1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/cpuset.h>
33 #include <linux/sched/mm.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/hugetlb.h>
36 #include <linux/pagemap.h>
37 #include <linux/pagevec.h>
38 #include <linux/vm_event_item.h>
39 #include <linux/smp.h>
40 #include <linux/page-flags.h>
41 #include <linux/backing-dev.h>
42 #include <linux/bit_spinlock.h>
43 #include <linux/rcupdate.h>
44 #include <linux/limits.h>
45 #include <linux/export.h>
46 #include <linux/list.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swapops.h>
51 #include <linux/spinlock.h>
52 #include <linux/fs.h>
53 #include <linux/seq_file.h>
54 #include <linux/vmpressure.h>
55 #include <linux/memremap.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/resume_user_mode.h>
62 #include <linux/psi.h>
63 #include <linux/seq_buf.h>
64 #include <linux/sched/isolation.h>
65 #include <linux/kmemleak.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "memcontrol-v1.h"
71
72 #include <linux/uaccess.h>
73
74 #define CREATE_TRACE_POINTS
75 #include <trace/events/memcg.h>
76 #undef CREATE_TRACE_POINTS
77
78 #include <trace/events/vmscan.h>
79
80 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
81 EXPORT_SYMBOL(memory_cgrp_subsys);
82
83 struct mem_cgroup *root_mem_cgroup __read_mostly;
84 EXPORT_SYMBOL(root_mem_cgroup);
85
86 /* Active memory cgroup to use from an interrupt context */
87 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
88 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
89
90 /* Socket memory accounting disabled? */
91 static bool cgroup_memory_nosocket __ro_after_init;
92
93 /* Kernel memory accounting disabled? */
94 static bool cgroup_memory_nokmem __ro_after_init;
95
96 /* BPF memory accounting disabled? */
97 static bool cgroup_memory_nobpf __ro_after_init;
98
99 static struct workqueue_struct *memcg_wq __ro_after_init;
100
101 static struct kmem_cache *memcg_cachep;
102 static struct kmem_cache *memcg_pn_cachep;
103
104 #ifdef CONFIG_CGROUP_WRITEBACK
105 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
106 #endif
107
task_is_dying(void)108 static inline bool task_is_dying(void)
109 {
110 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
111 (current->flags & PF_EXITING);
112 }
113
114 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)115 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
116 {
117 if (!memcg)
118 memcg = root_mem_cgroup;
119 return &memcg->vmpressure;
120 }
121
vmpressure_to_memcg(struct vmpressure * vmpr)122 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
123 {
124 return container_of(vmpr, struct mem_cgroup, vmpressure);
125 }
126
127 #define SEQ_BUF_SIZE SZ_4K
128 #define CURRENT_OBJCG_UPDATE_BIT 0
129 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
130
131 static DEFINE_SPINLOCK(objcg_lock);
132
mem_cgroup_kmem_disabled(void)133 bool mem_cgroup_kmem_disabled(void)
134 {
135 return cgroup_memory_nokmem;
136 }
137
138 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
139
obj_cgroup_release(struct percpu_ref * ref)140 static void obj_cgroup_release(struct percpu_ref *ref)
141 {
142 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
143 unsigned int nr_bytes;
144 unsigned int nr_pages;
145 unsigned long flags;
146
147 /*
148 * At this point all allocated objects are freed, and
149 * objcg->nr_charged_bytes can't have an arbitrary byte value.
150 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
151 *
152 * The following sequence can lead to it:
153 * 1) CPU0: objcg == stock->cached_objcg
154 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
155 * PAGE_SIZE bytes are charged
156 * 3) CPU1: a process from another memcg is allocating something,
157 * the stock if flushed,
158 * objcg->nr_charged_bytes = PAGE_SIZE - 92
159 * 5) CPU0: we do release this object,
160 * 92 bytes are added to stock->nr_bytes
161 * 6) CPU0: stock is flushed,
162 * 92 bytes are added to objcg->nr_charged_bytes
163 *
164 * In the result, nr_charged_bytes == PAGE_SIZE.
165 * This page will be uncharged in obj_cgroup_release().
166 */
167 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
168 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
169 nr_pages = nr_bytes >> PAGE_SHIFT;
170
171 if (nr_pages) {
172 struct mem_cgroup *memcg;
173
174 memcg = get_mem_cgroup_from_objcg(objcg);
175 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
176 memcg1_account_kmem(memcg, -nr_pages);
177 if (!mem_cgroup_is_root(memcg))
178 memcg_uncharge(memcg, nr_pages);
179 mem_cgroup_put(memcg);
180 }
181
182 spin_lock_irqsave(&objcg_lock, flags);
183 list_del(&objcg->list);
184 spin_unlock_irqrestore(&objcg_lock, flags);
185
186 percpu_ref_exit(ref);
187 kfree_rcu(objcg, rcu);
188 }
189
obj_cgroup_alloc(void)190 static struct obj_cgroup *obj_cgroup_alloc(void)
191 {
192 struct obj_cgroup *objcg;
193 int ret;
194
195 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
196 if (!objcg)
197 return NULL;
198
199 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
200 GFP_KERNEL);
201 if (ret) {
202 kfree(objcg);
203 return NULL;
204 }
205 INIT_LIST_HEAD(&objcg->list);
206 return objcg;
207 }
208
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)209 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
210 struct mem_cgroup *parent)
211 {
212 struct obj_cgroup *objcg, *iter;
213
214 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
215
216 spin_lock_irq(&objcg_lock);
217
218 /* 1) Ready to reparent active objcg. */
219 list_add(&objcg->list, &memcg->objcg_list);
220 /* 2) Reparent active objcg and already reparented objcgs to parent. */
221 list_for_each_entry(iter, &memcg->objcg_list, list)
222 WRITE_ONCE(iter->memcg, parent);
223 /* 3) Move already reparented objcgs to the parent's list */
224 list_splice(&memcg->objcg_list, &parent->objcg_list);
225
226 spin_unlock_irq(&objcg_lock);
227
228 percpu_ref_kill(&objcg->refcnt);
229 }
230
231 /*
232 * A lot of the calls to the cache allocation functions are expected to be
233 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
234 * conditional to this static branch, we'll have to allow modules that does
235 * kmem_cache_alloc and the such to see this symbol as well
236 */
237 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
238 EXPORT_SYMBOL(memcg_kmem_online_key);
239
240 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
241 EXPORT_SYMBOL(memcg_bpf_enabled_key);
242
243 /**
244 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
245 * @folio: folio of interest
246 *
247 * If memcg is bound to the default hierarchy, css of the memcg associated
248 * with @folio is returned. The returned css remains associated with @folio
249 * until it is released.
250 *
251 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
252 * is returned.
253 */
mem_cgroup_css_from_folio(struct folio * folio)254 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
255 {
256 struct mem_cgroup *memcg = folio_memcg(folio);
257
258 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
259 memcg = root_mem_cgroup;
260
261 return &memcg->css;
262 }
263
264 /**
265 * page_cgroup_ino - return inode number of the memcg a page is charged to
266 * @page: the page
267 *
268 * Look up the closest online ancestor of the memory cgroup @page is charged to
269 * and return its inode number or 0 if @page is not charged to any cgroup. It
270 * is safe to call this function without holding a reference to @page.
271 *
272 * Note, this function is inherently racy, because there is nothing to prevent
273 * the cgroup inode from getting torn down and potentially reallocated a moment
274 * after page_cgroup_ino() returns, so it only should be used by callers that
275 * do not care (such as procfs interfaces).
276 */
page_cgroup_ino(struct page * page)277 ino_t page_cgroup_ino(struct page *page)
278 {
279 struct mem_cgroup *memcg;
280 unsigned long ino = 0;
281
282 rcu_read_lock();
283 /* page_folio() is racy here, but the entire function is racy anyway */
284 memcg = folio_memcg_check(page_folio(page));
285
286 while (memcg && !css_is_online(&memcg->css))
287 memcg = parent_mem_cgroup(memcg);
288 if (memcg)
289 ino = cgroup_ino(memcg->css.cgroup);
290 rcu_read_unlock();
291 return ino;
292 }
293 EXPORT_SYMBOL_GPL(page_cgroup_ino);
294
295 /* Subset of node_stat_item for memcg stats */
296 static const unsigned int memcg_node_stat_items[] = {
297 NR_INACTIVE_ANON,
298 NR_ACTIVE_ANON,
299 NR_INACTIVE_FILE,
300 NR_ACTIVE_FILE,
301 NR_UNEVICTABLE,
302 NR_SLAB_RECLAIMABLE_B,
303 NR_SLAB_UNRECLAIMABLE_B,
304 WORKINGSET_REFAULT_ANON,
305 WORKINGSET_REFAULT_FILE,
306 WORKINGSET_ACTIVATE_ANON,
307 WORKINGSET_ACTIVATE_FILE,
308 WORKINGSET_RESTORE_ANON,
309 WORKINGSET_RESTORE_FILE,
310 WORKINGSET_NODERECLAIM,
311 NR_ANON_MAPPED,
312 NR_FILE_MAPPED,
313 NR_FILE_PAGES,
314 NR_FILE_DIRTY,
315 NR_WRITEBACK,
316 NR_SHMEM,
317 NR_SHMEM_THPS,
318 NR_FILE_THPS,
319 NR_ANON_THPS,
320 NR_KERNEL_STACK_KB,
321 NR_PAGETABLE,
322 NR_SECONDARY_PAGETABLE,
323 #ifdef CONFIG_SWAP
324 NR_SWAPCACHE,
325 #endif
326 #ifdef CONFIG_NUMA_BALANCING
327 PGPROMOTE_SUCCESS,
328 #endif
329 PGDEMOTE_KSWAPD,
330 PGDEMOTE_DIRECT,
331 PGDEMOTE_KHUGEPAGED,
332 PGDEMOTE_PROACTIVE,
333 #ifdef CONFIG_HUGETLB_PAGE
334 NR_HUGETLB,
335 #endif
336 };
337
338 static const unsigned int memcg_stat_items[] = {
339 MEMCG_SWAP,
340 MEMCG_SOCK,
341 MEMCG_PERCPU_B,
342 MEMCG_VMALLOC,
343 MEMCG_KMEM,
344 MEMCG_ZSWAP_B,
345 MEMCG_ZSWAPPED,
346 };
347
348 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
349 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
350 ARRAY_SIZE(memcg_stat_items))
351 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
352 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
353
init_memcg_stats(void)354 static void init_memcg_stats(void)
355 {
356 u8 i, j = 0;
357
358 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
359
360 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
361
362 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
363 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
364
365 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
366 mem_cgroup_stats_index[memcg_stat_items[i]] = j;
367 }
368
memcg_stats_index(int idx)369 static inline int memcg_stats_index(int idx)
370 {
371 return mem_cgroup_stats_index[idx];
372 }
373
374 struct lruvec_stats_percpu {
375 /* Local (CPU and cgroup) state */
376 long state[NR_MEMCG_NODE_STAT_ITEMS];
377
378 /* Delta calculation for lockless upward propagation */
379 long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
380 };
381
382 struct lruvec_stats {
383 /* Aggregated (CPU and subtree) state */
384 long state[NR_MEMCG_NODE_STAT_ITEMS];
385
386 /* Non-hierarchical (CPU aggregated) state */
387 long state_local[NR_MEMCG_NODE_STAT_ITEMS];
388
389 /* Pending child counts during tree propagation */
390 long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
391 };
392
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)393 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
394 {
395 struct mem_cgroup_per_node *pn;
396 long x;
397 int i;
398
399 if (mem_cgroup_disabled())
400 return node_page_state(lruvec_pgdat(lruvec), idx);
401
402 i = memcg_stats_index(idx);
403 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
404 return 0;
405
406 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
407 x = READ_ONCE(pn->lruvec_stats->state[i]);
408 #ifdef CONFIG_SMP
409 if (x < 0)
410 x = 0;
411 #endif
412 return x;
413 }
414
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)415 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
416 enum node_stat_item idx)
417 {
418 struct mem_cgroup_per_node *pn;
419 long x;
420 int i;
421
422 if (mem_cgroup_disabled())
423 return node_page_state(lruvec_pgdat(lruvec), idx);
424
425 i = memcg_stats_index(idx);
426 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
427 return 0;
428
429 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
430 x = READ_ONCE(pn->lruvec_stats->state_local[i]);
431 #ifdef CONFIG_SMP
432 if (x < 0)
433 x = 0;
434 #endif
435 return x;
436 }
437
438 /* Subset of vm_event_item to report for memcg event stats */
439 static const unsigned int memcg_vm_event_stat[] = {
440 #ifdef CONFIG_MEMCG_V1
441 PGPGIN,
442 PGPGOUT,
443 #endif
444 PSWPIN,
445 PSWPOUT,
446 PGSCAN_KSWAPD,
447 PGSCAN_DIRECT,
448 PGSCAN_KHUGEPAGED,
449 PGSCAN_PROACTIVE,
450 PGSTEAL_KSWAPD,
451 PGSTEAL_DIRECT,
452 PGSTEAL_KHUGEPAGED,
453 PGSTEAL_PROACTIVE,
454 PGFAULT,
455 PGMAJFAULT,
456 PGREFILL,
457 PGACTIVATE,
458 PGDEACTIVATE,
459 PGLAZYFREE,
460 PGLAZYFREED,
461 #ifdef CONFIG_SWAP
462 SWPIN_ZERO,
463 SWPOUT_ZERO,
464 #endif
465 #ifdef CONFIG_ZSWAP
466 ZSWPIN,
467 ZSWPOUT,
468 ZSWPWB,
469 #endif
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 THP_FAULT_ALLOC,
472 THP_COLLAPSE_ALLOC,
473 THP_SWPOUT,
474 THP_SWPOUT_FALLBACK,
475 #endif
476 #ifdef CONFIG_NUMA_BALANCING
477 NUMA_PAGE_MIGRATE,
478 NUMA_PTE_UPDATES,
479 NUMA_HINT_FAULTS,
480 #endif
481 };
482
483 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
484 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
485
init_memcg_events(void)486 static void init_memcg_events(void)
487 {
488 u8 i;
489
490 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
491
492 memset(mem_cgroup_events_index, U8_MAX,
493 sizeof(mem_cgroup_events_index));
494
495 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
496 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
497 }
498
memcg_events_index(enum vm_event_item idx)499 static inline int memcg_events_index(enum vm_event_item idx)
500 {
501 return mem_cgroup_events_index[idx];
502 }
503
504 struct memcg_vmstats_percpu {
505 /* Stats updates since the last flush */
506 unsigned int stats_updates;
507
508 /* Cached pointers for fast iteration in memcg_rstat_updated() */
509 struct memcg_vmstats_percpu __percpu *parent_pcpu;
510 struct memcg_vmstats *vmstats;
511
512 /* The above should fit a single cacheline for memcg_rstat_updated() */
513
514 /* Local (CPU and cgroup) page state & events */
515 long state[MEMCG_VMSTAT_SIZE];
516 unsigned long events[NR_MEMCG_EVENTS];
517
518 /* Delta calculation for lockless upward propagation */
519 long state_prev[MEMCG_VMSTAT_SIZE];
520 unsigned long events_prev[NR_MEMCG_EVENTS];
521 } ____cacheline_aligned;
522
523 struct memcg_vmstats {
524 /* Aggregated (CPU and subtree) page state & events */
525 long state[MEMCG_VMSTAT_SIZE];
526 unsigned long events[NR_MEMCG_EVENTS];
527
528 /* Non-hierarchical (CPU aggregated) page state & events */
529 long state_local[MEMCG_VMSTAT_SIZE];
530 unsigned long events_local[NR_MEMCG_EVENTS];
531
532 /* Pending child counts during tree propagation */
533 long state_pending[MEMCG_VMSTAT_SIZE];
534 unsigned long events_pending[NR_MEMCG_EVENTS];
535
536 /* Stats updates since the last flush */
537 atomic_t stats_updates;
538 };
539
540 /*
541 * memcg and lruvec stats flushing
542 *
543 * Many codepaths leading to stats update or read are performance sensitive and
544 * adding stats flushing in such codepaths is not desirable. So, to optimize the
545 * flushing the kernel does:
546 *
547 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
548 * rstat update tree grow unbounded.
