR_MEMCG_EVENTS]; 773 774 /* Cgroup1: threshold notifications & softlimit tree updates */ 775 unsigned long nr_page_events; 776 unsigned long targets[MEM_CGROUP_NTARGETS]; 777 } ____cacheline_aligned; 778 779 struct memcg_vmstats { 780 /* Aggregated (CPU and subtree) page state & events */ 781 long state[MEMCG_VMSTAT_SIZE]; 782 unsigned long events[NR_MEMCG_EVENTS]; 783 784 /* Non-hierarchical (CPU aggregated) page state & events */ 785 long state_local[MEMCG_VMSTAT_SIZE]; 786 unsigned long events_local[NR_MEMCG_EVENTS]; 787 788 /* Pending child counts during tree propagation */ 789 long state_pending[MEMCG_VMSTAT_SIZE]; 790 unsigned long events_pending[NR_MEMCG_EVENTS]; 791 792 /* Stats updates since the last flush */ 793 atomic64_t stats_updates; 794 }; 795 796 /* 797 * memcg and lruvec stats flushing 798 * 799 * Many codepaths leading to stats update or read are performance sensitive and 800 * adding stats flushing in such codepaths is not desirable. So, to optimize the 801 * flushing the kernel does: 802 * 803 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 804 * rstat update tree grow unbounded. 805 * 806 * 2) Flush the stats synchronously on reader side only when there are more than 807 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 808 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 809 * only for 2 seconds due to (1). 810 */ 811 static void flush_memcg_stats_dwork(struct work_struct *w); 812 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 813 static u64 flush_last_time; 814 815 #define FLUSH_TIME (2UL*HZ) 816 817 /* 818 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 819 * not rely on this as part of an acquired spinlock_t lock. These functions are 820 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 821 * is sufficient. 822 */ 823 static void memcg_stats_lock(void) 824 { 825 preempt_disable_nested(); 826 VM_WARN_ON_IRQS_ENABLED(); 827 } 828 829 static void __memcg_stats_lock(void) 830 { 831 preempt_disable_nested(); 832 } 833 834 static void memcg_stats_unlock(void) 835 { 836 preempt_enable_nested(); 837 } 838 839 840 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 841 { 842 return atomic64_read(&vmstats->stats_updates) > 843 MEMCG_CHARGE_BATCH * num_online_cpus(); 844 } 845 846 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 847 { 848 struct memcg_vmstats_percpu *statc; 849 int cpu = smp_processor_id(); 850 unsigned int stats_updates; 851 852 if (!val) 853 return; 854 855 cgroup_rstat_updated(memcg->css.cgroup, cpu); 856 statc = this_cpu_ptr(memcg->vmstats_percpu); 857 for (; statc; statc = statc->parent) { 858 stats_updates = READ_ONCE(statc->stats_updates) + abs(val); 859 WRITE_ONCE(statc->stats_updates, stats_updates); 860 if (stats_updates < MEMCG_CHARGE_BATCH) 861 continue; 862 863 /* 864 * If @memcg is already flush-able, increasing stats_updates is 865 * redundant. Avoid the overhead of the atomic update. 866 */ 867 if (!memcg_vmstats_needs_flush(statc->vmstats)) 868 atomic64_add(stats_updates, 869 &statc->vmstats->stats_updates); 870 WRITE_ONCE(statc->stats_updates, 0); 871 } 872 } 873 874 static void do_flush_stats(struct mem_cgroup *memcg) 875 { 876 if (mem_cgroup_is_root(memcg)) 877 WRITE_ONCE(flush_last_time, jiffies_64); 878 879 cgroup_rstat_flush(memcg->css.cgroup); 880 } 881 882 /* 883 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 884 * @memcg: root of the subtree to flush 885 * 886 * Flushing is serialized by the underlying global rstat lock. There is also a 887 * minimum amount of work to be done even if there are no stat updates to flush. 888 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 889 * avoids unnecessary work and contention on the underlying lock. 890 */ 891 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 892 { 893 if (mem_cgroup_disabled()) 894 return; 895 896 if (!memcg) 897 memcg = root_mem_cgroup; 898 899 if (memcg_vmstats_needs_flush(memcg->vmstats)) 900 do_flush_stats(memcg); 901 } 902 903 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 904 { 905 /* Only flush if the periodic flusher is one full cycle late */ 906 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 907 mem_cgroup_flush_stats(memcg); 908 } 909 910 static void flush_memcg_stats_dwork(struct work_struct *w) 911 { 912 /* 913 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 914 * in latency-sensitive paths is as cheap as possible. 915 */ 916 do_flush_stats(root_mem_cgroup); 917 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 918 } 919 920 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 921 { 922 long x; 923 int i = memcg_stats_index(idx); 924 925 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx)) 926 return 0; 927 928 x = READ_ONCE(memcg->vmstats->state[i]); 929 #ifdef CONFIG_SMP 930 if (x < 0) 931 x = 0; 932 #endif 933 return x; 934 } 935 936 static int memcg_page_state_unit(int item); 937 938 /* 939 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 940 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 941 */ 942 static int memcg_state_val_in_pages(int idx, int val) 943 { 944 int unit = memcg_page_state_unit(idx); 945 946 if (!val || unit == PAGE_SIZE) 947 return val; 948 else 949 return max(val * unit / PAGE_SIZE, 1UL); 950 } 951 952 /** 953 * __mod_memcg_state - update cgroup memory statistics 954 * @memcg: the memory cgroup 955 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 956 * @val: delta to add to the counter, can be negative 957 */ 958 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 959 int val) 960 { 961 int i = memcg_stats_index(idx); 962 963 if (mem_cgroup_disabled()) 964 return; 965 966 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx)) 967 return; 968 969 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 970 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 971 } 972 973 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 974 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 975 { 976 long x; 977 int i = memcg_stats_index(idx); 978 979 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx)) 980 return 0; 981 982 x = READ_ONCE(memcg->vmstats->state_local[i]); 983 #ifdef CONFIG_SMP 984 if (x < 0) 985 x = 0; 986 #endif 987 return x; 988 } 989 990 static void __mod_memcg_lruvec_state(struct lruvec *lruvec, 991 enum node_stat_item idx, 992 int val) 993 { 994 struct mem_cgroup_per_node *pn; 995 struct mem_cgroup *memcg; 996 int i = memcg_stats_index(idx); 997 998 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx)) 999 return; 1000 1001 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1002 memcg = pn->memcg; 1003 1004 /* 1005 * The caller from rmap relies on disabled preemption because they never 1006 * update their counter from in-interrupt context. For these two 1007 * counters we check that the update is never performed from an 1008 * interrupt context while other caller need to have disabled interrupt. 1009 */ 1010 __memcg_stats_lock(); 1011 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 1012 switch (idx) { 1013 case NR_ANON_MAPPED: 1014 case NR_FILE_MAPPED: 1015 case NR_ANON_THPS: 1016 WARN_ON_ONCE(!in_task()); 1017 break; 1018 default: 1019 VM_WARN_ON_IRQS_ENABLED(); 1020 } 1021 } 1022 1023 /* Update memcg */ 1024 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 1025 1026 /* Update lruvec */ 1027 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 1028 1029 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val)); 1030 memcg_stats_unlock(); 1031 } 1032 1033 /** 1034 * __mod_lruvec_state - update lruvec memory statistics 1035 * @lruvec: the lruvec 1036 * @idx: the stat item 1037 * @val: delta to add to the counter, can be negative 1038 * 1039 * The lruvec is the intersection of the NUMA node and a cgroup. This 1040 * function updates the all three counters that are affected by a 1041 * change of state at this level: per-node, per-cgroup, per-lruvec. 1042 */ 1043 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 1044 int val) 1045 { 1046 /* Update node */ 1047 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1048 1049 /* Update memcg and lruvec */ 1050 if (!mem_cgroup_disabled()) 1051 __mod_memcg_lruvec_state(lruvec, idx, val); 1052 } 1053 1054 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 1055 int val) 1056 { 1057 struct mem_cgroup *memcg; 1058 pg_data_t *pgdat = folio_pgdat(folio); 1059 struct lruvec *lruvec; 1060 1061 rcu_read_lock(); 1062 memcg = folio_memcg(folio); 1063 /* Untracked pages have no memcg, no lruvec. Update only the node */ 1064 if (!memcg) { 1065 rcu_read_unlock(); 1066 __mod_node_page_state(pgdat, idx, val); 1067 return; 1068 } 1069 1070 lruvec = mem_cgroup_lruvec(memcg, pgdat); 1071 __mod_lruvec_state(lruvec, idx, val); 1072 rcu_read_unlock(); 1073 } 1074 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 1075 1076 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 1077 { 1078 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 1079 struct mem_cgroup *memcg; 1080 struct lruvec *lruvec; 1081 1082 rcu_read_lock(); 1083 memcg = mem_cgroup_from_slab_obj(p); 1084 1085 /* 1086 * Untracked pages have no memcg, no lruvec. Update only the 1087 * node. If we reparent the slab objects to the root memcg, 1088 * when we free the slab object, we need to update the per-memcg 1089 * vmstats to keep it correct for the root memcg. 1090 */ 1091 if (!memcg) { 1092 __mod_node_page_state(pgdat, idx, val); 1093 } else { 1094 lruvec = mem_cgroup_lruvec(memcg, pgdat); 1095 __mod_lruvec_state(lruvec, idx, val); 1096 } 1097 rcu_read_unlock(); 1098 } 1099 1100 /** 1101 * __count_memcg_events - account VM events in a cgroup 1102 * @memcg: the memory cgroup 1103 * @idx: the event item 1104 * @count: the number of events that occurred 1105 */ 1106 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1107 unsigned long count) 1108 { 1109 int i = memcg_events_index(idx); 1110 1111 if (mem_cgroup_disabled()) 1112 return; 1113 1114 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx)) 1115 return; 1116 1117 memcg_stats_lock(); 1118 __this_cpu_add(memcg->vmstats_percpu->events[i], count); 1119 memcg_rstat_updated(memcg, count); 1120 memcg_stats_unlock(); 1121 } 1122 1123 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 1124 { 1125 int i = memcg_events_index(event); 1126 1127 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, event)) 1128 return 0; 1129 1130 return READ_ONCE(memcg->vmstats->events[i]); 1131 } 1132 1133 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 1134 { 1135 int i = memcg_events_index(event); 1136 1137 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, event)) 1138 return 0; 1139 1140 return READ_ONCE(memcg->vmstats->events_local[i]); 1141 } 1142 1143 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 1144 int nr_pages) 1145 { 1146 /* pagein of a big page is an event. So, ignore page size */ 1147 if (nr_pages > 0) 1148 __count_memcg_events(memcg, PGPGIN, 1); 1149 else { 1150 __count_memcg_events(memcg, PGPGOUT, 1); 1151 nr_pages = -nr_pages; /* for event */ 1152 } 1153 1154 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 1155 } 1156 1157 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 1158 enum mem_cgroup_events_target target) 1159 { 1160 unsigned long val, next; 1161 1162 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 1163 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 1164 /* from time_after() in jiffies.h */ 1165 if ((long)(next - val) < 0) { 1166 switch (target) { 1167 case MEM_CGROUP_TARGET_THRESH: 1168 next = val + THRESHOLDS_EVENTS_TARGET; 1169 break; 1170 case MEM_CGROUP_TARGET_SOFTLIMIT: 1171 next = val + SOFTLIMIT_EVENTS_TARGET; 1172 break; 1173 default: 1174 break; 1175 } 1176 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 1177 return true; 1178 } 1179 return false; 1180 } 1181 1182 /* 1183 * Check events in order. 1184 * 1185 */ 1186 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 1187 { 1188 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1189 return; 1190 1191 /* threshold event is triggered in finer grain than soft limit */ 1192 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1193 MEM_CGROUP_TARGET_THRESH))) { 1194 bool do_softlimit; 1195 1196 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1197 MEM_CGROUP_TARGET_SOFTLIMIT); 1198 mem_cgroup_threshold(memcg); 1199 if (unlikely(do_softlimit)) 1200 mem_cgroup_update_tree(memcg, nid); 1201 } 1202 } 1203 1204 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1205 { 1206 /* 1207 * mm_update_next_owner() may clear mm->owner to NULL 1208 * if it races with swapoff, page migration, etc. 1209 * So this can be called with p == NULL. 1210 */ 1211 if (unlikely(!p)) 1212 return NULL; 1213 1214 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 1215 } 1216 EXPORT_SYMBOL(mem_cgroup_from_task); 1217 1218 static __always_inline struct mem_cgroup *active_memcg(void) 1219 { 1220 if (!in_task()) 1221 return this_cpu_read(int_active_memcg); 1222 else 1223 return current->active_memcg; 1224 } 1225 1226 /** 1227 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1228 * @mm: mm from which memcg should be extracted. It can be NULL. 1229 * 1230 * Obtain a reference on mm->memcg and returns it if successful. If mm 1231 * is NULL, then the memcg is chosen as follows: 1232 * 1) The active memcg, if set. 1233 * 2) current->mm->memcg, if available 1234 * 3) root memcg 1235 * If mem_cgroup is disabled, NULL is returned. 1236 */ 1237 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1238 { 1239 struct mem_cgroup *memcg; 1240 1241 if (mem_cgroup_disabled()) 1242 return NULL; 1243 1244 /* 1245 * Page cache insertions can happen without an 1246 * actual mm context, e.g. during disk probing 1247 * on boot, loopback IO, acct() writes etc. 1248 * 1249 * No need to css_get on root memcg as the reference 1250 * counting is disabled on the root level in the 1251 * cgroup core. See CSS_NO_REF. 1252 */ 1253 if (unlikely(!mm)) { 1254 memcg = active_memcg(); 1255 if (unlikely(memcg)) { 1256 /* remote memcg must hold a ref */ 1257 css_get(&memcg->css); 1258 return memcg; 1259 } 1260 mm = current->mm; 1261 if (unlikely(!mm)) 1262 return root_mem_cgroup; 1263 } 1264 1265 rcu_read_lock(); 1266 do { 1267 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1268 if (unlikely(!memcg)) 1269 memcg = root_mem_cgroup; 1270 } while (!css_tryget(&memcg->css)); 1271 rcu_read_unlock(); 1272 return memcg; 1273 } 1274 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1275 1276 /** 1277 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 1278 */ 1279 struct mem_cgroup *get_mem_cgroup_from_current(void) 1280 { 1281 struct mem_cgroup *memcg; 1282 1283 if (mem_cgroup_disabled()) 1284 return NULL; 1285 1286 again: 1287 rcu_read_lock(); 1288 memcg = mem_cgroup_from_task(current); 1289 if (!css_tryget(&memcg->css)) { 1290 rcu_read_unlock(); 1291 goto again; 1292 } 1293 rcu_read_unlock(); 1294 return memcg; 1295 } 1296 1297 /** 1298 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1299 * @root: hierarchy root 1300 * @prev: previously returned memcg, NULL on first invocation 1301 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1302 * 1303 * Returns references to children of the hierarchy below @root, or 1304 * @root itself, or %NULL after a full round-trip. 1305 * 1306 * Caller must pass the return value in @prev on subsequent 1307 * invocations for reference counting, or use mem_cgroup_iter_break() 1308 * to cancel a hierarchy walk before the round-trip is complete. 1309 * 1310 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1311 * in the hierarchy among all concurrent reclaimers operating on the 1312 * same node. 1313 */ 1314 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1315 struct mem_cgroup *prev, 1316 struct mem_cgroup_reclaim_cookie *reclaim) 1317 { 1318 struct mem_cgroup_reclaim_iter *iter; 1319 struct cgroup_subsys_state *css = NULL; 1320 struct mem_cgroup *memcg = NULL; 1321 struct mem_cgroup *pos = NULL; 1322 1323 if (mem_cgroup_disabled()) 1324 return NULL; 1325 1326 if (!root) 1327 root = root_mem_cgroup; 1328 1329 rcu_read_lock(); 1330 1331 if (reclaim) { 1332 struct mem_cgroup_per_node *mz; 1333 1334 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1335 iter = &mz->iter; 1336 1337 /* 1338 * On start, join the current reclaim iteration cycle. 1339 * Exit when a concurrent walker completes it. 1340 */ 1341 if (!prev) 1342 reclaim->generation = iter->generation; 1343 else if (reclaim->generation != iter->generation) 1344 goto out_unlock; 1345 1346 while (1) { 1347 pos = READ_ONCE(iter->position); 1348 if (!pos || css_tryget(&pos->css)) 1349 break; 1350 /* 1351 * css reference reached zero, so iter->position will 1352 * be cleared by ->css_released. However, we should not 1353 * rely on this happening soon, because ->css_released 1354 * is called from a work queue, and by busy-waiting we 1355 * might block it. So we clear iter->position right 1356 * away. 1357 */ 1358 (void)cmpxchg(&iter->position, pos, NULL); 1359 } 1360 } else if (prev) { 1361 pos = prev; 1362 } 1363 1364 if (pos) 1365 css = &pos->css; 1366 1367 for (;;) { 1368 css = css_next_descendant_pre(css, &root->css); 1369 if (!css) { 1370 /* 1371 * Reclaimers share the hierarchy walk, and a 1372 * new one might jump in right at the end of 1373 * the hierarchy - make sure they see at least 1374 * one group and restart from the beginning. 1375 */ 1376 if (!prev) 1377 continue; 1378 break; 1379 } 1380 1381 /* 1382 * Verify the css and acquire a reference. The root 1383 * is provided by the caller, so we know it's alive 1384 * and kicking, and don't take an extra reference. 1385 */ 1386 if (css == &root->css || css_tryget(css)) { 1387 memcg = mem_cgroup_from_css(css); 1388 break; 1389 } 1390 } 1391 1392 if (reclaim) { 1393 /* 1394 * The position could have already been updated by a competing 1395 * thread, so check that the value hasn't changed since we read 1396 * it to avoid reclaiming from the same cgroup twice. 1397 */ 1398 (void)cmpxchg(&iter->position, pos, memcg); 1399 1400 if (pos) 1401 css_put(&pos->css); 1402 1403 if (!memcg) 1404 iter->generation++; 1405 } 1406 1407 out_unlock: 1408 rcu_read_unlock(); 1409 if (prev && prev != root) 1410 css_put(&prev->css); 1411 1412 return memcg; 1413 } 1414 1415 /** 1416 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1417 * @root: hierarchy root 1418 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1419 */ 1420 void mem_cgroup_iter_break(struct mem_cgroup *root, 1421 struct mem_cgroup *prev) 1422 { 1423 if (!root) 1424 root = root_mem_cgroup; 1425 if (prev && prev != root) 1426 css_put(&prev->css); 1427 } 1428 1429 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1430 struct mem_cgroup *dead_memcg) 1431 { 1432 struct mem_cgroup_reclaim_iter *iter; 1433 struct mem_cgroup_per_node *mz; 1434 int nid; 1435 1436 for_each_node(nid) { 1437 mz = from->nodeinfo[nid]; 1438 iter = &mz->iter; 1439 cmpxchg(&iter->position, dead_memcg, NULL); 1440 } 1441 } 1442 1443 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1444 { 1445 struct mem_cgroup *memcg = dead_memcg; 1446 struct mem_cgroup *last; 1447 1448 do { 1449 __invalidate_reclaim_iterators(memcg, dead_memcg); 1450 last = memcg; 1451 } while ((memcg = parent_mem_cgroup(memcg))); 1452 1453 /* 1454 * When cgroup1 non-hierarchy mode is used, 1455 * parent_mem_cgroup() does not walk all the way up to the 1456 * cgroup root (root_mem_cgroup). So we have to handle 1457 * dead_memcg from cgroup root separately. 1458 */ 1459 if (!mem_cgroup_is_root(last)) 1460 __invalidate_reclaim_iterators(root_mem_cgroup, 1461 dead_memcg); 1462 } 1463 1464 /** 1465 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1466 * @memcg: hierarchy root 1467 * @fn: function to call for each task 1468 * @arg: argument passed to @fn 1469 * 1470 * This function iterates over tasks attached to @memcg or to any of its 1471 * descendants and calls @fn for each task. If @fn returns a non-zero 1472 * value, the function breaks the iteration loop. Otherwise, it will iterate 1473 * over all tasks and return 0. 1474 * 1475 * This function must not be called for the root memory cgroup. 1476 */ 1477 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1478 int (*fn)(struct task_struct *, void *), void *arg) 1479 { 1480 struct mem_cgroup *iter; 1481 int ret = 0; 1482 1483 BUG_ON(mem_cgroup_is_root(memcg)); 1484 1485 for_each_mem_cgroup_tree(iter, memcg) { 1486 struct css_task_iter it; 1487 struct task_struct *task; 1488 1489 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1490 while (!ret && (task = css_task_iter_next(&it))) 1491 ret = fn(task, arg); 1492 css_task_iter_end(&it); 1493 if (ret) { 1494 mem_cgroup_iter_break(memcg, iter); 1495 break; 1496 } 1497 } 1498 } 1499 1500 #ifdef CONFIG_DEBUG_VM 1501 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1502 { 1503 struct mem_cgroup *memcg; 1504 1505 if (mem_cgroup_disabled()) 1506 return; 1507 1508 memcg = folio_memcg(folio); 1509 1510 if (!memcg) 1511 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1512 else 1513 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1514 } 1515 #endif 1516 1517 /** 1518 * folio_lruvec_lock - Lock the lruvec for a folio. 1519 * @folio: Pointer to the folio. 1520 * 1521 * These functions are safe to use under any of the following conditions: 1522 * - folio locked 1523 * - folio_test_lru false 1524 * - folio_memcg_lock() 1525 * - folio frozen (refcount of 0) 1526 * 1527 * Return: The lruvec this folio is on with its lock held. 1528 */ 1529 struct lruvec *folio_lruvec_lock(struct folio *folio) 1530 { 1531 struct lruvec *lruvec = folio_lruvec(folio); 1532 1533 spin_lock(&lruvec->lru_lock); 1534 lruvec_memcg_debug(lruvec, folio); 1535 1536 return lruvec; 1537 } 1538 1539 /** 1540 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1541 * @folio: Pointer to the folio. 1542 * 1543 * These functions are safe to use under any of the following conditions: 1544 * - folio locked 1545 * - folio_test_lru false 1546 * - folio_memcg_lock() 1547 * - folio frozen (refcount of 0) 1548 * 1549 * Return: The lruvec this folio is on with its lock held and interrupts 1550 * disabled. 1551 */ 1552 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1553 { 1554 struct lruvec *lruvec = folio_lruvec(folio); 1555 1556 spin_lock_irq(&lruvec->lru_lock); 1557 lruvec_memcg_debug(lruvec, folio); 1558 1559 return lruvec; 1560 } 1561 1562 /** 1563 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1564 * @folio: Pointer to the folio. 1565 * @flags: Pointer to irqsave flags. 1566 * 1567 * These functions are safe to use under any of the following conditions: 1568 * - folio locked 1569 * - folio_test_lru false 1570 * - folio_memcg_lock() 1571 * - folio frozen (refcount of 0) 1572 * 1573 * Return: The lruvec this folio is on with its lock held and interrupts 1574 * disabled. 1575 */ 1576 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1577 unsigned long *flags) 1578 { 1579 struct lruvec *lruvec = folio_lruvec(folio); 1580 1581 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1582 lruvec_memcg_debug(lruvec, folio); 1583 1584 return lruvec; 1585 } 1586 1587 /** 1588 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1589 * @lruvec: mem_cgroup per zone lru vector 1590 * @lru: index of lru list the page is sitting on 1591 * @zid: zone id of the accounted pages 1592 * @nr_pages: positive when adding or negative when removing 1593 * 1594 * This function must be called under lru_lock, just before a page is added 1595 * to or just after a page is removed from an lru list. 1596 */ 1597 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1598 int zid, int nr_pages) 1599 { 1600 struct mem_cgroup_per_node *mz; 1601 unsigned long *lru_size; 1602 long size; 1603 1604 if (mem_cgroup_disabled()) 1605 return; 1606 1607 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1608 lru_size = &mz->lru_zone_size[zid][lru]; 1609 1610 if (nr_pages < 0) 1611 *lru_size += nr_pages; 1612 1613 size = *lru_size; 1614 if (WARN_ONCE(size < 0, 1615 "%s(%p, %d, %d): lru_size %ld\n", 1616 __func__, lruvec, lru, nr_pages, size)) { 1617 VM_BUG_ON(1); 1618 *lru_size = 0; 1619 } 1620 1621 if (nr_pages > 0) 1622 *lru_size += nr_pages; 1623 } 1624 1625 /** 1626 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1627 * @memcg: the memory cgroup 1628 * 1629 * Returns the maximum amount of memory @mem can be charged with, in 1630 * pages. 1631 */ 1632 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1633 { 1634 unsigned long margin = 0; 1635 unsigned long count; 1636 unsigned long limit; 1637 1638 count = page_counter_read(&memcg->memory); 1639 limit = READ_ONCE(memcg->memory.max); 1640 if (count < limit) 1641 margin = limit - count; 1642 1643 if (do_memsw_account()) { 1644 count = page_counter_read(&memcg->memsw); 1645 limit = READ_ONCE(memcg->memsw.max); 1646 if (count < limit) 1647 margin = min(margin, limit - count); 1648 else 1649 margin = 0; 1650 } 1651 1652 return margin; 1653 } 1654 1655 /* 1656 * A routine for checking "mem" is under move_account() or not. 1657 * 1658 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1659 * moving cgroups. This is for waiting at high-memory pressure 1660 * caused by "move". 1661 */ 1662 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1663 { 1664 struct mem_cgroup *from; 1665 struct mem_cgroup *to; 1666 bool ret = false; 1667 /* 1668 * Unlike task_move routines, we access mc.to, mc.from not under 1669 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1670 */ 1671 spin_lock(&mc.lock); 1672 from = mc.from; 1673 to = mc.to; 1674 if (!from) 1675 goto unlock; 1676 1677 ret = mem_cgroup_is_descendant(from, memcg) || 1678 mem_cgroup_is_descendant(to, memcg); 1679 unlock: 1680 spin_unlock(&mc.lock); 1681 return ret; 1682 } 1683 1684 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1685 { 1686 if (mc.moving_task && current != mc.moving_task) { 1687 if (mem_cgroup_under_move(memcg)) { 1688 DEFINE_WAIT(wait); 1689 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1690 /* moving charge context might have finished. */ 1691 if (mc.moving_task) 1692 schedule(); 1693 finish_wait(&mc.waitq, &wait); 1694 return true; 1695 } 1696 } 1697 return false; 1698 } 1699 1700 struct memory_stat { 1701 const char *name; 1702 unsigned int idx; 1703 }; 1704 1705 static const struct memory_stat memory_stats[] = { 1706 { "anon", NR_ANON_MAPPED }, 1707 { "file", NR_FILE_PAGES }, 1708 { "kernel", MEMCG_KMEM }, 1709 { "kernel_stack", NR_KERNEL_STACK_KB }, 1710 { "pagetables", NR_PAGETABLE }, 1711 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1712 { "percpu", MEMCG_PERCPU_B }, 1713 { "sock", MEMCG_SOCK }, 1714 { "vmalloc", MEMCG_VMALLOC }, 1715 { "shmem", NR_SHMEM }, 1716 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1717 { "zswap", MEMCG_ZSWAP_B }, 1718 { "zswapped", MEMCG_ZSWAPPED }, 1719 #endif 1720 { "file_mapped", NR_FILE_MAPPED }, 1721 { "file_dirty", NR_FILE_DIRTY }, 1722 { "file_writeback", NR_WRITEBACK }, 1723 #ifdef CONFIG_SWAP 1724 { "swapcached", NR_SWAPCACHE }, 1725 #endif 1726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1727 { "anon_thp", NR_ANON_THPS }, 1728 { "file_thp", NR_FILE_THPS }, 1729 { "shmem_thp", NR_SHMEM_THPS }, 1730 #endif 1731 { "inactive_anon", NR_INACTIVE_ANON }, 1732 { "active_anon", NR_ACTIVE_ANON }, 1733 { "inactive_file", NR_INACTIVE_FILE }, 1734 { "active_file", NR_ACTIVE_FILE }, 1735 { "unevictable", NR_UNEVICTABLE }, 1736 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1737 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1738 1739 /* The memory events */ 1740 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1741 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1742 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1743 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1744 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1745 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1746 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1747 }; 1748 1749 /* The actual unit of the state item, not the same as the output unit */ 1750 static int memcg_page_state_unit(int item) 1751 { 1752 switch (item) { 1753 case MEMCG_PERCPU_B: 1754 case MEMCG_ZSWAP_B: 1755 case NR_SLAB_RECLAIMABLE_B: 1756 case NR_SLAB_UNRECLAIMABLE_B: 1757 return 1; 1758 case NR_KERNEL_STACK_KB: 1759 return SZ_1K; 1760 default: 1761 return PAGE_SIZE; 1762 } 1763 } 1764 1765 /* Translate stat items to the correct unit for memory.stat output */ 1766 static int memcg_page_state_output_unit(int item) 1767 { 1768 /* 1769 * Workingset state is actually in pages, but we export it to userspace 1770 * as a scalar count of events, so special case it here. 1771 */ 1772 switch (item) { 1773 case WORKINGSET_REFAULT_ANON: 1774 case WORKINGSET_REFAULT_FILE: 1775 case WORKINGSET_ACTIVATE_ANON: 1776 case WORKINGSET_ACTIVATE_FILE: 1777 case WORKINGSET_RESTORE_ANON: 1778 case WORKINGSET_RESTORE_FILE: 1779 case WORKINGSET_NODERECLAIM: 1780 return 1; 1781 default: 1782 return memcg_page_state_unit(item); 1783 } 1784 } 1785 1786 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1787 int item) 1788 { 1789 return memcg_page_state(memcg, item) * 1790 memcg_page_state_output_unit(item); 1791 } 1792 1793 static inline unsigned long memcg_page_state_local_output( 1794 struct mem_cgroup *memcg, int item) 1795 { 1796 return memcg_page_state_local(memcg, item) * 1797 memcg_page_state_output_unit(item); 1798 } 1799 1800 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1801 { 1802 int i; 1803 1804 /* 1805 * Provide statistics on the state of the memory subsystem as 1806 * well as cumulative event counters that show past behavior. 