549 *
550 * 2) Flush the stats synchronously on reader side only when there are more than
551 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
552 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
553 * only for 2 seconds due to (1).
554 */
555 static void flush_memcg_stats_dwork(struct work_struct *w);
556 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
557 static u64 flush_last_time;
558
559 #define FLUSH_TIME (2UL*HZ)
560
memcg_vmstats_needs_flush(struct memcg_vmstats * vmstats)561 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
562 {
563 return atomic_read(&vmstats->stats_updates) >
564 MEMCG_CHARGE_BATCH * num_online_cpus();
565 }
566
memcg_rstat_updated(struct mem_cgroup * memcg,int val,int cpu)567 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val,
568 int cpu)
569 {
570 struct memcg_vmstats_percpu __percpu *statc_pcpu;
571 struct memcg_vmstats_percpu *statc;
572 unsigned int stats_updates;
573
574 if (!val)
575 return;
576
577 css_rstat_updated(&memcg->css, cpu);
578 statc_pcpu = memcg->vmstats_percpu;
579 for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) {
580 statc = this_cpu_ptr(statc_pcpu);
581 /*
582 * If @memcg is already flushable then all its ancestors are
583 * flushable as well and also there is no need to increase
584 * stats_updates.
585 */
586 if (memcg_vmstats_needs_flush(statc->vmstats))
587 break;
588
589 stats_updates = this_cpu_add_return(statc_pcpu->stats_updates,
590 abs(val));
591 if (stats_updates < MEMCG_CHARGE_BATCH)
592 continue;
593
594 stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0);
595 atomic_add(stats_updates, &statc->vmstats->stats_updates);
596 }
597 }
598
__mem_cgroup_flush_stats(struct mem_cgroup * memcg,bool force)599 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
600 {
601 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
602
603 trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates),
604 force, needs_flush);
605
606 if (!force && !needs_flush)
607 return;
608
609 if (mem_cgroup_is_root(memcg))
610 WRITE_ONCE(flush_last_time, jiffies_64);
611
612 css_rstat_flush(&memcg->css);
613 }
614
615 /*
616 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
617 * @memcg: root of the subtree to flush
618 *
619 * Flushing is serialized by the underlying global rstat lock. There is also a
620 * minimum amount of work to be done even if there are no stat updates to flush.
621 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
622 * avoids unnecessary work and contention on the underlying lock.
623 */
mem_cgroup_flush_stats(struct mem_cgroup * memcg)624 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
625 {
626 if (mem_cgroup_disabled())
627 return;
628
629 if (!memcg)
630 memcg = root_mem_cgroup;
631
632 __mem_cgroup_flush_stats(memcg, false);
633 }
634
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)635 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
636 {
637 /* Only flush if the periodic flusher is one full cycle late */
638 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
639 mem_cgroup_flush_stats(memcg);
640 }
641
flush_memcg_stats_dwork(struct work_struct * w)642 static void flush_memcg_stats_dwork(struct work_struct *w)
643 {
644 /*
645 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
646 * in latency-sensitive paths is as cheap as possible.
647 */
648 __mem_cgroup_flush_stats(root_mem_cgroup, true);
649 queue_delayed_work(system_dfl_wq, &stats_flush_dwork, FLUSH_TIME);
650 }
651
memcg_page_state(struct mem_cgroup * memcg,int idx)652 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
653 {
654 long x;
655 int i = memcg_stats_index(idx);
656
657 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
658 return 0;
659
660 x = READ_ONCE(memcg->vmstats->state[i]);
661 #ifdef CONFIG_SMP
662 if (x < 0)
663 x = 0;
664 #endif
665 return x;
666 }
667
memcg_stat_item_valid(int idx)668 bool memcg_stat_item_valid(int idx)
669 {
670 if ((u32)idx >= MEMCG_NR_STAT)
671 return false;
672
673 return !BAD_STAT_IDX(memcg_stats_index(idx));
674 }
675
676 static int memcg_page_state_unit(int item);
677
678 /*
679 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
680 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
681 */
memcg_state_val_in_pages(int idx,int val)682 static int memcg_state_val_in_pages(int idx, int val)
683 {
684 int unit = memcg_page_state_unit(idx);
685
686 if (!val || unit == PAGE_SIZE)
687 return val;
688 else
689 return max(val * unit / PAGE_SIZE, 1UL);
690 }
691
692 /**
693 * mod_memcg_state - update cgroup memory statistics
694 * @memcg: the memory cgroup
695 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
696 * @val: delta to add to the counter, can be negative
697 */
mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int val)698 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
699 int val)
700 {
701 int i = memcg_stats_index(idx);
702 int cpu;
703
704 if (mem_cgroup_disabled())
705 return;
706
707 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
708 return;
709
710 cpu = get_cpu();
711
712 this_cpu_add(memcg->vmstats_percpu->state[i], val);
713 val = memcg_state_val_in_pages(idx, val);
714 memcg_rstat_updated(memcg, val, cpu);
715 trace_mod_memcg_state(memcg, idx, val);
716
717 put_cpu();
718 }
719
720 #ifdef CONFIG_MEMCG_V1
721 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)722 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
723 {
724 long x;
725 int i = memcg_stats_index(idx);
726
727 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
728 return 0;
729
730 x = READ_ONCE(memcg->vmstats->state_local[i]);
731 #ifdef CONFIG_SMP
732 if (x < 0)
733 x = 0;
734 #endif
735 return x;
736 }
737 #endif
738
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)739 static void mod_memcg_lruvec_state(struct lruvec *lruvec,
740 enum node_stat_item idx,
741 int val)
742 {
743 struct mem_cgroup_per_node *pn;
744 struct mem_cgroup *memcg;
745 int i = memcg_stats_index(idx);
746 int cpu;
747
748 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
749 return;
750
751 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
752 memcg = pn->memcg;
753
754 cpu = get_cpu();
755
756 /* Update memcg */
757 this_cpu_add(memcg->vmstats_percpu->state[i], val);
758
759 /* Update lruvec */
760 this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
761
762 val = memcg_state_val_in_pages(idx, val);
763 memcg_rstat_updated(memcg, val, cpu);
764 trace_mod_memcg_lruvec_state(memcg, idx, val);
765
766 put_cpu();
767 }
768
769 /**
770 * mod_lruvec_state - update lruvec memory statistics
771 * @lruvec: the lruvec
772 * @idx: the stat item
773 * @val: delta to add to the counter, can be negative
774 *
775 * The lruvec is the intersection of the NUMA node and a cgroup. This
776 * function updates the all three counters that are affected by a
777 * change of state at this level: per-node, per-cgroup, per-lruvec.
778 */
mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)779 void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
780 int val)
781 {
782 /* Update node */
783 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
784
785 /* Update memcg and lruvec */
786 if (!mem_cgroup_disabled())
787 mod_memcg_lruvec_state(lruvec, idx, val);
788 }
789
lruvec_stat_mod_folio(struct folio * folio,enum node_stat_item idx,int val)790 void lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
791 int val)
792 {
793 struct mem_cgroup *memcg;
794 pg_data_t *pgdat = folio_pgdat(folio);
795 struct lruvec *lruvec;
796
797 rcu_read_lock();
798 memcg = folio_memcg(folio);
799 /* Untracked pages have no memcg, no lruvec. Update only the node */
800 if (!memcg) {
801 rcu_read_unlock();
802 mod_node_page_state(pgdat, idx, val);
803 return;
804 }
805
806 lruvec = mem_cgroup_lruvec(memcg, pgdat);
807 mod_lruvec_state(lruvec, idx, val);
808 rcu_read_unlock();
809 }
810 EXPORT_SYMBOL(lruvec_stat_mod_folio);
811
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)812 void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
813 {
814 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
815 struct mem_cgroup *memcg;
816 struct lruvec *lruvec;
817
818 rcu_read_lock();
819 memcg = mem_cgroup_from_virt(p);
820
821 /*
822 * Untracked pages have no memcg, no lruvec. Update only the
823 * node. If we reparent the slab objects to the root memcg,
824 * when we free the slab object, we need to update the per-memcg
825 * vmstats to keep it correct for the root memcg.
826 */
827 if (!memcg) {
828 mod_node_page_state(pgdat, idx, val);
829 } else {
830 lruvec = mem_cgroup_lruvec(memcg, pgdat);
831 mod_lruvec_state(lruvec, idx, val);
832 }
833 rcu_read_unlock();
834 }
835
836 /**
837 * count_memcg_events - account VM events in a cgroup
838 * @memcg: the memory cgroup
839 * @idx: the event item
840 * @count: the number of events that occurred
841 */
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)842 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
843 unsigned long count)
844 {
845 int i = memcg_events_index(idx);
846 int cpu;
847
848 if (mem_cgroup_disabled())
849 return;
850
851 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
852 return;
853
854 cpu = get_cpu();
855
856 this_cpu_add(memcg->vmstats_percpu->events[i], count);
857 memcg_rstat_updated(memcg, count, cpu);
858 trace_count_memcg_events(memcg, idx, count);
859
860 put_cpu();
861 }
862
memcg_events(struct mem_cgroup * memcg,int event)863 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
864 {
865 int i = memcg_events_index(event);
866
867 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
868 return 0;
869
870 return READ_ONCE(memcg->vmstats->events[i]);
871 }
872
memcg_vm_event_item_valid(enum vm_event_item idx)873 bool memcg_vm_event_item_valid(enum vm_event_item idx)
874 {
875 if (idx >= NR_VM_EVENT_ITEMS)
876 return false;
877
878 return !BAD_STAT_IDX(memcg_events_index(idx));
879 }
880
881 #ifdef CONFIG_MEMCG_V1
memcg_events_local(struct mem_cgroup * memcg,int event)882 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
883 {
884 int i = memcg_events_index(event);
885
886 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
887 return 0;
888
889 return READ_ONCE(memcg->vmstats->events_local[i]);
890 }
891 #endif
892
mem_cgroup_from_task(struct task_struct * p)893 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
894 {
895 /*
896 * mm_update_next_owner() may clear mm->owner to NULL
897 * if it races with swapoff, page migration, etc.
898 * So this can be called with p == NULL.
899 */
900 if (unlikely(!p))
901 return NULL;
902
903 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
904 }
905 EXPORT_SYMBOL(mem_cgroup_from_task);
906
active_memcg(void)907 static __always_inline struct mem_cgroup *active_memcg(void)
908 {
909 if (!in_task())
910 return this_cpu_read(int_active_memcg);
911 else
912 return current->active_memcg;
913 }
914
915 /**
916 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
917 * @mm: mm from which memcg should be extracted. It can be NULL.
918 *
919 * Obtain a reference on mm->memcg and returns it if successful. If mm
920 * is NULL, then the memcg is chosen as follows:
921 * 1) The active memcg, if set.
922 * 2) current->mm->memcg, if available
923 * 3) root memcg
924 * If mem_cgroup is disabled, NULL is returned.
925 */
get_mem_cgroup_from_mm(struct mm_struct * mm)926 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
927 {
928 struct mem_cgroup *memcg;
929
930 if (mem_cgroup_disabled())
931 return NULL;
932
933 /*
934 * Page cache insertions can happen without an
935 * actual mm context, e.g. during disk probing
936 * on boot, loopback IO, acct() writes etc.
937 *
938 * No need to css_get on root memcg as the reference
939 * counting is disabled on the root level in the
940 * cgroup core. See CSS_NO_REF.
941 */
942 if (unlikely(!mm)) {
943 memcg = active_memcg();
944 if (unlikely(memcg)) {
945 /* remote memcg must hold a ref */
946 css_get(&memcg->css);
947 return memcg;
948 }
949 mm = current->mm;
950 if (unlikely(!mm))
951 return root_mem_cgroup;
952 }
953
954 rcu_read_lock();
955 do {
956 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
957 if (unlikely(!memcg))
958 memcg = root_mem_cgroup;
959 } while (!css_tryget(&memcg->css));
960 rcu_read_unlock();
961 return memcg;
962 }
963 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
964
965 /**
966 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
967 */
get_mem_cgroup_from_current(void)968 struct mem_cgroup *get_mem_cgroup_from_current(void)
969 {
970 struct mem_cgroup *memcg;
971
972 if (mem_cgroup_disabled())
973 return NULL;
974
975 again:
976 rcu_read_lock();
977 memcg = mem_cgroup_from_task(current);
978 if (!css_tryget(&memcg->css)) {
979 rcu_read_unlock();
980 goto again;
981 }
982 rcu_read_unlock();
983 return memcg;
984 }
985
986 /**
987 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
988 * @folio: folio from which memcg should be extracted.
989 */
get_mem_cgroup_from_folio(struct folio * folio)990 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
991 {
992 struct mem_cgroup *memcg = folio_memcg(folio);
993
994 if (mem_cgroup_disabled())
995 return NULL;
996
997 rcu_read_lock();
998 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
999 memcg = root_mem_cgroup;
1000 rcu_read_unlock();
1001 return memcg;
1002 }
1003
1004 /**
1005 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1006 * @root: hierarchy root
1007 * @prev: previously returned memcg, NULL on first invocation
1008 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1009 *
1010 * Returns references to children of the hierarchy below @root, or
1011 * @root itself, or %NULL after a full round-trip.
1012 *
1013 * Caller must pass the return value in @prev on subsequent
1014 * invocations for reference counting, or use mem_cgroup_iter_break()
1015 * to cancel a hierarchy walk before the round-trip is complete.
1016 *
1017 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1018 * in the hierarchy among all concurrent reclaimers operating on the
1019 * same node.
1020 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1021 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1022 struct mem_cgroup *prev,
1023 struct mem_cgroup_reclaim_cookie *reclaim)
1024 {
1025 struct mem_cgroup_reclaim_iter *iter;
1026 struct cgroup_subsys_state *css;
1027 struct mem_cgroup *pos;
1028 struct mem_cgroup *next;
1029
1030 if (mem_cgroup_disabled())
1031 return NULL;
1032
1033 if (!root)
1034 root = root_mem_cgroup;
1035
1036 rcu_read_lock();
1037 restart:
1038 next = NULL;
1039
1040 if (reclaim) {
1041 int gen;
1042 int nid = reclaim->pgdat->node_id;
1043
1044 iter = &root->nodeinfo[nid]->iter;
1045 gen = atomic_read(&iter->generation);
1046
1047 /*
1048 * On start, join the current reclaim iteration cycle.
1049 * Exit when a concurrent walker completes it.
1050 */
1051 if (!prev)
1052 reclaim->generation = gen;
1053 else if (reclaim->generation != gen)
1054 goto out_unlock;
1055
1056 pos = READ_ONCE(iter->position);
1057 } else
1058 pos = prev;
1059
1060 css = pos ? &pos->css : NULL;
1061
1062 while ((css = css_next_descendant_pre(css, &root->css))) {
1063 /*
1064 * Verify the css and acquire a reference. The root
1065 * is provided by the caller, so we know it's alive
1066 * and kicking, and don't take an extra reference.
1067 */
1068 if (css == &root->css || css_tryget(css))
1069 break;
1070 }
1071
1072 next = mem_cgroup_from_css(css);
1073
1074 if (reclaim) {
1075 /*
1076 * The position could have already been updated by a competing
1077 * thread, so check that the value hasn't changed since we read
1078 * it to avoid reclaiming from the same cgroup twice.
1079 */
1080 if (cmpxchg(&iter->position, pos, next) != pos) {
1081 if (css && css != &root->css)
1082 css_put(css);
1083 goto restart;
1084 }
1085
1086 if (!next) {
1087 atomic_inc(&iter->generation);
1088
1089 /*
1090 * Reclaimers share the hierarchy walk, and a
1091 * new one might jump in right at the end of
1092 * the hierarchy - make sure they see at least
1093 * one group and restart from the beginning.
1094 */
1095 if (!prev)
1096 goto restart;
1097 }
1098 }
1099
1100 out_unlock:
1101 rcu_read_unlock();
1102 if (prev && prev != root)
1103 css_put(&prev->css);
1104
1105 return next;
1106 }
1107
1108 /**
1109 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1110 * @root: hierarchy root
1111 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1112 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1113 void mem_cgroup_iter_break(struct mem_cgroup *root,
1114 struct mem_cgroup *prev)
1115 {
1116 if (!root)
1117 root = root_mem_cgroup;
1118 if (prev && prev != root)
1119 css_put(&prev->css);
1120 }
1121
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1122 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1123 struct mem_cgroup *dead_memcg)
1124 {
1125 struct mem_cgroup_reclaim_iter *iter;
1126 struct mem_cgroup_per_node *mz;
1127 int nid;
1128
1129 for_each_node(nid) {
1130 mz = from->nodeinfo[nid];
1131 iter = &mz->iter;
1132 cmpxchg(&iter->position, dead_memcg, NULL);
1133 }
1134 }
1135
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1136 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1137 {
1138 struct mem_cgroup *memcg = dead_memcg;
1139 struct mem_cgroup *last;
1140
1141 do {
1142 __invalidate_reclaim_iterators(memcg, dead_memcg);
1143 last = memcg;
1144 } while ((memcg = parent_mem_cgroup(memcg)));
1145
1146 /*
1147 * When cgroup1 non-hierarchy mode is used,
1148 * parent_mem_cgroup() does not walk all the way up to the
1149 * cgroup root (root_mem_cgroup). So we have to handle
1150 * dead_memcg from cgroup root separately.
1151 */
1152 if (!mem_cgroup_is_root(last))
1153 __invalidate_reclaim_iterators(root_mem_cgroup,
1154 dead_memcg);
1155 }
1156
1157 /**
1158 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1159 * @memcg: hierarchy root
1160 * @fn: function to call for each task
1161 * @arg: argument passed to @fn
1162 *
1163 * This function iterates over tasks attached to @memcg or to any of its
1164 * descendants and calls @fn for each task. If @fn returns a non-zero
1165 * value, the function breaks the iteration loop. Otherwise, it will iterate
1166 * over all tasks and return 0.
1167 *
1168 * This function must not be called for the root memory cgroup.
1169 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1170 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1171 int (*fn)(struct task_struct *, void *), void *arg)
1172 {
1173 struct mem_cgroup *iter;
1174 int ret = 0;
1175
1176 BUG_ON(mem_cgroup_is_root(memcg));
1177
1178 for_each_mem_cgroup_tree(iter, memcg) {
1179 struct css_task_iter it;
1180 struct task_struct *task;
1181
1182 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1183 while (!ret && (task = css_task_iter_next(&it))) {
1184 ret = fn(task, arg);
1185 /* Avoid potential softlockup warning */
1186 cond_resched();
1187 }
1188 css_task_iter_end(&it);
1189 if (ret) {
1190 mem_cgroup_iter_break(memcg, iter);
1191 break;
1192 }
1193 }
1194 }
1195
1196 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1197 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1198 {
1199 struct mem_cgroup *memcg;
1200
1201 if (mem_cgroup_disabled())
1202 return;
1203
1204 memcg = folio_memcg(folio);
1205
1206 if (!memcg)
1207 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1208 else
1209 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1210 }
1211 #endif
1212
1213 /**
1214 * folio_lruvec_lock - Lock the lruvec for a folio.
1215 * @folio: Pointer to the folio.
1216 *
1217 * These functions are safe to use under any of the following conditions:
1218 * - folio locked
1219 * - folio_test_lru false
1220 * - folio frozen (refcount of 0)
1221 *
1222 * Return: The lruvec this folio is on with its lock held.
1223 */
folio_lruvec_lock(struct folio * folio)1224 struct lruvec *folio_lruvec_lock(struct folio *folio)
1225 {
1226 struct lruvec *lruvec = folio_lruvec(folio);
1227
1228 spin_lock(&lruvec->lru_lock);
1229 lruvec_memcg_debug(lruvec, folio);
1230
1231 return lruvec;
1232 }
1233
1234 /**
1235 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1236 * @folio: Pointer to the folio.
1237 *
1238 * These functions are safe to use under any of the following conditions:
1239 * - folio locked
1240 * - folio_test_lru false
1241 * - folio frozen (refcount of 0)
1242 *
1243 * Return: The lruvec this folio is on with its lock held and interrupts
1244 * disabled.
1245 */
folio_lruvec_lock_irq(struct folio * folio)1246 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1247 {
1248 struct lruvec *lruvec = folio_lruvec(folio);
1249
1250 spin_lock_irq(&lruvec->lru_lock);
1251 lruvec_memcg_debug(lruvec, folio);
1252
1253 return lruvec;
1254 }
1255
1256 /**
1257 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1258 * @folio: Pointer to the folio.
1259 * @flags: Pointer to irqsave flags.
1260 *
1261 * These functions are safe to use under any of the following conditions:
1262 * - folio locked
1263 * - folio_test_lru false
1264 * - folio frozen (refcount of 0)
1265 *
1266 * Return: The lruvec this folio is on with its lock held and interrupts
1267 * disabled.
1268 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1269 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1270 unsigned long *flags)
1271 {
1272 struct lruvec *lruvec = folio_lruvec(folio);
1273
1274 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1275 lruvec_memcg_debug(lruvec, folio);
1276
1277 return lruvec;
1278 }
1279
1280 /**
1281 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1282 * @lruvec: mem_cgroup per zone lru vector
1283 * @lru: index of lru list the page is sitting on
1284 * @zid: zone id of the accounted pages
1285 * @nr_pages: positive when adding or negative when removing
1286 *
1287 * This function must be called under lru_lock, just before a page is added
1288 * to or just after a page is removed from an lru list.
1289 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1290 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1291 int zid, int nr_pages)
1292 {
1293 struct mem_cgroup_per_node *mz;
1294 unsigned long *lru_size;
1295 long size;
1296
1297 if (mem_cgroup_disabled())
1298 return;
1299
1300 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1301 lru_size = &mz->lru_zone_size[zid][lru];
1302
1303 if (nr_pages < 0)
1304 *lru_size += nr_pages;
1305
1306 size = *lru_size;
1307 if (WARN_ONCE(size < 0,
1308 "%s(%p, %d, %d): lru_size %ld\n",
1309 __func__, lruvec, lru, nr_pages, size)) {
1310 VM_BUG_ON(1);
1311 *lru_size = 0;
1312 }
1313
1314 if (nr_pages > 0)
1315 *lru_size += nr_pages;
1316 }
1317
1318 /**
1319 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1320 * @memcg: the memory cgroup
1321 *
1322 * Returns the maximum amount of memory @mem can be charged with, in
1323 * pages.