1807 * 1808 * This list is ordered following a combination of these gradients: 1809 * 1) generic big picture -> specifics and details 1810 * 2) reflecting userspace activity -> reflecting kernel heuristics 1811 * 1812 * Current memory state: 1813 */ 1814 mem_cgroup_flush_stats(memcg); 1815 1816 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1817 u64 size; 1818 1819 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1820 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1821 1822 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1823 size += memcg_page_state_output(memcg, 1824 NR_SLAB_RECLAIMABLE_B); 1825 seq_buf_printf(s, "slab %llu\n", size); 1826 } 1827 } 1828 1829 /* Accumulated memory events */ 1830 seq_buf_printf(s, "pgscan %lu\n", 1831 memcg_events(memcg, PGSCAN_KSWAPD) + 1832 memcg_events(memcg, PGSCAN_DIRECT) + 1833 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1834 seq_buf_printf(s, "pgsteal %lu\n", 1835 memcg_events(memcg, PGSTEAL_KSWAPD) + 1836 memcg_events(memcg, PGSTEAL_DIRECT) + 1837 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1838 1839 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1840 if (memcg_vm_event_stat[i] == PGPGIN || 1841 memcg_vm_event_stat[i] == PGPGOUT) 1842 continue; 1843 1844 seq_buf_printf(s, "%s %lu\n", 1845 vm_event_name(memcg_vm_event_stat[i]), 1846 memcg_events(memcg, memcg_vm_event_stat[i])); 1847 } 1848 1849 /* The above should easily fit into one page */ 1850 WARN_ON_ONCE(seq_buf_has_overflowed(s)); 1851 } 1852 1853 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s); 1854 1855 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1856 { 1857 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1858 memcg_stat_format(memcg, s); 1859 else 1860 memcg1_stat_format(memcg, s); 1861 WARN_ON_ONCE(seq_buf_has_overflowed(s)); 1862 } 1863 1864 /** 1865 * mem_cgroup_print_oom_context: Print OOM information relevant to 1866 * memory controller. 1867 * @memcg: The memory cgroup that went over limit 1868 * @p: Task that is going to be killed 1869 * 1870 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1871 * enabled 1872 */ 1873 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1874 { 1875 rcu_read_lock(); 1876 1877 if (memcg) { 1878 pr_cont(",oom_memcg="); 1879 pr_cont_cgroup_path(memcg->css.cgroup); 1880 } else 1881 pr_cont(",global_oom"); 1882 if (p) { 1883 pr_cont(",task_memcg="); 1884 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1885 } 1886 rcu_read_unlock(); 1887 } 1888 1889 /** 1890 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1891 * memory controller. 1892 * @memcg: The memory cgroup that went over limit 1893 */ 1894 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1895 { 1896 /* Use static buffer, for the caller is holding oom_lock. */ 1897 static char buf[PAGE_SIZE]; 1898 struct seq_buf s; 1899 1900 lockdep_assert_held(&oom_lock); 1901 1902 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1903 K((u64)page_counter_read(&memcg->memory)), 1904 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1905 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1906 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1907 K((u64)page_counter_read(&memcg->swap)), 1908 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1909 else { 1910 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1911 K((u64)page_counter_read(&memcg->memsw)), 1912 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1913 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1914 K((u64)page_counter_read(&memcg->kmem)), 1915 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1916 } 1917 1918 pr_info("Memory cgroup stats for "); 1919 pr_cont_cgroup_path(memcg->css.cgroup); 1920 pr_cont(":"); 1921 seq_buf_init(&s, buf, sizeof(buf)); 1922 memory_stat_format(memcg, &s); 1923 seq_buf_do_printk(&s, KERN_INFO); 1924 } 1925 1926 /* 1927 * Return the memory (and swap, if configured) limit for a memcg. 1928 */ 1929 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1930 { 1931 unsigned long max = READ_ONCE(memcg->memory.max); 1932 1933 if (do_memsw_account()) { 1934 if (mem_cgroup_swappiness(memcg)) { 1935 /* Calculate swap excess capacity from memsw limit */ 1936 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1937 1938 max += min(swap, (unsigned long)total_swap_pages); 1939 } 1940 } else { 1941 if (mem_cgroup_swappiness(memcg)) 1942 max += min(READ_ONCE(memcg->swap.max), 1943 (unsigned long)total_swap_pages); 1944 } 1945 return max; 1946 } 1947 1948 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1949 { 1950 return page_counter_read(&memcg->memory); 1951 } 1952 1953 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1954 int order) 1955 { 1956 struct oom_control oc = { 1957 .zonelist = NULL, 1958 .nodemask = NULL, 1959 .memcg = memcg, 1960 .gfp_mask = gfp_mask, 1961 .order = order, 1962 }; 1963 bool ret = true; 1964 1965 if (mutex_lock_killable(&oom_lock)) 1966 return true; 1967 1968 if (mem_cgroup_margin(memcg) >= (1 << order)) 1969 goto unlock; 1970 1971 /* 1972 * A few threads which were not waiting at mutex_lock_killable() can 1973 * fail to bail out. Therefore, check again after holding oom_lock. 1974 */ 1975 ret = task_is_dying() || out_of_memory(&oc); 1976 1977 unlock: 1978 mutex_unlock(&oom_lock); 1979 return ret; 1980 } 1981 1982 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1983 pg_data_t *pgdat, 1984 gfp_t gfp_mask, 1985 unsigned long *total_scanned) 1986 { 1987 struct mem_cgroup *victim = NULL; 1988 int total = 0; 1989 int loop = 0; 1990 unsigned long excess; 1991 unsigned long nr_scanned; 1992 struct mem_cgroup_reclaim_cookie reclaim = { 1993 .pgdat = pgdat, 1994 }; 1995 1996 excess = soft_limit_excess(root_memcg); 1997 1998 while (1) { 1999 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 2000 if (!victim) { 2001 loop++; 2002 if (loop >= 2) { 2003 /* 2004 * If we have not been able to reclaim 2005 * anything, it might because there are 2006 * no reclaimable pages under this hierarchy 2007 */ 2008 if (!total) 2009 break; 2010 /* 2011 * We want to do more targeted reclaim. 2012 * excess >> 2 is not to excessive so as to 2013 * reclaim too much, nor too less that we keep 2014 * coming back to reclaim from this cgroup 2015 */ 2016 if (total >= (excess >> 2) || 2017 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 2018 break; 2019 } 2020 continue; 2021 } 2022 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 2023 pgdat, &nr_scanned); 2024 *total_scanned += nr_scanned; 2025 if (!soft_limit_excess(root_memcg)) 2026 break; 2027 } 2028 mem_cgroup_iter_break(root_memcg, victim); 2029 return total; 2030 } 2031 2032 #ifdef CONFIG_LOCKDEP 2033 static struct lockdep_map memcg_oom_lock_dep_map = { 2034 .name = "memcg_oom_lock", 2035 }; 2036 #endif 2037 2038 static DEFINE_SPINLOCK(memcg_oom_lock); 2039 2040 /* 2041 * Check OOM-Killer is already running under our hierarchy. 2042 * If someone is running, return false. 2043 */ 2044 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 2045 { 2046 struct mem_cgroup *iter, *failed = NULL; 2047 2048 spin_lock(&memcg_oom_lock); 2049 2050 for_each_mem_cgroup_tree(iter, memcg) { 2051 if (iter->oom_lock) { 2052 /* 2053 * this subtree of our hierarchy is already locked 2054 * so we cannot give a lock. 2055 */ 2056 failed = iter; 2057 mem_cgroup_iter_break(memcg, iter); 2058 break; 2059 } else 2060 iter->oom_lock = true; 2061 } 2062 2063 if (failed) { 2064 /* 2065 * OK, we failed to lock the whole subtree so we have 2066 * to clean up what we set up to the failing subtree 2067 */ 2068 for_each_mem_cgroup_tree(iter, memcg) { 2069 if (iter == failed) { 2070 mem_cgroup_iter_break(memcg, iter); 2071 break; 2072 } 2073 iter->oom_lock = false; 2074 } 2075 } else 2076 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 2077 2078 spin_unlock(&memcg_oom_lock); 2079 2080 return !failed; 2081 } 2082 2083 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 2084 { 2085 struct mem_cgroup *iter; 2086 2087 spin_lock(&memcg_oom_lock); 2088 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 2089 for_each_mem_cgroup_tree(iter, memcg) 2090 iter->oom_lock = false; 2091 spin_unlock(&memcg_oom_lock); 2092 } 2093 2094 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 2095 { 2096 struct mem_cgroup *iter; 2097 2098 spin_lock(&memcg_oom_lock); 2099 for_each_mem_cgroup_tree(iter, memcg) 2100 iter->under_oom++; 2101 spin_unlock(&memcg_oom_lock); 2102 } 2103 2104 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 2105 { 2106 struct mem_cgroup *iter; 2107 2108 /* 2109 * Be careful about under_oom underflows because a child memcg 2110 * could have been added after mem_cgroup_mark_under_oom. 2111 */ 2112 spin_lock(&memcg_oom_lock); 2113 for_each_mem_cgroup_tree(iter, memcg) 2114 if (iter->under_oom > 0) 2115 iter->under_oom--; 2116 spin_unlock(&memcg_oom_lock); 2117 } 2118 2119 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2120 2121 struct oom_wait_info { 2122 struct mem_cgroup *memcg; 2123 wait_queue_entry_t wait; 2124 }; 2125 2126 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 2127 unsigned mode, int sync, void *arg) 2128 { 2129 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2130 struct mem_cgroup *oom_wait_memcg; 2131 struct oom_wait_info *oom_wait_info; 2132 2133 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2134 oom_wait_memcg = oom_wait_info->memcg; 2135 2136 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 2137 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 2138 return 0; 2139 return autoremove_wake_function(wait, mode, sync, arg); 2140 } 2141 2142 static void memcg_oom_recover(struct mem_cgroup *memcg) 2143 { 2144 /* 2145 * For the following lockless ->under_oom test, the only required 2146 * guarantee is that it must see the state asserted by an OOM when 2147 * this function is called as a result of userland actions 2148 * triggered by the notification of the OOM. This is trivially 2149 * achieved by invoking mem_cgroup_mark_under_oom() before 2150 * triggering notification. 2151 */ 2152 if (memcg && memcg->under_oom) 2153 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2154 } 2155 2156 /* 2157 * Returns true if successfully killed one or more processes. Though in some 2158 * corner cases it can return true even without killing any process. 2159 */ 2160 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 2161 { 2162 bool locked, ret; 2163 2164 if (order > PAGE_ALLOC_COSTLY_ORDER) 2165 return false; 2166 2167 memcg_memory_event(memcg, MEMCG_OOM); 2168 2169 /* 2170 * We are in the middle of the charge context here, so we 2171 * don't want to block when potentially sitting on a callstack 2172 * that holds all kinds of filesystem and mm locks. 2173 * 2174 * cgroup1 allows disabling the OOM killer and waiting for outside 2175 * handling until the charge can succeed; remember the context and put 2176 * the task to sleep at the end of the page fault when all locks are 2177 * released. 2178 * 2179 * On the other hand, in-kernel OOM killer allows for an async victim 2180 * memory reclaim (oom_reaper) and that means that we are not solely 2181 * relying on the oom victim to make a forward progress and we can 2182 * invoke the oom killer here. 2183 * 2184 * Please note that mem_cgroup_out_of_memory might fail to find a 2185 * victim and then we have to bail out from the charge path. 2186 */ 2187 if (READ_ONCE(memcg->oom_kill_disable)) { 2188 if (current->in_user_fault) { 2189 css_get(&memcg->css); 2190 current->memcg_in_oom = memcg; 2191 } 2192 return false; 2193 } 2194 2195 mem_cgroup_mark_under_oom(memcg); 2196 2197 locked = mem_cgroup_oom_trylock(memcg); 2198 2199 if (locked) 2200 mem_cgroup_oom_notify(memcg); 2201 2202 mem_cgroup_unmark_under_oom(memcg); 2203 ret = mem_cgroup_out_of_memory(memcg, mask, order); 2204 2205 if (locked) 2206 mem_cgroup_oom_unlock(memcg); 2207 2208 return ret; 2209 } 2210 2211 /** 2212 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2213 * @handle: actually kill/wait or just clean up the OOM state 2214 * 2215 * This has to be called at the end of a page fault if the memcg OOM 2216 * handler was enabled. 2217 * 2218 * Memcg supports userspace OOM handling where failed allocations must 2219 * sleep on a waitqueue until the userspace task resolves the 2220 * situation. Sleeping directly in the charge context with all kinds 2221 * of locks held is not a good idea, instead we remember an OOM state 2222 * in the task and mem_cgroup_oom_synchronize() has to be called at 2223 * the end of the page fault to complete the OOM handling. 2224 * 2225 * Returns %true if an ongoing memcg OOM situation was detected and 2226 * completed, %false otherwise. 2227 */ 2228 bool mem_cgroup_oom_synchronize(bool handle) 2229 { 2230 struct mem_cgroup *memcg = current->memcg_in_oom; 2231 struct oom_wait_info owait; 2232 bool locked; 2233 2234 /* OOM is global, do not handle */ 2235 if (!memcg) 2236 return false; 2237 2238 if (!handle) 2239 goto cleanup; 2240 2241 owait.memcg = memcg; 2242 owait.wait.flags = 0; 2243 owait.wait.func = memcg_oom_wake_function; 2244 owait.wait.private = current; 2245 INIT_LIST_HEAD(&owait.wait.entry); 2246 2247 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2248 mem_cgroup_mark_under_oom(memcg); 2249 2250 locked = mem_cgroup_oom_trylock(memcg); 2251 2252 if (locked) 2253 mem_cgroup_oom_notify(memcg); 2254 2255 schedule(); 2256 mem_cgroup_unmark_under_oom(memcg); 2257 finish_wait(&memcg_oom_waitq, &owait.wait); 2258 2259 if (locked) 2260 mem_cgroup_oom_unlock(memcg); 2261 cleanup: 2262 current->memcg_in_oom = NULL; 2263 css_put(&memcg->css); 2264 return true; 2265 } 2266 2267 /** 2268 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2269 * @victim: task to be killed by the OOM killer 2270 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2271 * 2272 * Returns a pointer to a memory cgroup, which has to be cleaned up 2273 * by killing all belonging OOM-killable tasks. 2274 * 2275 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2276 */ 2277 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2278 struct mem_cgroup *oom_domain) 2279 { 2280 struct mem_cgroup *oom_group = NULL; 2281 struct mem_cgroup *memcg; 2282 2283 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2284 return NULL; 2285 2286 if (!oom_domain) 2287 oom_domain = root_mem_cgroup; 2288 2289 rcu_read_lock(); 2290 2291 memcg = mem_cgroup_from_task(victim); 2292 if (mem_cgroup_is_root(memcg)) 2293 goto out; 2294 2295 /* 2296 * If the victim task has been asynchronously moved to a different 2297 * memory cgroup, we might end up killing tasks outside oom_domain. 2298 * In this case it's better to ignore memory.group.oom. 2299 */ 2300 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2301 goto out; 2302 2303 /* 2304 * Traverse the memory cgroup hierarchy from the victim task's 2305 * cgroup up to the OOMing cgroup (or root) to find the 2306 * highest-level memory cgroup with oom.group set. 2307 */ 2308 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2309 if (READ_ONCE(memcg->oom_group)) 2310 oom_group = memcg; 2311 2312 if (memcg == oom_domain) 2313 break; 2314 } 2315 2316 if (oom_group) 2317 css_get(&oom_group->css); 2318 out: 2319 rcu_read_unlock(); 2320 2321 return oom_group; 2322 } 2323 2324 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2325 { 2326 pr_info("Tasks in "); 2327 pr_cont_cgroup_path(memcg->css.cgroup); 2328 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2329 } 2330 2331 /** 2332 * folio_memcg_lock - Bind a folio to its memcg. 2333 * @folio: The folio. 2334 * 2335 * This function prevents unlocked LRU folios from being moved to 2336 * another cgroup. 2337 * 2338 * It ensures lifetime of the bound memcg. The caller is responsible 2339 * for the lifetime of the folio. 2340 */ 2341 void folio_memcg_lock(struct folio *folio) 2342 { 2343 struct mem_cgroup *memcg; 2344 unsigned long flags; 2345 2346 /* 2347 * The RCU lock is held throughout the transaction. The fast 2348 * path can get away without acquiring the memcg->move_lock 2349 * because page moving starts with an RCU grace period. 2350 */ 2351 rcu_read_lock(); 2352 2353 if (mem_cgroup_disabled()) 2354 return; 2355 again: 2356 memcg = folio_memcg(folio); 2357 if (unlikely(!memcg)) 2358 return; 2359 2360 #ifdef CONFIG_PROVE_LOCKING 2361 local_irq_save(flags); 2362 might_lock(&memcg->move_lock); 2363 local_irq_restore(flags); 2364 #endif 2365 2366 if (atomic_read(&memcg->moving_account) <= 0) 2367 return; 2368 2369 spin_lock_irqsave(&memcg->move_lock, flags); 2370 if (memcg != folio_memcg(folio)) { 2371 spin_unlock_irqrestore(&memcg->move_lock, flags); 2372 goto again; 2373 } 2374 2375 /* 2376 * When charge migration first begins, we can have multiple 2377 * critical sections holding the fast-path RCU lock and one 2378 * holding the slowpath move_lock. Track the task who has the 2379 * move_lock for folio_memcg_unlock(). 2380 */ 2381 memcg->move_lock_task = current; 2382 memcg->move_lock_flags = flags; 2383 } 2384 2385 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2386 { 2387 if (memcg && memcg->move_lock_task == current) { 2388 unsigned long flags = memcg->move_lock_flags; 2389 2390 memcg->move_lock_task = NULL; 2391 memcg->move_lock_flags = 0; 2392 2393 spin_unlock_irqrestore(&memcg->move_lock, flags); 2394 } 2395 2396 rcu_read_unlock(); 2397 } 2398 2399 /** 2400 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2401 * @folio: The folio. 2402 * 2403 * This releases the binding created by folio_memcg_lock(). This does 2404 * not change the accounting of this folio to its memcg, but it does 2405 * permit others to change it. 2406 */ 2407 void folio_memcg_unlock(struct folio *folio) 2408 { 2409 __folio_memcg_unlock(folio_memcg(folio)); 2410 } 2411 2412 struct memcg_stock_pcp { 2413 local_lock_t stock_lock; 2414 struct mem_cgroup *cached; /* this never be root cgroup */ 2415 unsigned int nr_pages; 2416 2417 #ifdef CONFIG_MEMCG_KMEM 2418 struct obj_cgroup *cached_objcg; 2419 struct pglist_data *cached_pgdat; 2420 unsigned int nr_bytes; 2421 int nr_slab_reclaimable_b; 2422 int nr_slab_unreclaimable_b; 2423 #endif 2424 2425 struct work_struct work; 2426 unsigned long flags; 2427 #define FLUSHING_CACHED_CHARGE 0 2428 }; 2429 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2430 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2431 }; 2432 static DEFINE_MUTEX(percpu_charge_mutex); 2433 2434 #ifdef CONFIG_MEMCG_KMEM 2435 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2436 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2437 struct mem_cgroup *root_memcg); 2438 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2439 2440 #else 2441 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2442 { 2443 return NULL; 2444 } 2445 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2446 struct mem_cgroup *root_memcg) 2447 { 2448 return false; 2449 } 2450 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2451 { 2452 } 2453 #endif 2454 2455 /** 2456 * consume_stock: Try to consume stocked charge on this cpu. 2457 * @memcg: memcg to consume from. 2458 * @nr_pages: how many pages to charge. 2459 * 2460 * The charges will only happen if @memcg matches the current cpu's memcg 2461 * stock, and at least @nr_pages are available in that stock. Failure to 2462 * service an allocation will refill the stock. 2463 * 2464 * returns true if successful, false otherwise. 2465 */ 2466 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2467 { 2468 struct memcg_stock_pcp *stock; 2469 unsigned int stock_pages; 2470 unsigned long flags; 2471 bool ret = false; 2472 2473 if (nr_pages > MEMCG_CHARGE_BATCH) 2474 return ret; 2475 2476 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2477 2478 stock = this_cpu_ptr(&memcg_stock); 2479 stock_pages = READ_ONCE(stock->nr_pages); 2480 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) { 2481 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages); 2482 ret = true; 2483 } 2484 2485 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2486 2487 return ret; 2488 } 2489 2490 /* 2491 * Returns stocks cached in percpu and reset cached information. 2492 */ 2493 static void drain_stock(struct memcg_stock_pcp *stock) 2494 { 2495 unsigned int stock_pages = READ_ONCE(stock->nr_pages); 2496 struct mem_cgroup *old = READ_ONCE(stock->cached); 2497 2498 if (!old) 2499 return; 2500 2501 if (stock_pages) { 2502 page_counter_uncharge(&old->memory, stock_pages); 2503 if (do_memsw_account()) 2504 page_counter_uncharge(&old->memsw, stock_pages); 2505 2506 WRITE_ONCE(stock->nr_pages, 0); 2507 } 2508 2509 css_put(&old->css); 2510 WRITE_ONCE(stock->cached, NULL); 2511 } 2512 2513 static void drain_local_stock(struct work_struct *dummy) 2514 { 2515 struct memcg_stock_pcp *stock; 2516 struct obj_cgroup *old = NULL; 2517 unsigned long flags; 2518 2519 /* 2520 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2521 * drain_stock races is that we always operate on local CPU stock 2522 * here with IRQ disabled 2523 */ 2524 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2525 2526 stock = this_cpu_ptr(&memcg_stock); 2527 old = drain_obj_stock(stock); 2528 drain_stock(stock); 2529 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2530 2531 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2532 obj_cgroup_put(old); 2533 } 2534 2535 /* 2536 * Cache charges(val) to local per_cpu area. 2537 * This will be consumed by consume_stock() function, later. 2538 */ 2539 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2540 { 2541 struct memcg_stock_pcp *stock; 2542 unsigned int stock_pages; 2543 2544 stock = this_cpu_ptr(&memcg_stock); 2545 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 2546 drain_stock(stock); 2547 css_get(&memcg->css); 2548 WRITE_ONCE(stock->cached, memcg); 2549 } 2550 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages; 2551 WRITE_ONCE(stock->nr_pages, stock_pages); 2552 2553 if (stock_pages > MEMCG_CHARGE_BATCH) 2554 drain_stock(stock); 2555 } 2556 2557 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2558 { 2559 unsigned long flags; 2560 2561 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2562 __refill_stock(memcg, nr_pages); 2563 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2564 } 2565 2566 /* 2567 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2568 * of the hierarchy under it. 2569 */ 2570 static void drain_all_stock(struct mem_cgroup *root_memcg) 2571 { 2572 int cpu, curcpu; 2573 2574 /* If someone's already draining, avoid adding running more workers. */ 2575 if (!mutex_trylock(&percpu_charge_mutex)) 2576 return; 2577 /* 2578 * Notify other cpus that system-wide "drain" is running 2579 * We do not care about races with the cpu hotplug because cpu down 2580 * as well as workers from this path always operate on the local 2581 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2582 */ 2583 migrate_disable(); 2584 curcpu = smp_processor_id(); 2585 for_each_online_cpu(cpu) { 2586 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2587 struct mem_cgroup *memcg; 2588 bool flush = false; 2589 2590 rcu_read_lock(); 2591 memcg = READ_ONCE(stock->cached); 2592 if (memcg && READ_ONCE(stock->nr_pages) && 2593 mem_cgroup_is_descendant(memcg, root_memcg)) 2594 flush = true; 2595 else if (obj_stock_flush_required(stock, root_memcg)) 2596 flush = true; 2597 rcu_read_unlock(); 2598 2599 if (flush && 2600 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2601 if (cpu == curcpu) 2602 drain_local_stock(&stock->work); 2603 else if (!cpu_is_isolated(cpu)) 2604 schedule_work_on(cpu, &stock->work); 2605 } 2606 } 2607 migrate_enable(); 2608 mutex_unlock(&percpu_charge_mutex); 2609 } 2610 2611 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2612 { 2613 struct memcg_stock_pcp *stock; 2614 2615 stock = &per_cpu(memcg_stock, cpu); 2616 drain_stock(stock); 2617 2618 return 0; 2619 } 2620 2621 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2622 unsigned int nr_pages, 2623 gfp_t gfp_mask) 2624 { 2625 unsigned long nr_reclaimed = 0; 2626 2627 do { 2628 unsigned long pflags; 2629 2630 if (page_counter_read(&memcg->memory) <= 2631 READ_ONCE(memcg->memory.high)) 2632 continue; 2633 2634 memcg_memory_event(memcg, MEMCG_HIGH); 2635 2636 psi_memstall_enter(&pflags); 2637 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2638 gfp_mask, 2639 MEMCG_RECLAIM_MAY_SWAP); 2640 psi_memstall_leave(&pflags); 2641 } while ((memcg = parent_mem_cgroup(memcg)) && 2642 !mem_cgroup_is_root(memcg)); 2643 2644 return nr_reclaimed; 2645 } 2646 2647 static void high_work_func(struct work_struct *work) 2648 { 2649 struct mem_cgroup *memcg; 2650 2651 memcg = container_of(work, struct mem_cgroup, high_work); 2652 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2653 } 2654 2655 /* 2656 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2657 * enough to still cause a significant slowdown in most cases, while still 2658 * allowing diagnostics and tracing to proceed without becoming stuck. 2659 */ 2660 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2661 2662 /* 2663 * When calculating the delay, we use these either side of the exponentiation to 2664 * maintain precision and scale to a reasonable number of jiffies (see the table 2665 * below. 2666 * 2667 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2668 * overage ratio to a delay. 2669 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2670 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2671 * to produce a reasonable delay curve. 2672 * 2673 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2674 * reasonable delay curve compared to precision-adjusted overage, not 2675 * penalising heavily at first, but still making sure that growth beyond the 2676 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2677 * example, with a high of 100 megabytes: 2678 * 2679 * +-------+------------------------+ 2680 * | usage | time to allocate in ms | 2681 * +-------+------------------------+ 2682 * | 100M | 0 | 2683 * | 101M | 6 | 2684 * | 102M | 25 | 2685 * | 103M | 57 | 2686 * | 104M | 102 | 2687 * | 105M | 159 | 2688 * | 106M | 230 | 2689 * | 107M | 313 | 2690 * | 108M | 409 | 2691 * | 109M | 518 | 2692 * | 110M | 639 | 2693 * | 111M | 774 | 2694 * | 112M | 921 | 2695 * | 113M | 1081 | 2696 * | 114M | 1254 | 2697 * | 115M | 1439 | 2698 * | 116M | 1638 | 2699 * | 117M | 1849 | 2700 * | 118M | 2000 | 2701 * | 119M | 2000 | 2702 * | 120M | 2000 | 2703 * +-------+------------------------+ 2704 */ 2705 #define MEMCG_DELAY_PRECISION_SHIFT 20 2706 #define MEMCG_DELAY_SCALING_SHIFT 14 2707 2708 static u64 calculate_overage(unsigned long usage, unsigned long high) 2709 { 2710 u64 overage; 2711 2712 if (usage <= high) 2713 return 0; 2714 2715 /* 2716 * Prevent division by 0 in overage calculation by acting as if 2717 * it was a threshold of 1 page 2718 */ 2719 high = max(high, 1UL); 2720 2721 overage = usage - high; 2722 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2723 return div64_u64(overage, high); 2724 } 2725 2726 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2727 { 2728 u64 overage, max_overage = 0; 2729 2730 do { 2731 overage = calculate_overage(page_counter_read(&memcg->memory), 2732 READ_ONCE(memcg->memory.high)); 2733 max_overage = max(overage, max_overage); 2734 } while ((memcg = parent_mem_cgroup(memcg)) && 2735 !mem_cgroup_is_root(memcg)); 2736 2737 return max_overage; 2738 } 2739 2740 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2741 { 2742 u64 overage, max_overage = 0; 2743 2744 do { 2745 overage = calculate_overage(page_counter_read(&memcg->swap), 2746 READ_ONCE(memcg->swap.high)); 2747 if (overage) 2748 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2749 max_overage = max(overage, max_overage); 2750 } while ((memcg = parent_mem_cgroup(memcg)) && 2751 !mem_cgroup_is_root(memcg)); 2752 2753 return max_overage; 2754 } 2755 2756 /* 2757 * Get the number of jiffies that we should penalise a mischievous cgroup which 2758 * is exceeding its memory.high by checking both it and its ancestors. 2759 */ 2760 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2761 unsigned int nr_pages, 2762 u64 max_overage) 2763 { 2764 unsigned long penalty_jiffies; 2765 2766 if (!max_overage) 2767 return 0; 2768 2769 /* 2770 * We use overage compared to memory.high to calculate the number of 2771 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2772 * fairly lenient on small overages, and increasingly harsh when the 2773 * memcg in question makes it clear that it has no intention of stopping 2774 * its crazy behaviour, so we exponentially increase the delay based on 2775 * overage amount. 2776 */ 2777 penalty_jiffies = max_overage * max_overage * HZ; 2778 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2779 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2780 2781 /* 2782 * Factor in the task's own contribution to the overage, such that four 2783 * N-sized allocations are throttled approximately the same as one 2784 * 4N-sized allocation. 2785 * 2786 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2787 * larger the current charge patch is than that. 2788 */ 2789 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2790 } 2791 2792 /* 2793 * Reclaims memory over the high limit. Called directly from 2794 * try_charge() (context permitting), as well as from the userland 2795 * return path where reclaim is always able to block. 2796 */ 2797 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2798 { 2799 unsigned long penalty_jiffies; 2800 unsigned long pflags; 2801 unsigned long nr_reclaimed; 2802 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2803 int nr_retries = MAX_RECLAIM_RETRIES; 2804 struct mem_cgroup *memcg; 2805 bool in_retry = false; 2806 2807 if (likely(!nr_pages)) 2808 return; 2809 2810 memcg = get_mem_cgroup_from_mm(current->mm); 2811 current->memcg_nr_pages_over_high = 0; 2812 2813 retry_reclaim: 2814 /* 2815 * Bail if the task is already exiting. Unlike memory.max, 2816 * memory.high enforcement isn't as strict, and there is no 2817 * OOM killer involved, which means the excess could already 2818 * be much bigger (and still growing) than it could for 2819 * memory.max; the dying task could get stuck in fruitless 2820 * reclaim for a long time, which isn't desirable. 2821 */ 2822 if (task_is_dying()) 2823 goto out; 2824 2825 /* 2826 * The allocating task should reclaim at least the batch size, but for 2827 * subsequent retries we only want to do what's necessary to prevent oom 2828 * or breaching resource isolation. 2829 * 2830 * This is distinct from memory.max or page allocator behaviour because 2831 * memory.high is currently batched, whereas memory.max and the page 2832 * allocator run every time an allocation is made. 2833 */ 2834 nr_reclaimed = reclaim_high(memcg, 2835 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2836 gfp_mask); 2837 2838 /* 2839 * memory.high is breached and reclaim is unable to keep up. Throttle 2840 * allocators proactively to slow down excessive growth. 2841 */ 2842 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2843 mem_find_max_overage(memcg)); 2844 2845 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2846 swap_find_max_overage(memcg)); 2847 2848 /* 2849 * Clamp the max delay per usermode return so as to still keep the 2850 * application moving forwards and also permit diagnostics, albeit 2851 * extremely slowly. 2852 */ 2853 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2854 2855 /* 2856 * Don't sleep if the amount of jiffies this memcg owes us is so low 2857 * that it's not even worth doing, in an attempt to be nice to those who 2858 * go only a small amount over their memory.high value and maybe haven't 2859 * been aggressively reclaimed enough yet. 2860 */ 2861 if (penalty_jiffies <= HZ / 100) 2862 goto out; 2863 2864 /* 2865 * If reclaim is making forward progress but we're still over 2866 * memory.high, we want to encourage that rather than doing allocator 2867 * throttling. 2868 */ 2869 if (nr_reclaimed || nr_retries--) { 2870 in_retry = true; 2871 goto retry_reclaim; 2872 } 2873 2874 /* 2875 * Reclaim didn't manage to push usage below the limit, slow 2876 * this allocating task down. 2877 * 2878 * If we exit early, we're guaranteed to die (since 2879 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2880 * need to account for any ill-begotten jiffies to pay them off later. 2881 */ 2882 psi_memstall_enter(&pflags); 2883 schedule_timeout_killable(penalty_jiffies); 2884 psi_memstall_leave(&pflags); 2885 2886 out: 2887 css_put(&memcg->css); 2888 } 2889 2890 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2891 unsigned int nr_pages) 2892 { 2893 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2894 int nr_retries = MAX_RECLAIM_RETRIES; 2895 struct mem_cgroup *mem_over_limit; 2896 struct page_counter *counter; 2897 unsigned long nr_reclaimed; 2898 bool passed_oom = false; 2899 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2900 bool drained = false; 2901 bool raised_max_event = false; 2902 unsigned long pflags; 2903 2904 retry: 2905 if (consume_stock(memcg, nr_pages)) 2906 return 0; 2907 2908 if (!do_memsw_account() || 2909 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2910 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2911 goto done_restock; 2912 if (do_memsw_account()) 2913 page_counter_uncharge(&memcg->memsw, batch); 2914 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2915 } else { 2916 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2917 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2918 } 2919 2920 if (batch > nr_pages) { 2921 batch = nr_pages; 2922 goto retry; 2923 } 2924 2925 /* 2926 * Prevent unbounded recursion when reclaim operations need to 2927 * allocate memory. This might exceed the limits temporarily, 2928 * but we prefer facilitating memory reclaim and getting back 2929 * under the limit over triggering OOM kills in these cases. 2930 */ 2931 if (unlikely(current->flags & PF_MEMALLOC)) 2932 goto force; 2933 2934 if (unlikely(task_in_memcg_oom(current))) 2935 goto nomem; 2936 2937 if (!gfpflags_allow_blocking(gfp_mask)) 2938 goto nomem; 2939 2940 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2941 raised_max_event = true; 2942 2943 psi_memstall_enter(&pflags); 2944 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2945 gfp_mask, reclaim_options); 2946 psi_memstall_leave(&pflags); 2947 2948 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2949 goto retry; 2950 2951 if (!drained) { 2952 drain_all_stock(mem_over_limit); 2953 drained = true; 2954 goto retry; 2955 } 2956 2957 if (gfp_mask & __GFP_NORETRY) 2958 goto nomem; 2959 /* 2960 * Even though the limit is exceeded at this point, reclaim 2961 * may have been able to free some pages. Retry the charge 2962 * before killing the task. 2963 * 2964 * Only for regular pages, though: huge pages are rather 2965 * unlikely to succeed so close to the limit, and we fall back 2966 * to regular pages anyway in case of failure. 2967 */ 2968 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2969 goto retry; 2970 /* 2971 * At task move, charge accounts can be doubly counted. So, it's 2972 * better to wait until the end of task_move if something is going on. 2973 */ 2974 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2975 goto retry; 2976 2977 if (nr_retries--) 2978 goto retry; 2979 2980 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2981 goto nomem; 2982 2983 /* Avoid endless loop for tasks bypassed by the oom killer */ 2984 if (passed_oom && task_is_dying()) 2985 goto nomem; 2986 2987 /* 2988 * keep retrying as long as the memcg oom killer is able to make 2989 * a forward progress or bypass the charge if the oom killer 2990 * couldn't make any progress. 2991 */ 2992 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2993 get_order(nr_pages * PAGE_SIZE))) { 2994 passed_oom = true; 2995 nr_retries = MAX_RECLAIM_RETRIES; 2996 goto retry; 2997 } 2998 nomem: 2999 /* 3000 * Memcg doesn't have a dedicated reserve for atomic 3001 * allocations. But like the global atomic pool, we need to 3002 * put the burden of reclaim on regular allocation requests 3003 * and let these go through as privileged allocations. 3004 */ 3005 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 3006 return -ENOMEM; 3007 force: 3008 /* 3009 * If the allocation has to be enforced, don't forget to raise 3010 * a MEMCG_MAX event. 3011 */ 3012 if (!raised_max_event) 3013 memcg_memory_event(mem_over_limit, MEMCG_MAX); 3014 3015 /* 3016 * The allocation either can't fail or will lead to more memory 3017 * being freed very soon. Allow memory usage go over the limit 3018 * temporarily by force charging it. 3019 */ 3020 page_counter_charge(&memcg->memory, nr_pages); 3021 if (do_memsw_account()) 3022 page_counter_charge(&memcg->memsw, nr_pages); 3023 3024 return 0; 3025 3026 done_restock: 3027 if (batch > nr_pages) 3028 refill_stock(memcg, batch - nr_pages); 3029 3030 /* 3031 * If the hierarchy is above the normal consumption range, schedule 3032 * reclaim on returning to userland. We can perform reclaim here 3033 * if __GFP_RECLAIM but let's always punt for simplicity and so that 3034 * GFP_KERNEL can consistently be used during reclaim. @memcg is 3035 * not recorded as it most likely matches current's and won't 3036 * change in the meantime. As high limit is checked again before 3037 * reclaim, the cost of mismatch is negligible. 3038 */ 3039 do { 3040 bool mem_high, swap_high; 3041 3042 mem_high = page_counter_read(&memcg->memory) > 3043 READ_ONCE(memcg->memory.high); 3044 swap_high = page_counter_read(&memcg->swap) > 3045 READ_ONCE(memcg->swap.high); 3046 3047 /* Don't bother a random interrupted task */ 3048 if (!in_task()) { 3049 if (mem_high) { 3050 schedule_work(&memcg->high_work); 3051 break; 3052 } 3053 continue; 3054 } 3055 3056 if (mem_high || swap_high) { 3057 /* 3058 * The allocating tasks in this cgroup will need to do 3059 * reclaim or be throttled to prevent further growth 3060 * of the memory or swap footprints. 3061 * 3062 * Target some best-effort fairness between the tasks, 3063 * and distribute reclaim work and delay penalties 3064 * based on how much each task is actually allocating. 3065 */ 3066 current->memcg_nr_pages_over_high += batch; 3067 set_notify_resume(current); 3068 break; 3069 } 3070 } while ((memcg = parent_mem_cgroup(memcg))); 3071 3072 /* 3073 * Reclaim is set up above to be called from the userland 3074 * return path. But also attempt synchronous reclaim to avoid 3075 * excessive overrun while the task is still inside the 3076 * kernel. If this is successful, the return path will see it 3077 * when it rechecks the overage and simply bail out. 3078 */ 3079 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 3080 !(current->flags & PF_MEMALLOC) && 3081 gfpflags_allow_blocking(gfp_mask)) 3082 mem_cgroup_handle_over_high(gfp_mask); 3083 return 0; 3084 } 3085 3086 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 3087 unsigned int nr_pages) 3088 { 3089 if (mem_cgroup_is_root(memcg)) 3090 return 0; 3091 3092 return try_charge_memcg(memcg, gfp_mask, nr_pages); 3093 } 3094 3095 /** 3096 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call. 3097 * @memcg: memcg previously charged. 3098 * @nr_pages: number of pages previously charged. 3099 */ 3100 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 3101 { 3102 if (mem_cgroup_is_root(memcg)) 3103 return; 3104 3105 page_counter_uncharge(&memcg->memory, nr_pages); 3106 if (do_memsw_account()) 3107 page_counter_uncharge(&memcg->memsw, nr_pages); 3108 } 3109 3110 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 3111 { 3112 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 3113 /* 3114 * Any of the following ensures page's memcg stability: 3115 * 3116 * - the page lock 3117 * - LRU isolation 3118 * - folio_memcg_lock() 3119 * - exclusive reference 3120 * - mem_cgroup_trylock_pages() 3121 */ 3122 folio->memcg_data = (unsigned long)memcg; 3123 } 3124 3125 /** 3126 * mem_cgroup_commit_charge - commit a previously successful try_charge(). 3127 * @folio: folio to commit the charge to. 3128 * @memcg: memcg previously charged. 3129 */ 3130 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg) 3131 { 3132 css_get(&memcg->css); 3133 commit_charge(folio, memcg); 3134 3135 local_irq_disable(); 3136 mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio)); 3137 memcg_check_events(memcg, folio_nid(folio)); 3138 local_irq_enable(); 3139 } 3140 3141 #ifdef CONFIG_MEMCG_KMEM 3142 3143 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg, 3144 struct pglist_data *pgdat, 3145 enum node_stat_item idx, int nr) 3146 { 3147 struct mem_cgroup *memcg; 3148 struct lruvec *lruvec; 3149 3150 lockdep_assert_irqs_disabled(); 3151 3152 rcu_read_lock(); 3153 memcg = obj_cgroup_memcg(objcg); 3154 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3155 __mod_memcg_lruvec_state(lruvec, idx, nr); 3156 rcu_read_unlock(); 3157 } 3158 3159 static __always_inline 3160 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 3161 { 3162 /* 3163 * Slab objects are accounted individually, not per-page. 3164 * Memcg membership data for each individual object is saved in 3165 * slab->obj_exts. 3166 */ 3167 if (folio_test_slab(folio)) { 3168 struct slabobj_ext *obj_exts; 3169 struct slab *slab; 3170 unsigned int off; 3171 3172 slab = folio_slab(folio); 3173 obj_exts = slab_obj_exts(slab); 3174 if (!obj_exts) 3175 return NULL; 3176 3177 off = obj_to_index(slab->slab_cache, slab, p); 3178 if (obj_exts[off].objcg) 3179 return obj_cgroup_memcg(obj_exts[off].objcg); 3180 3181 return NULL; 3182 } 3183 3184 /* 3185 * folio_memcg_check() is used here, because in theory we can encounter 3186 * a folio where the slab flag has been cleared already, but 3187 * slab->obj_exts has not been freed yet 3188 * folio_memcg_check() will guarantee that a proper memory 3189 * cgroup pointer or NULL will be returned. 3190 */ 3191 return folio_memcg_check(folio); 3192 } 3193 3194 /* 3195 * Returns a pointer to the memory cgroup to which the kernel object is charged. 3196 * 3197 * A passed kernel object can be a slab object, vmalloc object or a generic 3198 * kernel page, so different mechanisms for getting the memory cgroup pointer 3199 * should be used. 3200 * 3201 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 3202 * can not know for sure how the kernel object is implemented. 3203 * mem_cgroup_from_obj() can be safely used in such cases. 3204 * 3205 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 3206 * cgroup_mutex, etc. 3207 */ 3208 struct mem_cgroup *mem_cgroup_from_obj(void *p) 3209 { 3210 struct folio *folio; 3211 3212 if (mem_cgroup_disabled()) 3213 return NULL; 3214 3215 if (unlikely(is_vmalloc_addr(p))) 3216 folio = page_folio(vmalloc_to_page(p)); 3217 else 3218 folio = virt_to_folio(p); 3219 3220 return mem_cgroup_from_obj_folio(folio, p); 3221 } 3222 3223 /* 3224 * Returns a pointer to the memory cgroup to which the kernel object is charged. 3225 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects, 3226 * allocated using vmalloc(). 3227 * 3228 * A passed kernel object must be a slab object or a generic kernel page. 3229 * 3230 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 3231 * cgroup_mutex, etc. 3232 */ 3233 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 3234 { 3235 if (mem_cgroup_disabled()) 3236 return NULL; 3237 3238 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 3239 } 3240 3241 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 3242 { 3243 struct obj_cgroup *objcg = NULL; 3244 3245 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3246 objcg = rcu_dereference(memcg->objcg); 3247 if (likely(objcg && obj_cgroup_tryget(objcg))) 3248 break; 3249 objcg = NULL; 3250 } 3251 return objcg; 3252 } 3253 3254 static struct obj_cgroup *current_objcg_update(void) 3255 { 3256 struct mem_cgroup *memcg; 3257 struct obj_cgroup *old, *objcg = NULL; 3258 3259 do { 3260 /* Atomically drop the update bit. */ 3261 old = xchg(¤t->objcg, NULL); 3262 if (old) { 3263 old = (struct obj_cgroup *) 3264 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 3265 obj_cgroup_put(old); 3266 3267 old = NULL; 3268 } 3269 3270 /* If new objcg is NULL, no reason for the second atomic update. */ 3271 if (!current->mm || (current->flags & PF_KTHREAD)) 3272 return NULL; 3273 3274 /* 3275 * Release the objcg pointer from the previous iteration, 3276 * if try_cmpxcg() below fails. 3277 */ 3278 if (unlikely(objcg)) { 3279 obj_cgroup_put(objcg); 3280 objcg = NULL; 3281 } 3282 3283 /* 3284 * Obtain the new objcg pointer. The current task can be 3285 * asynchronously moved to another memcg and the previous 3286 * memcg can be offlined. So let's get the memcg pointer 3287 * and try get a reference to objcg under a rcu read lock. 3288 */ 3289 3290 rcu_read_lock(); 3291 memcg = mem_cgroup_from_task(current); 3292 objcg = __get_obj_cgroup_from_memcg(memcg); 3293 rcu_read_unlock(); 3294 3295 /* 3296 * Try set up a new objcg pointer atomically. If it 3297 * fails, it means the update flag was set concurrently, so 3298 * the whole procedure should be repeated. 3299 */ 3300 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 3301 3302 return objcg; 3303 } 3304 3305 __always_inline struct obj_cgroup *current_obj_cgroup(void) 3306 { 3307 struct mem_cgroup *memcg; 3308 struct obj_cgroup *objcg; 3309 3310 if (in_task()) { 3311 memcg = current->active_memcg; 3312 if (unlikely(memcg)) 3313 goto from_memcg; 3314 3315 objcg = READ_ONCE(current->objcg); 3316 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 3317 objcg = current_objcg_update(); 3318 /* 3319 * Objcg reference is kept by the task, so it's safe 3320 * to use the objcg by the current task. 3321 */ 3322 return objcg; 3323 } 3324 3325 memcg = this_cpu_read(int_active_memcg); 3326 if (unlikely(memcg)) 3327 goto from_memcg; 3328 3329 return NULL; 3330 3331 from_memcg: 3332 objcg = NULL; 3333 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3334 /* 3335 * Memcg pointer is protected by scope (see set_active_memcg()) 3336 * and is pinning the corresponding objcg, so objcg can't go 3337 * away and can be used within the scope without any additional 3338 * protection. 3339 */ 3340 objcg = rcu_dereference_check(memcg->objcg, 1); 3341 if (likely(objcg)) 3342 break; 3343 } 3344 3345 return objcg; 3346 } 3347 3348 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 3349 { 3350 struct obj_cgroup *objcg; 3351 3352 if (!memcg_kmem_online()) 3353 return NULL; 3354 3355 if (folio_memcg_kmem(folio)) { 3356 objcg = __folio_objcg(folio); 3357 obj_cgroup_get(objcg); 3358 } else { 3359 struct mem_cgroup *memcg; 3360 3361 rcu_read_lock(); 3362 memcg = __folio_memcg(folio); 3363 if (memcg) 3364 objcg = __get_obj_cgroup_from_memcg(memcg); 3365 else 3366 objcg = NULL; 3367 rcu_read_unlock(); 3368 } 3369 return objcg; 3370 } 3371 3372 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 3373 { 3374 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 3375 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 3376 if (nr_pages > 0) 3377 page_counter_charge(&memcg->kmem, nr_pages); 3378 else 3379 page_counter_uncharge(&memcg->kmem, -nr_pages); 3380 } 3381 } 3382 3383 3384 /* 3385 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 3386 * @objcg: object cgroup to uncharge 3387 * @nr_pages: number of pages to uncharge 3388 */ 3389 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 3390 unsigned int nr_pages) 3391 { 3392 struct mem_cgroup *memcg; 3393 3394 memcg = get_mem_cgroup_from_objcg(objcg); 3395 3396 memcg_account_kmem(memcg, -nr_pages); 3397 refill_stock(memcg, nr_pages); 3398 3399 css_put(&memcg->css); 3400 } 3401 3402 /* 3403 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 3404 * @objcg: object cgroup to charge 3405 * @gfp: reclaim mode 3406 * @nr_pages: number of pages to charge 3407 * 3408 * Returns 0 on success, an error code on failure. 3409 */ 3410 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 3411 unsigned int nr_pages) 3412 { 3413 struct mem_cgroup *memcg; 3414 int ret; 3415 3416 memcg = get_mem_cgroup_from_objcg(objcg); 3417 3418 ret = try_charge_memcg(memcg, gfp, nr_pages); 3419 if (ret) 3420 goto out; 3421 3422 memcg_account_kmem(memcg, nr_pages); 3423 out: 3424 css_put(&memcg->css); 3425 3426 return ret; 3427 } 3428 3429 /** 3430 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3431 * @page: page to charge 3432 * @gfp: reclaim mode 3433 * @order: allocation order 3434 * 3435 * Returns 0 on success, an error code on failure. 3436 */ 3437 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3438 { 3439 struct obj_cgroup *objcg; 3440 int ret = 0; 3441 3442 objcg = current_obj_cgroup(); 3443 if (objcg) { 3444 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3445 if (!ret) { 3446 obj_cgroup_get(objcg); 3447 page->memcg_data = (unsigned long)objcg | 3448 MEMCG_DATA_KMEM; 3449 return 0; 3450 } 3451 } 3452 return ret; 3453 } 3454 3455 /** 3456 * __memcg_kmem_uncharge_page: uncharge a kmem page 3457 * @page: page to uncharge 3458 * @order: allocation order 3459 */ 3460 void __memcg_kmem_uncharge_page(struct page *page, int order) 3461 { 3462 struct folio *folio = page_folio(page); 3463 struct obj_cgroup *objcg; 3464 unsigned int nr_pages = 1 << order; 3465 3466 if (!folio_memcg_kmem(folio)) 3467 return; 3468 3469 objcg = __folio_objcg(folio); 3470 obj_cgroup_uncharge_pages(objcg, nr_pages); 3471 folio->memcg_data = 0; 3472 obj_cgroup_put(objcg); 3473 } 3474 3475 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3476 enum node_stat_item idx, int nr) 3477 { 3478 struct memcg_stock_pcp *stock; 3479 struct obj_cgroup *old = NULL; 3480 unsigned long flags; 3481 int *bytes; 3482 3483 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3484 stock = this_cpu_ptr(&memcg_stock); 3485 3486 /* 3487 * Save vmstat data in stock and skip vmstat array update unless 3488 * accumulating over a page of vmstat data or when pgdat or idx 3489 * changes. 3490 */ 3491 if (READ_ONCE(stock->cached_objcg) != objcg) { 3492 old = drain_obj_stock(stock); 3493 obj_cgroup_get(objcg); 3494 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3495 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3496 WRITE_ONCE(stock->cached_objcg, objcg); 3497 stock->cached_pgdat = pgdat; 3498 } else if (stock->cached_pgdat != pgdat) { 3499 /* Flush the existing cached vmstat data */ 3500 struct pglist_data *oldpg = stock->cached_pgdat; 3501 3502 if (stock->nr_slab_reclaimable_b) { 3503 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3504 stock->nr_slab_reclaimable_b); 3505 stock->nr_slab_reclaimable_b = 0; 3506 } 3507 if (stock->nr_slab_unreclaimable_b) { 3508 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3509 stock->nr_slab_unreclaimable_b); 3510 stock->nr_slab_unreclaimable_b = 0; 3511 } 3512 stock->cached_pgdat = pgdat; 3513 } 3514 3515 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3516 : &stock->nr_slab_unreclaimable_b; 3517 /* 3518 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3519 * cached locally at least once before pushing it out. 3520 */ 3521 if (!*bytes) { 3522 *bytes = nr; 3523 nr = 0; 3524 } else { 3525 *bytes += nr; 3526 if (abs(*bytes) > PAGE_SIZE) { 3527 nr = *bytes; 3528 *bytes = 0; 3529 } else { 3530 nr = 0; 3531 } 3532 } 3533 if (nr) 3534 __mod_objcg_mlstate(objcg, pgdat, idx, nr); 3535 3536 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3537 obj_cgroup_put(old); 3538 } 3539 3540 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3541 { 3542 struct memcg_stock_pcp *stock; 3543 unsigned long flags; 3544 bool ret = false; 3545 3546 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3547 3548 stock = this_cpu_ptr(&memcg_stock); 3549 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 3550 stock->nr_bytes -= nr_bytes; 3551 ret = true; 3552 } 3553 3554 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3555 3556 return ret; 3557 } 3558 3559 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3560 { 3561 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 3562 3563 if (!old) 3564 return NULL; 3565 3566 if (stock->nr_bytes) { 3567 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3568 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3569 3570 if (nr_pages) { 3571 struct mem_cgroup *memcg; 3572 3573 memcg = get_mem_cgroup_from_objcg(old); 3574 3575 memcg_account_kmem(memcg, -nr_pages); 3576 __refill_stock(memcg, nr_pages); 3577 3578 css_put(&memcg->css); 3579 } 3580 3581 /* 3582 * The leftover is flushed to the centralized per-memcg value. 3583 * On the next attempt to refill obj stock it will be moved 3584 * to a per-cpu stock (probably, on an other CPU), see 3585 * refill_obj_stock(). 3586 * 3587 * How often it's flushed is a trade-off between the memory 3588 * limit enforcement accuracy and potential CPU contention, 3589 * so it might be changed in the future. 3590 */ 3591 atomic_add(nr_bytes, &old->nr_charged_bytes); 3592 stock->nr_bytes = 0; 3593 } 3594 3595 /* 3596 * Flush the vmstat data in current stock 3597 */ 3598 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3599 if (stock->nr_slab_reclaimable_b) { 3600 __mod_objcg_mlstate(old, stock->cached_pgdat, 3601 NR_SLAB_RECLAIMABLE_B, 3602 stock->nr_slab_reclaimable_b); 3603 stock->nr_slab_reclaimable_b = 0; 3604 } 3605 if (stock->nr_slab_unreclaimable_b) { 3606 __mod_objcg_mlstate(old, stock->cached_pgdat, 3607 NR_SLAB_UNRECLAIMABLE_B, 3608 stock->nr_slab_unreclaimable_b); 3609 stock->nr_slab_unreclaimable_b = 0; 3610 } 3611 stock->cached_pgdat = NULL; 3612 } 3613 3614 WRITE_ONCE(stock->cached_objcg, NULL); 3615 /* 3616 * The `old' objects needs to be released by the caller via 3617 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3618 */ 3619 return old; 3620 } 3621 3622 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3623 struct mem_cgroup *root_memcg) 3624 { 3625 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 3626 struct mem_cgroup *memcg; 3627 3628 if (objcg) { 3629 memcg = obj_cgroup_memcg(objcg); 3630 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3631 return true; 3632 } 3633 3634 return false; 3635 } 3636 3637 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3638 bool allow_uncharge) 3639 { 3640 struct memcg_stock_pcp *stock; 3641 struct obj_cgroup *old = NULL; 3642 unsigned long flags; 3643 unsigned int nr_pages = 0; 3644 3645 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3646 3647 stock = this_cpu_ptr(&memcg_stock); 3648 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 3649 old = drain_obj_stock(stock); 3650 obj_cgroup_get(objcg); 3651 WRITE_ONCE(stock->cached_objcg, objcg); 3652 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3653 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3654 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3655 } 3656 stock->nr_bytes += nr_bytes; 3657 3658 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3659 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3660 stock->nr_bytes &= (PAGE_SIZE - 1); 3661 } 3662 3663 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3664 obj_cgroup_put(old); 3665 3666 if (nr_pages) 3667 obj_cgroup_uncharge_pages(objcg, nr_pages); 3668 } 3669 3670 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3671 { 3672 unsigned int nr_pages, nr_bytes; 3673 int ret; 3674 3675 if (consume_obj_stock(objcg, size)) 3676 return 0; 3677 3678 /* 3679 * In theory, objcg->nr_charged_bytes can have enough 3680 * pre-charged bytes to satisfy the allocation. However, 3681 * flushing objcg->nr_charged_bytes requires two atomic 3682 * operations, and objcg->nr_charged_bytes can't be big. 3683 * The shared objcg->nr_charged_bytes can also become a 3684 * performance bottleneck if all tasks of the same memcg are 3685 * trying to update it. So it's better to ignore it and try 3686 * grab some new pages. The stock's nr_bytes will be flushed to 3687 * objcg->nr_charged_bytes later on when objcg changes. 