1324 */
mem_cgroup_margin(struct mem_cgroup * memcg)1325 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1326 {
1327 unsigned long margin = 0;
1328 unsigned long count;
1329 unsigned long limit;
1330
1331 count = page_counter_read(&memcg->memory);
1332 limit = READ_ONCE(memcg->memory.max);
1333 if (count < limit)
1334 margin = limit - count;
1335
1336 if (do_memsw_account()) {
1337 count = page_counter_read(&memcg->memsw);
1338 limit = READ_ONCE(memcg->memsw.max);
1339 if (count < limit)
1340 margin = min(margin, limit - count);
1341 else
1342 margin = 0;
1343 }
1344
1345 return margin;
1346 }
1347
1348 struct memory_stat {
1349 const char *name;
1350 unsigned int idx;
1351 };
1352
1353 static const struct memory_stat memory_stats[] = {
1354 { "anon", NR_ANON_MAPPED },
1355 { "file", NR_FILE_PAGES },
1356 { "kernel", MEMCG_KMEM },
1357 { "kernel_stack", NR_KERNEL_STACK_KB },
1358 { "pagetables", NR_PAGETABLE },
1359 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1360 { "percpu", MEMCG_PERCPU_B },
1361 { "sock", MEMCG_SOCK },
1362 { "vmalloc", MEMCG_VMALLOC },
1363 { "shmem", NR_SHMEM },
1364 #ifdef CONFIG_ZSWAP
1365 { "zswap", MEMCG_ZSWAP_B },
1366 { "zswapped", MEMCG_ZSWAPPED },
1367 #endif
1368 { "file_mapped", NR_FILE_MAPPED },
1369 { "file_dirty", NR_FILE_DIRTY },
1370 { "file_writeback", NR_WRITEBACK },
1371 #ifdef CONFIG_SWAP
1372 { "swapcached", NR_SWAPCACHE },
1373 #endif
1374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1375 { "anon_thp", NR_ANON_THPS },
1376 { "file_thp", NR_FILE_THPS },
1377 { "shmem_thp", NR_SHMEM_THPS },
1378 #endif
1379 { "inactive_anon", NR_INACTIVE_ANON },
1380 { "active_anon", NR_ACTIVE_ANON },
1381 { "inactive_file", NR_INACTIVE_FILE },
1382 { "active_file", NR_ACTIVE_FILE },
1383 { "unevictable", NR_UNEVICTABLE },
1384 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1385 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1386 #ifdef CONFIG_HUGETLB_PAGE
1387 { "hugetlb", NR_HUGETLB },
1388 #endif
1389
1390 /* The memory events */
1391 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1392 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1393 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1394 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1395 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1396 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1397 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1398
1399 { "pgdemote_kswapd", PGDEMOTE_KSWAPD },
1400 { "pgdemote_direct", PGDEMOTE_DIRECT },
1401 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED },
1402 { "pgdemote_proactive", PGDEMOTE_PROACTIVE },
1403 #ifdef CONFIG_NUMA_BALANCING
1404 { "pgpromote_success", PGPROMOTE_SUCCESS },
1405 #endif
1406 };
1407
1408 /* The actual unit of the state item, not the same as the output unit */
memcg_page_state_unit(int item)1409 static int memcg_page_state_unit(int item)
1410 {
1411 switch (item) {
1412 case MEMCG_PERCPU_B:
1413 case MEMCG_ZSWAP_B:
1414 case NR_SLAB_RECLAIMABLE_B:
1415 case NR_SLAB_UNRECLAIMABLE_B:
1416 return 1;
1417 case NR_KERNEL_STACK_KB:
1418 return SZ_1K;
1419 default:
1420 return PAGE_SIZE;
1421 }
1422 }
1423
1424 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_output_unit(int item)1425 static int memcg_page_state_output_unit(int item)
1426 {
1427 /*
1428 * Workingset state is actually in pages, but we export it to userspace
1429 * as a scalar count of events, so special case it here.
1430 *
1431 * Demotion and promotion activities are exported in pages, consistent
1432 * with their global counterparts.
1433 */
1434 switch (item) {
1435 case WORKINGSET_REFAULT_ANON:
1436 case WORKINGSET_REFAULT_FILE:
1437 case WORKINGSET_ACTIVATE_ANON:
1438 case WORKINGSET_ACTIVATE_FILE:
1439 case WORKINGSET_RESTORE_ANON:
1440 case WORKINGSET_RESTORE_FILE:
1441 case WORKINGSET_NODERECLAIM:
1442 case PGDEMOTE_KSWAPD:
1443 case PGDEMOTE_DIRECT:
1444 case PGDEMOTE_KHUGEPAGED:
1445 case PGDEMOTE_PROACTIVE:
1446 #ifdef CONFIG_NUMA_BALANCING
1447 case PGPROMOTE_SUCCESS:
1448 #endif
1449 return 1;
1450 default:
1451 return memcg_page_state_unit(item);
1452 }
1453 }
1454
memcg_page_state_output(struct mem_cgroup * memcg,int item)1455 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1456 {
1457 return memcg_page_state(memcg, item) *
1458 memcg_page_state_output_unit(item);
1459 }
1460
1461 #ifdef CONFIG_MEMCG_V1
memcg_page_state_local_output(struct mem_cgroup * memcg,int item)1462 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1463 {
1464 return memcg_page_state_local(memcg, item) *
1465 memcg_page_state_output_unit(item);
1466 }
1467 #endif
1468
1469 #ifdef CONFIG_HUGETLB_PAGE
memcg_accounts_hugetlb(void)1470 static bool memcg_accounts_hugetlb(void)
1471 {
1472 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1473 }
1474 #else /* CONFIG_HUGETLB_PAGE */
memcg_accounts_hugetlb(void)1475 static bool memcg_accounts_hugetlb(void)
1476 {
1477 return false;
1478 }
1479 #endif /* CONFIG_HUGETLB_PAGE */
1480
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1481 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1482 {
1483 int i;
1484
1485 /*
1486 * Provide statistics on the state of the memory subsystem as
1487 * well as cumulative event counters that show past behavior.
1488 *
1489 * This list is ordered following a combination of these gradients:
1490 * 1) generic big picture -> specifics and details
1491 * 2) reflecting userspace activity -> reflecting kernel heuristics
1492 *
1493 * Current memory state:
1494 */
1495 mem_cgroup_flush_stats(memcg);
1496
1497 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1498 u64 size;
1499
1500 #ifdef CONFIG_HUGETLB_PAGE
1501 if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1502 !memcg_accounts_hugetlb())
1503 continue;
1504 #endif
1505 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1506 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1507
1508 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1509 size += memcg_page_state_output(memcg,
1510 NR_SLAB_RECLAIMABLE_B);
1511 seq_buf_printf(s, "slab %llu\n", size);
1512 }
1513 }
1514
1515 /* Accumulated memory events */
1516 seq_buf_printf(s, "pgscan %lu\n",
1517 memcg_events(memcg, PGSCAN_KSWAPD) +
1518 memcg_events(memcg, PGSCAN_DIRECT) +
1519 memcg_events(memcg, PGSCAN_PROACTIVE) +
1520 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1521 seq_buf_printf(s, "pgsteal %lu\n",
1522 memcg_events(memcg, PGSTEAL_KSWAPD) +
1523 memcg_events(memcg, PGSTEAL_DIRECT) +
1524 memcg_events(memcg, PGSTEAL_PROACTIVE) +
1525 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1526
1527 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1528 #ifdef CONFIG_MEMCG_V1
1529 if (memcg_vm_event_stat[i] == PGPGIN ||
1530 memcg_vm_event_stat[i] == PGPGOUT)
1531 continue;
1532 #endif
1533 seq_buf_printf(s, "%s %lu\n",
1534 vm_event_name(memcg_vm_event_stat[i]),
1535 memcg_events(memcg, memcg_vm_event_stat[i]));
1536 }
1537 }
1538
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1539 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1540 {
1541 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1542 memcg_stat_format(memcg, s);
1543 else
1544 memcg1_stat_format(memcg, s);
1545 if (seq_buf_has_overflowed(s))
1546 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1547 }
1548
1549 /**
1550 * mem_cgroup_print_oom_context: Print OOM information relevant to
1551 * memory controller.
1552 * @memcg: The memory cgroup that went over limit
1553 * @p: Task that is going to be killed
1554 *
1555 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1556 * enabled
1557 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1558 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1559 {
1560 rcu_read_lock();
1561
1562 if (memcg) {
1563 pr_cont(",oom_memcg=");
1564 pr_cont_cgroup_path(memcg->css.cgroup);
1565 } else
1566 pr_cont(",global_oom");
1567 if (p) {
1568 pr_cont(",task_memcg=");
1569 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1570 }
1571 rcu_read_unlock();
1572 }
1573
1574 /**
1575 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1576 * memory controller.
1577 * @memcg: The memory cgroup that went over limit
1578 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1579 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1580 {
1581 /* Use static buffer, for the caller is holding oom_lock. */
1582 static char buf[SEQ_BUF_SIZE];
1583 struct seq_buf s;
1584 unsigned long memory_failcnt;
1585
1586 lockdep_assert_held(&oom_lock);
1587
1588 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1589 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]);
1590 else
1591 memory_failcnt = memcg->memory.failcnt;
1592
1593 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1594 K((u64)page_counter_read(&memcg->memory)),
1595 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt);
1596 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1597 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1598 K((u64)page_counter_read(&memcg->swap)),
1599 K((u64)READ_ONCE(memcg->swap.max)),
1600 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
1601 #ifdef CONFIG_MEMCG_V1
1602 else {
1603 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1604 K((u64)page_counter_read(&memcg->memsw)),
1605 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1606 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1607 K((u64)page_counter_read(&memcg->kmem)),
1608 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1609 }
1610 #endif
1611
1612 pr_info("Memory cgroup stats for ");
1613 pr_cont_cgroup_path(memcg->css.cgroup);
1614 pr_cont(":");
1615 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1616 memory_stat_format(memcg, &s);
1617 seq_buf_do_printk(&s, KERN_INFO);
1618 }
1619
1620 /*
1621 * Return the memory (and swap, if configured) limit for a memcg.
1622 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1623 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1624 {
1625 unsigned long max = READ_ONCE(memcg->memory.max);
1626
1627 if (do_memsw_account()) {
1628 if (mem_cgroup_swappiness(memcg)) {
1629 /* Calculate swap excess capacity from memsw limit */
1630 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1631
1632 max += min(swap, (unsigned long)total_swap_pages);
1633 }
1634 } else {
1635 if (mem_cgroup_swappiness(memcg))
1636 max += min(READ_ONCE(memcg->swap.max),
1637 (unsigned long)total_swap_pages);
1638 }
1639 return max;
1640 }
1641
__memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event,bool allow_spinning)1642 void __memcg_memory_event(struct mem_cgroup *memcg,
1643 enum memcg_memory_event event, bool allow_spinning)
1644 {
1645 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1646 event == MEMCG_SWAP_FAIL;
1647
1648 /* For now only MEMCG_MAX can happen with !allow_spinning context. */
1649 VM_WARN_ON_ONCE(!allow_spinning && event != MEMCG_MAX);
1650
1651 atomic_long_inc(&memcg->memory_events_local[event]);
1652 if (!swap_event && allow_spinning)
1653 cgroup_file_notify(&memcg->events_local_file);
1654
1655 do {
1656 atomic_long_inc(&memcg->memory_events[event]);
1657 if (allow_spinning) {
1658 if (swap_event)
1659 cgroup_file_notify(&memcg->swap_events_file);
1660 else
1661 cgroup_file_notify(&memcg->events_file);
1662 }
1663
1664 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1665 break;
1666 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1667 break;
1668 } while ((memcg = parent_mem_cgroup(memcg)) &&
1669 !mem_cgroup_is_root(memcg));
1670 }
1671 EXPORT_SYMBOL_GPL(__memcg_memory_event);
1672
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1673 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1674 int order)
1675 {
1676 struct oom_control oc = {
1677 .zonelist = NULL,
1678 .nodemask = NULL,
1679 .memcg = memcg,
1680 .gfp_mask = gfp_mask,
1681 .order = order,
1682 };
1683 bool ret = true;
1684
1685 if (mutex_lock_killable(&oom_lock))
1686 return true;
1687
1688 if (mem_cgroup_margin(memcg) >= (1 << order))
1689 goto unlock;
1690
1691 /*
1692 * A few threads which were not waiting at mutex_lock_killable() can
1693 * fail to bail out. Therefore, check again after holding oom_lock.
1694 */
1695 ret = out_of_memory(&oc);
1696
1697 unlock:
1698 mutex_unlock(&oom_lock);
1699 return ret;
1700 }
1701
1702 /*
1703 * Returns true if successfully killed one or more processes. Though in some
1704 * corner cases it can return true even without killing any process.
1705 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1706 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1707 {
1708 bool locked, ret;
1709
1710 if (order > PAGE_ALLOC_COSTLY_ORDER)
1711 return false;
1712
1713 memcg_memory_event(memcg, MEMCG_OOM);
1714
1715 if (!memcg1_oom_prepare(memcg, &locked))
1716 return false;
1717
1718 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1719
1720 memcg1_oom_finish(memcg, locked);
1721
1722 return ret;
1723 }
1724
1725 /**
1726 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1727 * @victim: task to be killed by the OOM killer
1728 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1729 *
1730 * Returns a pointer to a memory cgroup, which has to be cleaned up
1731 * by killing all belonging OOM-killable tasks.
1732 *
1733 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1734 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1735 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1736 struct mem_cgroup *oom_domain)
1737 {
1738 struct mem_cgroup *oom_group = NULL;
1739 struct mem_cgroup *memcg;
1740
1741 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1742 return NULL;
1743
1744 if (!oom_domain)
1745 oom_domain = root_mem_cgroup;
1746
1747 rcu_read_lock();
1748
1749 memcg = mem_cgroup_from_task(victim);
1750 if (mem_cgroup_is_root(memcg))
1751 goto out;
1752
1753 /*
1754 * If the victim task has been asynchronously moved to a different
1755 * memory cgroup, we might end up killing tasks outside oom_domain.
1756 * In this case it's better to ignore memory.group.oom.
1757 */
1758 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1759 goto out;
1760
1761 /*
1762 * Traverse the memory cgroup hierarchy from the victim task's
1763 * cgroup up to the OOMing cgroup (or root) to find the
1764 * highest-level memory cgroup with oom.group set.
1765 */
1766 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1767 if (READ_ONCE(memcg->oom_group))
1768 oom_group = memcg;
1769
1770 if (memcg == oom_domain)
1771 break;
1772 }
1773
1774 if (oom_group)
1775 css_get(&oom_group->css);
1776 out:
1777 rcu_read_unlock();
1778
1779 return oom_group;
1780 }
1781
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1782 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1783 {
1784 pr_info("Tasks in ");
1785 pr_cont_cgroup_path(memcg->css.cgroup);
1786 pr_cont(" are going to be killed due to memory.oom.group set\n");
1787 }
1788
1789 /*
1790 * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their
1791 * nr_pages in a single cacheline. This may change in future.