3688 * 3689 * The stock's nr_bytes may contain enough pre-charged bytes 3690 * to allow one less page from being charged, but we can't rely 3691 * on the pre-charged bytes not being changed outside of 3692 * consume_obj_stock() or refill_obj_stock(). So ignore those 3693 * pre-charged bytes as well when charging pages. To avoid a 3694 * page uncharge right after a page charge, we set the 3695 * allow_uncharge flag to false when calling refill_obj_stock() 3696 * to temporarily allow the pre-charged bytes to exceed the page 3697 * size limit. The maximum reachable value of the pre-charged 3698 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3699 * race. 3700 */ 3701 nr_pages = size >> PAGE_SHIFT; 3702 nr_bytes = size & (PAGE_SIZE - 1); 3703 3704 if (nr_bytes) 3705 nr_pages += 1; 3706 3707 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3708 if (!ret && nr_bytes) 3709 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3710 3711 return ret; 3712 } 3713 3714 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3715 { 3716 refill_obj_stock(objcg, size, true); 3717 } 3718 3719 static inline size_t obj_full_size(struct kmem_cache *s) 3720 { 3721 /* 3722 * For each accounted object there is an extra space which is used 3723 * to store obj_cgroup membership. Charge it too. 3724 */ 3725 return s->size + sizeof(struct obj_cgroup *); 3726 } 3727 3728 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3729 gfp_t flags, size_t size, void **p) 3730 { 3731 struct obj_cgroup *objcg; 3732 struct slab *slab; 3733 unsigned long off; 3734 size_t i; 3735 3736 /* 3737 * The obtained objcg pointer is safe to use within the current scope, 3738 * defined by current task or set_active_memcg() pair. 3739 * obj_cgroup_get() is used to get a permanent reference. 3740 */ 3741 objcg = current_obj_cgroup(); 3742 if (!objcg) 3743 return true; 3744 3745 /* 3746 * slab_alloc_node() avoids the NULL check, so we might be called with a 3747 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 3748 * the whole requested size. 3749 * return success as there's nothing to free back 3750 */ 3751 if (unlikely(*p == NULL)) 3752 return true; 3753 3754 flags &= gfp_allowed_mask; 3755 3756 if (lru) { 3757 int ret; 3758 struct mem_cgroup *memcg; 3759 3760 memcg = get_mem_cgroup_from_objcg(objcg); 3761 ret = memcg_list_lru_alloc(memcg, lru, flags); 3762 css_put(&memcg->css); 3763 3764 if (ret) 3765 return false; 3766 } 3767 3768 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s))) 3769 return false; 3770 3771 for (i = 0; i < size; i++) { 3772 slab = virt_to_slab(p[i]); 3773 3774 if (!slab_obj_exts(slab) && 3775 alloc_slab_obj_exts(slab, s, flags, false)) { 3776 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3777 continue; 3778 } 3779 3780 off = obj_to_index(s, slab, p[i]); 3781 obj_cgroup_get(objcg); 3782 slab_obj_exts(slab)[off].objcg = objcg; 3783 mod_objcg_state(objcg, slab_pgdat(slab), 3784 cache_vmstat_idx(s), obj_full_size(s)); 3785 } 3786 3787 return true; 3788 } 3789 3790 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3791 void **p, int objects, struct slabobj_ext *obj_exts) 3792 { 3793 for (int i = 0; i < objects; i++) { 3794 struct obj_cgroup *objcg; 3795 unsigned int off; 3796 3797 off = obj_to_index(s, slab, p[i]); 3798 objcg = obj_exts[off].objcg; 3799 if (!objcg) 3800 continue; 3801 3802 obj_exts[off].objcg = NULL; 3803 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3804 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), 3805 -obj_full_size(s)); 3806 obj_cgroup_put(objcg); 3807 } 3808 } 3809 #endif /* CONFIG_MEMCG_KMEM */ 3810 3811 /* 3812 * Because page_memcg(head) is not set on tails, set it now. 3813 */ 3814 void split_page_memcg(struct page *head, int old_order, int new_order) 3815 { 3816 struct folio *folio = page_folio(head); 3817 struct mem_cgroup *memcg = folio_memcg(folio); 3818 int i; 3819 unsigned int old_nr = 1 << old_order; 3820 unsigned int new_nr = 1 << new_order; 3821 3822 if (mem_cgroup_disabled() || !memcg) 3823 return; 3824 3825 for (i = new_nr; i < old_nr; i += new_nr) 3826 folio_page(folio, i)->memcg_data = folio->memcg_data; 3827 3828 if (folio_memcg_kmem(folio)) 3829 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1); 3830 else 3831 css_get_many(&memcg->css, old_nr / new_nr - 1); 3832 } 3833 3834 #ifdef CONFIG_SWAP 3835 /** 3836 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3837 * @entry: swap entry to be moved 3838 * @from: mem_cgroup which the entry is moved from 3839 * @to: mem_cgroup which the entry is moved to 3840 * 3841 * It succeeds only when the swap_cgroup's record for this entry is the same 3842 * as the mem_cgroup's id of @from. 3843 * 3844 * Returns 0 on success, -EINVAL on failure. 3845 * 3846 * The caller must have charged to @to, IOW, called page_counter_charge() about 3847 * both res and memsw, and called css_get(). 3848 */ 3849 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3850 struct mem_cgroup *from, struct mem_cgroup *to) 3851 { 3852 unsigned short old_id, new_id; 3853 3854 old_id = mem_cgroup_id(from); 3855 new_id = mem_cgroup_id(to); 3856 3857 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3858 mod_memcg_state(from, MEMCG_SWAP, -1); 3859 mod_memcg_state(to, MEMCG_SWAP, 1); 3860 return 0; 3861 } 3862 return -EINVAL; 3863 } 3864 #else 3865 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3866 struct mem_cgroup *from, struct mem_cgroup *to) 3867 { 3868 return -EINVAL; 3869 } 3870 #endif 3871 3872 static DEFINE_MUTEX(memcg_max_mutex); 3873 3874 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3875 unsigned long max, bool memsw) 3876 { 3877 bool enlarge = false; 3878 bool drained = false; 3879 int ret; 3880 bool limits_invariant; 3881 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3882 3883 do { 3884 if (signal_pending(current)) { 3885 ret = -EINTR; 3886 break; 3887 } 3888 3889 mutex_lock(&memcg_max_mutex); 3890 /* 3891 * Make sure that the new limit (memsw or memory limit) doesn't 3892 * break our basic invariant rule memory.max <= memsw.max. 3893 */ 3894 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3895 max <= memcg->memsw.max; 3896 if (!limits_invariant) { 3897 mutex_unlock(&memcg_max_mutex); 3898 ret = -EINVAL; 3899 break; 3900 } 3901 if (max > counter->max) 3902 enlarge = true; 3903 ret = page_counter_set_max(counter, max); 3904 mutex_unlock(&memcg_max_mutex); 3905 3906 if (!ret) 3907 break; 3908 3909 if (!drained) { 3910 drain_all_stock(memcg); 3911 drained = true; 3912 continue; 3913 } 3914 3915 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3916 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) { 3917 ret = -EBUSY; 3918 break; 3919 } 3920 } while (true); 3921 3922 if (!ret && enlarge) 3923 memcg_oom_recover(memcg); 3924 3925 return ret; 3926 } 3927 3928 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3929 gfp_t gfp_mask, 3930 unsigned long *total_scanned) 3931 { 3932 unsigned long nr_reclaimed = 0; 3933 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3934 unsigned long reclaimed; 3935 int loop = 0; 3936 struct mem_cgroup_tree_per_node *mctz; 3937 unsigned long excess; 3938 3939 if (lru_gen_enabled()) 3940 return 0; 3941 3942 if (order > 0) 3943 return 0; 3944 3945 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3946 3947 /* 3948 * Do not even bother to check the largest node if the root 3949 * is empty. Do it lockless to prevent lock bouncing. Races 3950 * are acceptable as soft limit is best effort anyway. 3951 */ 3952 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3953 return 0; 3954 3955 /* 3956 * This loop can run a while, specially if mem_cgroup's continuously 3957 * keep exceeding their soft limit and putting the system under 3958 * pressure 3959 */ 3960 do { 3961 if (next_mz) 3962 mz = next_mz; 3963 else 3964 mz = mem_cgroup_largest_soft_limit_node(mctz); 3965 if (!mz) 3966 break; 3967 3968 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3969 gfp_mask, total_scanned); 3970 nr_reclaimed += reclaimed; 3971 spin_lock_irq(&mctz->lock); 3972 3973 /* 3974 * If we failed to reclaim anything from this memory cgroup 3975 * it is time to move on to the next cgroup 3976 */ 3977 next_mz = NULL; 3978 if (!reclaimed) 3979 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3980 3981 excess = soft_limit_excess(mz->memcg); 3982 /* 3983 * One school of thought says that we should not add 3984 * back the node to the tree if reclaim returns 0. 3985 * But our reclaim could return 0, simply because due 3986 * to priority we are exposing a smaller subset of 3987 * memory to reclaim from. Consider this as a longer 3988 * term TODO. 3989 */ 3990 /* If excess == 0, no tree ops */ 3991 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3992 spin_unlock_irq(&mctz->lock); 3993 css_put(&mz->memcg->css); 3994 loop++; 3995 /* 3996 * Could not reclaim anything and there are no more 3997 * mem cgroups to try or we seem to be looping without 3998 * reclaiming anything. 3999 */ 4000 if (!nr_reclaimed && 4001 (next_mz == NULL || 4002 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 4003 break; 4004 } while (!nr_reclaimed); 4005 if (next_mz) 4006 css_put(&next_mz->memcg->css); 4007 return nr_reclaimed; 4008 } 4009 4010 /* 4011 * Reclaims as many pages from the given memcg as possible. 4012 * 4013 * Caller is responsible for holding css reference for memcg. 4014 */ 4015 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 4016 { 4017 int nr_retries = MAX_RECLAIM_RETRIES; 4018 4019 /* we call try-to-free pages for make this cgroup empty */ 4020 lru_add_drain_all(); 4021 4022 drain_all_stock(memcg); 4023 4024 /* try to free all pages in this cgroup */ 4025 while (nr_retries && page_counter_read(&memcg->memory)) { 4026 if (signal_pending(current)) 4027 return -EINTR; 4028 4029 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 4030 MEMCG_RECLAIM_MAY_SWAP)) 4031 nr_retries--; 4032 } 4033 4034 return 0; 4035 } 4036 4037 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 4038 char *buf, size_t nbytes, 4039 loff_t off) 4040 { 4041 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4042 4043 if (mem_cgroup_is_root(memcg)) 4044 return -EINVAL; 4045 return mem_cgroup_force_empty(memcg) ?: nbytes; 4046 } 4047 4048 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 4049 struct cftype *cft) 4050 { 4051 return 1; 4052 } 4053 4054 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 4055 struct cftype *cft, u64 val) 4056 { 4057 if (val == 1) 4058 return 0; 4059 4060 pr_warn_once("Non-hierarchical mode is deprecated. " 4061 "Please report your usecase to linux-mm@kvack.org if you " 4062 "depend on this functionality.\n"); 4063 4064 return -EINVAL; 4065 } 4066 4067 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 4068 { 4069 unsigned long val; 4070 4071 if (mem_cgroup_is_root(memcg)) { 4072 /* 4073 * Approximate root's usage from global state. This isn't 4074 * perfect, but the root usage was always an approximation. 4075 */ 4076 val = global_node_page_state(NR_FILE_PAGES) + 4077 global_node_page_state(NR_ANON_MAPPED); 4078 if (swap) 4079 val += total_swap_pages - get_nr_swap_pages(); 4080 } else { 4081 if (!swap) 4082 val = page_counter_read(&memcg->memory); 4083 else 4084 val = page_counter_read(&memcg->memsw); 4085 } 4086 return val; 4087 } 4088 4089 enum { 4090 RES_USAGE, 4091 RES_LIMIT, 4092 RES_MAX_USAGE, 4093 RES_FAILCNT, 4094 RES_SOFT_LIMIT, 4095 }; 4096 4097 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 4098 struct cftype *cft) 4099 { 4100 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4101 struct page_counter *counter; 4102 4103 switch (MEMFILE_TYPE(cft->private)) { 4104 case _MEM: 4105 counter = &memcg->memory; 4106 break; 4107 case _MEMSWAP: 4108 counter = &memcg->memsw; 4109 break; 4110 case _KMEM: 4111 counter = &memcg->kmem; 4112 break; 4113 case _TCP: 4114 counter = &memcg->tcpmem; 4115 break; 4116 default: 4117 BUG(); 4118 } 4119 4120 switch (MEMFILE_ATTR(cft->private)) { 4121 case RES_USAGE: 4122 if (counter == &memcg->memory) 4123 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 4124 if (counter == &memcg->memsw) 4125 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 4126 return (u64)page_counter_read(counter) * PAGE_SIZE; 4127 case RES_LIMIT: 4128 return (u64)counter->max * PAGE_SIZE; 4129 case RES_MAX_USAGE: 4130 return (u64)counter->watermark * PAGE_SIZE; 4131 case RES_FAILCNT: 4132 return counter->failcnt; 4133 case RES_SOFT_LIMIT: 4134 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE; 4135 default: 4136 BUG(); 4137 } 4138 } 4139 4140 /* 4141 * This function doesn't do anything useful. Its only job is to provide a read 4142 * handler for a file so that cgroup_file_mode() will add read permissions. 4143 */ 4144 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m, 4145 __always_unused void *v) 4146 { 4147 return -EINVAL; 4148 } 4149 4150 #ifdef CONFIG_MEMCG_KMEM 4151 static int memcg_online_kmem(struct mem_cgroup *memcg) 4152 { 4153 struct obj_cgroup *objcg; 4154 4155 if (mem_cgroup_kmem_disabled()) 4156 return 0; 4157 4158 if (unlikely(mem_cgroup_is_root(memcg))) 4159 return 0; 4160 4161 objcg = obj_cgroup_alloc(); 4162 if (!objcg) 4163 return -ENOMEM; 4164 4165 objcg->memcg = memcg; 4166 rcu_assign_pointer(memcg->objcg, objcg); 4167 obj_cgroup_get(objcg); 4168 memcg->orig_objcg = objcg; 4169 4170 static_branch_enable(&memcg_kmem_online_key); 4171 4172 memcg->kmemcg_id = memcg->id.id; 4173 4174 return 0; 4175 } 4176 4177 static void memcg_offline_kmem(struct mem_cgroup *memcg) 4178 { 4179 struct mem_cgroup *parent; 4180 4181 if (mem_cgroup_kmem_disabled()) 4182 return; 4183 4184 if (unlikely(mem_cgroup_is_root(memcg))) 4185 return; 4186 4187 parent = parent_mem_cgroup(memcg); 4188 if (!parent) 4189 parent = root_mem_cgroup; 4190 4191 memcg_reparent_objcgs(memcg, parent); 4192 4193 /* 4194 * After we have finished memcg_reparent_objcgs(), all list_lrus 4195 * corresponding to this cgroup are guaranteed to remain empty. 4196 * The ordering is imposed by list_lru_node->lock taken by 4197 * memcg_reparent_list_lrus(). 4198 */ 4199 memcg_reparent_list_lrus(memcg, parent); 4200 } 4201 #else 4202 static int memcg_online_kmem(struct mem_cgroup *memcg) 4203 { 4204 return 0; 4205 } 4206 static void memcg_offline_kmem(struct mem_cgroup *memcg) 4207 { 4208 } 4209 #endif /* CONFIG_MEMCG_KMEM */ 4210 4211 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 4212 { 4213 int ret; 4214 4215 mutex_lock(&memcg_max_mutex); 4216 4217 ret = page_counter_set_max(&memcg->tcpmem, max); 4218 if (ret) 4219 goto out; 4220 4221 if (!memcg->tcpmem_active) { 4222 /* 4223 * The active flag needs to be written after the static_key 4224 * update. This is what guarantees that the socket activation 4225 * function is the last one to run. See mem_cgroup_sk_alloc() 4226 * for details, and note that we don't mark any socket as 4227 * belonging to this memcg until that flag is up. 4228 * 4229 * We need to do this, because static_keys will span multiple 4230 * sites, but we can't control their order. If we mark a socket 4231 * as accounted, but the accounting functions are not patched in 4232 * yet, we'll lose accounting. 4233 * 4234 * We never race with the readers in mem_cgroup_sk_alloc(), 4235 * because when this value change, the code to process it is not 4236 * patched in yet. 4237 */ 4238 static_branch_inc(&memcg_sockets_enabled_key); 4239 memcg->tcpmem_active = true; 4240 } 4241 out: 4242 mutex_unlock(&memcg_max_mutex); 4243 return ret; 4244 } 4245 4246 /* 4247 * The user of this function is... 4248 * RES_LIMIT. 4249 */ 4250 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 4251 char *buf, size_t nbytes, loff_t off) 4252 { 4253 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4254 unsigned long nr_pages; 4255 int ret; 4256 4257 buf = strstrip(buf); 4258 ret = page_counter_memparse(buf, "-1", &nr_pages); 4259 if (ret) 4260 return ret; 4261 4262 switch (MEMFILE_ATTR(of_cft(of)->private)) { 4263 case RES_LIMIT: 4264 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 4265 ret = -EINVAL; 4266 break; 4267 } 4268 switch (MEMFILE_TYPE(of_cft(of)->private)) { 4269 case _MEM: 4270 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 4271 break; 4272 case _MEMSWAP: 4273 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 4274 break; 4275 case _KMEM: 4276 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 4277 "Writing any value to this file has no effect. " 4278 "Please report your usecase to linux-mm@kvack.org if you " 4279 "depend on this functionality.\n"); 4280 ret = 0; 4281 break; 4282 case _TCP: 4283 ret = memcg_update_tcp_max(memcg, nr_pages); 4284 break; 4285 } 4286 break; 4287 case RES_SOFT_LIMIT: 4288 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4289 ret = -EOPNOTSUPP; 4290 } else { 4291 WRITE_ONCE(memcg->soft_limit, nr_pages); 4292 ret = 0; 4293 } 4294 break; 4295 } 4296 return ret ?: nbytes; 4297 } 4298 4299 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 4300 size_t nbytes, loff_t off) 4301 { 4302 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4303 struct page_counter *counter; 4304 4305 switch (MEMFILE_TYPE(of_cft(of)->private)) { 4306 case _MEM: 4307 counter = &memcg->memory; 4308 break; 4309 case _MEMSWAP: 4310 counter = &memcg->memsw; 4311 break; 4312 case _KMEM: 4313 counter = &memcg->kmem; 4314 break; 4315 case _TCP: 4316 counter = &memcg->tcpmem; 4317 break; 4318 default: 4319 BUG(); 4320 } 4321 4322 switch (MEMFILE_ATTR(of_cft(of)->private)) { 4323 case RES_MAX_USAGE: 4324 page_counter_reset_watermark(counter); 4325 break; 4326 case RES_FAILCNT: 4327 counter->failcnt = 0; 4328 break; 4329 default: 4330 BUG(); 4331 } 4332 4333 return nbytes; 4334 } 4335 4336 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 4337 struct cftype *cft) 4338 { 4339 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 4340 } 4341 4342 #ifdef CONFIG_MMU 4343 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 4344 struct cftype *cft, u64 val) 4345 { 4346 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4347 4348 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " 4349 "Please report your usecase to linux-mm@kvack.org if you " 4350 "depend on this functionality.\n"); 4351 4352 if (val & ~MOVE_MASK) 4353 return -EINVAL; 4354 4355 /* 4356 * No kind of locking is needed in here, because ->can_attach() will 4357 * check this value once in the beginning of the process, and then carry 4358 * on with stale data. This means that changes to this value will only 4359 * affect task migrations starting after the change. 4360 */ 4361 memcg->move_charge_at_immigrate = val; 4362 return 0; 4363 } 4364 #else 4365 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 4366 struct cftype *cft, u64 val) 4367 { 4368 return -ENOSYS; 4369 } 4370 #endif 4371 4372 #ifdef CONFIG_NUMA 4373 4374 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 4375 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 4376 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 4377 4378 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 4379 int nid, unsigned int lru_mask, bool tree) 4380 { 4381 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4382 unsigned long nr = 0; 4383 enum lru_list lru; 4384 4385 VM_BUG_ON((unsigned)nid >= nr_node_ids); 4386 4387 for_each_lru(lru) { 4388 if (!(BIT(lru) & lru_mask)) 4389 continue; 4390 if (tree) 4391 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 4392 else 4393 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 4394 } 4395 return nr; 4396 } 4397 4398 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 4399 unsigned int lru_mask, 4400 bool tree) 4401 { 4402 unsigned long nr = 0; 4403 enum lru_list lru; 4404 4405 for_each_lru(lru) { 4406 if (!(BIT(lru) & lru_mask)) 4407 continue; 4408 if (tree) 4409 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 4410 else 4411 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 4412 } 4413 return nr; 4414 } 4415 4416 static int memcg_numa_stat_show(struct seq_file *m, void *v) 4417 { 4418 struct numa_stat { 4419 const char *name; 4420 unsigned int lru_mask; 4421 }; 4422 4423 static const struct numa_stat stats[] = { 4424 { "total", LRU_ALL }, 4425 { "file", LRU_ALL_FILE }, 4426 { "anon", LRU_ALL_ANON }, 4427 { "unevictable", BIT(LRU_UNEVICTABLE) }, 4428 }; 4429 const struct numa_stat *stat; 4430 int nid; 4431 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4432 4433 mem_cgroup_flush_stats(memcg); 4434 4435 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4436 seq_printf(m, "%s=%lu", stat->name, 4437 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4438 false)); 4439 for_each_node_state(nid, N_MEMORY) 4440 seq_printf(m, " N%d=%lu", nid, 4441 mem_cgroup_node_nr_lru_pages(memcg, nid, 4442 stat->lru_mask, false)); 4443 seq_putc(m, '\n'); 4444 } 4445 4446 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4447 4448 seq_printf(m, "hierarchical_%s=%lu", stat->name, 4449 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4450 true)); 4451 for_each_node_state(nid, N_MEMORY) 4452 seq_printf(m, " N%d=%lu", nid, 4453 mem_cgroup_node_nr_lru_pages(memcg, nid, 4454 stat->lru_mask, true)); 4455 seq_putc(m, '\n'); 4456 } 4457 4458 return 0; 4459 } 4460 #endif /* CONFIG_NUMA */ 4461 4462 static const unsigned int memcg1_stats[] = { 4463 NR_FILE_PAGES, 4464 NR_ANON_MAPPED, 4465 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4466 NR_ANON_THPS, 4467 #endif 4468 NR_SHMEM, 4469 NR_FILE_MAPPED, 4470 NR_FILE_DIRTY, 4471 NR_WRITEBACK, 4472 WORKINGSET_REFAULT_ANON, 4473 WORKINGSET_REFAULT_FILE, 4474 #ifdef CONFIG_SWAP 4475 MEMCG_SWAP, 4476 NR_SWAPCACHE, 4477 #endif 4478 }; 4479 4480 static const char *const memcg1_stat_names[] = { 4481 "cache", 4482 "rss", 4483 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4484 "rss_huge", 4485 #endif 4486 "shmem", 4487 "mapped_file", 4488 "dirty", 4489 "writeback", 4490 "workingset_refault_anon", 4491 "workingset_refault_file", 4492 #ifdef CONFIG_SWAP 4493 "swap", 4494 "swapcached", 4495 #endif 4496 }; 4497 4498 /* Universal VM events cgroup1 shows, original sort order */ 4499 static const unsigned int memcg1_events[] = { 4500 PGPGIN, 4501 PGPGOUT, 4502 PGFAULT, 4503 PGMAJFAULT, 4504 }; 4505 4506 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 4507 { 4508 unsigned long memory, memsw; 4509 struct mem_cgroup *mi; 4510 unsigned int i; 4511 4512 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4513 4514 mem_cgroup_flush_stats(memcg); 4515 4516 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4517 unsigned long nr; 4518 4519 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]); 4520 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr); 4521 } 4522 4523 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4524 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]), 4525 memcg_events_local(memcg, memcg1_events[i])); 4526 4527 for (i = 0; i < NR_LRU_LISTS; i++) 4528 seq_buf_printf(s, "%s %lu\n", lru_list_name(i), 4529 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4530 PAGE_SIZE); 4531 4532 /* Hierarchical information */ 4533 memory = memsw = PAGE_COUNTER_MAX; 4534 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4535 memory = min(memory, READ_ONCE(mi->memory.max)); 4536 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4537 } 4538 seq_buf_printf(s, "hierarchical_memory_limit %llu\n", 4539 (u64)memory * PAGE_SIZE); 4540 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n", 4541 (u64)memsw * PAGE_SIZE); 4542 4543 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4544 unsigned long nr; 4545 4546 nr = memcg_page_state_output(memcg, memcg1_stats[i]); 4547 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i], 4548 (u64)nr); 4549 } 4550 4551 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4552 seq_buf_printf(s, "total_%s %llu\n", 4553 vm_event_name(memcg1_events[i]), 4554 (u64)memcg_events(memcg, memcg1_events[i])); 4555 4556 for (i = 0; i < NR_LRU_LISTS; i++) 4557 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i), 4558 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4559 PAGE_SIZE); 4560 4561 #ifdef CONFIG_DEBUG_VM 4562 { 4563 pg_data_t *pgdat; 4564 struct mem_cgroup_per_node *mz; 4565 unsigned long anon_cost = 0; 4566 unsigned long file_cost = 0; 4567 4568 for_each_online_pgdat(pgdat) { 4569 mz = memcg->nodeinfo[pgdat->node_id]; 4570 4571 anon_cost += mz->lruvec.anon_cost; 4572 file_cost += mz->lruvec.file_cost; 4573 } 4574 seq_buf_printf(s, "anon_cost %lu\n", anon_cost); 4575 seq_buf_printf(s, "file_cost %lu\n", file_cost); 4576 } 4577 #endif 4578 } 4579 4580 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4581 struct cftype *cft) 4582 { 4583 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4584 4585 return mem_cgroup_swappiness(memcg); 4586 } 4587 4588 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4589 struct cftype *cft, u64 val) 4590 { 4591 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4592 4593 if (val > 200) 4594 return -EINVAL; 4595 4596 if (!mem_cgroup_is_root(memcg)) 4597 WRITE_ONCE(memcg->swappiness, val); 4598 else 4599 WRITE_ONCE(vm_swappiness, val); 4600 4601 return 0; 4602 } 4603 4604 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4605 { 4606 struct mem_cgroup_threshold_ary *t; 4607 unsigned long usage; 4608 int i; 4609 4610 rcu_read_lock(); 4611 if (!swap) 4612 t = rcu_dereference(memcg->thresholds.primary); 4613 else 4614 t = rcu_dereference(memcg->memsw_thresholds.primary); 4615 4616 if (!t) 4617 goto unlock; 4618 4619 usage = mem_cgroup_usage(memcg, swap); 4620 4621 /* 4622 * current_threshold points to threshold just below or equal to usage. 4623 * If it's not true, a threshold was crossed after last 4624 * call of __mem_cgroup_threshold(). 4625 */ 4626 i = t->current_threshold; 4627 4628 /* 4629 * Iterate backward over array of thresholds starting from 4630 * current_threshold and check if a threshold is crossed. 4631 * If none of thresholds below usage is crossed, we read 4632 * only one element of the array here. 4633 */ 4634 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4635 eventfd_signal(t->entries[i].eventfd); 4636 4637 /* i = current_threshold + 1 */ 4638 i++; 4639 4640 /* 4641 * Iterate forward over array of thresholds starting from 4642 * current_threshold+1 and check if a threshold is crossed. 