1792 */
1793 #define NR_MEMCG_STOCK 7
1794 #define FLUSHING_CACHED_CHARGE 0
1795 struct memcg_stock_pcp {
1796 local_trylock_t lock;
1797 uint8_t nr_pages[NR_MEMCG_STOCK];
1798 struct mem_cgroup *cached[NR_MEMCG_STOCK];
1799
1800 struct work_struct work;
1801 unsigned long flags;
1802 };
1803
1804 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = {
1805 .lock = INIT_LOCAL_TRYLOCK(lock),
1806 };
1807
1808 struct obj_stock_pcp {
1809 local_trylock_t lock;
1810 unsigned int nr_bytes;
1811 struct obj_cgroup *cached_objcg;
1812 struct pglist_data *cached_pgdat;
1813 int nr_slab_reclaimable_b;
1814 int nr_slab_unreclaimable_b;
1815
1816 struct work_struct work;
1817 unsigned long flags;
1818 };
1819
1820 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = {
1821 .lock = INIT_LOCAL_TRYLOCK(lock),
1822 };
1823
1824 static DEFINE_MUTEX(percpu_charge_mutex);
1825
1826 static void drain_obj_stock(struct obj_stock_pcp *stock);
1827 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
1828 struct mem_cgroup *root_memcg);
1829
1830 /**
1831 * consume_stock: Try to consume stocked charge on this cpu.
1832 * @memcg: memcg to consume from.
1833 * @nr_pages: how many pages to charge.
1834 *
1835 * Consume the cached charge if enough nr_pages are present otherwise return
1836 * failure. Also return failure for charge request larger than
1837 * MEMCG_CHARGE_BATCH or if the local lock is already taken.
1838 *
1839 * returns true if successful, false otherwise.
1840 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1841 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1842 {
1843 struct memcg_stock_pcp *stock;
1844 uint8_t stock_pages;
1845 bool ret = false;
1846 int i;
1847
1848 if (nr_pages > MEMCG_CHARGE_BATCH ||
1849 !local_trylock(&memcg_stock.lock))
1850 return ret;
1851
1852 stock = this_cpu_ptr(&memcg_stock);
1853
1854 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1855 if (memcg != READ_ONCE(stock->cached[i]))
1856 continue;
1857
1858 stock_pages = READ_ONCE(stock->nr_pages[i]);
1859 if (stock_pages >= nr_pages) {
1860 WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages);
1861 ret = true;
1862 }
1863 break;
1864 }
1865
1866 local_unlock(&memcg_stock.lock);
1867
1868 return ret;
1869 }
1870
memcg_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages)1871 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
1872 {
1873 page_counter_uncharge(&memcg->memory, nr_pages);
1874 if (do_memsw_account())
1875 page_counter_uncharge(&memcg->memsw, nr_pages);
1876 }
1877
1878 /*
1879 * Returns stocks cached in percpu and reset cached information.
1880 */
drain_stock(struct memcg_stock_pcp * stock,int i)1881 static void drain_stock(struct memcg_stock_pcp *stock, int i)
1882 {
1883 struct mem_cgroup *old = READ_ONCE(stock->cached[i]);
1884 uint8_t stock_pages;
1885
1886 if (!old)
1887 return;
1888
1889 stock_pages = READ_ONCE(stock->nr_pages[i]);
1890 if (stock_pages) {
1891 memcg_uncharge(old, stock_pages);
1892 WRITE_ONCE(stock->nr_pages[i], 0);
1893 }
1894
1895 css_put(&old->css);
1896 WRITE_ONCE(stock->cached[i], NULL);
1897 }
1898
drain_stock_fully(struct memcg_stock_pcp * stock)1899 static void drain_stock_fully(struct memcg_stock_pcp *stock)
1900 {
1901 int i;
1902
1903 for (i = 0; i < NR_MEMCG_STOCK; ++i)
1904 drain_stock(stock, i);
1905 }
1906
drain_local_memcg_stock(struct work_struct * dummy)1907 static void drain_local_memcg_stock(struct work_struct *dummy)
1908 {
1909 struct memcg_stock_pcp *stock;
1910
1911 if (WARN_ONCE(!in_task(), "drain in non-task context"))
1912 return;
1913
1914 local_lock(&memcg_stock.lock);
1915
1916 stock = this_cpu_ptr(&memcg_stock);
1917 drain_stock_fully(stock);
1918 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1919
1920 local_unlock(&memcg_stock.lock);
1921 }
1922
drain_local_obj_stock(struct work_struct * dummy)1923 static void drain_local_obj_stock(struct work_struct *dummy)
1924 {
1925 struct obj_stock_pcp *stock;
1926
1927 if (WARN_ONCE(!in_task(), "drain in non-task context"))
1928 return;
1929
1930 local_lock(&obj_stock.lock);
1931
1932 stock = this_cpu_ptr(&obj_stock);
1933 drain_obj_stock(stock);
1934 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1935
1936 local_unlock(&obj_stock.lock);
1937 }
1938
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1939 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1940 {
1941 struct memcg_stock_pcp *stock;
1942 struct mem_cgroup *cached;
1943 uint8_t stock_pages;
1944 bool success = false;
1945 int empty_slot = -1;
1946 int i;
1947
1948 /*
1949 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we
1950 * decide to increase it more than 127 then we will need more careful
1951 * handling of nr_pages[] in struct memcg_stock_pcp.
1952 */
1953 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX);
1954
1955 VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg));
1956
1957 if (nr_pages > MEMCG_CHARGE_BATCH ||
1958 !local_trylock(&memcg_stock.lock)) {
1959 /*
1960 * In case of larger than batch refill or unlikely failure to
1961 * lock the percpu memcg_stock.lock, uncharge memcg directly.
1962 */
1963 memcg_uncharge(memcg, nr_pages);
1964 return;
1965 }
1966
1967 stock = this_cpu_ptr(&memcg_stock);
1968 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1969 cached = READ_ONCE(stock->cached[i]);
1970 if (!cached && empty_slot == -1)
1971 empty_slot = i;
1972 if (memcg == READ_ONCE(stock->cached[i])) {
1973 stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages;
1974 WRITE_ONCE(stock->nr_pages[i], stock_pages);
1975 if (stock_pages > MEMCG_CHARGE_BATCH)
1976 drain_stock(stock, i);
1977 success = true;
1978 break;
1979 }
1980 }
1981
1982 if (!success) {
1983 i = empty_slot;
1984 if (i == -1) {
1985 i = get_random_u32_below(NR_MEMCG_STOCK);
1986 drain_stock(stock, i);
1987 }
1988 css_get(&memcg->css);
1989 WRITE_ONCE(stock->cached[i], memcg);
1990 WRITE_ONCE(stock->nr_pages[i], nr_pages);
1991 }
1992
1993 local_unlock(&memcg_stock.lock);
1994 }
1995
is_memcg_drain_needed(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)1996 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock,
1997 struct mem_cgroup *root_memcg)
1998 {
1999 struct mem_cgroup *memcg;
2000 bool flush = false;
2001 int i;
2002
2003 rcu_read_lock();
2004 for (i = 0; i < NR_MEMCG_STOCK; ++i) {
2005 memcg = READ_ONCE(stock->cached[i]);
2006 if (!memcg)
2007 continue;
2008
2009 if (READ_ONCE(stock->nr_pages[i]) &&
2010 mem_cgroup_is_descendant(memcg, root_memcg)) {
2011 flush = true;
2012 break;
2013 }
2014 }
2015 rcu_read_unlock();
2016 return flush;
2017 }
2018
schedule_drain_work(int cpu,struct work_struct * work)2019 static void schedule_drain_work(int cpu, struct work_struct *work)
2020 {
2021 /*
2022 * Protect housekeeping cpumask read and work enqueue together
2023 * in the same RCU critical section so that later cpuset isolated
2024 * partition update only need to wait for an RCU GP and flush the
2025 * pending work on newly isolated CPUs.
2026 */
2027 guard(rcu)();
2028 if (!cpu_is_isolated(cpu))
2029 queue_work_on(cpu, memcg_wq, work);
2030 }
2031
2032 /*
2033 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2034 * of the hierarchy under it.
2035 */
drain_all_stock(struct mem_cgroup * root_memcg)2036 void drain_all_stock(struct mem_cgroup *root_memcg)
2037 {
2038 int cpu, curcpu;
2039
2040 /* If someone's already draining, avoid adding running more workers. */
2041 if (!mutex_trylock(&percpu_charge_mutex))
2042 return;
2043 /*
2044 * Notify other cpus that system-wide "drain" is running
2045 * We do not care about races with the cpu hotplug because cpu down
2046 * as well as workers from this path always operate on the local
2047 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2048 */
2049 migrate_disable();
2050 curcpu = smp_processor_id();
2051 for_each_online_cpu(cpu) {
2052 struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu);
2053 struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu);
2054
2055 if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) &&
2056 is_memcg_drain_needed(memcg_st, root_memcg) &&
2057 !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2058 &memcg_st->flags)) {
2059 if (cpu == curcpu)
2060 drain_local_memcg_stock(&memcg_st->work);
2061 else
2062 schedule_drain_work(cpu, &memcg_st->work);
2063 }
2064
2065 if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) &&
2066 obj_stock_flush_required(obj_st, root_memcg) &&
2067 !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2068 &obj_st->flags)) {
2069 if (cpu == curcpu)
2070 drain_local_obj_stock(&obj_st->work);
2071 else
2072 schedule_drain_work(cpu, &obj_st->work);
2073 }
2074 }
2075 migrate_enable();
2076 mutex_unlock(&percpu_charge_mutex);
2077 }
2078
memcg_hotplug_cpu_dead(unsigned int cpu)2079 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2080 {
2081 /* no need for the local lock */
2082 drain_obj_stock(&per_cpu(obj_stock, cpu));
2083 drain_stock_fully(&per_cpu(memcg_stock, cpu));
2084
2085 return 0;
2086 }
2087
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2088 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2089 unsigned int nr_pages,
2090 gfp_t gfp_mask)
2091 {
2092 unsigned long nr_reclaimed = 0;
2093
2094 do {
2095 unsigned long pflags;
2096
2097 if (page_counter_read(&memcg->memory) <=
2098 READ_ONCE(memcg->memory.high))
2099 continue;
2100
2101 memcg_memory_event(memcg, MEMCG_HIGH);
2102
2103 psi_memstall_enter(&pflags);
2104 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2105 gfp_mask,
2106 MEMCG_RECLAIM_MAY_SWAP,
2107 NULL);
2108 psi_memstall_leave(&pflags);
2109 } while ((memcg = parent_mem_cgroup(memcg)) &&
2110 !mem_cgroup_is_root(memcg));
2111
2112 return nr_reclaimed;
2113 }
2114
high_work_func(struct work_struct * work)2115 static void high_work_func(struct work_struct *work)
2116 {
2117 struct mem_cgroup *memcg;
2118
2119 memcg = container_of(work, struct mem_cgroup, high_work);
2120 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2121 }
2122
2123 /*
2124 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2125 * enough to still cause a significant slowdown in most cases, while still
2126 * allowing diagnostics and tracing to proceed without becoming stuck.
2127 */
2128 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2129
2130 /*
2131 * When calculating the delay, we use these either side of the exponentiation to
2132 * maintain precision and scale to a reasonable number of jiffies (see the table
2133 * below.
2134 *
2135 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2136 * overage ratio to a delay.
2137 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2138 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2139 * to produce a reasonable delay curve.
2140 *
2141 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2142 * reasonable delay curve compared to precision-adjusted overage, not
2143 * penalising heavily at first, but still making sure that growth beyond the
2144 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2145 * example, with a high of 100 megabytes:
2146 *
2147 * +-------+------------------------+
2148 * | usage | time to allocate in ms |
2149 * +-------+------------------------+
2150 * | 100M | 0 |
2151 * | 101M | 6 |
2152 * | 102M | 25 |
2153 * | 103M | 57 |
2154 * | 104M | 102 |
2155 * | 105M | 159 |
2156 * | 106M | 230 |
2157 * | 107M | 313 |
2158 * | 108M | 409 |
2159 * | 109M | 518 |
2160 * | 110M | 639 |
2161 * | 111M | 774 |
2162 * | 112M | 921 |
2163 * | 113M | 1081 |
2164 * | 114M | 1254 |
2165 * | 115M | 1439 |
2166 * | 116M | 1638 |
2167 * | 117M | 1849 |
2168 * | 118M | 2000 |
2169 * | 119M | 2000 |
2170 * | 120M | 2000 |
2171 * +-------+------------------------+
2172 */
2173 #define MEMCG_DELAY_PRECISION_SHIFT 20
2174 #define MEMCG_DELAY_SCALING_SHIFT 14
2175
calculate_overage(unsigned long usage,unsigned long high)2176 static u64 calculate_overage(unsigned long usage, unsigned long high)
2177 {
2178 u64 overage;
2179
2180 if (usage <= high)
2181 return 0;
2182
2183 /*
2184 * Prevent division by 0 in overage calculation by acting as if
2185 * it was a threshold of 1 page
2186 */
2187 high = max(high, 1UL);
2188
2189 overage = usage - high;
2190 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2191 return div64_u64(overage, high);
2192 }
2193
mem_find_max_overage(struct mem_cgroup * memcg)2194 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2195 {
2196 u64 overage, max_overage = 0;
2197
2198 do {
2199 overage = calculate_overage(page_counter_read(&memcg->memory),
2200 READ_ONCE(memcg->memory.high));
2201 max_overage = max(overage, max_overage);
2202 } while ((memcg = parent_mem_cgroup(memcg)) &&
2203 !mem_cgroup_is_root(memcg));
2204
2205 return max_overage;
2206 }
2207
swap_find_max_overage(struct mem_cgroup * memcg)2208 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2209 {
2210 u64 overage, max_overage = 0;
2211
2212 do {
2213 overage = calculate_overage(page_counter_read(&memcg->swap),
2214 READ_ONCE(memcg->swap.high));
2215 if (overage)
2216 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2217 max_overage = max(overage, max_overage);
2218 } while ((memcg = parent_mem_cgroup(memcg)) &&
2219 !mem_cgroup_is_root(memcg));
2220
2221 return max_overage;
2222 }
2223
2224 /*
2225 * Get the number of jiffies that we should penalise a mischievous cgroup which
2226 * is exceeding its memory.high by checking both it and its ancestors.
2227 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2228 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2229 unsigned int nr_pages,
2230 u64 max_overage)
2231 {
2232 unsigned long penalty_jiffies;
2233
2234 if (!max_overage)
2235 return 0;
2236
2237 /*
2238 * We use overage compared to memory.high to calculate the number of
2239 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2240 * fairly lenient on small overages, and increasingly harsh when the
2241 * memcg in question makes it clear that it has no intention of stopping
2242 * its crazy behaviour, so we exponentially increase the delay based on
2243 * overage amount.
2244 */
2245 penalty_jiffies = max_overage * max_overage * HZ;
2246 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2247 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2248
2249 /*
2250 * Factor in the task's own contribution to the overage, such that four
2251 * N-sized allocations are throttled approximately the same as one
2252 * 4N-sized allocation.
2253 *
2254 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2255 * larger the current charge patch is than that.
2256 */
2257 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2258 }
2259
2260 /*
2261 * Reclaims memory over the high limit. Called directly from
2262 * try_charge() (context permitting), as well as from the userland
2263 * return path where reclaim is always able to block.
2264 */
__mem_cgroup_handle_over_high(gfp_t gfp_mask)2265 void __mem_cgroup_handle_over_high(gfp_t gfp_mask)
2266 {
2267 unsigned long penalty_jiffies;
2268 unsigned long pflags;
2269 unsigned long nr_reclaimed;
2270 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2271 int nr_retries = MAX_RECLAIM_RETRIES;
2272 struct mem_cgroup *memcg;
2273 bool in_retry = false;
2274
2275 memcg = get_mem_cgroup_from_mm(current->mm);
2276 current->memcg_nr_pages_over_high = 0;
2277
2278 retry_reclaim:
2279 /*
2280 * Bail if the task is already exiting. Unlike memory.max,
2281 * memory.high enforcement isn't as strict, and there is no
2282 * OOM killer involved, which means the excess could already
2283 * be much bigger (and still growing) than it could for
2284 * memory.max; the dying task could get stuck in fruitless
2285 * reclaim for a long time, which isn't desirable.
2286 */
2287 if (task_is_dying())
2288 goto out;
2289
2290 /*
2291 * The allocating task should reclaim at least the batch size, but for
2292 * subsequent retries we only want to do what's necessary to prevent oom
2293 * or breaching resource isolation.
2294 *
2295 * This is distinct from memory.max or page allocator behaviour because
2296 * memory.high is currently batched, whereas memory.max and the page
2297 * allocator run every time an allocation is made.
2298 */
2299 nr_reclaimed = reclaim_high(memcg,
2300 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2301 gfp_mask);
2302
2303 /*
2304 * memory.high is breached and reclaim is unable to keep up. Throttle
2305 * allocators proactively to slow down excessive growth.
2306 */
2307 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2308 mem_find_max_overage(memcg));
2309
2310 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2311 swap_find_max_overage(memcg));
2312
2313 /*
2314 * Clamp the max delay per usermode return so as to still keep the
2315 * application moving forwards and also permit diagnostics, albeit
2316 * extremely slowly.
2317 */
2318 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2319
2320 /*
2321 * Don't sleep if the amount of jiffies this memcg owes us is so low
2322 * that it's not even worth doing, in an attempt to be nice to those who
2323 * go only a small amount over their memory.high value and maybe haven't
2324 * been aggressively reclaimed enough yet.
2325 */
2326 if (penalty_jiffies <= HZ / 100)
2327 goto out;
2328
2329 /*
2330 * If reclaim is making forward progress but we're still over
2331 * memory.high, we want to encourage that rather than doing allocator
2332 * throttling.
2333 */
2334 if (nr_reclaimed || nr_retries--) {
2335 in_retry = true;
2336 goto retry_reclaim;
2337 }
2338
2339 /*
2340 * Reclaim didn't manage to push usage below the limit, slow
2341 * this allocating task down.
2342 *
2343 * If we exit early, we're guaranteed to die (since
2344 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2345 * need to account for any ill-begotten jiffies to pay them off later.
2346 */
2347 psi_memstall_enter(&pflags);
2348 schedule_timeout_killable(penalty_jiffies);
2349 psi_memstall_leave(&pflags);
2350
2351 out:
2352 css_put(&memcg->css);
2353 }
2354
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2355 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2356 unsigned int nr_pages)
2357 {
2358 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2359 int nr_retries = MAX_RECLAIM_RETRIES;
2360 struct mem_cgroup *mem_over_limit;
2361 struct page_counter *counter;
2362 unsigned long nr_reclaimed;
2363 bool passed_oom = false;
2364 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2365 bool drained = false;
2366 bool raised_max_event = false;
2367 unsigned long pflags;
2368 bool allow_spinning = gfpflags_allow_spinning(gfp_mask);
2369
2370 retry:
2371 if (consume_stock(memcg, nr_pages))
2372 return 0;
2373
2374 if (!allow_spinning)
2375 /* Avoid the refill and flush of the older stock */
2376 batch = nr_pages;
2377
2378 if (!do_memsw_account() ||
2379 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2380 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2381 goto done_restock;
2382 if (do_memsw_account())
2383 page_counter_uncharge(&memcg->memsw, batch);
2384 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2385 } else {
2386 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2387 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2388 }
2389
2390 if (batch > nr_pages) {
2391 batch = nr_pages;
2392 goto retry;
2393 }
2394
2395 /*
2396 * Prevent unbounded recursion when reclaim operations need to
2397 * allocate memory. This might exceed the limits temporarily,
2398 * but we prefer facilitating memory reclaim and getting back
2399 * under the limit over triggering OOM kills in these cases.
2400 */
2401 if (unlikely(current->flags & PF_MEMALLOC))
2402 goto force;
2403
2404 if (unlikely(task_in_memcg_oom(current)))
2405 goto nomem;
2406
2407 if (!gfpflags_allow_blocking(gfp_mask))
2408 goto nomem;
2409
2410 __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
2411 raised_max_event = true;
2412
2413 psi_memstall_enter(&pflags);
2414 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2415 gfp_mask, reclaim_options, NULL);
2416 psi_memstall_leave(&pflags);
2417
2418 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2419 goto retry;
2420
2421 if (!drained) {
2422 drain_all_stock(mem_over_limit);
2423 drained = true;
2424 goto retry;
2425 }
2426
2427 if (gfp_mask & __GFP_NORETRY)
2428 goto nomem;
2429 /*
2430 * Even though the limit is exceeded at this point, reclaim
2431 * may have been able to free some pages. Retry the charge
2432 * before killing the task.
2433 *
2434 * Only for regular pages, though: huge pages are rather
2435 * unlikely to succeed so close to the limit, and we fall back
2436 * to regular pages anyway in case of failure.
2437 */
2438 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2439 goto retry;
2440
2441 if (nr_retries--)
2442 goto retry;
2443
2444 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2445 goto nomem;
2446
2447 /* Avoid endless loop for tasks bypassed by the oom killer */
2448 if (passed_oom && task_is_dying())
2449 goto nomem;
2450
2451 /*
2452 * keep retrying as long as the memcg oom killer is able to make
2453 * a forward progress or bypass the charge if the oom killer
2454 * couldn't make any progress.
2455 */
2456 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2457 get_order(nr_pages * PAGE_SIZE))) {
2458 passed_oom = true;
2459 nr_retries = MAX_RECLAIM_RETRIES;
2460 goto retry;
2461 }
2462 nomem:
2463 /*
2464 * Memcg doesn't have a dedicated reserve for atomic
2465 * allocations. But like the global atomic pool, we need to
2466 * put the burden of reclaim on regular allocation requests
2467 * and let these go through as privileged allocations.
2468 */
2469 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2470 return -ENOMEM;
2471 force:
2472 /*
2473 * If the allocation has to be enforced, don't forget to raise
2474 * a MEMCG_MAX event.
2475 */
2476 if (!raised_max_event)
2477 __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
2478
2479 /*
2480 * The allocation either can't fail or will lead to more memory
2481 * being freed very soon. Allow memory usage go over the limit
2482 * temporarily by force charging it.
2483 */
2484 page_counter_charge(&memcg->memory, nr_pages);
2485 if (do_memsw_account())
2486 page_counter_charge(&memcg->memsw, nr_pages);
2487
2488 return 0;
2489
2490 done_restock:
2491 if (batch > nr_pages)
2492 refill_stock(memcg, batch - nr_pages);
2493
2494 /*
2495 * If the hierarchy is above the normal consumption range, schedule
2496 * reclaim on returning to userland. We can perform reclaim here
2497 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2498 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2499 * not recorded as it most likely matches current's and won't
2500 * change in the meantime. As high limit is checked again before
2501 * reclaim, the cost of mismatch is negligible.
2502 */
2503 do {
2504 bool mem_high, swap_high;
2505
2506 mem_high = page_counter_read(&memcg->memory) >
2507 READ_ONCE(memcg->memory.high);
2508 swap_high = page_counter_read(&memcg->swap) >
2509 READ_ONCE(memcg->swap.high);
2510
2511 /* Don't bother a random interrupted task */
2512 if (!in_task()) {
2513 if (mem_high) {
2514 schedule_work(&memcg->high_work);
2515 break;
2516 }
2517 continue;
2518 }
2519
2520 if (mem_high || swap_high) {
2521 /*
2522 * The allocating tasks in this cgroup will need to do
2523 * reclaim or be throttled to prevent further growth
2524 * of the memory or swap footprints.
2525 *
2526 * Target some best-effort fairness between the tasks,
2527 * and distribute reclaim work and delay penalties
2528 * based on how much each task is actually allocating.
2529 */
2530 current->memcg_nr_pages_over_high += batch;
2531 set_notify_resume(current);
2532 break;
2533 }
2534 } while ((memcg = parent_mem_cgroup(memcg)));
2535
2536 /*
2537 * Reclaim is set up above to be called from the userland
2538 * return path. But also attempt synchronous reclaim to avoid
2539 * excessive overrun while the task is still inside the
2540 * kernel. If this is successful, the return path will see it
2541 * when it rechecks the overage and simply bail out.
2542 */
2543 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2544 !(current->flags & PF_MEMALLOC) &&
2545 gfpflags_allow_blocking(gfp_mask))
2546 __mem_cgroup_handle_over_high(gfp_mask);
2547 return 0;
2548 }
2549
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2550 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2551 unsigned int nr_pages)
2552 {
2553 if (mem_cgroup_is_root(memcg))
2554 return 0;
2555
2556 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2557 }
2558
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2559 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2560 {
2561 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2562 /*
2563 * Any of the following ensures page's memcg stability:
2564 *
2565 * - the page lock
2566 * - LRU isolation
2567 * - exclusive reference
2568 */
2569 folio->memcg_data = (unsigned long)memcg;
2570 }
2571
2572 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2573 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2574 struct pglist_data *pgdat,
2575 enum node_stat_item idx, int nr)
2576 {
2577 struct lruvec *lruvec;
2578
2579 if (likely(!in_nmi())) {
2580 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2581 mod_memcg_lruvec_state(lruvec, idx, nr);
2582 } else {
2583 struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id];
2584
2585 /* preemption is disabled in_nmi(). */
2586 css_rstat_updated(&memcg->css, smp_processor_id());
2587 if (idx == NR_SLAB_RECLAIMABLE_B)
2588 atomic_add(nr, &pn->slab_reclaimable);
2589 else
2590 atomic_add(nr, &pn->slab_unreclaimable);
2591 }
2592 }
2593 #else
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2594 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2595 struct pglist_data *pgdat,
2596 enum node_stat_item idx, int nr)
2597 {
2598 struct lruvec *lruvec;
2599
2600 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2601 mod_memcg_lruvec_state(lruvec, idx, nr);
2602 }
2603 #endif
2604
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2605 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2606 struct pglist_data *pgdat,
2607 enum node_stat_item idx, int nr)
2608 {
2609 struct mem_cgroup *memcg;
2610
2611 rcu_read_lock();
2612 memcg = obj_cgroup_memcg(objcg);
2613 account_slab_nmi_safe(memcg, pgdat, idx, nr);
2614 rcu_read_unlock();
2615 }
2616
2617 static __always_inline
mem_cgroup_from_obj_slab(struct slab * slab,void * p)2618 struct mem_cgroup *mem_cgroup_from_obj_slab(struct slab *slab, void *p)
2619 {
2620 /*
2621 * Slab objects are accounted individually, not per-page.