4643 * If none of thresholds above usage is crossed, we read 4644 * only one element of the array here. 4645 */ 4646 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4647 eventfd_signal(t->entries[i].eventfd); 4648 4649 /* Update current_threshold */ 4650 t->current_threshold = i - 1; 4651 unlock: 4652 rcu_read_unlock(); 4653 } 4654 4655 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4656 { 4657 while (memcg) { 4658 __mem_cgroup_threshold(memcg, false); 4659 if (do_memsw_account()) 4660 __mem_cgroup_threshold(memcg, true); 4661 4662 memcg = parent_mem_cgroup(memcg); 4663 } 4664 } 4665 4666 static int compare_thresholds(const void *a, const void *b) 4667 { 4668 const struct mem_cgroup_threshold *_a = a; 4669 const struct mem_cgroup_threshold *_b = b; 4670 4671 if (_a->threshold > _b->threshold) 4672 return 1; 4673 4674 if (_a->threshold < _b->threshold) 4675 return -1; 4676 4677 return 0; 4678 } 4679 4680 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4681 { 4682 struct mem_cgroup_eventfd_list *ev; 4683 4684 spin_lock(&memcg_oom_lock); 4685 4686 list_for_each_entry(ev, &memcg->oom_notify, list) 4687 eventfd_signal(ev->eventfd); 4688 4689 spin_unlock(&memcg_oom_lock); 4690 return 0; 4691 } 4692 4693 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4694 { 4695 struct mem_cgroup *iter; 4696 4697 for_each_mem_cgroup_tree(iter, memcg) 4698 mem_cgroup_oom_notify_cb(iter); 4699 } 4700 4701 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4702 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4703 { 4704 struct mem_cgroup_thresholds *thresholds; 4705 struct mem_cgroup_threshold_ary *new; 4706 unsigned long threshold; 4707 unsigned long usage; 4708 int i, size, ret; 4709 4710 ret = page_counter_memparse(args, "-1", &threshold); 4711 if (ret) 4712 return ret; 4713 4714 mutex_lock(&memcg->thresholds_lock); 4715 4716 if (type == _MEM) { 4717 thresholds = &memcg->thresholds; 4718 usage = mem_cgroup_usage(memcg, false); 4719 } else if (type == _MEMSWAP) { 4720 thresholds = &memcg->memsw_thresholds; 4721 usage = mem_cgroup_usage(memcg, true); 4722 } else 4723 BUG(); 4724 4725 /* Check if a threshold crossed before adding a new one */ 4726 if (thresholds->primary) 4727 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4728 4729 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4730 4731 /* Allocate memory for new array of thresholds */ 4732 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4733 if (!new) { 4734 ret = -ENOMEM; 4735 goto unlock; 4736 } 4737 new->size = size; 4738 4739 /* Copy thresholds (if any) to new array */ 4740 if (thresholds->primary) 4741 memcpy(new->entries, thresholds->primary->entries, 4742 flex_array_size(new, entries, size - 1)); 4743 4744 /* Add new threshold */ 4745 new->entries[size - 1].eventfd = eventfd; 4746 new->entries[size - 1].threshold = threshold; 4747 4748 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4749 sort(new->entries, size, sizeof(*new->entries), 4750 compare_thresholds, NULL); 4751 4752 /* Find current threshold */ 4753 new->current_threshold = -1; 4754 for (i = 0; i < size; i++) { 4755 if (new->entries[i].threshold <= usage) { 4756 /* 4757 * new->current_threshold will not be used until 4758 * rcu_assign_pointer(), so it's safe to increment 4759 * it here. 4760 */ 4761 ++new->current_threshold; 4762 } else 4763 break; 4764 } 4765 4766 /* Free old spare buffer and save old primary buffer as spare */ 4767 kfree(thresholds->spare); 4768 thresholds->spare = thresholds->primary; 4769 4770 rcu_assign_pointer(thresholds->primary, new); 4771 4772 /* To be sure that nobody uses thresholds */ 4773 synchronize_rcu(); 4774 4775 unlock: 4776 mutex_unlock(&memcg->thresholds_lock); 4777 4778 return ret; 4779 } 4780 4781 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4782 struct eventfd_ctx *eventfd, const char *args) 4783 { 4784 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4785 } 4786 4787 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4788 struct eventfd_ctx *eventfd, const char *args) 4789 { 4790 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4791 } 4792 4793 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4794 struct eventfd_ctx *eventfd, enum res_type type) 4795 { 4796 struct mem_cgroup_thresholds *thresholds; 4797 struct mem_cgroup_threshold_ary *new; 4798 unsigned long usage; 4799 int i, j, size, entries; 4800 4801 mutex_lock(&memcg->thresholds_lock); 4802 4803 if (type == _MEM) { 4804 thresholds = &memcg->thresholds; 4805 usage = mem_cgroup_usage(memcg, false); 4806 } else if (type == _MEMSWAP) { 4807 thresholds = &memcg->memsw_thresholds; 4808 usage = mem_cgroup_usage(memcg, true); 4809 } else 4810 BUG(); 4811 4812 if (!thresholds->primary) 4813 goto unlock; 4814 4815 /* Check if a threshold crossed before removing */ 4816 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4817 4818 /* Calculate new number of threshold */ 4819 size = entries = 0; 4820 for (i = 0; i < thresholds->primary->size; i++) { 4821 if (thresholds->primary->entries[i].eventfd != eventfd) 4822 size++; 4823 else 4824 entries++; 4825 } 4826 4827 new = thresholds->spare; 4828 4829 /* If no items related to eventfd have been cleared, nothing to do */ 4830 if (!entries) 4831 goto unlock; 4832 4833 /* Set thresholds array to NULL if we don't have thresholds */ 4834 if (!size) { 4835 kfree(new); 4836 new = NULL; 4837 goto swap_buffers; 4838 } 4839 4840 new->size = size; 4841 4842 /* Copy thresholds and find current threshold */ 4843 new->current_threshold = -1; 4844 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4845 if (thresholds->primary->entries[i].eventfd == eventfd) 4846 continue; 4847 4848 new->entries[j] = thresholds->primary->entries[i]; 4849 if (new->entries[j].threshold <= usage) { 4850 /* 4851 * new->current_threshold will not be used 4852 * until rcu_assign_pointer(), so it's safe to increment 4853 * it here. 4854 */ 4855 ++new->current_threshold; 4856 } 4857 j++; 4858 } 4859 4860 swap_buffers: 4861 /* Swap primary and spare array */ 4862 thresholds->spare = thresholds->primary; 4863 4864 rcu_assign_pointer(thresholds->primary, new); 4865 4866 /* To be sure that nobody uses thresholds */ 4867 synchronize_rcu(); 4868 4869 /* If all events are unregistered, free the spare array */ 4870 if (!new) { 4871 kfree(thresholds->spare); 4872 thresholds->spare = NULL; 4873 } 4874 unlock: 4875 mutex_unlock(&memcg->thresholds_lock); 4876 } 4877 4878 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4879 struct eventfd_ctx *eventfd) 4880 { 4881 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4882 } 4883 4884 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4885 struct eventfd_ctx *eventfd) 4886 { 4887 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4888 } 4889 4890 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4891 struct eventfd_ctx *eventfd, const char *args) 4892 { 4893 struct mem_cgroup_eventfd_list *event; 4894 4895 event = kmalloc(sizeof(*event), GFP_KERNEL); 4896 if (!event) 4897 return -ENOMEM; 4898 4899 spin_lock(&memcg_oom_lock); 4900 4901 event->eventfd = eventfd; 4902 list_add(&event->list, &memcg->oom_notify); 4903 4904 /* already in OOM ? */ 4905 if (memcg->under_oom) 4906 eventfd_signal(eventfd); 4907 spin_unlock(&memcg_oom_lock); 4908 4909 return 0; 4910 } 4911 4912 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4913 struct eventfd_ctx *eventfd) 4914 { 4915 struct mem_cgroup_eventfd_list *ev, *tmp; 4916 4917 spin_lock(&memcg_oom_lock); 4918 4919 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4920 if (ev->eventfd == eventfd) { 4921 list_del(&ev->list); 4922 kfree(ev); 4923 } 4924 } 4925 4926 spin_unlock(&memcg_oom_lock); 4927 } 4928 4929 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4930 { 4931 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4932 4933 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable)); 4934 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4935 seq_printf(sf, "oom_kill %lu\n", 4936 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4937 return 0; 4938 } 4939 4940 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4941 struct cftype *cft, u64 val) 4942 { 4943 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4944 4945 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4946 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4947 return -EINVAL; 4948 4949 WRITE_ONCE(memcg->oom_kill_disable, val); 4950 if (!val) 4951 memcg_oom_recover(memcg); 4952 4953 return 0; 4954 } 4955 4956 #ifdef CONFIG_CGROUP_WRITEBACK 4957 4958 #include <trace/events/writeback.h> 4959 4960 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4961 { 4962 return wb_domain_init(&memcg->cgwb_domain, gfp); 4963 } 4964 4965 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4966 { 4967 wb_domain_exit(&memcg->cgwb_domain); 4968 } 4969 4970 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4971 { 4972 wb_domain_size_changed(&memcg->cgwb_domain); 4973 } 4974 4975 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4976 { 4977 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4978 4979 if (!memcg->css.parent) 4980 return NULL; 4981 4982 return &memcg->cgwb_domain; 4983 } 4984 4985 /** 4986 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4987 * @wb: bdi_writeback in question 4988 * @pfilepages: out parameter for number of file pages 4989 * @pheadroom: out parameter for number of allocatable pages according to memcg 4990 * @pdirty: out parameter for number of dirty pages 4991 * @pwriteback: out parameter for number of pages under writeback 4992 * 4993 * Determine the numbers of file, headroom, dirty, and writeback pages in 4994 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4995 * is a bit more involved. 4996 * 4997 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4998 * headroom is calculated as the lowest headroom of itself and the 4999 * ancestors. Note that this doesn't consider the actual amount of 5000 * available memory in the system. The caller should further cap 5001 * *@pheadroom accordingly. 5002 */ 5003 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 5004 unsigned long *pheadroom, unsigned long *pdirty, 5005 unsigned long *pwriteback) 5006 { 5007 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 5008 struct mem_cgroup *parent; 5009 5010 mem_cgroup_flush_stats_ratelimited(memcg); 5011 5012 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 5013 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 5014 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 5015 memcg_page_state(memcg, NR_ACTIVE_FILE); 5016 5017 *pheadroom = PAGE_COUNTER_MAX; 5018 while ((parent = parent_mem_cgroup(memcg))) { 5019 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 5020 READ_ONCE(memcg->memory.high)); 5021 unsigned long used = page_counter_read(&memcg->memory); 5022 5023 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 5024 memcg = parent; 5025 } 5026 } 5027 5028 /* 5029 * Foreign dirty flushing 5030 * 5031 * There's an inherent mismatch between memcg and writeback. The former 5032 * tracks ownership per-page while the latter per-inode. This was a 5033 * deliberate design decision because honoring per-page ownership in the 5034 * writeback path is complicated, may lead to higher CPU and IO overheads 5035 * and deemed unnecessary given that write-sharing an inode across 5036 * different cgroups isn't a common use-case. 5037 * 5038 * Combined with inode majority-writer ownership switching, this works well 5039 * enough in most cases but there are some pathological cases. For 5040 * example, let's say there are two cgroups A and B which keep writing to 5041 * different but confined parts of the same inode. B owns the inode and 5042 * A's memory is limited far below B's. A's dirty ratio can rise enough to 5043 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 5044 * triggering background writeback. A will be slowed down without a way to 5045 * make writeback of the dirty pages happen. 5046 * 5047 * Conditions like the above can lead to a cgroup getting repeatedly and 5048 * severely throttled after making some progress after each 5049 * dirty_expire_interval while the underlying IO device is almost 5050 * completely idle. 5051 * 5052 * Solving this problem completely requires matching the ownership tracking 5053 * granularities between memcg and writeback in either direction. However, 5054 * the more egregious behaviors can be avoided by simply remembering the 5055 * most recent foreign dirtying events and initiating remote flushes on 5056 * them when local writeback isn't enough to keep the memory clean enough. 5057 * 5058 * The following two functions implement such mechanism. When a foreign 5059 * page - a page whose memcg and writeback ownerships don't match - is 5060 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 5061 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 5062 * decides that the memcg needs to sleep due to high dirty ratio, it calls 5063 * mem_cgroup_flush_foreign() which queues writeback on the recorded 5064 * foreign bdi_writebacks which haven't expired. Both the numbers of 5065 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 5066 * limited to MEMCG_CGWB_FRN_CNT. 5067 * 5068 * The mechanism only remembers IDs and doesn't hold any object references. 5069 * As being wrong occasionally doesn't matter, updates and accesses to the 5070 * records are lockless and racy. 5071 */ 5072 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 5073 struct bdi_writeback *wb) 5074 { 5075 struct mem_cgroup *memcg = folio_memcg(folio); 5076 struct memcg_cgwb_frn *frn; 5077 u64 now = get_jiffies_64(); 5078 u64 oldest_at = now; 5079 int oldest = -1; 5080 int i; 5081 5082 trace_track_foreign_dirty(folio, wb); 5083 5084 /* 5085 * Pick the slot to use. If there is already a slot for @wb, keep 5086 * using it. If not replace the oldest one which isn't being 5087 * written out. 5088 */ 5089 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 5090 frn = &memcg->cgwb_frn[i]; 5091 if (frn->bdi_id == wb->bdi->id && 5092 frn->memcg_id == wb->memcg_css->id) 5093 break; 5094 if (time_before64(frn->at, oldest_at) && 5095 atomic_read(&frn->done.cnt) == 1) { 5096 oldest = i; 5097 oldest_at = frn->at; 5098 } 5099 } 5100 5101 if (i < MEMCG_CGWB_FRN_CNT) { 5102 /* 5103 * Re-using an existing one. Update timestamp lazily to 5104 * avoid making the cacheline hot. We want them to be 5105 * reasonably up-to-date and significantly shorter than 5106 * dirty_expire_interval as that's what expires the record. 5107 * Use the shorter of 1s and dirty_expire_interval / 8. 5108 */ 5109 unsigned long update_intv = 5110 min_t(unsigned long, HZ, 5111 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 5112 5113 if (time_before64(frn->at, now - update_intv)) 5114 frn->at = now; 5115 } else if (oldest >= 0) { 5116 /* replace the oldest free one */ 5117 frn = &memcg->cgwb_frn[oldest]; 5118 frn->bdi_id = wb->bdi->id; 5119 frn->memcg_id = wb->memcg_css->id; 5120 frn->at = now; 5121 } 5122 } 5123 5124 /* issue foreign writeback flushes for recorded foreign dirtying events */ 5125 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 5126 { 5127 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 5128 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 5129 u64 now = jiffies_64; 5130 int i; 5131 5132 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 5133 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 5134 5135 /* 5136 * If the record is older than dirty_expire_interval, 5137 * writeback on it has already started. No need to kick it 5138 * off again. Also, don't start a new one if there's 5139 * already one in flight. 5140 */ 5141 if (time_after64(frn->at, now - intv) && 5142 atomic_read(&frn->done.cnt) == 1) { 5143 frn->at = 0; 5144 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 5145 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 5146 WB_REASON_FOREIGN_FLUSH, 5147 &frn->done); 5148 } 5149 } 5150 } 5151 5152 #else /* CONFIG_CGROUP_WRITEBACK */ 5153 5154 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 5155 { 5156 return 0; 5157 } 5158 5159 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 5160 { 5161 } 5162 5163 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 5164 { 5165 } 5166 5167 #endif /* CONFIG_CGROUP_WRITEBACK */ 5168 5169 /* 5170 * DO NOT USE IN NEW FILES. 5171 * 5172 * "cgroup.event_control" implementation. 5173 * 5174 * This is way over-engineered. It tries to support fully configurable 5175 * events for each user. Such level of flexibility is completely 5176 * unnecessary especially in the light of the planned unified hierarchy. 5177 * 5178 * Please deprecate this and replace with something simpler if at all 5179 * possible. 5180 */ 5181 5182 /* 5183 * Unregister event and free resources. 5184 * 5185 * Gets called from workqueue. 5186 */ 5187 static void memcg_event_remove(struct work_struct *work) 5188 { 5189 struct mem_cgroup_event *event = 5190 container_of(work, struct mem_cgroup_event, remove); 5191 struct mem_cgroup *memcg = event->memcg; 5192 5193 remove_wait_queue(event->wqh, &event->wait); 5194 5195 event->unregister_event(memcg, event->eventfd); 5196 5197 /* Notify userspace the event is going away. */ 5198 eventfd_signal(event->eventfd); 5199 5200 eventfd_ctx_put(event->eventfd); 5201 kfree(event); 5202 css_put(&memcg->css); 5203 } 5204 5205 /* 5206 * Gets called on EPOLLHUP on eventfd when user closes it. 5207 * 5208 * Called with wqh->lock held and interrupts disabled. 5209 */ 5210 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 5211 int sync, void *key) 5212 { 5213 struct mem_cgroup_event *event = 5214 container_of(wait, struct mem_cgroup_event, wait); 5215 struct mem_cgroup *memcg = event->memcg; 5216 __poll_t flags = key_to_poll(key); 5217 5218 if (flags & EPOLLHUP) { 5219 /* 5220 * If the event has been detached at cgroup removal, we 5221 * can simply return knowing the other side will cleanup 5222 * for us. 5223 * 5224 * We can't race against event freeing since the other 5225 * side will require wqh->lock via remove_wait_queue(), 5226 * which we hold. 5227 */ 5228 spin_lock(&memcg->event_list_lock); 5229 if (!list_empty(&event->list)) { 5230 list_del_init(&event->list); 5231 /* 5232 * We are in atomic context, but cgroup_event_remove() 5233 * may sleep, so we have to call it in workqueue. 5234 */ 5235 schedule_work(&event->remove); 5236 } 5237 spin_unlock(&memcg->event_list_lock); 5238 } 5239 5240 return 0; 5241 } 5242 5243 static void memcg_event_ptable_queue_proc(struct file *file, 5244 wait_queue_head_t *wqh, poll_table *pt) 5245 { 5246 struct mem_cgroup_event *event = 5247 container_of(pt, struct mem_cgroup_event, pt); 5248 5249 event->wqh = wqh; 5250 add_wait_queue(wqh, &event->wait); 5251 } 5252 5253 /* 5254 * DO NOT USE IN NEW FILES. 5255 * 5256 * Parse input and register new cgroup event handler. 5257 * 5258 * Input must be in format '<event_fd> <control_fd> <args>'. 5259 * Interpretation of args is defined by control file implementation. 5260 */ 5261 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 5262 char *buf, size_t nbytes, loff_t off) 5263 { 5264 struct cgroup_subsys_state *css = of_css(of); 5265 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5266 struct mem_cgroup_event *event; 5267 struct cgroup_subsys_state *cfile_css; 5268 unsigned int efd, cfd; 5269 struct fd efile; 5270 struct fd cfile; 5271 struct dentry *cdentry; 5272 const char *name; 5273 char *endp; 5274 int ret; 5275 5276 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 5277 return -EOPNOTSUPP; 5278 5279 buf = strstrip(buf); 5280 5281 efd = simple_strtoul(buf, &endp, 10); 5282 if (*endp != ' ') 5283 return -EINVAL; 5284 buf = endp + 1; 5285 5286 cfd = simple_strtoul(buf, &endp, 10); 5287 if ((*endp != ' ') && (*endp != '\0')) 5288 return -EINVAL; 5289 buf = endp + 1; 5290 5291 event = kzalloc(sizeof(*event), GFP_KERNEL); 5292 if (!event) 5293 return -ENOMEM; 5294 5295 event->memcg = memcg; 5296 INIT_LIST_HEAD(&event->list); 5297 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 5298 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 5299 INIT_WORK(&event->remove, memcg_event_remove); 5300 5301 efile = fdget(efd); 5302 if (!efile.file) { 5303 ret = -EBADF; 5304 goto out_kfree; 5305 } 5306 5307 event->eventfd = eventfd_ctx_fileget(efile.file); 5308 if (IS_ERR(event->eventfd)) { 5309 ret = PTR_ERR(event->eventfd); 5310 goto out_put_efile; 5311 } 5312 5313 cfile = fdget(cfd); 5314 if (!cfile.file) { 5315 ret = -EBADF; 5316 goto out_put_eventfd; 5317 } 5318 5319 /* the process need read permission on control file */ 5320 /* AV: shouldn't we check that it's been opened for read instead? */ 5321 ret = file_permission(cfile.file, MAY_READ); 5322 if (ret < 0) 5323 goto out_put_cfile; 5324 5325 /* 5326 * The control file must be a regular cgroup1 file. As a regular cgroup 5327 * file can't be renamed, it's safe to access its name afterwards. 5328 */ 5329 cdentry = cfile.file->f_path.dentry; 5330 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { 5331 ret = -EINVAL; 5332 goto out_put_cfile; 5333 } 5334 5335 /* 5336 * Determine the event callbacks and set them in @event. This used 5337 * to be done via struct cftype but cgroup core no longer knows 5338 * about these events. The following is crude but the whole thing 5339 * is for compatibility anyway. 5340 * 5341 * DO NOT ADD NEW FILES. 5342 */ 5343 name = cdentry->d_name.name; 5344 5345 if (!strcmp(name, "memory.usage_in_bytes")) { 5346 event->register_event = mem_cgroup_usage_register_event; 5347 event->unregister_event = mem_cgroup_usage_unregister_event; 5348 } else if (!strcmp(name, "memory.oom_control")) { 5349 event->register_event = mem_cgroup_oom_register_event; 5350 event->unregister_event = mem_cgroup_oom_unregister_event; 5351 } else if (!strcmp(name, "memory.pressure_level")) { 5352 event->register_event = vmpressure_register_event; 5353 event->unregister_event = vmpressure_unregister_event; 5354 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 5355 event->register_event = memsw_cgroup_usage_register_event; 5356 event->unregister_event = memsw_cgroup_usage_unregister_event; 5357 } else { 5358 ret = -EINVAL; 5359 goto out_put_cfile; 5360 } 5361 5362 /* 5363 * Verify @cfile should belong to @css. Also, remaining events are 5364 * automatically removed on cgroup destruction but the removal is 5365 * asynchronous, so take an extra ref on @css. 5366 */ 5367 cfile_css = css_tryget_online_from_dir(cdentry->d_parent, 5368 &memory_cgrp_subsys); 5369 ret = -EINVAL; 5370 if (IS_ERR(cfile_css)) 5371 goto out_put_cfile; 5372 if (cfile_css != css) { 5373 css_put(cfile_css); 5374 goto out_put_cfile; 5375 } 5376 5377 ret = event->register_event(memcg, event->eventfd, buf); 5378 if (ret) 5379 goto out_put_css; 5380 5381 vfs_poll(efile.file, &event->pt); 5382 5383 spin_lock_irq(&memcg->event_list_lock); 5384 list_add(&event->list, &memcg->event_list); 5385 spin_unlock_irq(&memcg->event_list_lock); 5386 5387 fdput(cfile); 5388 fdput(efile); 5389 5390 return nbytes; 5391 5392 out_put_css: 5393 css_put(css); 5394 out_put_cfile: 5395 fdput(cfile); 5396 out_put_eventfd: 5397 eventfd_ctx_put(event->eventfd); 5398 out_put_efile: 5399 fdput(efile); 5400 out_kfree: 5401 kfree(event); 5402 5403 return ret; 5404 } 5405 5406 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG) 5407 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 5408 { 5409 /* 5410 * Deprecated. 5411 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 5412 */ 5413 return 0; 5414 } 5415 #endif 5416 5417 static int memory_stat_show(struct seq_file *m, void *v); 5418 5419 static struct cftype mem_cgroup_legacy_files[] = { 5420 { 5421 .name = "usage_in_bytes", 5422 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5423 .read_u64 = mem_cgroup_read_u64, 5424 }, 5425 { 5426 .name = "max_usage_in_bytes", 5427 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5428 .write = mem_cgroup_reset, 5429 .read_u64 = mem_cgroup_read_u64, 5430 }, 5431 { 5432 .name = "limit_in_bytes", 5433 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5434 .write = mem_cgroup_write, 5435 .read_u64 = mem_cgroup_read_u64, 5436 }, 5437 { 5438 .name = "soft_limit_in_bytes", 5439 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5440 .write = mem_cgroup_write, 5441 .read_u64 = mem_cgroup_read_u64, 5442 }, 5443 { 5444 .name = "failcnt", 5445 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5446 .write = mem_cgroup_reset, 5447 .read_u64 = mem_cgroup_read_u64, 5448 }, 5449 { 5450 .name = "stat", 5451 .seq_show = memory_stat_show, 5452 }, 5453 { 5454 .name = "force_empty", 5455 .write = mem_cgroup_force_empty_write, 5456 }, 5457 { 5458 .name = "use_hierarchy", 5459 .write_u64 = mem_cgroup_hierarchy_write, 5460 .read_u64 = mem_cgroup_hierarchy_read, 5461 }, 5462 { 5463 .name = "cgroup.event_control", /* XXX: for compat */ 5464 .write = memcg_write_event_control, 5465 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 5466 }, 5467 { 5468 .name = "swappiness", 5469 .read_u64 = mem_cgroup_swappiness_read, 5470 .write_u64 = mem_cgroup_swappiness_write, 5471 }, 5472 { 5473 .name = "move_charge_at_immigrate", 5474 .read_u64 = mem_cgroup_move_charge_read, 5475 .write_u64 = mem_cgroup_move_charge_write, 5476 }, 5477 { 5478 .name = "oom_control", 5479 .seq_show = mem_cgroup_oom_control_read, 5480 .write_u64 = mem_cgroup_oom_control_write, 5481 }, 5482 { 5483 .name = "pressure_level", 5484 .seq_show = mem_cgroup_dummy_seq_show, 5485 }, 5486 #ifdef CONFIG_NUMA 5487 { 5488 .name = "numa_stat", 5489 .seq_show = memcg_numa_stat_show, 5490 }, 5491 #endif 5492 { 5493 .name = "kmem.limit_in_bytes", 5494 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5495 .write = mem_cgroup_write, 5496 .read_u64 = mem_cgroup_read_u64, 5497 }, 5498 { 5499 .name = "kmem.usage_in_bytes", 5500 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5501 .read_u64 = mem_cgroup_read_u64, 5502 }, 5503 { 5504 .name = "kmem.failcnt", 5505 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5506 .write = mem_cgroup_reset, 5507 .read_u64 = mem_cgroup_read_u64, 5508 }, 5509 { 5510 .name = "kmem.max_usage_in_bytes", 5511 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5512 .write = mem_cgroup_reset, 5513 .read_u64 = mem_cgroup_read_u64, 5514 }, 5515 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG) 5516 { 5517 .name = "kmem.slabinfo", 5518 .seq_show = mem_cgroup_slab_show, 5519 }, 5520 #endif 5521 { 5522 .name = "kmem.tcp.limit_in_bytes", 5523 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5524 .write = mem_cgroup_write, 5525 .read_u64 = mem_cgroup_read_u64, 5526 }, 5527 { 5528 .name = "kmem.tcp.usage_in_bytes", 5529 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5530 .read_u64 = mem_cgroup_read_u64, 5531 }, 5532 { 5533 .name = "kmem.tcp.failcnt", 5534 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5535 .write = mem_cgroup_reset, 5536 .read_u64 = mem_cgroup_read_u64, 5537 }, 5538 { 5539 .name = "kmem.tcp.max_usage_in_bytes", 5540 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5541 .write = mem_cgroup_reset, 5542 .read_u64 = mem_cgroup_read_u64, 5543 }, 5544 { }, /* terminate */ 5545 }; 5546 5547 /* 5548 * Private memory cgroup IDR 5549 * 5550 * Swap-out records and page cache shadow entries need to store memcg 5551 * references in constrained space, so we maintain an ID space that is 5552 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5553 * memory-controlled cgroups to 64k. 5554 * 5555 * However, there usually are many references to the offline CSS after 5556 * the cgroup has been destroyed, such as page cache or reclaimable 5557 * slab objects, that don't need to hang on to the ID. We want to keep 5558 * those dead CSS from occupying IDs, or we might quickly exhaust the 5559 * relatively small ID space and prevent the creation of new cgroups 5560 * even when there are much fewer than 64k cgroups - possibly none. 5561 * 5562 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5563 * be freed and recycled when it's no longer needed, which is usually 5564 * when the CSS is offlined. 5565 * 5566 * The only exception to that are records of swapped out tmpfs/shmem 5567 * pages that need to be attributed to live ancestors on swapin. But 5568 * those references are manageable from userspace. 5569 */ 5570 5571 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 5572 static DEFINE_IDR(mem_cgroup_idr); 5573 5574 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5575 { 5576 if (memcg->id.id > 0) { 5577 idr_remove(&mem_cgroup_idr, memcg->id.id); 5578 memcg->id.id = 0; 5579 } 5580 } 5581 5582 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5583 unsigned int n) 5584 { 5585 refcount_add(n, &memcg->id.ref); 5586 } 5587 5588 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5589 { 5590 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5591 mem_cgroup_id_remove(memcg); 5592 5593 /* Memcg ID pins CSS */ 5594 css_put(&memcg->css); 5595 } 5596 } 5597 5598 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5599 { 5600 mem_cgroup_id_put_many(memcg, 1); 5601 } 5602 5603 /** 5604 * mem_cgroup_from_id - look up a memcg from a memcg id 5605 * @id: the memcg id to look up 5606 * 5607 * Caller must hold rcu_read_lock(). 