2622 * Memcg membership data for each individual object is saved in
2623 * slab->obj_exts.
2624 */
2625 unsigned long obj_exts;
2626 struct slabobj_ext *obj_ext;
2627 unsigned int off;
2628
2629 obj_exts = slab_obj_exts(slab);
2630 if (!obj_exts)
2631 return NULL;
2632
2633 get_slab_obj_exts(obj_exts);
2634 off = obj_to_index(slab->slab_cache, slab, p);
2635 obj_ext = slab_obj_ext(slab, obj_exts, off);
2636 if (obj_ext->objcg) {
2637 struct obj_cgroup *objcg = obj_ext->objcg;
2638
2639 put_slab_obj_exts(obj_exts);
2640 return obj_cgroup_memcg(objcg);
2641 }
2642 put_slab_obj_exts(obj_exts);
2643
2644 return NULL;
2645 }
2646
2647 /*
2648 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2649 * It is not suitable for objects allocated using vmalloc().
2650 *
2651 * A passed kernel object must be a slab object or a generic kernel page.
2652 *
2653 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2654 * cgroup_mutex, etc.
2655 */
mem_cgroup_from_virt(void * p)2656 struct mem_cgroup *mem_cgroup_from_virt(void *p)
2657 {
2658 struct slab *slab;
2659
2660 if (mem_cgroup_disabled())
2661 return NULL;
2662
2663 slab = virt_to_slab(p);
2664 if (slab)
2665 return mem_cgroup_from_obj_slab(slab, p);
2666 return folio_memcg_check(virt_to_folio(p));
2667 }
2668
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)2669 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2670 {
2671 struct obj_cgroup *objcg = NULL;
2672
2673 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2674 objcg = rcu_dereference(memcg->objcg);
2675 if (likely(objcg && obj_cgroup_tryget(objcg)))
2676 break;
2677 objcg = NULL;
2678 }
2679 return objcg;
2680 }
2681
current_objcg_update(void)2682 static struct obj_cgroup *current_objcg_update(void)
2683 {
2684 struct mem_cgroup *memcg;
2685 struct obj_cgroup *old, *objcg = NULL;
2686
2687 do {
2688 /* Atomically drop the update bit. */
2689 old = xchg(¤t->objcg, NULL);
2690 if (old) {
2691 old = (struct obj_cgroup *)
2692 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2693 obj_cgroup_put(old);
2694
2695 old = NULL;
2696 }
2697
2698 /* If new objcg is NULL, no reason for the second atomic update. */
2699 if (!current->mm || (current->flags & PF_KTHREAD))
2700 return NULL;
2701
2702 /*
2703 * Release the objcg pointer from the previous iteration,
2704 * if try_cmpxcg() below fails.
2705 */
2706 if (unlikely(objcg)) {
2707 obj_cgroup_put(objcg);
2708 objcg = NULL;
2709 }
2710
2711 /*
2712 * Obtain the new objcg pointer. The current task can be
2713 * asynchronously moved to another memcg and the previous
2714 * memcg can be offlined. So let's get the memcg pointer
2715 * and try get a reference to objcg under a rcu read lock.
2716 */
2717
2718 rcu_read_lock();
2719 memcg = mem_cgroup_from_task(current);
2720 objcg = __get_obj_cgroup_from_memcg(memcg);
2721 rcu_read_unlock();
2722
2723 /*
2724 * Try set up a new objcg pointer atomically. If it
2725 * fails, it means the update flag was set concurrently, so
2726 * the whole procedure should be repeated.
2727 */
2728 } while (!try_cmpxchg(¤t->objcg, &old, objcg));
2729
2730 return objcg;
2731 }
2732
current_obj_cgroup(void)2733 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2734 {
2735 struct mem_cgroup *memcg;
2736 struct obj_cgroup *objcg;
2737
2738 if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi())
2739 return NULL;
2740
2741 if (in_task()) {
2742 memcg = current->active_memcg;
2743 if (unlikely(memcg))
2744 goto from_memcg;
2745
2746 objcg = READ_ONCE(current->objcg);
2747 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2748 objcg = current_objcg_update();
2749 /*
2750 * Objcg reference is kept by the task, so it's safe
2751 * to use the objcg by the current task.
2752 */
2753 return objcg;
2754 }
2755
2756 memcg = this_cpu_read(int_active_memcg);
2757 if (unlikely(memcg))
2758 goto from_memcg;
2759
2760 return NULL;
2761
2762 from_memcg:
2763 objcg = NULL;
2764 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2765 /*
2766 * Memcg pointer is protected by scope (see set_active_memcg())
2767 * and is pinning the corresponding objcg, so objcg can't go
2768 * away and can be used within the scope without any additional
2769 * protection.
2770 */
2771 objcg = rcu_dereference_check(memcg->objcg, 1);
2772 if (likely(objcg))
2773 break;
2774 }
2775
2776 return objcg;
2777 }
2778
get_obj_cgroup_from_folio(struct folio * folio)2779 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2780 {
2781 struct obj_cgroup *objcg;
2782
2783 if (!memcg_kmem_online())
2784 return NULL;
2785
2786 if (folio_memcg_kmem(folio)) {
2787 objcg = __folio_objcg(folio);
2788 obj_cgroup_get(objcg);
2789 } else {
2790 struct mem_cgroup *memcg;
2791
2792 rcu_read_lock();
2793 memcg = __folio_memcg(folio);
2794 if (memcg)
2795 objcg = __get_obj_cgroup_from_memcg(memcg);
2796 else
2797 objcg = NULL;
2798 rcu_read_unlock();
2799 }
2800 return objcg;
2801 }
2802
2803 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2804 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2805 {
2806 if (likely(!in_nmi())) {
2807 mod_memcg_state(memcg, MEMCG_KMEM, val);
2808 } else {
2809 /* preemption is disabled in_nmi(). */
2810 css_rstat_updated(&memcg->css, smp_processor_id());
2811 atomic_add(val, &memcg->kmem_stat);
2812 }
2813 }
2814 #else
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2815 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2816 {
2817 mod_memcg_state(memcg, MEMCG_KMEM, val);
2818 }
2819 #endif
2820
2821 /*
2822 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2823 * @objcg: object cgroup to uncharge
2824 * @nr_pages: number of pages to uncharge
2825 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)2826 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2827 unsigned int nr_pages)
2828 {
2829 struct mem_cgroup *memcg;
2830
2831 memcg = get_mem_cgroup_from_objcg(objcg);
2832
2833 account_kmem_nmi_safe(memcg, -nr_pages);
2834 memcg1_account_kmem(memcg, -nr_pages);
2835 if (!mem_cgroup_is_root(memcg))
2836 refill_stock(memcg, nr_pages);
2837
2838 css_put(&memcg->css);
2839 }
2840
2841 /*
2842 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2843 * @objcg: object cgroup to charge
2844 * @gfp: reclaim mode
2845 * @nr_pages: number of pages to charge
2846 *
2847 * Returns 0 on success, an error code on failure.
2848 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)2849 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2850 unsigned int nr_pages)
2851 {
2852 struct mem_cgroup *memcg;
2853 int ret;
2854
2855 memcg = get_mem_cgroup_from_objcg(objcg);
2856
2857 ret = try_charge_memcg(memcg, gfp, nr_pages);
2858 if (ret)
2859 goto out;
2860
2861 account_kmem_nmi_safe(memcg, nr_pages);
2862 memcg1_account_kmem(memcg, nr_pages);
2863 out:
2864 css_put(&memcg->css);
2865
2866 return ret;
2867 }
2868
page_objcg(const struct page * page)2869 static struct obj_cgroup *page_objcg(const struct page *page)
2870 {
2871 unsigned long memcg_data = page->memcg_data;
2872
2873 if (mem_cgroup_disabled() || !memcg_data)
2874 return NULL;
2875
2876 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM,
2877 page);
2878 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM);
2879 }
2880
page_set_objcg(struct page * page,const struct obj_cgroup * objcg)2881 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg)
2882 {
2883 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM;
2884 }
2885
2886 /**
2887 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2888 * @page: page to charge
2889 * @gfp: reclaim mode
2890 * @order: allocation order
2891 *
2892 * Returns 0 on success, an error code on failure.
2893 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)2894 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2895 {
2896 struct obj_cgroup *objcg;
2897 int ret = 0;
2898
2899 objcg = current_obj_cgroup();
2900 if (objcg) {
2901 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2902 if (!ret) {
2903 obj_cgroup_get(objcg);
2904 page_set_objcg(page, objcg);
2905 return 0;
2906 }
2907 }
2908 return ret;
2909 }
2910
2911 /**
2912 * __memcg_kmem_uncharge_page: uncharge a kmem page
2913 * @page: page to uncharge
2914 * @order: allocation order
2915 */
__memcg_kmem_uncharge_page(struct page * page,int order)2916 void __memcg_kmem_uncharge_page(struct page *page, int order)
2917 {
2918 struct obj_cgroup *objcg = page_objcg(page);
2919 unsigned int nr_pages = 1 << order;
2920
2921 if (!objcg)
2922 return;
2923
2924 obj_cgroup_uncharge_pages(objcg, nr_pages);
2925 page->memcg_data = 0;
2926 obj_cgroup_put(objcg);
2927 }
2928
__account_obj_stock(struct obj_cgroup * objcg,struct obj_stock_pcp * stock,int nr,struct pglist_data * pgdat,enum node_stat_item idx)2929 static void __account_obj_stock(struct obj_cgroup *objcg,
2930 struct obj_stock_pcp *stock, int nr,
2931 struct pglist_data *pgdat, enum node_stat_item idx)
2932 {
2933 int *bytes;
2934
2935 /*
2936 * Save vmstat data in stock and skip vmstat array update unless
2937 * accumulating over a page of vmstat data or when pgdat changes.
2938 */
2939 if (stock->cached_pgdat != pgdat) {
2940 /* Flush the existing cached vmstat data */
2941 struct pglist_data *oldpg = stock->cached_pgdat;
2942
2943 if (stock->nr_slab_reclaimable_b) {
2944 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2945 stock->nr_slab_reclaimable_b);
2946 stock->nr_slab_reclaimable_b = 0;
2947 }
2948 if (stock->nr_slab_unreclaimable_b) {
2949 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2950 stock->nr_slab_unreclaimable_b);
2951 stock->nr_slab_unreclaimable_b = 0;
2952 }
2953 stock->cached_pgdat = pgdat;
2954 }
2955
2956 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2957 : &stock->nr_slab_unreclaimable_b;
2958 /*
2959 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2960 * cached locally at least once before pushing it out.
2961 */
2962 if (!*bytes) {
2963 *bytes = nr;
2964 nr = 0;
2965 } else {
2966 *bytes += nr;
2967 if (abs(*bytes) > PAGE_SIZE) {
2968 nr = *bytes;
2969 *bytes = 0;
2970 } else {
2971 nr = 0;
2972 }
2973 }
2974 if (nr)
2975 mod_objcg_mlstate(objcg, pgdat, idx, nr);
2976 }
2977
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,struct pglist_data * pgdat,enum node_stat_item idx)2978 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2979 struct pglist_data *pgdat, enum node_stat_item idx)
2980 {
2981 struct obj_stock_pcp *stock;
2982 bool ret = false;
2983
2984 if (!local_trylock(&obj_stock.lock))
2985 return ret;
2986
2987 stock = this_cpu_ptr(&obj_stock);
2988 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2989 stock->nr_bytes -= nr_bytes;
2990 ret = true;
2991
2992 if (pgdat)
2993 __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx);
2994 }
2995
2996 local_unlock(&obj_stock.lock);
2997
2998 return ret;
2999 }
3000
drain_obj_stock(struct obj_stock_pcp * stock)3001 static void drain_obj_stock(struct obj_stock_pcp *stock)
3002 {
3003 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3004
3005 if (!old)
3006 return;
3007
3008 if (stock->nr_bytes) {
3009 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3010 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3011
3012 if (nr_pages) {
3013 struct mem_cgroup *memcg;
3014
3015 memcg = get_mem_cgroup_from_objcg(old);
3016
3017 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
3018 memcg1_account_kmem(memcg, -nr_pages);
3019 if (!mem_cgroup_is_root(memcg))
3020 memcg_uncharge(memcg, nr_pages);
3021
3022 css_put(&memcg->css);
3023 }
3024
3025 /*
3026 * The leftover is flushed to the centralized per-memcg value.
3027 * On the next attempt to refill obj stock it will be moved
3028 * to a per-cpu stock (probably, on an other CPU), see
3029 * refill_obj_stock().
3030 *
3031 * How often it's flushed is a trade-off between the memory
3032 * limit enforcement accuracy and potential CPU contention,
3033 * so it might be changed in the future.