5608 */ 5609 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5610 { 5611 WARN_ON_ONCE(!rcu_read_lock_held()); 5612 return idr_find(&mem_cgroup_idr, id); 5613 } 5614 5615 #ifdef CONFIG_SHRINKER_DEBUG 5616 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 5617 { 5618 struct cgroup *cgrp; 5619 struct cgroup_subsys_state *css; 5620 struct mem_cgroup *memcg; 5621 5622 cgrp = cgroup_get_from_id(ino); 5623 if (IS_ERR(cgrp)) 5624 return ERR_CAST(cgrp); 5625 5626 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 5627 if (css) 5628 memcg = container_of(css, struct mem_cgroup, css); 5629 else 5630 memcg = ERR_PTR(-ENOENT); 5631 5632 cgroup_put(cgrp); 5633 5634 return memcg; 5635 } 5636 #endif 5637 5638 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5639 { 5640 struct mem_cgroup_per_node *pn; 5641 5642 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5643 if (!pn) 5644 return false; 5645 5646 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 5647 GFP_KERNEL_ACCOUNT, node); 5648 if (!pn->lruvec_stats) 5649 goto fail; 5650 5651 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5652 GFP_KERNEL_ACCOUNT); 5653 if (!pn->lruvec_stats_percpu) 5654 goto fail; 5655 5656 lruvec_init(&pn->lruvec); 5657 pn->memcg = memcg; 5658 5659 memcg->nodeinfo[node] = pn; 5660 return true; 5661 fail: 5662 kfree(pn->lruvec_stats); 5663 kfree(pn); 5664 return false; 5665 } 5666 5667 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5668 { 5669 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5670 5671 if (!pn) 5672 return; 5673 5674 free_percpu(pn->lruvec_stats_percpu); 5675 kfree(pn->lruvec_stats); 5676 kfree(pn); 5677 } 5678 5679 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5680 { 5681 int node; 5682 5683 obj_cgroup_put(memcg->orig_objcg); 5684 5685 for_each_node(node) 5686 free_mem_cgroup_per_node_info(memcg, node); 5687 kfree(memcg->vmstats); 5688 free_percpu(memcg->vmstats_percpu); 5689 kfree(memcg); 5690 } 5691 5692 static void mem_cgroup_free(struct mem_cgroup *memcg) 5693 { 5694 lru_gen_exit_memcg(memcg); 5695 memcg_wb_domain_exit(memcg); 5696 __mem_cgroup_free(memcg); 5697 } 5698 5699 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 5700 { 5701 struct memcg_vmstats_percpu *statc, *pstatc; 5702 struct mem_cgroup *memcg; 5703 int node, cpu; 5704 int __maybe_unused i; 5705 long error = -ENOMEM; 5706 5707 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5708 if (!memcg) 5709 return ERR_PTR(error); 5710 5711 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5712 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5713 if (memcg->id.id < 0) { 5714 error = memcg->id.id; 5715 goto fail; 5716 } 5717 5718 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 5719 GFP_KERNEL_ACCOUNT); 5720 if (!memcg->vmstats) 5721 goto fail; 5722 5723 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5724 GFP_KERNEL_ACCOUNT); 5725 if (!memcg->vmstats_percpu) 5726 goto fail; 5727 5728 for_each_possible_cpu(cpu) { 5729 if (parent) 5730 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 5731 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5732 statc->parent = parent ? pstatc : NULL; 5733 statc->vmstats = memcg->vmstats; 5734 } 5735 5736 for_each_node(node) 5737 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 5738 goto fail; 5739 5740 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5741 goto fail; 5742 5743 INIT_WORK(&memcg->high_work, high_work_func); 5744 INIT_LIST_HEAD(&memcg->oom_notify); 5745 mutex_init(&memcg->thresholds_lock); 5746 spin_lock_init(&memcg->move_lock); 5747 vmpressure_init(&memcg->vmpressure); 5748 INIT_LIST_HEAD(&memcg->event_list); 5749 spin_lock_init(&memcg->event_list_lock); 5750 memcg->socket_pressure = jiffies; 5751 #ifdef CONFIG_MEMCG_KMEM 5752 memcg->kmemcg_id = -1; 5753 INIT_LIST_HEAD(&memcg->objcg_list); 5754 #endif 5755 #ifdef CONFIG_CGROUP_WRITEBACK 5756 INIT_LIST_HEAD(&memcg->cgwb_list); 5757 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5758 memcg->cgwb_frn[i].done = 5759 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5760 #endif 5761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5762 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5763 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5764 memcg->deferred_split_queue.split_queue_len = 0; 5765 #endif 5766 lru_gen_init_memcg(memcg); 5767 return memcg; 5768 fail: 5769 mem_cgroup_id_remove(memcg); 5770 __mem_cgroup_free(memcg); 5771 return ERR_PTR(error); 5772 } 5773 5774 static struct cgroup_subsys_state * __ref 5775 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5776 { 5777 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5778 struct mem_cgroup *memcg, *old_memcg; 5779 5780 old_memcg = set_active_memcg(parent); 5781 memcg = mem_cgroup_alloc(parent); 5782 set_active_memcg(old_memcg); 5783 if (IS_ERR(memcg)) 5784 return ERR_CAST(memcg); 5785 5786 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5787 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); 5788 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 5789 memcg->zswap_max = PAGE_COUNTER_MAX; 5790 WRITE_ONCE(memcg->zswap_writeback, 5791 !parent || READ_ONCE(parent->zswap_writeback)); 5792 #endif 5793 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5794 if (parent) { 5795 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 5796 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 5797 5798 page_counter_init(&memcg->memory, &parent->memory); 5799 page_counter_init(&memcg->swap, &parent->swap); 5800 page_counter_init(&memcg->kmem, &parent->kmem); 5801 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5802 } else { 5803 init_memcg_stats(); 5804 init_memcg_events(); 5805 page_counter_init(&memcg->memory, NULL); 5806 page_counter_init(&memcg->swap, NULL); 5807 page_counter_init(&memcg->kmem, NULL); 5808 page_counter_init(&memcg->tcpmem, NULL); 5809 5810 root_mem_cgroup = memcg; 5811 return &memcg->css; 5812 } 5813 5814 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5815 static_branch_inc(&memcg_sockets_enabled_key); 5816 5817 #if defined(CONFIG_MEMCG_KMEM) 5818 if (!cgroup_memory_nobpf) 5819 static_branch_inc(&memcg_bpf_enabled_key); 5820 #endif 5821 5822 return &memcg->css; 5823 } 5824 5825 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5826 { 5827 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5828 5829 if (memcg_online_kmem(memcg)) 5830 goto remove_id; 5831 5832 /* 5833 * A memcg must be visible for expand_shrinker_info() 5834 * by the time the maps are allocated. So, we allocate maps 5835 * here, when for_each_mem_cgroup() can't skip it. 5836 */ 5837 if (alloc_shrinker_info(memcg)) 5838 goto offline_kmem; 5839 5840 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 5841 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5842 FLUSH_TIME); 5843 lru_gen_online_memcg(memcg); 5844 5845 /* Online state pins memcg ID, memcg ID pins CSS */ 5846 refcount_set(&memcg->id.ref, 1); 5847 css_get(css); 5848 5849 /* 5850 * Ensure mem_cgroup_from_id() works once we're fully online. 5851 * 5852 * We could do this earlier and require callers to filter with 5853 * css_tryget_online(). But right now there are no users that 5854 * need earlier access, and the workingset code relies on the 5855 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 5856 * publish it here at the end of onlining. This matches the 5857 * regular ID destruction during offlining. 5858 */ 5859 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5860 5861 return 0; 5862 offline_kmem: 5863 memcg_offline_kmem(memcg); 5864 remove_id: 5865 mem_cgroup_id_remove(memcg); 5866 return -ENOMEM; 5867 } 5868 5869 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5870 { 5871 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5872 struct mem_cgroup_event *event, *tmp; 5873 5874 /* 5875 * Unregister events and notify userspace. 5876 * Notify userspace about cgroup removing only after rmdir of cgroup 5877 * directory to avoid race between userspace and kernelspace. 5878 */ 5879 spin_lock_irq(&memcg->event_list_lock); 5880 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5881 list_del_init(&event->list); 5882 schedule_work(&event->remove); 5883 } 5884 spin_unlock_irq(&memcg->event_list_lock); 5885 5886 page_counter_set_min(&memcg->memory, 0); 5887 page_counter_set_low(&memcg->memory, 0); 5888 5889 zswap_memcg_offline_cleanup(memcg); 5890 5891 memcg_offline_kmem(memcg); 5892 reparent_shrinker_deferred(memcg); 5893 wb_memcg_offline(memcg); 5894 lru_gen_offline_memcg(memcg); 5895 5896 drain_all_stock(memcg); 5897 5898 mem_cgroup_id_put(memcg); 5899 } 5900 5901 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5902 { 5903 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5904 5905 invalidate_reclaim_iterators(memcg); 5906 lru_gen_release_memcg(memcg); 5907 } 5908 5909 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5910 { 5911 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5912 int __maybe_unused i; 5913 5914 #ifdef CONFIG_CGROUP_WRITEBACK 5915 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5916 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5917 #endif 5918 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5919 static_branch_dec(&memcg_sockets_enabled_key); 5920 5921 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5922 static_branch_dec(&memcg_sockets_enabled_key); 5923 5924 #if defined(CONFIG_MEMCG_KMEM) 5925 if (!cgroup_memory_nobpf) 5926 static_branch_dec(&memcg_bpf_enabled_key); 5927 #endif 5928 5929 vmpressure_cleanup(&memcg->vmpressure); 5930 cancel_work_sync(&memcg->high_work); 5931 mem_cgroup_remove_from_trees(memcg); 5932 free_shrinker_info(memcg); 5933 mem_cgroup_free(memcg); 5934 } 5935 5936 /** 5937 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5938 * @css: the target css 5939 * 5940 * Reset the states of the mem_cgroup associated with @css. This is 5941 * invoked when the userland requests disabling on the default hierarchy 5942 * but the memcg is pinned through dependency. The memcg should stop 5943 * applying policies and should revert to the vanilla state as it may be 5944 * made visible again. 5945 * 5946 * The current implementation only resets the essential configurations. 5947 * This needs to be expanded to cover all the visible parts. 5948 */ 5949 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5950 { 5951 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5952 5953 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5954 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5955 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5956 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5957 page_counter_set_min(&memcg->memory, 0); 5958 page_counter_set_low(&memcg->memory, 0); 5959 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5960 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX); 5961 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5962 memcg_wb_domain_size_changed(memcg); 5963 } 5964 5965 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5966 { 5967 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5968 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5969 struct memcg_vmstats_percpu *statc; 5970 long delta, delta_cpu, v; 5971 int i, nid; 5972 5973 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5974 5975 for (i = 0; i < MEMCG_VMSTAT_SIZE; i++) { 5976 /* 5977 * Collect the aggregated propagation counts of groups 5978 * below us. We're in a per-cpu loop here and this is 5979 * a global counter, so the first cycle will get them. 5980 */ 5981 delta = memcg->vmstats->state_pending[i]; 5982 if (delta) 5983 memcg->vmstats->state_pending[i] = 0; 5984 5985 /* Add CPU changes on this level since the last flush */ 5986 delta_cpu = 0; 5987 v = READ_ONCE(statc->state[i]); 5988 if (v != statc->state_prev[i]) { 5989 delta_cpu = v - statc->state_prev[i]; 5990 delta += delta_cpu; 5991 statc->state_prev[i] = v; 5992 } 5993 5994 /* Aggregate counts on this level and propagate upwards */ 5995 if (delta_cpu) 5996 memcg->vmstats->state_local[i] += delta_cpu; 5997 5998 if (delta) { 5999 memcg->vmstats->state[i] += delta; 6000 if (parent) 6001 parent->vmstats->state_pending[i] += delta; 6002 } 6003 } 6004 6005 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 6006 delta = memcg->vmstats->events_pending[i]; 6007 if (delta) 6008 memcg->vmstats->events_pending[i] = 0; 6009 6010 delta_cpu = 0; 6011 v = READ_ONCE(statc->events[i]); 6012 if (v != statc->events_prev[i]) { 6013 delta_cpu = v - statc->events_prev[i]; 6014 delta += delta_cpu; 6015 statc->events_prev[i] = v; 6016 } 6017 6018 if (delta_cpu) 6019 memcg->vmstats->events_local[i] += delta_cpu; 6020 6021 if (delta) { 6022 memcg->vmstats->events[i] += delta; 6023 if (parent) 6024 parent->vmstats->events_pending[i] += delta; 6025 } 6026 } 6027 6028 for_each_node_state(nid, N_MEMORY) { 6029 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 6030 struct lruvec_stats *lstats = pn->lruvec_stats; 6031 struct lruvec_stats *plstats = NULL; 6032 struct lruvec_stats_percpu *lstatc; 6033 6034 if (parent) 6035 plstats = parent->nodeinfo[nid]->lruvec_stats; 6036 6037 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 6038 6039 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; i++) { 6040 delta = lstats->state_pending[i]; 6041 if (delta) 6042 lstats->state_pending[i] = 0; 6043 6044 delta_cpu = 0; 6045 v = READ_ONCE(lstatc->state[i]); 6046 if (v != lstatc->state_prev[i]) { 6047 delta_cpu = v - lstatc->state_prev[i]; 6048 delta += delta_cpu; 6049 lstatc->state_prev[i] = v; 6050 } 6051 6052 if (delta_cpu) 6053 lstats->state_local[i] += delta_cpu; 6054 6055 if (delta) { 6056 lstats->state[i] += delta; 6057 if (plstats) 6058 plstats->state_pending[i] += delta; 6059 } 6060 } 6061 } 6062 WRITE_ONCE(statc->stats_updates, 0); 6063 /* We are in a per-cpu loop here, only do the atomic write once */ 6064 if (atomic64_read(&memcg->vmstats->stats_updates)) 6065 atomic64_set(&memcg->vmstats->stats_updates, 0); 6066 } 6067 6068 #ifdef CONFIG_MMU 6069 /* Handlers for move charge at task migration. */ 6070 static int mem_cgroup_do_precharge(unsigned long count) 6071 { 6072 int ret; 6073 6074 /* Try a single bulk charge without reclaim first, kswapd may wake */ 6075 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 6076 if (!ret) { 6077 mc.precharge += count; 6078 return ret; 6079 } 6080 6081 /* Try charges one by one with reclaim, but do not retry */ 6082 while (count--) { 6083 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 6084 if (ret) 6085 return ret; 6086 mc.precharge++; 6087 cond_resched(); 6088 } 6089 return 0; 6090 } 6091 6092 union mc_target { 6093 struct folio *folio; 6094 swp_entry_t ent; 6095 }; 6096 6097 enum mc_target_type { 6098 MC_TARGET_NONE = 0, 6099 MC_TARGET_PAGE, 6100 MC_TARGET_SWAP, 6101 MC_TARGET_DEVICE, 6102 }; 6103 6104 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 6105 unsigned long addr, pte_t ptent) 6106 { 6107 struct page *page = vm_normal_page(vma, addr, ptent); 6108 6109 if (!page) 6110 return NULL; 6111 if (PageAnon(page)) { 6112 if (!(mc.flags & MOVE_ANON)) 6113 return NULL; 6114 } else { 6115 if (!(mc.flags & MOVE_FILE)) 6116 return NULL; 6117 } 6118 get_page(page); 6119 6120 return page; 6121 } 6122 6123 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 6124 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6125 pte_t ptent, swp_entry_t *entry) 6126 { 6127 struct page *page = NULL; 6128 swp_entry_t ent = pte_to_swp_entry(ptent); 6129 6130 if (!(mc.flags & MOVE_ANON)) 6131 return NULL; 6132 6133 /* 6134 * Handle device private pages that are not accessible by the CPU, but 6135 * stored as special swap entries in the page table. 6136 */ 6137 if (is_device_private_entry(ent)) { 6138 page = pfn_swap_entry_to_page(ent); 6139 if (!get_page_unless_zero(page)) 6140 return NULL; 6141 return page; 6142 } 6143 6144 if (non_swap_entry(ent)) 6145 return NULL; 6146 6147 /* 6148 * Because swap_cache_get_folio() updates some statistics counter, 6149 * we call find_get_page() with swapper_space directly. 6150 */ 6151 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 6152 entry->val = ent.val; 6153 6154 return page; 6155 } 6156 #else 6157 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6158 pte_t ptent, swp_entry_t *entry) 6159 { 6160 return NULL; 6161 } 6162 #endif 6163 6164 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 6165 unsigned long addr, pte_t ptent) 6166 { 6167 unsigned long index; 6168 struct folio *folio; 6169 6170 if (!vma->vm_file) /* anonymous vma */ 6171 return NULL; 6172 if (!(mc.flags & MOVE_FILE)) 6173 return NULL; 6174 6175 /* folio is moved even if it's not RSS of this task(page-faulted). */ 6176 /* shmem/tmpfs may report page out on swap: account for that too. */ 6177 index = linear_page_index(vma, addr); 6178 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index); 6179 if (IS_ERR(folio)) 6180 return NULL; 6181 return folio_file_page(folio, index); 6182 } 6183 6184 /** 6185 * mem_cgroup_move_account - move account of the folio 6186 * @folio: The folio. 6187 * @compound: charge the page as compound or small page 6188 * @from: mem_cgroup which the folio is moved from. 6189 * @to: mem_cgroup which the folio is moved to. @from != @to. 6190 * 6191 * The folio must be locked and not on the LRU. 6192 * 6193 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 6194 * from old cgroup. 6195 */ 6196 static int mem_cgroup_move_account(struct folio *folio, 6197 bool compound, 6198 struct mem_cgroup *from, 6199 struct mem_cgroup *to) 6200 { 6201 struct lruvec *from_vec, *to_vec; 6202 struct pglist_data *pgdat; 6203 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 6204 int nid, ret; 6205 6206 VM_BUG_ON(from == to); 6207 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 6208 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 6209 VM_BUG_ON(compound && !folio_test_large(folio)); 6210 6211 ret = -EINVAL; 6212 if (folio_memcg(folio) != from) 6213 goto out; 6214 6215 pgdat = folio_pgdat(folio); 6216 from_vec = mem_cgroup_lruvec(from, pgdat); 6217 to_vec = mem_cgroup_lruvec(to, pgdat); 6218 6219 folio_memcg_lock(folio); 6220 6221 if (folio_test_anon(folio)) { 6222 if (folio_mapped(folio)) { 6223 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 6224 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 6225 if (folio_test_pmd_mappable(folio)) { 6226 __mod_lruvec_state(from_vec, NR_ANON_THPS, 6227 -nr_pages); 6228 __mod_lruvec_state(to_vec, NR_ANON_THPS, 6229 nr_pages); 6230 } 6231 } 6232 } else { 6233 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 6234 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 6235 6236 if (folio_test_swapbacked(folio)) { 6237 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 6238 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 6239 } 6240 6241 if (folio_mapped(folio)) { 6242 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 6243 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 6244 } 6245 6246 if (folio_test_dirty(folio)) { 6247 struct address_space *mapping = folio_mapping(folio); 6248 6249 if (mapping_can_writeback(mapping)) { 6250 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 6251 -nr_pages); 6252 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 6253 nr_pages); 6254 } 6255 } 6256 } 6257 6258 #ifdef CONFIG_SWAP 6259 if (folio_test_swapcache(folio)) { 6260 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages); 6261 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages); 6262 } 6263 #endif 6264 if (folio_test_writeback(folio)) { 6265 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 6266 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 6267 } 6268 6269 /* 6270 * All state has been migrated, let's switch to the new memcg. 6271 * 6272 * It is safe to change page's memcg here because the page 6273 * is referenced, charged, isolated, and locked: we can't race 6274 * with (un)charging, migration, LRU putback, or anything else 6275 * that would rely on a stable page's memory cgroup. 6276 * 6277 * Note that folio_memcg_lock is a memcg lock, not a page lock, 6278 * to save space. As soon as we switch page's memory cgroup to a 6279 * new memcg that isn't locked, the above state can change 6280 * concurrently again. Make sure we're truly done with it. 6281 */ 6282 smp_mb(); 6283 6284 css_get(&to->css); 6285 css_put(&from->css); 6286 6287 folio->memcg_data = (unsigned long)to; 6288 6289 __folio_memcg_unlock(from); 6290 6291 ret = 0; 6292 nid = folio_nid(folio); 6293 6294 local_irq_disable(); 6295 mem_cgroup_charge_statistics(to, nr_pages); 6296 memcg_check_events(to, nid); 6297 mem_cgroup_charge_statistics(from, -nr_pages); 6298 memcg_check_events(from, nid); 6299 local_irq_enable(); 6300 out: 6301 return ret; 6302 } 6303 6304 /** 6305 * get_mctgt_type - get target type of moving charge 6306 * @vma: the vma the pte to be checked belongs 6307 * @addr: the address corresponding to the pte to be checked 6308 * @ptent: the pte to be checked 6309 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6310 * 6311 * Context: Called with pte lock held. 6312 * Return: 6313 * * MC_TARGET_NONE - If the pte is not a target for move charge. 6314 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for 6315 * move charge. If @target is not NULL, the folio is stored in target->folio 6316 * with extra refcnt taken (Caller should release it). 6317 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a 6318 * target for charge migration. If @target is not NULL, the entry is 6319 * stored in target->ent. 6320 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and 6321 * thus not on the lru. For now such page is charged like a regular page 6322 * would be as it is just special memory taking the place of a regular page. 6323 * See Documentations/vm/hmm.txt and include/linux/hmm.h 6324 */ 6325 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6326 unsigned long addr, pte_t ptent, union mc_target *target) 6327 { 6328 struct page *page = NULL; 6329 struct folio *folio; 6330 enum mc_target_type ret = MC_TARGET_NONE; 6331 swp_entry_t ent = { .val = 0 }; 6332 6333 if (pte_present(ptent)) 6334 page = mc_handle_present_pte(vma, addr, ptent); 6335 else if (pte_none_mostly(ptent)) 6336 /* 6337 * PTE markers should be treated as a none pte here, separated 6338 * from other swap handling below. 6339 */ 6340 page = mc_handle_file_pte(vma, addr, ptent); 6341 else if (is_swap_pte(ptent)) 6342 page = mc_handle_swap_pte(vma, ptent, &ent); 6343 6344 if (page) 6345 folio = page_folio(page); 6346 if (target && page) { 6347 if (!folio_trylock(folio)) { 6348 folio_put(folio); 6349 return ret; 6350 } 6351 /* 6352 * page_mapped() must be stable during the move. This 6353 * pte is locked, so if it's present, the page cannot 6354 * become unmapped. If it isn't, we have only partial 6355 * control over the mapped state: the page lock will 6356 * prevent new faults against pagecache and swapcache, 6357 * so an unmapped page cannot become mapped. However, 6358 * if the page is already mapped elsewhere, it can 6359 * unmap, and there is nothing we can do about it. 6360 * Alas, skip moving the page in this case. 6361 */ 6362 if (!pte_present(ptent) && page_mapped(page)) { 6363 folio_unlock(folio); 6364 folio_put(folio); 6365 return ret; 6366 } 6367 } 6368 6369 if (!page && !ent.val) 6370 return ret; 6371 if (page) { 6372 /* 6373 * Do only loose check w/o serialization. 6374 * mem_cgroup_move_account() checks the page is valid or 6375 * not under LRU exclusion. 6376 */ 6377 if (folio_memcg(folio) == mc.from) { 6378 ret = MC_TARGET_PAGE; 6379 if (folio_is_device_private(folio) || 6380 folio_is_device_coherent(folio)) 6381 ret = MC_TARGET_DEVICE; 6382 if (target) 6383 target->folio = folio; 6384 } 6385 if (!ret || !target) { 6386 if (target) 6387 folio_unlock(folio); 6388 folio_put(folio); 6389 } 6390 } 6391 /* 6392 * There is a swap entry and a page doesn't exist or isn't charged. 6393 * But we cannot move a tail-page in a THP. 6394 */ 6395 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 6396 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 6397 ret = MC_TARGET_SWAP; 6398 if (target) 6399 target->ent = ent; 6400 } 6401 return ret; 6402 } 6403 6404 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6405 /* 6406 * We don't consider PMD mapped swapping or file mapped pages because THP does 6407 * not support them for now. 6408 * Caller should make sure that pmd_trans_huge(pmd) is true. 6409 */ 6410 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6411 unsigned long addr, pmd_t pmd, union mc_target *target) 6412 { 6413 struct page *page = NULL; 6414 struct folio *folio; 6415 enum mc_target_type ret = MC_TARGET_NONE; 6416 6417 if (unlikely(is_swap_pmd(pmd))) { 6418 VM_BUG_ON(thp_migration_supported() && 6419 !is_pmd_migration_entry(pmd)); 6420 return ret; 6421 } 6422 page = pmd_page(pmd); 6423 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 6424 folio = page_folio(page); 6425 if (!(mc.flags & MOVE_ANON)) 6426 return ret; 6427 if (folio_memcg(folio) == mc.from) { 6428 ret = MC_TARGET_PAGE; 6429 if (target) { 6430 folio_get(folio); 6431 if (!folio_trylock(folio)) { 6432 folio_put(folio); 6433 return MC_TARGET_NONE; 6434 } 6435 target->folio = folio; 6436 } 6437 } 6438 return ret; 6439 } 6440 #else 6441 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6442 unsigned long addr, pmd_t pmd, union mc_target *target) 6443 { 6444 return MC_TARGET_NONE; 6445 } 6446 #endif 6447 6448 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6449 unsigned long addr, unsigned long end, 6450 struct mm_walk *walk) 6451 { 6452 struct vm_area_struct *vma = walk->vma; 6453 pte_t *pte; 6454 spinlock_t *ptl; 6455 6456 ptl = pmd_trans_huge_lock(pmd, vma); 6457 if (ptl) { 6458 /* 6459 * Note their can not be MC_TARGET_DEVICE for now as we do not 6460 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 6461 * this might change. 6462 */ 6463 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6464 mc.precharge += HPAGE_PMD_NR; 6465 spin_unlock(ptl); 6466 return 0; 6467 } 6468 6469 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6470 if (!pte) 6471 return 0; 6472 for (; addr != end; pte++, addr += PAGE_SIZE) 6473 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL)) 6474 mc.precharge++; /* increment precharge temporarily */ 6475 pte_unmap_unlock(pte - 1, ptl); 6476 cond_resched(); 6477 6478 return 0; 6479 } 6480 6481 static const struct mm_walk_ops precharge_walk_ops = { 6482 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6483 .walk_lock = PGWALK_RDLOCK, 6484 }; 6485 6486 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6487 { 6488 unsigned long precharge; 6489 6490 mmap_read_lock(mm); 6491 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL); 6492 mmap_read_unlock(mm); 6493 6494 precharge = mc.precharge; 6495 mc.precharge = 0; 6496 6497 return precharge; 6498 } 6499 6500 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6501 { 6502 unsigned long precharge = mem_cgroup_count_precharge(mm); 6503 6504 VM_BUG_ON(mc.moving_task); 6505 mc.moving_task = current; 6506 return mem_cgroup_do_precharge(precharge); 6507 } 6508 6509 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6510 static void __mem_cgroup_clear_mc(void) 6511 { 6512 struct mem_cgroup *from = mc.from; 6513 struct mem_cgroup *to = mc.to; 6514 6515 /* we must uncharge all the leftover precharges from mc.to */ 6516 if (mc.precharge) { 6517 mem_cgroup_cancel_charge(mc.to, mc.precharge); 6518 mc.precharge = 0; 6519 } 6520 /* 6521 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6522 * we must uncharge here. 6523 */ 6524 if (mc.moved_charge) { 6525 mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6526 mc.moved_charge = 0; 6527 } 6528 /* we must fixup refcnts and charges */ 6529 if (mc.moved_swap) { 6530 /* uncharge swap account from the old cgroup */ 6531 if (!mem_cgroup_is_root(mc.from)) 6532 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 6533 6534 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 6535 6536 /* 6537 * we charged both to->memory and to->memsw, so we 6538 * should uncharge to->memory. 6539 */ 6540 if (!mem_cgroup_is_root(mc.to)) 6541 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 6542 6543 mc.moved_swap = 0; 6544 } 6545 memcg_oom_recover(from); 6546 memcg_oom_recover(to); 6547 wake_up_all(&mc.waitq); 6548 } 6549 6550 static void mem_cgroup_clear_mc(void) 6551 { 6552 struct mm_struct *mm = mc.mm; 6553 6554 /* 6555 * we must clear moving_task before waking up waiters at the end of 6556 * task migration. 6557 */ 6558 mc.moving_task = NULL; 6559 __mem_cgroup_clear_mc(); 6560 spin_lock(&mc.lock); 6561 mc.from = NULL; 6562 mc.to = NULL; 6563 mc.mm = NULL; 6564 spin_unlock(&mc.lock); 6565 6566 mmput(mm); 6567 } 6568 6569 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6570 { 6571 struct cgroup_subsys_state *css; 6572 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 6573 struct mem_cgroup *from; 6574 struct task_struct *leader, *p; 6575 struct mm_struct *mm; 6576 unsigned long move_flags; 6577 int ret = 0; 6578 6579 /* charge immigration isn't supported on the default hierarchy */ 6580 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6581 return 0; 6582 6583 /* 6584 * Multi-process migrations only happen on the default hierarchy 6585 * where charge immigration is not used. Perform charge 6586 * immigration if @tset contains a leader and whine if there are 6587 * multiple. 6588 */ 6589 p = NULL; 6590 cgroup_taskset_for_each_leader(leader, css, tset) { 6591 WARN_ON_ONCE(p); 6592 p = leader; 6593 memcg = mem_cgroup_from_css(css); 6594 } 6595 if (!p) 6596 return 0; 6597 6598 /* 6599 * We are now committed to this value whatever it is. Changes in this 6600 * tunable will only affect upcoming migrations, not the current one. 6601 * So we need to save it, and keep it going. 6602 */ 6603 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 6604 if (!move_flags) 6605 return 0; 6606 6607 from = mem_cgroup_from_task(p); 6608 6609 VM_BUG_ON(from == memcg); 6610 6611 mm = get_task_mm(p); 6612 if (!mm) 6613 return 0; 6614 /* We move charges only when we move a owner of the mm */ 6615 if (mm->owner == p) { 6616 VM_BUG_ON(mc.from); 6617 VM_BUG_ON(mc.to); 6618 VM_BUG_ON(mc.precharge); 6619 VM_BUG_ON(mc.moved_charge); 6620 VM_BUG_ON(mc.moved_swap); 6621 6622 spin_lock(&mc.lock); 6623 mc.mm = mm; 6624 mc.from = from; 6625 mc.to = memcg; 6626 mc.flags = move_flags; 6627 spin_unlock(&mc.lock); 6628 /* We set mc.moving_task later */ 6629 6630 ret = mem_cgroup_precharge_mc(mm); 6631 if (ret) 6632 mem_cgroup_clear_mc(); 6633 } else { 6634 mmput(mm); 6635 } 6636 return ret; 6637 } 6638 6639 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6640 { 6641 if (mc.to) 6642 mem_cgroup_clear_mc(); 6643 } 6644 6645 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6646 unsigned long addr, unsigned long end, 6647 struct mm_walk *walk) 6648 { 6649 int ret = 0; 6650 struct vm_area_struct *vma = walk->vma; 6651 pte_t *pte; 6652 spinlock_t *ptl; 6653 enum mc_target_type target_type; 6654 union mc_target target; 6655 struct folio *folio; 6656 6657 ptl = pmd_trans_huge_lock(pmd, vma); 6658 if (ptl) { 6659 if (mc.precharge < HPAGE_PMD_NR) { 6660 spin_unlock(ptl); 6661 return 0; 6662 } 6663 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6664 if (target_type == MC_TARGET_PAGE) { 6665 folio = target.folio; 6666 if (folio_isolate_lru(folio)) { 6667 if (!mem_cgroup_move_account(folio, true, 6668 mc.from, mc.to)) { 6669 mc.precharge -= HPAGE_PMD_NR; 6670 mc.moved_charge += HPAGE_PMD_NR; 6671 } 6672 folio_putback_lru(folio); 6673 } 6674 folio_unlock(folio); 6675 folio_put(folio); 6676 } else if (target_type == MC_TARGET_DEVICE) { 6677 folio = target.folio; 6678 if (!mem_cgroup_move_account(folio, true, 6679 mc.from, mc.to)) { 6680 mc.precharge -= HPAGE_PMD_NR; 6681 mc.moved_charge += HPAGE_PMD_NR; 6682 } 6683 folio_unlock(folio); 6684 folio_put(folio); 6685 } 6686 spin_unlock(ptl); 6687 return 0; 6688 } 6689 6690 retry: 6691 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6692 if (!pte) 6693 return 0; 6694 for (; addr != end; addr += PAGE_SIZE) { 6695 pte_t ptent = ptep_get(pte++); 6696 bool device = false; 6697 swp_entry_t ent; 6698 6699 if (!mc.precharge) 6700 break; 6701 6702 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6703 case MC_TARGET_DEVICE: 6704 device = true; 6705 fallthrough; 6706 case MC_TARGET_PAGE: 6707 folio = target.folio; 6708 /* 6709 * We can have a part of the split pmd here. Moving it 6710 * can be done but it would be too convoluted so simply 6711 * ignore such a partial THP and keep it in original 6712 * memcg. There should be somebody mapping the head. 6713 */ 6714 if (folio_test_large(folio)) 6715 goto put; 6716 if (!device && !folio_isolate_lru(folio)) 6717 goto put; 6718 if (!mem_cgroup_move_account(folio, false, 6719 mc.from, mc.to)) { 6720 mc.precharge--; 6721 /* we uncharge from mc.from later. */ 6722 mc.moved_charge++; 6723 } 6724 if (!device) 6725 folio_putback_lru(folio); 6726 put: /* get_mctgt_type() gets & locks the page */ 6727 folio_unlock(folio); 6728 folio_put(folio); 6729 break; 6730 case MC_TARGET_SWAP: 6731 ent = target.ent; 6732 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6733 mc.precharge--; 6734 mem_cgroup_id_get_many(mc.to, 1); 6735 /* we fixup other refcnts and charges later. */ 6736 mc.moved_swap++; 6737 } 6738 break; 6739 default: 6740 break; 6741 } 6742 } 6743 pte_unmap_unlock(pte - 1, ptl); 6744 cond_resched(); 6745 6746 if (addr != end) { 6747 /* 6748 * We have consumed all precharges we got in can_attach(). 6749 * We try charge one by one, but don't do any additional 6750 * charges to mc.to if we have failed in charge once in attach() 6751 * phase. 6752 */ 6753 ret = mem_cgroup_do_precharge(1); 6754 if (!ret) 6755 goto retry; 6756 } 6757 6758 return ret; 6759 } 6760 6761 static const struct mm_walk_ops charge_walk_ops = { 6762 .pmd_entry = mem_cgroup_move_charge_pte_range, 6763 .walk_lock = PGWALK_RDLOCK, 6764 }; 6765 6766 static void mem_cgroup_move_charge(void) 6767 { 6768 lru_add_drain_all(); 6769 /* 6770 * Signal folio_memcg_lock() to take the memcg's move_lock 6771 * while we're moving its pages to another memcg. Then wait 6772 * for already started RCU-only updates to finish. 6773 */ 6774 atomic_inc(&mc.from->moving_account); 6775 synchronize_rcu(); 6776 retry: 6777 if (unlikely(!mmap_read_trylock(mc.mm))) { 6778 /* 6779 * Someone who are holding the mmap_lock might be waiting in 6780 * waitq. So we cancel all extra charges, wake up all waiters, 6781 * and retry. Because we cancel precharges, we might not be able 6782 * to move enough charges, but moving charge is a best-effort 6783 * feature anyway, so it wouldn't be a big problem. 6784 */ 6785 __mem_cgroup_clear_mc(); 6786 cond_resched(); 6787 goto retry; 6788 } 6789 /* 6790 * When we have consumed all precharges and failed in doing 6791 * additional charge, the page walk just aborts. 6792 */ 6793 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL); 6794 mmap_read_unlock(mc.mm); 6795 atomic_dec(&mc.from->moving_account); 6796 } 6797 6798 static void mem_cgroup_move_task(void) 6799 { 6800 if (mc.to) { 6801 mem_cgroup_move_charge(); 6802 mem_cgroup_clear_mc(); 6803 } 6804 } 6805 6806 #else /* !CONFIG_MMU */ 6807 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6808 { 6809 return 0; 6810 } 6811 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6812 { 6813 } 6814 static void mem_cgroup_move_task(void) 6815 { 6816 } 6817 #endif 6818 6819 #ifdef CONFIG_MEMCG_KMEM 6820 static void mem_cgroup_fork(struct task_struct *task) 6821 { 6822 /* 6823 * Set the update flag to cause task->objcg to be initialized lazily 6824 * on the first allocation. It can be done without any synchronization 6825 * because it's always performed on the current task, so does 6826 * current_objcg_update(). 6827 */ 6828 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 6829 } 6830 6831 static void mem_cgroup_exit(struct task_struct *task) 6832 { 6833 struct obj_cgroup *objcg = task->objcg; 6834 6835 objcg = (struct obj_cgroup *) 6836 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 6837 obj_cgroup_put(objcg); 6838 6839 /* 6840 * Some kernel allocations can happen after this point, 6841 * but let's ignore them. It can be done without any synchronization 6842 * because it's always performed on the current task, so does 6843 * current_objcg_update(). 6844 */ 6845 task->objcg = NULL; 6846 } 6847 #endif 6848 6849 #ifdef CONFIG_LRU_GEN 6850 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 6851 { 6852 struct task_struct *task; 6853 struct cgroup_subsys_state *css; 6854 6855 /* find the first leader if there is any */ 6856 cgroup_taskset_for_each_leader(task, css, tset) 6857 break; 6858 6859 if (!task) 6860 return; 6861 6862 task_lock(task); 6863 if (task->mm && READ_ONCE(task->mm->owner) == task) 6864 lru_gen_migrate_mm(task->mm); 6865 task_unlock(task); 6866 } 6867 #else 6868 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 6869 #endif /* CONFIG_LRU_GEN */ 6870 6871 #ifdef CONFIG_MEMCG_KMEM 6872 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 6873 { 6874 struct task_struct *task; 6875 struct cgroup_subsys_state *css; 6876 6877 cgroup_taskset_for_each(task, css, tset) { 6878 /* atomically set the update bit */ 6879 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 6880 } 6881 } 6882 #else 6883 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {} 6884 #endif /* CONFIG_MEMCG_KMEM */ 6885 6886 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM) 6887 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6888 { 6889 mem_cgroup_lru_gen_attach(tset); 6890 mem_cgroup_kmem_attach(tset); 6891 } 6892 #endif 6893 6894 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6895 { 6896 if (value == PAGE_COUNTER_MAX) 6897 seq_puts(m, "max\n"); 6898 else 6899 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6900 6901 return 0; 6902 } 6903 6904 static u64 memory_current_read(struct cgroup_subsys_state *css, 6905 struct cftype *cft) 6906 { 6907 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6908 6909 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6910 } 6911 6912 static u64 memory_peak_read(struct cgroup_subsys_state *css, 6913 struct cftype *cft) 6914 { 6915 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6916 6917 return (u64)memcg->memory.watermark * PAGE_SIZE; 6918 } 6919 6920 static int memory_min_show(struct seq_file *m, void *v) 6921 { 6922 return seq_puts_memcg_tunable(m, 6923 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6924 } 6925 6926 static ssize_t memory_min_write(struct kernfs_open_file *of, 6927 char *buf, size_t nbytes, loff_t off) 6928 { 6929 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6930 unsigned long min; 6931 int err; 6932 6933 buf = strstrip(buf); 6934 err = page_counter_memparse(buf, "max", &min); 6935 if (err) 6936 return err; 6937 6938 page_counter_set_min(&memcg->memory, min); 6939 6940 return nbytes; 6941 } 6942 6943 static int memory_low_show(struct seq_file *m, void *v) 6944 { 6945 return seq_puts_memcg_tunable(m, 6946 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6947 } 6948 6949 static ssize_t memory_low_write(struct kernfs_open_file *of, 6950 char *buf, size_t nbytes, loff_t off) 6951 { 6952 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6953 unsigned long low; 6954 int err; 6955 6956 buf = strstrip(buf); 6957 err = page_counter_memparse(buf, "max", &low); 6958 if (err) 6959 return err; 6960 6961 page_counter_set_low(&memcg->memory, low); 6962 6963 return nbytes; 6964 } 6965 6966 static int memory_high_show(struct seq_file *m, void *v) 6967 { 6968 return seq_puts_memcg_tunable(m, 6969 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6970 } 6971 6972 static ssize_t memory_high_write(struct kernfs_open_file *of, 6973 char *buf, size_t nbytes, loff_t off) 6974 { 6975 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6976 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6977 bool drained = false; 6978 unsigned long high; 6979 int err; 6980 6981 buf = strstrip(buf); 6982 err = page_counter_memparse(buf, "max", &high); 6983 if (err) 6984 return err; 6985 6986 page_counter_set_high(&memcg->memory, high); 6987 6988 for (;;) { 6989 unsigned long nr_pages = page_counter_read(&memcg->memory); 6990 unsigned long reclaimed; 6991 6992 if (nr_pages <= high) 6993 break; 6994 6995 if (signal_pending(current)) 6996 break; 6997 6998 if (!drained) { 6999 drain_all_stock(memcg); 7000 drained = true; 7001 continue; 7002 } 7003 7004 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 7005 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP); 7006 7007 if (!reclaimed && !nr_retries--) 7008 break; 7009 } 7010 7011 memcg_wb_domain_size_changed(memcg); 7012 return nbytes; 7013 } 7014 7015 static int memory_max_show(struct seq_file *m, void *v) 7016 { 7017 return seq_puts_memcg_tunable(m, 7018 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 7019 } 7020 7021 static ssize_t memory_max_write(struct kernfs_open_file *of, 7022 char *buf, size_t nbytes, loff_t off) 7023 { 7024 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7025 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 7026 bool drained = false; 7027 unsigned long max; 7028 int err; 7029 7030 buf = strstrip(buf); 7031 err = page_counter_memparse(buf, "max", &max); 7032 if (err) 7033 return err; 7034 7035 xchg(&memcg->memory.max, max); 7036 7037 for (;;) { 7038 unsigned long nr_pages = page_counter_read(&memcg->memory); 7039 7040 if (nr_pages <= max) 7041 break; 7042 7043 if (signal_pending(current)) 7044 break; 7045 7046 if (!drained) { 7047 drain_all_stock(memcg); 7048 drained = true; 7049 continue; 7050 } 7051 7052 if (nr_reclaims) { 7053 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 7054 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP)) 7055 nr_reclaims--; 7056 continue; 7057 } 7058 7059 memcg_memory_event(memcg, MEMCG_OOM); 7060 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 7061 break; 7062 } 7063 7064 memcg_wb_domain_size_changed(memcg); 7065 return nbytes; 7066 } 7067 7068 /* 7069 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 7070 * if any new events become available. 7071 */ 7072 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 7073 { 7074 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 7075 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 7076 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 7077 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 7078 seq_printf(m, "oom_kill %lu\n", 7079 atomic_long_read(&events[MEMCG_OOM_KILL])); 7080 seq_printf(m, "oom_group_kill %lu\n", 7081 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 7082 } 7083 7084 static int memory_events_show(struct seq_file *m, void *v) 7085 { 7086 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7087 7088 __memory_events_show(m, memcg->memory_events); 7089 return 0; 7090 } 7091 7092 static int memory_events_local_show(struct seq_file *m, void *v) 7093 { 7094 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7095 7096 __memory_events_show(m, memcg->memory_events_local); 7097 return 0; 7098 } 7099 7100 static int memory_stat_show(struct seq_file *m, void *v) 7101 { 7102 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7103 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 7104 struct seq_buf s; 7105 7106 if (!buf) 7107 return -ENOMEM; 7108 seq_buf_init(&s, buf, PAGE_SIZE); 7109 memory_stat_format(memcg, &s); 7110 seq_puts(m, buf); 7111 kfree(buf); 7112 return 0; 7113 } 7114 7115 #ifdef CONFIG_NUMA 7116 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 7117 int item) 7118 { 7119 return lruvec_page_state(lruvec, item) * 7120 memcg_page_state_output_unit(item); 7121 } 7122 7123 static int memory_numa_stat_show(struct seq_file *m, void *v) 7124 { 7125 int i; 7126 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7127 7128 mem_cgroup_flush_stats(memcg); 7129 7130 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 7131 int nid; 7132 7133 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 7134 continue; 7135 7136 seq_printf(m, "%s", memory_stats[i].name); 7137 for_each_node_state(nid, N_MEMORY) { 7138 u64 size; 7139 struct lruvec *lruvec; 7140 7141 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 7142 size = lruvec_page_state_output(lruvec, 7143 memory_stats[i].idx); 7144 seq_printf(m, " N%d=%llu", nid, size); 7145 } 7146 seq_putc(m, '\n'); 7147 } 7148 7149 return 0; 7150 } 7151 #endif 7152 7153 static int memory_oom_group_show(struct seq_file *m, void *v) 7154 { 7155 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7156 7157 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 7158 7159 return 0; 7160 } 7161 7162 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 7163 char *buf, size_t nbytes, loff_t off) 7164 { 7165 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7166 int ret, oom_group; 7167 7168 buf = strstrip(buf); 7169 if (!buf) 7170 return -EINVAL; 7171 7172 ret = kstrtoint(buf, 0, &oom_group); 7173 if (ret) 7174 return ret; 7175 7176 if (oom_group != 0 && oom_group != 1) 7177 return -EINVAL; 7178 7179 WRITE_ONCE(memcg->oom_group, oom_group); 7180 7181 return nbytes; 7182 } 7183 7184 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 7185 size_t nbytes, loff_t off) 7186 { 7187 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7188 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 7189 unsigned long nr_to_reclaim, nr_reclaimed = 0; 7190 unsigned int reclaim_options; 7191 int err; 7192 7193 buf = strstrip(buf); 7194 err = page_counter_memparse(buf, "", &nr_to_reclaim); 7195 if (err) 7196 return err; 7197 7198 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 7199 while (nr_reclaimed < nr_to_reclaim) { 7200 /* Will converge on zero, but reclaim enforces a minimum */ 7201 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 7202 unsigned long reclaimed; 7203 7204 if (signal_pending(current)) 7205 return -EINTR; 7206 7207 /* 7208 * This is the final attempt, drain percpu lru caches in the 7209 * hope of introducing more evictable pages for 7210 * try_to_free_mem_cgroup_pages(). 7211 */ 7212 if (!nr_retries) 7213 lru_add_drain_all(); 7214 7215 reclaimed = try_to_free_mem_cgroup_pages(memcg, 7216 batch_size, GFP_KERNEL, reclaim_options); 7217 7218 if (!reclaimed && !nr_retries--) 7219 return -EAGAIN; 7220 7221 nr_reclaimed += reclaimed; 7222 } 7223 7224 return nbytes; 7225 } 7226 7227 static struct cftype memory_files[] = { 7228 { 7229 .name = "current", 7230 .flags = CFTYPE_NOT_ON_ROOT, 7231 .read_u64 = memory_current_read, 7232 }, 7233 { 7234 .name = "peak", 7235 .flags = CFTYPE_NOT_ON_ROOT, 7236 .read_u64 = memory_peak_read, 7237 }, 7238 { 7239 .name = "min", 7240 .flags = CFTYPE_NOT_ON_ROOT, 7241 .seq_show = memory_min_show, 7242 .write = memory_min_write, 7243 }, 7244 { 7245 .name = "low", 7246 .flags = CFTYPE_NOT_ON_ROOT, 7247 .seq_show = memory_low_show, 7248 .write = memory_low_write, 7249 }, 7250 { 7251 .name = "high", 7252 .flags = CFTYPE_NOT_ON_ROOT, 7253 .seq_show = memory_high_show, 7254 .write = memory_high_write, 7255 }, 7256 { 7257 .name = "max", 7258 .flags = CFTYPE_NOT_ON_ROOT, 7259 .seq_show = memory_max_show, 7260 .write = memory_max_write, 7261 }, 7262 { 7263 .name = "events", 7264 .flags = CFTYPE_NOT_ON_ROOT, 7265 .file_offset = offsetof(struct mem_cgroup, events_file), 7266 .seq_show = memory_events_show, 7267 }, 7268 { 7269 .name = "events.local", 7270 .flags = CFTYPE_NOT_ON_ROOT, 7271 .file_offset = offsetof(struct mem_cgroup, events_local_file), 7272 .seq_show = memory_events_local_show, 7273 }, 7274 { 7275 .name = "stat", 7276 .seq_show = memory_stat_show, 7277 }, 7278 #ifdef CONFIG_NUMA 7279 { 7280 .name = "numa_stat", 7281 .seq_show = memory_numa_stat_show, 7282 }, 7283 #endif 7284 { 7285 .name = "oom.group", 7286 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 7287 .seq_show = memory_oom_group_show, 7288 .write = memory_oom_group_write, 7289 }, 7290 { 7291 .name = "reclaim", 7292 .flags = CFTYPE_NS_DELEGATABLE, 7293 .write = memory_reclaim, 7294 }, 7295 { } /* terminate */ 7296 }; 7297 7298 struct cgroup_subsys memory_cgrp_subsys = { 7299 .css_alloc = mem_cgroup_css_alloc, 7300 .css_online = mem_cgroup_css_online, 7301 .css_offline = mem_cgroup_css_offline, 7302 .css_released = mem_cgroup_css_released, 7303 .css_free = mem_cgroup_css_free, 7304 .css_reset = mem_cgroup_css_reset, 7305 .css_rstat_flush = mem_cgroup_css_rstat_flush, 7306 .can_attach = mem_cgroup_can_attach, 7307 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM) 7308 .attach = mem_cgroup_attach, 7309 #endif 7310 .cancel_attach = mem_cgroup_cancel_attach, 7311 .post_attach = mem_cgroup_move_task, 7312 #ifdef CONFIG_MEMCG_KMEM 7313 .fork = mem_cgroup_fork, 7314 .exit = mem_cgroup_exit, 7315 #endif 7316 .dfl_cftypes = memory_files, 7317 .legacy_cftypes = mem_cgroup_legacy_files, 7318 .early_init = 0, 7319 }; 7320 7321 /* 7322 * This function calculates an individual cgroup's effective 7323 * protection which is derived from its own memory.min/low, its 7324 * parent's and siblings' settings, as well as the actual memory 7325 * distribution in the tree. 7326 * 7327 * The following rules apply to the effective protection values: 7328 * 7329 * 1. At the first level of reclaim, effective protection is equal to 7330 * the declared protection in memory.min and memory.low. 7331 * 7332 * 2. To enable safe delegation of the protection configuration, at 7333 * subsequent levels the effective protection is capped to the 7334 * parent's effective protection. 7335 * 7336 * 3. To make complex and dynamic subtrees easier to configure, the 7337 * user is allowed to overcommit the declared protection at a given 7338 * level. If that is the case, the parent's effective protection is 7339 * distributed to the children in proportion to how much protection 7340 * they have declared and how much of it they are utilizing. 7341 * 7342 * This makes distribution proportional, but also work-conserving: 7343 * if one cgroup claims much more protection than it uses memory, 7344 * the unused remainder is available to its siblings. 7345 * 7346 * 4. Conversely, when the declared protection is undercommitted at a 7347 * given level, the distribution of the larger parental protection 7348 * budget is NOT proportional. A cgroup's protection from a sibling 7349 * is capped to its own memory.min/low setting. 7350 * 7351 * 5. However, to allow protecting recursive subtrees from each other 7352 * without having to declare each individual cgroup's fixed share 7353 * of the ancestor's claim to protection, any unutilized - 7354 * "floating" - protection from up the tree is distributed in 7355 * proportion to each cgroup's *usage*. This makes the protection 7356 * neutral wrt sibling cgroups and lets them compete freely over 7357 * the shared parental protection budget, but it protects the 7358 * subtree as a whole from neighboring subtrees. 7359 * 7360 * Note that 4. and 5. are not in conflict: 4. is about protecting 7361 * against immediate siblings whereas 5. is about protecting against 7362 * neighboring subtrees. 7363 */ 7364 static unsigned long effective_protection(unsigned long usage, 7365 unsigned long parent_usage, 7366 unsigned long setting, 7367 unsigned long parent_effective, 7368 unsigned long siblings_protected) 7369 { 7370 unsigned long protected; 7371 unsigned long ep; 7372 7373 protected = min(usage, setting); 7374 /* 7375 * If all cgroups at this level combined claim and use more 7376 * protection than what the parent affords them, distribute 7377 * shares in proportion to utilization. 7378 * 7379 * We are using actual utilization rather than the statically 7380 * claimed protection in order to be work-conserving: claimed 7381 * but unused protection is available to siblings that would 7382 * otherwise get a smaller chunk than what they claimed. 7383 */ 7384 if (siblings_protected > parent_effective) 7385 return protected * parent_effective / siblings_protected; 7386 7387 /* 7388 * Ok, utilized protection of all children is within what the 7389 * parent affords them, so we know whatever this child claims 7390 * and utilizes is effectively protected. 7391 * 7392 * If there is unprotected usage beyond this value, reclaim 7393 * will apply pressure in proportion to that amount. 7394 * 7395 * If there is unutilized protection, the cgroup will be fully 7396 * shielded from reclaim, but we do return a smaller value for 7397 * protection than what the group could enjoy in theory. This 7398 * is okay. With the overcommit distribution above, effective 7399 * protection is always dependent on how memory is actually 7400 * consumed among the siblings anyway. 7401 */ 7402 ep = protected; 7403 7404 /* 7405 * If the children aren't claiming (all of) the protection 7406 * afforded to them by the parent, distribute the remainder in 7407 * proportion to the (unprotected) memory of each cgroup. That 7408 * way, cgroups that aren't explicitly prioritized wrt each 7409 * other compete freely over the allowance, but they are 7410 * collectively protected from neighboring trees. 7411 * 7412 * We're using unprotected memory for the weight so that if 7413 * some cgroups DO claim explicit protection, we don't protect 7414 * the same bytes twice. 7415 * 7416 * Check both usage and parent_usage against the respective 7417 * protected values. One should imply the other, but they 7418 * aren't read atomically - make sure the division is sane. 7419 */ 7420 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 7421 return ep; 7422 if (parent_effective > siblings_protected && 7423 parent_usage > siblings_protected && 7424 usage > protected) { 7425 unsigned long unclaimed; 7426 7427 unclaimed = parent_effective - siblings_protected; 7428 unclaimed *= usage - protected; 7429 unclaimed /= parent_usage - siblings_protected; 7430 7431 ep += unclaimed; 7432 } 7433 7434 return ep; 7435 } 7436 7437 /** 7438 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 7439 * @root: the top ancestor of the sub-tree being checked 7440 * @memcg: the memory cgroup to check 7441 * 7442 * WARNING: This function is not stateless! It can only be used as part 7443 * of a top-down tree iteration, not for isolated queries. 7444 */ 7445 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 7446 struct mem_cgroup *memcg) 7447 { 7448 unsigned long usage, parent_usage; 7449 struct mem_cgroup *parent; 7450 7451 if (mem_cgroup_disabled()) 7452 return; 7453 7454 if (!root) 7455 root = root_mem_cgroup; 7456 7457 /* 7458 * Effective values of the reclaim targets are ignored so they 7459 * can be stale. Have a look at mem_cgroup_protection for more 7460 * details. 7461 * TODO: calculation should be more robust so that we do not need 7462 * that special casing. 7463 */ 7464 if (memcg == root) 7465 return; 7466 7467 usage = page_counter_read(&memcg->memory); 7468 if (!usage) 7469 return; 7470 7471 parent = parent_mem_cgroup(memcg); 7472 7473 if (parent == root) { 7474 memcg->memory.emin = READ_ONCE(memcg->memory.min); 7475 memcg->memory.elow = READ_ONCE(memcg->memory.low); 7476 return; 7477 } 7478 7479 parent_usage = page_counter_read(&parent->memory); 7480 7481 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 7482 READ_ONCE(memcg->memory.min), 7483 READ_ONCE(parent->memory.emin), 7484 atomic_long_read(&parent->memory.children_min_usage))); 7485 7486 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 7487 READ_ONCE(memcg->memory.low), 7488 READ_ONCE(parent->memory.elow), 7489 atomic_long_read(&parent->memory.children_low_usage))); 7490 } 7491 7492 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 7493 gfp_t gfp) 7494 { 7495 int ret; 7496 7497 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 7498 if (ret) 7499 goto out; 7500 7501 mem_cgroup_commit_charge(folio, memcg); 7502 out: 7503 return ret; 7504 } 7505 7506 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 7507 { 7508 struct mem_cgroup *memcg; 7509 int ret; 7510 7511 memcg = get_mem_cgroup_from_mm(mm); 7512 ret = charge_memcg(folio, memcg, gfp); 7513 css_put(&memcg->css); 7514 7515 return ret; 7516 } 7517 7518 /** 7519 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio 7520 * @memcg: memcg to charge. 7521 * @gfp: reclaim mode. 7522 * @nr_pages: number of pages to charge. 7523 * 7524 * This function is called when allocating a huge page folio to determine if 7525 * the memcg has the capacity for it. It does not commit the charge yet, 7526 * as the hugetlb folio itself has not been obtained from the hugetlb pool. 7527 * 7528 * Once we have obtained the hugetlb folio, we can call 7529 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the 7530 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect 7531 * of try_charge(). 7532 * 7533 * Returns 0 on success. Otherwise, an error code is returned. 7534 */ 7535 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 7536 long nr_pages) 7537 { 7538 /* 7539 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation, 7540 * but do not attempt to commit charge later (or cancel on error) either. 7541 */ 7542 if (mem_cgroup_disabled() || !memcg || 7543 !cgroup_subsys_on_dfl(memory_cgrp_subsys) || 7544 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)) 7545 return -EOPNOTSUPP; 7546 7547 if (try_charge(memcg, gfp, nr_pages)) 7548 return -ENOMEM; 7549 7550 return 0; 7551 } 7552 7553 /** 7554 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 7555 * @folio: folio to charge. 7556 * @mm: mm context of the victim 7557 * @gfp: reclaim mode 7558 * @entry: swap entry for which the folio is allocated 7559 * 7560 * This function charges a folio allocated for swapin. Please call this before 7561 * adding the folio to the swapcache. 7562 * 7563 * Returns 0 on success. Otherwise, an error code is returned. 7564 */ 7565 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 7566 gfp_t gfp, swp_entry_t entry) 7567 { 7568 struct mem_cgroup *memcg; 7569 unsigned short id; 7570 int ret; 7571 7572 if (mem_cgroup_disabled()) 7573 return 0; 7574 7575 id = lookup_swap_cgroup_id(entry); 7576 rcu_read_lock(); 7577 memcg = mem_cgroup_from_id(id); 7578 if (!memcg || !css_tryget_online(&memcg->css)) 7579 memcg = get_mem_cgroup_from_mm(mm); 7580 rcu_read_unlock(); 7581 7582 ret = charge_memcg(folio, memcg, gfp); 7583 7584 css_put(&memcg->css); 7585 return ret; 7586 } 7587 7588 /* 7589 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 7590 * @entry: swap entry for which the page is charged 7591 * 7592 * Call this function after successfully adding the charged page to swapcache. 7593 * 7594 * Note: This function assumes the page for which swap slot is being uncharged 7595 * is order 0 page. 7596 */ 7597 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 7598 { 7599 /* 7600 * Cgroup1's unified memory+swap counter has been charged with the 7601 * new swapcache page, finish the transfer by uncharging the swap 7602 * slot. The swap slot would also get uncharged when it dies, but 7603 * it can stick around indefinitely and we'd count the page twice 7604 * the entire time. 7605 * 7606 * Cgroup2 has separate resource counters for memory and swap, 7607 * so this is a non-issue here. Memory and swap charge lifetimes 7608 * correspond 1:1 to page and swap slot lifetimes: we charge the 7609 * page to memory here, and uncharge swap when the slot is freed. 7610 */ 7611 if (!mem_cgroup_disabled() && do_memsw_account()) { 7612 /* 7613 * The swap entry might not get freed for a long time, 7614 * let's not wait for it. The page already received a 7615 * memory+swap charge, drop the swap entry duplicate. 7616 */ 7617 mem_cgroup_uncharge_swap(entry, 1); 7618 } 7619 } 7620 7621 struct uncharge_gather { 7622 struct mem_cgroup *memcg; 7623 unsigned long nr_memory; 7624 unsigned long pgpgout; 7625 unsigned long nr_kmem; 7626 int nid; 7627 }; 7628 7629 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 7630 { 7631 memset(ug, 0, sizeof(*ug)); 7632 } 7633 7634 static void uncharge_batch(const struct uncharge_gather *ug) 7635 { 7636 unsigned long flags; 7637 7638 if (ug->nr_memory) { 7639 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 7640 if (do_memsw_account()) 7641 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 7642 if (ug->nr_kmem) 7643 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 7644 memcg_oom_recover(ug->memcg); 7645 } 7646 7647 local_irq_save(flags); 7648 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 7649 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 7650 memcg_check_events(ug->memcg, ug->nid); 7651 local_irq_restore(flags); 7652 7653 /* drop reference from uncharge_folio */ 7654 css_put(&ug->memcg->css); 7655 } 7656 7657 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 7658 { 7659 long nr_pages; 7660 struct mem_cgroup *memcg; 7661 struct obj_cgroup *objcg; 7662 7663 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7664 VM_BUG_ON_FOLIO(folio_order(folio) > 1 && 7665 !folio_test_hugetlb(folio) && 7666 !list_empty(&folio->_deferred_list), folio); 7667 7668 /* 7669 * Nobody should be changing or seriously looking at 7670 * folio memcg or objcg at this point, we have fully 7671 * exclusive access to the folio. 7672 */ 7673 if (folio_memcg_kmem(folio)) { 7674 objcg = __folio_objcg(folio); 7675 /* 7676 * This get matches the put at the end of the function and 7677 * kmem pages do not hold memcg references anymore. 7678 */ 7679 memcg = get_mem_cgroup_from_objcg(objcg); 7680 } else { 7681 memcg = __folio_memcg(folio); 7682 } 7683 7684 if (!memcg) 7685 return; 7686 7687 if (ug->memcg != memcg) { 7688 if (ug->memcg) { 7689 uncharge_batch(ug); 7690 uncharge_gather_clear(ug); 7691 } 7692 ug->memcg = memcg; 7693 ug->nid = folio_nid(folio); 7694 7695 /* pairs with css_put in uncharge_batch */ 7696 css_get(&memcg->css); 7697 } 7698 7699 nr_pages = folio_nr_pages(folio); 7700 7701 if (folio_memcg_kmem(folio)) { 7702 ug->nr_memory += nr_pages; 7703 ug->nr_kmem += nr_pages; 7704 7705 folio->memcg_data = 0; 7706 obj_cgroup_put(objcg); 7707 } else { 7708 /* LRU pages aren't accounted at the root level */ 7709 if (!mem_cgroup_is_root(memcg)) 7710 ug->nr_memory += nr_pages; 7711 ug->pgpgout++; 7712 7713 folio->memcg_data = 0; 7714 } 7715 7716 css_put(&memcg->css); 7717 } 7718 7719 void __mem_cgroup_uncharge(struct folio *folio) 7720 { 7721 struct uncharge_gather ug; 7722 7723 /* Don't touch folio->lru of any random page, pre-check: */ 7724 if (!folio_memcg(folio)) 7725 return; 7726 7727 uncharge_gather_clear(&ug); 7728 uncharge_folio(folio, &ug); 7729 uncharge_batch(&ug); 7730 } 7731 7732 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 7733 { 7734 struct uncharge_gather ug; 7735 unsigned int i; 7736 7737 uncharge_gather_clear(&ug); 7738 for (i = 0; i < folios->nr; i++) 7739 uncharge_folio(folios->folios[i], &ug); 7740 if (ug.memcg) 7741 uncharge_batch(&ug); 7742 } 7743 7744 /** 7745 * mem_cgroup_replace_folio - Charge a folio's replacement. 7746 * @old: Currently circulating folio. 7747 * @new: Replacement folio. 7748 * 7749 * Charge @new as a replacement folio for @old. @old will 7750 * be uncharged upon free. This is only used by the page cache 7751 * (in replace_page_cache_folio()). 7752 * 7753 * Both folios must be locked, @new->mapping must be set up. 7754 */ 7755 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 7756 { 7757 struct mem_cgroup *memcg; 7758 long nr_pages = folio_nr_pages(new); 7759 unsigned long flags; 7760 7761 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7762 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7763 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7764 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 7765 7766 if (mem_cgroup_disabled()) 7767 return; 7768 7769 /* Page cache replacement: new folio already charged? */ 7770 if (folio_memcg(new)) 7771 return; 7772 7773 memcg = folio_memcg(old); 7774 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 7775 if (!memcg) 7776 return; 7777 7778 /* Force-charge the new page. The old one will be freed soon */ 7779 if (!mem_cgroup_is_root(memcg)) { 7780 page_counter_charge(&memcg->memory, nr_pages); 7781 if (do_memsw_account()) 7782 page_counter_charge(&memcg->memsw, nr_pages); 7783 } 7784 7785 css_get(&memcg->css); 7786 commit_charge(new, memcg); 7787 7788 local_irq_save(flags); 7789 mem_cgroup_charge_statistics(memcg, nr_pages); 7790 memcg_check_events(memcg, folio_nid(new)); 7791 local_irq_restore(flags); 7792 } 7793 7794 /** 7795 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 7796 * @old: Currently circulating folio. 7797 * @new: Replacement folio. 7798 * 7799 * Transfer the memcg data from the old folio to the new folio for migration. 7800 * The old folio's data info will be cleared. Note that the memory counters 7801 * will remain unchanged throughout the process. 7802 * 7803 * Both folios must be locked, @new->mapping must be set up. 7804 */ 7805 void mem_cgroup_migrate(struct folio *old, struct folio *new) 7806 { 7807 struct mem_cgroup *memcg; 7808 7809 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7810 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7811 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7812 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 7813 7814 if (mem_cgroup_disabled()) 7815 return; 7816 7817 memcg = folio_memcg(old); 7818 /* 7819 * Note that it is normal to see !memcg for a hugetlb folio. 7820 * For e.g, itt could have been allocated when memory_hugetlb_accounting 7821 * was not selected. 7822 */ 7823 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 7824 if (!memcg) 7825 return; 7826 7827 /* Transfer the charge and the css ref */ 7828 commit_charge(new, memcg); 7829 /* 7830 * If the old folio is a large folio and is in the split queue, it needs 7831 * to be removed from the split queue now, in case getting an incorrect 7832 * split queue in destroy_large_folio() after the memcg of the old folio 7833 * is cleared. 7834 * 7835 * In addition, the old folio is about to be freed after migration, so 7836 * removing from the split queue a bit earlier seems reasonable. 7837 */ 7838 if (folio_test_large(old) && folio_test_large_rmappable(old)) 7839 folio_undo_large_rmappable(old); 7840 old->memcg_data = 0; 7841 } 7842 7843 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 7844 EXPORT_SYMBOL(memcg_sockets_enabled_key); 7845 7846 void mem_cgroup_sk_alloc(struct sock *sk) 7847 { 7848 struct mem_cgroup *memcg; 7849 7850 if (!mem_cgroup_sockets_enabled) 7851 return; 7852 7853 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7854 if (!in_task()) 7855 return; 7856 7857 rcu_read_lock(); 7858 memcg = mem_cgroup_from_task(current); 7859 if (mem_cgroup_is_root(memcg)) 7860 goto out; 7861 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7862 goto out; 7863 if (css_tryget(&memcg->css)) 7864 sk->sk_memcg = memcg; 7865 out: 7866 rcu_read_unlock(); 7867 } 7868 7869 void mem_cgroup_sk_free(struct sock *sk) 7870 { 7871 if (sk->sk_memcg) 7872 css_put(&sk->sk_memcg->css); 7873 } 7874 7875 /** 7876 * mem_cgroup_charge_skmem - charge socket memory 7877 * @memcg: memcg to charge 7878 * @nr_pages: number of pages to charge 7879 * @gfp_mask: reclaim mode 7880 * 7881 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7882 * @memcg's configured limit, %false if it doesn't. 7883 */ 7884 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7885 gfp_t gfp_mask) 7886 { 7887 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7888 struct page_counter *fail; 7889 7890 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7891 memcg->tcpmem_pressure = 0; 7892 return true; 7893 } 7894 memcg->tcpmem_pressure = 1; 7895 if (gfp_mask & __GFP_NOFAIL) { 7896 page_counter_charge(&memcg->tcpmem, nr_pages); 7897 return true; 7898 } 7899 return false; 7900 } 7901 7902 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7903 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7904 return true; 7905 } 7906 7907 return false; 7908 } 7909 7910 /** 7911 * mem_cgroup_uncharge_skmem - uncharge socket memory 7912 * @memcg: memcg to uncharge 7913 * @nr_pages: number of pages to uncharge 7914 */ 7915 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7916 { 7917 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7918 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7919 return; 7920 } 7921 7922 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7923 7924 refill_stock(memcg, nr_pages); 7925 } 7926 7927 static int __init cgroup_memory(char *s) 7928 { 7929 char *token; 7930 7931 while ((token = strsep(&s, ",")) != NULL) { 7932 if (!*token) 7933 continue; 7934 if (!strcmp(token, "nosocket")) 7935 cgroup_memory_nosocket = true; 7936 if (!strcmp(token, "nokmem")) 7937 cgroup_memory_nokmem = true; 7938 if (!strcmp(token, "nobpf")) 7939 cgroup_memory_nobpf = true; 7940 } 7941 return 1; 7942 } 7943 __setup("cgroup.memory=", cgroup_memory); 7944 7945 /* 7946 * subsys_initcall() for memory controller. 7947 * 7948 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7949 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7950 * basically everything that doesn't depend on a specific mem_cgroup structure 7951 * should be initialized from here. 7952 */ 7953 static int __init mem_cgroup_init(void) 7954 { 7955 int cpu, node; 7956 7957 /* 7958 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7959 * used for per-memcg-per-cpu caching of per-node statistics. In order 7960 * to work fine, we should make sure that the overfill threshold can't 7961 * exceed S32_MAX / PAGE_SIZE. 7962 */ 7963 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7964 7965 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7966 memcg_hotplug_cpu_dead); 7967 7968 for_each_possible_cpu(cpu) 7969 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7970 drain_local_stock); 7971 7972 for_each_node(node) { 7973 struct mem_cgroup_tree_per_node *rtpn; 7974 7975 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node); 7976 7977 rtpn->rb_root = RB_ROOT; 7978 rtpn->rb_rightmost = NULL; 7979 spin_lock_init(&rtpn->lock); 7980 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7981 } 7982 7983 return 0; 7984 } 7985 subsys_initcall(mem_cgroup_init); 7986 7987 #ifdef CONFIG_SWAP 7988 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7989 { 7990 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7991 /* 7992 * The root cgroup cannot be destroyed, so it's refcount must 7993 * always be >= 1. 7994 */ 7995 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 7996 VM_BUG_ON(1); 7997 break; 7998 } 7999 memcg = parent_mem_cgroup(memcg); 8000 if (!memcg) 8001 memcg = root_mem_cgroup; 8002 } 8003 return memcg; 8004 } 8005 8006 /** 8007 * mem_cgroup_swapout - transfer a memsw charge to swap 8008 * @folio: folio whose memsw charge to transfer 8009 * @entry: swap entry to move the charge to 8010 * 8011 * Transfer the memsw charge of @folio to @entry. 8012 */ 8013 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 8014 { 8015 struct mem_cgroup *memcg, *swap_memcg; 8016 unsigned int nr_entries; 8017 unsigned short oldid; 8018 8019 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 8020 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 8021 8022 if (mem_cgroup_disabled()) 8023 return; 8024 8025 if (!do_memsw_account()) 8026 return; 8027 8028 memcg = folio_memcg(folio); 8029 8030 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 8031 if (!memcg) 8032 return; 8033 8034 /* 8035 * In case the memcg owning these pages has been offlined and doesn't 8036 * have an ID allocated to it anymore, charge the closest online 8037 * ancestor for the swap instead and transfer the memory+swap charge. 8038 */ 8039 swap_memcg = mem_cgroup_id_get_online(memcg); 8040 nr_entries = folio_nr_pages(folio); 8041 /* Get references for the tail pages, too */ 8042 if (nr_entries > 1) 8043 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 8044 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 8045 nr_entries); 8046 VM_BUG_ON_FOLIO(oldid, folio); 8047 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 8048 8049 folio->memcg_data = 0; 8050 8051 if (!mem_cgroup_is_root(memcg)) 8052 page_counter_uncharge(&memcg->memory, nr_entries); 8053 8054 if (memcg != swap_memcg) { 8055 if (!mem_cgroup_is_root(swap_memcg)) 8056 page_counter_charge(&swap_memcg->memsw, nr_entries); 8057 page_counter_uncharge(&memcg->memsw, nr_entries); 8058 } 8059 8060 /* 8061 * Interrupts should be disabled here because the caller holds the 8062 * i_pages lock which is taken with interrupts-off. It is 8063 * important here to have the interrupts disabled because it is the 8064 * only synchronisation we have for updating the per-CPU variables. 8065 */ 8066 memcg_stats_lock(); 8067 mem_cgroup_charge_statistics(memcg, -nr_entries); 8068 memcg_stats_unlock(); 8069 memcg_check_events(memcg, folio_nid(folio)); 8070 8071 css_put(&memcg->css); 8072 } 8073 8074 /** 8075 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 8076 * @folio: folio being added to swap 8077 * @entry: swap entry to charge 8078 * 8079 * Try to charge @folio's memcg for the swap space at @entry. 8080 * 8081 * Returns 0 on success, -ENOMEM on failure. 8082 */ 8083 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 8084 { 8085 unsigned int nr_pages = folio_nr_pages(folio); 8086 struct page_counter *counter; 8087 struct mem_cgroup *memcg; 8088 unsigned short oldid; 8089 8090 if (do_memsw_account()) 8091 return 0; 8092 8093 memcg = folio_memcg(folio); 8094 8095 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 8096 if (!memcg) 8097 return 0; 8098 8099 if (!entry.val) { 8100 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 8101 return 0; 8102 } 8103 8104 memcg = mem_cgroup_id_get_online(memcg); 8105 8106 if (!mem_cgroup_is_root(memcg) && 8107 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 8108 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 8109 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 8110 mem_cgroup_id_put(memcg); 8111 return -ENOMEM; 8112 } 8113 8114 /* Get references for the tail pages, too */ 8115 if (nr_pages > 1) 8116 mem_cgroup_id_get_many(memcg, nr_pages - 1); 8117 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 8118 VM_BUG_ON_FOLIO(oldid, folio); 8119 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 8120 8121 return 0; 8122 } 8123 8124 /** 8125 * __mem_cgroup_uncharge_swap - uncharge swap space 8126 * @entry: swap entry to uncharge 8127 * @nr_pages: the amount of swap space to uncharge 8128 */ 8129 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 8130 { 8131 struct mem_cgroup *memcg; 8132 unsigned short id; 8133 8134 id = swap_cgroup_record(entry, 0, nr_pages); 8135 rcu_read_lock(); 8136 memcg = mem_cgroup_from_id(id); 8137 if (memcg) { 8138 if (!mem_cgroup_is_root(memcg)) { 8139 if (do_memsw_account()) 8140 page_counter_uncharge(&memcg->memsw, nr_pages); 8141 else 8142 page_counter_uncharge(&memcg->swap, nr_pages); 8143 } 8144 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 8145 mem_cgroup_id_put_many(memcg, nr_pages); 8146 } 8147 rcu_read_unlock(); 8148 } 8149 8150 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 8151 { 8152 long nr_swap_pages = get_nr_swap_pages(); 8153 8154 if (mem_cgroup_disabled() || do_memsw_account()) 8155 return nr_swap_pages; 8156 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 8157 nr_swap_pages = min_t(long, nr_swap_pages, 8158 READ_ONCE(memcg->swap.max) - 8159 page_counter_read(&memcg->swap)); 8160 return nr_swap_pages; 8161 } 8162 8163 bool mem_cgroup_swap_full(struct folio *folio) 8164 { 8165 struct mem_cgroup *memcg; 8166 8167 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 8168 8169 if (vm_swap_full()) 8170 return true; 8171 if (do_memsw_account()) 8172 return false; 8173 8174 memcg = folio_memcg(folio); 8175 if (!memcg) 8176 return false; 8177 8178 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 8179 unsigned long usage = page_counter_read(&memcg->swap); 8180 8181 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 8182 usage * 2 >= READ_ONCE(memcg->swap.max)) 8183 return true; 8184 } 8185 8186 return false; 8187 } 8188 8189 static int __init setup_swap_account(char *s) 8190 { 8191 bool res; 8192 8193 if (!kstrtobool(s, &res) && !res) 8194 pr_warn_once("The swapaccount=0 commandline option is deprecated " 8195 "in favor of configuring swap control via cgroupfs. " 8196 "Please report your usecase to linux-mm@kvack.org if you " 8197 "depend on this functionality.\n"); 8198 return 1; 8199 } 8200 __setup("swapaccount=", setup_swap_account); 8201 8202 static u64 swap_current_read(struct cgroup_subsys_state *css, 8203 struct cftype *cft) 8204 { 8205 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 8206 8207 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 8208 } 8209 8210 static u64 swap_peak_read(struct cgroup_subsys_state *css, 8211 struct cftype *cft) 8212 { 8213 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 8214 8215 return (u64)memcg->swap.watermark * PAGE_SIZE; 8216 } 8217 8218 static int swap_high_show(struct seq_file *m, void *v) 8219 { 8220 return seq_puts_memcg_tunable(m, 8221 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 8222 } 8223 8224 static ssize_t swap_high_write(struct kernfs_open_file *of, 8225 char *buf, size_t nbytes, loff_t off) 8226 { 8227 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8228 unsigned long high; 8229 int err; 8230 8231 buf = strstrip(buf); 8232 err = page_counter_memparse(buf, "max", &high); 8233 if (err) 8234 return err; 8235 8236 page_counter_set_high(&memcg->swap, high); 8237 8238 return nbytes; 8239 } 8240 8241 static int swap_max_show(struct seq_file *m, void *v) 8242 { 8243 return seq_puts_memcg_tunable(m, 8244 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 8245 } 8246 8247 static ssize_t swap_max_write(struct kernfs_open_file *of, 8248 char *buf, size_t nbytes, loff_t off) 8249 { 8250 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8251 unsigned long max; 8252 int err; 8253 8254 buf = strstrip(buf); 8255 err = page_counter_memparse(buf, "max", &max); 8256 if (err) 8257 return err; 8258 8259 xchg(&memcg->swap.max, max); 8260 8261 return nbytes; 8262 } 8263 8264 static int swap_events_show(struct seq_file *m, void *v) 8265 { 8266 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 8267 8268 seq_printf(m, "high %lu\n", 8269 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 8270 seq_printf(m, "max %lu\n", 8271 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 8272 seq_printf(m, "fail %lu\n", 8273 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 8274 8275 return 0; 8276 } 8277 8278 static struct cftype swap_files[] = { 8279 { 8280 .name = "swap.current", 8281 .flags = CFTYPE_NOT_ON_ROOT, 8282 .read_u64 = swap_current_read, 8283 }, 8284 { 8285 .name = "swap.high", 8286 .flags = CFTYPE_NOT_ON_ROOT, 8287 .seq_show = swap_high_show, 8288 .write = swap_high_write, 8289 }, 8290 { 8291 .name = "swap.max", 8292 .flags = CFTYPE_NOT_ON_ROOT, 8293 .seq_show = swap_max_show, 8294 .write = swap_max_write, 8295 }, 8296 { 8297 .name = "swap.peak", 8298 .flags = CFTYPE_NOT_ON_ROOT, 8299 .read_u64 = swap_peak_read, 8300 }, 8301 { 8302 .name = "swap.events", 8303 .flags = CFTYPE_NOT_ON_ROOT, 8304 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 8305 .seq_show = swap_events_show, 8306 }, 8307 { } /* terminate */ 8308 }; 8309 8310 static struct cftype memsw_files[] = { 8311 { 8312 .name = "memsw.usage_in_bytes", 8313 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 8314 .read_u64 = mem_cgroup_read_u64, 8315 }, 8316 { 8317 .name = "memsw.max_usage_in_bytes", 8318 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 8319 .write = mem_cgroup_reset, 8320 .read_u64 = mem_cgroup_read_u64, 8321 }, 8322 { 8323 .name = "memsw.limit_in_bytes", 8324 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 8325 .write = mem_cgroup_write, 8326 .read_u64 = mem_cgroup_read_u64, 8327 }, 8328 { 8329 .name = "memsw.failcnt", 8330 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 8331 .write = mem_cgroup_reset, 8332 .read_u64 = mem_cgroup_read_u64, 8333 }, 8334 { }, /* terminate */ 8335 }; 8336 8337 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 8338 /** 8339 * obj_cgroup_may_zswap - check if this cgroup can zswap 8340 * @objcg: the object cgroup 8341 * 8342 * Check if the hierarchical zswap limit has been reached. 8343 * 8344 * This doesn't check for specific headroom, and it is not atomic 8345 * either. But with zswap, the size of the allocation is only known 8346 * once compression has occurred, and this optimistic pre-check avoids 8347 * spending cycles on compression when there is already no room left 8348 * or zswap is disabled altogether somewhere in the hierarchy. 8349 */ 8350 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 8351 { 8352 struct mem_cgroup *memcg, *original_memcg; 8353 bool ret = true; 8354 8355 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8356 return true; 8357 8358 original_memcg = get_mem_cgroup_from_objcg(objcg); 8359 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 8360 memcg = parent_mem_cgroup(memcg)) { 8361 unsigned long max = READ_ONCE(memcg->zswap_max); 8362 unsigned long pages; 8363 8364 if (max == PAGE_COUNTER_MAX) 8365 continue; 8366 if (max == 0) { 8367 ret = false; 8368 break; 8369 } 8370 8371 /* 8372 * mem_cgroup_flush_stats() ignores small changes. Use 8373 * do_flush_stats() directly to get accurate stats for charging. 8374 */ 8375 do_flush_stats(memcg); 8376 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 8377 if (pages < max) 8378 continue; 8379 ret = false; 8380 break; 8381 } 8382 mem_cgroup_put(original_memcg); 8383 return ret; 8384 } 8385 8386 /** 8387 * obj_cgroup_charge_zswap - charge compression backend memory 8388 * @objcg: the object cgroup 8389 * @size: size of compressed object 8390 * 8391 * This forces the charge after obj_cgroup_may_zswap() allowed 8392 * compression and storage in zwap for this cgroup to go ahead. 8393 */ 8394 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 8395 { 8396 struct mem_cgroup *memcg; 8397 8398 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8399 return; 8400 8401 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 8402 8403 /* PF_MEMALLOC context, charging must succeed */ 8404 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 8405 VM_WARN_ON_ONCE(1); 8406 8407 rcu_read_lock(); 8408 memcg = obj_cgroup_memcg(objcg); 8409 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 8410 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 8411 rcu_read_unlock(); 8412 } 8413 8414 /** 8415 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 8416 * @objcg: the object cgroup 8417 * @size: size of compressed object 8418 * 8419 * Uncharges zswap memory on page in. 8420 */ 8421 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 8422 { 8423 struct mem_cgroup *memcg; 8424 8425 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 8426 return; 8427 8428 obj_cgroup_uncharge(objcg, size); 8429 8430 rcu_read_lock(); 8431 memcg = obj_cgroup_memcg(objcg); 8432 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 8433 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 8434 rcu_read_unlock(); 8435 } 8436 8437 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 8438 { 8439 /* if zswap is disabled, do not block pages going to the swapping device */ 8440 return !is_zswap_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback); 8441 } 8442 8443 static u64 zswap_current_read(struct cgroup_subsys_state *css, 8444 struct cftype *cft) 8445 { 8446 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 8447 8448 mem_cgroup_flush_stats(memcg); 8449 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 8450 } 8451 8452 static int zswap_max_show(struct seq_file *m, void *v) 8453 { 8454 return seq_puts_memcg_tunable(m, 8455 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 8456 } 8457 8458 static ssize_t zswap_max_write(struct kernfs_open_file *of, 8459 char *buf, size_t nbytes, loff_t off) 8460 { 8461 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8462 unsigned long max; 8463 int err; 8464 8465 buf = strstrip(buf); 8466 err = page_counter_memparse(buf, "max", &max); 8467 if (err) 8468 return err; 8469 8470 xchg(&memcg->zswap_max, max); 8471 8472 return nbytes; 8473 } 8474 8475 static int zswap_writeback_show(struct seq_file *m, void *v) 8476 { 8477 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 8478 8479 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 8480 return 0; 8481 } 8482 8483 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 8484 char *buf, size_t nbytes, loff_t off) 8485 { 8486 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 8487 int zswap_writeback; 8488 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 8489 8490 if (parse_ret) 8491 return parse_ret; 8492 8493 if (zswap_writeback != 0 && zswap_writeback != 1) 8494 return -EINVAL; 8495 8496 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 8497 return nbytes; 8498 } 8499 8500 static struct cftype zswap_files[] = { 8501 { 8502 .name = "zswap.current", 8503 .flags = CFTYPE_NOT_ON_ROOT, 8504 .read_u64 = zswap_current_read, 8505 }, 8506 { 8507 .name = "zswap.max", 8508 .flags = CFTYPE_NOT_ON_ROOT, 8509 .seq_show = zswap_max_show, 8510 .write = zswap_max_write, 8511 }, 8512 { 8513 .name = "zswap.writeback", 8514 .seq_show = zswap_writeback_show, 8515 .write = zswap_writeback_write, 8516 }, 8517 { } /* terminate */ 8518 }; 8519 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */ 8520 8521 static int __init mem_cgroup_swap_init(void) 8522 { 8523 if (mem_cgroup_disabled()) 8524 return 0; 8525 8526 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 8527 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 8528 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 8529 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 8530 #endif 8531 return 0; 8532 } 8533 subsys_initcall(mem_cgroup_swap_init); 8534 8535 #endif /* CONFIG_SWAP */ 8536