3034 */
3035 atomic_add(nr_bytes, &old->nr_charged_bytes);
3036 stock->nr_bytes = 0;
3037 }
3038
3039 /*
3040 * Flush the vmstat data in current stock
3041 */
3042 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3043 if (stock->nr_slab_reclaimable_b) {
3044 mod_objcg_mlstate(old, stock->cached_pgdat,
3045 NR_SLAB_RECLAIMABLE_B,
3046 stock->nr_slab_reclaimable_b);
3047 stock->nr_slab_reclaimable_b = 0;
3048 }
3049 if (stock->nr_slab_unreclaimable_b) {
3050 mod_objcg_mlstate(old, stock->cached_pgdat,
3051 NR_SLAB_UNRECLAIMABLE_B,
3052 stock->nr_slab_unreclaimable_b);
3053 stock->nr_slab_unreclaimable_b = 0;
3054 }
3055 stock->cached_pgdat = NULL;
3056 }
3057
3058 WRITE_ONCE(stock->cached_objcg, NULL);
3059 obj_cgroup_put(old);
3060 }
3061
obj_stock_flush_required(struct obj_stock_pcp * stock,struct mem_cgroup * root_memcg)3062 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
3063 struct mem_cgroup *root_memcg)
3064 {
3065 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3066 struct mem_cgroup *memcg;
3067 bool flush = false;
3068
3069 rcu_read_lock();
3070 if (objcg) {
3071 memcg = obj_cgroup_memcg(objcg);
3072 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3073 flush = true;
3074 }
3075 rcu_read_unlock();
3076
3077 return flush;
3078 }
3079
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge,int nr_acct,struct pglist_data * pgdat,enum node_stat_item idx)3080 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3081 bool allow_uncharge, int nr_acct, struct pglist_data *pgdat,
3082 enum node_stat_item idx)
3083 {
3084 struct obj_stock_pcp *stock;
3085 unsigned int nr_pages = 0;
3086
3087 if (!local_trylock(&obj_stock.lock)) {
3088 if (pgdat)
3089 mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes);
3090 nr_pages = nr_bytes >> PAGE_SHIFT;
3091 nr_bytes = nr_bytes & (PAGE_SIZE - 1);
3092 atomic_add(nr_bytes, &objcg->nr_charged_bytes);
3093 goto out;
3094 }
3095
3096 stock = this_cpu_ptr(&obj_stock);
3097 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3098 drain_obj_stock(stock);
3099 obj_cgroup_get(objcg);
3100 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3101 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3102 WRITE_ONCE(stock->cached_objcg, objcg);
3103
3104 allow_uncharge = true; /* Allow uncharge when objcg changes */
3105 }
3106 stock->nr_bytes += nr_bytes;
3107
3108 if (pgdat)
3109 __account_obj_stock(objcg, stock, nr_acct, pgdat, idx);
3110
3111 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3112 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3113 stock->nr_bytes &= (PAGE_SIZE - 1);
3114 }
3115
3116 local_unlock(&obj_stock.lock);
3117 out:
3118 if (nr_pages)
3119 obj_cgroup_uncharge_pages(objcg, nr_pages);
3120 }
3121
obj_cgroup_charge_account(struct obj_cgroup * objcg,gfp_t gfp,size_t size,struct pglist_data * pgdat,enum node_stat_item idx)3122 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size,
3123 struct pglist_data *pgdat, enum node_stat_item idx)
3124 {
3125 unsigned int nr_pages, nr_bytes;
3126 int ret;
3127
3128 if (likely(consume_obj_stock(objcg, size, pgdat, idx)))
3129 return 0;
3130
3131 /*
3132 * In theory, objcg->nr_charged_bytes can have enough
3133 * pre-charged bytes to satisfy the allocation. However,
3134 * flushing objcg->nr_charged_bytes requires two atomic
3135 * operations, and objcg->nr_charged_bytes can't be big.
3136 * The shared objcg->nr_charged_bytes can also become a
3137 * performance bottleneck if all tasks of the same memcg are
3138 * trying to update it. So it's better to ignore it and try
3139 * grab some new pages. The stock's nr_bytes will be flushed to
3140 * objcg->nr_charged_bytes later on when objcg changes.
3141 *
3142 * The stock's nr_bytes may contain enough pre-charged bytes
3143 * to allow one less page from being charged, but we can't rely
3144 * on the pre-charged bytes not being changed outside of
3145 * consume_obj_stock() or refill_obj_stock(). So ignore those
3146 * pre-charged bytes as well when charging pages. To avoid a
3147 * page uncharge right after a page charge, we set the
3148 * allow_uncharge flag to false when calling refill_obj_stock()
3149 * to temporarily allow the pre-charged bytes to exceed the page
3150 * size limit. The maximum reachable value of the pre-charged
3151 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3152 * race.
3153 */
3154 nr_pages = size >> PAGE_SHIFT;
3155 nr_bytes = size & (PAGE_SIZE - 1);
3156
3157 if (nr_bytes)
3158 nr_pages += 1;
3159
3160 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3161 if (!ret && (nr_bytes || pgdat))
3162 refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0,
3163 false, size, pgdat, idx);
3164
3165 return ret;
3166 }
3167
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3168 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3169 {
3170 return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0);
3171 }
3172
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3173 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3174 {
3175 refill_obj_stock(objcg, size, true, 0, NULL, 0);
3176 }
3177
obj_full_size(struct kmem_cache * s)3178 static inline size_t obj_full_size(struct kmem_cache *s)
3179 {
3180 /*
3181 * For each accounted object there is an extra space which is used
3182 * to store obj_cgroup membership. Charge it too.
3183 */
3184 return s->size + sizeof(struct obj_cgroup *);
3185 }
3186
__memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)3187 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3188 gfp_t flags, size_t size, void **p)
3189 {
3190 struct obj_cgroup *objcg;
3191 struct slab *slab;
3192 unsigned long off;
3193 size_t i;
3194
3195 /*
3196 * The obtained objcg pointer is safe to use within the current scope,
3197 * defined by current task or set_active_memcg() pair.
3198 * obj_cgroup_get() is used to get a permanent reference.
3199 */
3200 objcg = current_obj_cgroup();
3201 if (!objcg)
3202 return true;
3203
3204 /*
3205 * slab_alloc_node() avoids the NULL check, so we might be called with a
3206 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
3207 * the whole requested size.
3208 * return success as there's nothing to free back
3209 */
3210 if (unlikely(*p == NULL))
3211 return true;
3212
3213 flags &= gfp_allowed_mask;
3214
3215 if (lru) {
3216 int ret;
3217 struct mem_cgroup *memcg;
3218
3219 memcg = get_mem_cgroup_from_objcg(objcg);
3220 ret = memcg_list_lru_alloc(memcg, lru, flags);
3221 css_put(&memcg->css);
3222
3223 if (ret)
3224 return false;
3225 }
3226
3227 for (i = 0; i < size; i++) {
3228 unsigned long obj_exts;
3229 struct slabobj_ext *obj_ext;
3230
3231 slab = virt_to_slab(p[i]);
3232
3233 if (!slab_obj_exts(slab) &&
3234 alloc_slab_obj_exts(slab, s, flags, false)) {
3235 continue;
3236 }
3237
3238 /*
3239 * if we fail and size is 1, memcg_alloc_abort_single() will
3240 * just free the object, which is ok as we have not assigned
3241 * objcg to its obj_ext yet
3242 *
3243 * for larger sizes, kmem_cache_free_bulk() will uncharge
3244 * any objects that were already charged and obj_ext assigned
3245 *
3246 * TODO: we could batch this until slab_pgdat(slab) changes
3247 * between iterations, with a more complicated undo
3248 */
3249 if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s),
3250 slab_pgdat(slab), cache_vmstat_idx(s)))
3251 return false;
3252
3253 obj_exts = slab_obj_exts(slab);
3254 get_slab_obj_exts(obj_exts);
3255 off = obj_to_index(s, slab, p[i]);
3256 obj_ext = slab_obj_ext(slab, obj_exts, off);
3257 obj_cgroup_get(objcg);
3258 obj_ext->objcg = objcg;
3259 put_slab_obj_exts(obj_exts);
3260 }
3261
3262 return true;
3263 }
3264
__memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects,unsigned long obj_exts)3265 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3266 void **p, int objects, unsigned long obj_exts)
3267 {
3268 size_t obj_size = obj_full_size(s);
3269
3270 for (int i = 0; i < objects; i++) {
3271 struct obj_cgroup *objcg;
3272 struct slabobj_ext *obj_ext;
3273 unsigned int off;
3274
3275 off = obj_to_index(s, slab, p[i]);
3276 obj_ext = slab_obj_ext(slab, obj_exts, off);
3277 objcg = obj_ext->objcg;
3278 if (!objcg)
3279 continue;
3280
3281 obj_ext->objcg = NULL;
3282 refill_obj_stock(objcg, obj_size, true, -obj_size,
3283 slab_pgdat(slab), cache_vmstat_idx(s));
3284 obj_cgroup_put(objcg);
3285 }
3286 }
3287
3288 /*
3289 * The objcg is only set on the first page, so transfer it to all the
3290 * other pages.
3291 */
split_page_memcg(struct page * page,unsigned order)3292 void split_page_memcg(struct page *page, unsigned order)
3293 {
3294 struct obj_cgroup *objcg = page_objcg(page);
3295 unsigned int i, nr = 1 << order;
3296
3297 if (!objcg)
3298 return;
3299
3300 for (i = 1; i < nr; i++)
3301 page_set_objcg(&page[i], objcg);
3302
3303 obj_cgroup_get_many(objcg, nr - 1);
3304 }
3305
folio_split_memcg_refs(struct folio * folio,unsigned old_order,unsigned new_order)3306 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
3307 unsigned new_order)
3308 {
3309 unsigned new_refs;
3310
3311 if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3312 return;
3313
3314 new_refs = (1 << (old_order - new_order)) - 1;
3315 css_get_many(&__folio_memcg(folio)->css, new_refs);
3316 }
3317
memcg_online_kmem(struct mem_cgroup * memcg)3318 static int memcg_online_kmem(struct mem_cgroup *memcg)
3319 {
3320 struct obj_cgroup *objcg;
3321
3322 if (mem_cgroup_kmem_disabled())
3323 return 0;
3324
3325 if (unlikely(mem_cgroup_is_root(memcg)))
3326 return 0;
3327
3328 objcg = obj_cgroup_alloc();
3329 if (!objcg)
3330 return -ENOMEM;
3331
3332 objcg->memcg = memcg;
3333 rcu_assign_pointer(memcg->objcg, objcg);
3334 obj_cgroup_get(objcg);
3335 memcg->orig_objcg = objcg;
3336
3337 static_branch_enable(&memcg_kmem_online_key);
3338
3339 memcg->kmemcg_id = memcg->id.id;
3340
3341 return 0;
3342 }
3343
memcg_offline_kmem(struct mem_cgroup * memcg)3344 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3345 {
3346 struct mem_cgroup *parent;
3347
3348 if (mem_cgroup_kmem_disabled())
3349 return;
3350
3351 if (unlikely(mem_cgroup_is_root(memcg)))
3352 return;
3353
3354 parent = parent_mem_cgroup(memcg);
3355 if (!parent)
3356 parent = root_mem_cgroup;
3357
3358 memcg_reparent_list_lrus(memcg, parent);
3359
3360 /*
3361 * Objcg's reparenting must be after list_lru's, make sure list_lru
3362 * helpers won't use parent's list_lru until child is drained.
3363 */
3364 memcg_reparent_objcgs(memcg, parent);
3365 }
3366
3367 #ifdef CONFIG_CGROUP_WRITEBACK
3368
3369 #include <trace/events/writeback.h>
3370
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3371 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3372 {
3373 return wb_domain_init(&memcg->cgwb_domain, gfp);
3374 }
3375
memcg_wb_domain_exit(struct mem_cgroup * memcg)3376 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3377 {
3378 wb_domain_exit(&memcg->cgwb_domain);
3379 }
3380
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3381 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3382 {
3383 wb_domain_size_changed(&memcg->cgwb_domain);
3384 }
3385
mem_cgroup_wb_domain(struct bdi_writeback * wb)3386 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3387 {
3388 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3389
3390 if (!memcg->css.parent)
3391 return NULL;
3392
3393 return &memcg->cgwb_domain;
3394 }
3395
3396 /**
3397 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3398 * @wb: bdi_writeback in question
3399 * @pfilepages: out parameter for number of file pages
3400 * @pheadroom: out parameter for number of allocatable pages according to memcg
3401 * @pdirty: out parameter for number of dirty pages
3402 * @pwriteback: out parameter for number of pages under writeback
3403 *
3404 * Determine the numbers of file, headroom, dirty, and writeback pages in
3405 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3406 * is a bit more involved.
3407 *
3408 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3409 * headroom is calculated as the lowest headroom of itself and the
3410 * ancestors. Note that this doesn't consider the actual amount of
3411 * available memory in the system. The caller should further cap
3412 * *@pheadroom accordingly.
3413 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3414 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3415 unsigned long *pheadroom, unsigned long *pdirty,
3416 unsigned long *pwriteback)
3417 {
3418 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3419 struct mem_cgroup *parent;
3420
3421 mem_cgroup_flush_stats_ratelimited(memcg);
3422
3423 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3424 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3425 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3426 memcg_page_state(memcg, NR_ACTIVE_FILE);
3427
3428 *pheadroom = PAGE_COUNTER_MAX;
3429 while ((parent = parent_mem_cgroup(memcg))) {
3430 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3431 READ_ONCE(memcg->memory.high));
3432 unsigned long used = page_counter_read(&memcg->memory);
3433
3434 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3435 memcg = parent;
3436 }
3437 }
3438
3439 /*
3440 * Foreign dirty flushing
3441 *
3442 * There's an inherent mismatch between memcg and writeback. The former
3443 * tracks ownership per-page while the latter per-inode. This was a
3444 * deliberate design decision because honoring per-page ownership in the
3445 * writeback path is complicated, may lead to higher CPU and IO overheads
3446 * and deemed unnecessary given that write-sharing an inode across
3447 * different cgroups isn't a common use-case.
3448 *
3449 * Combined with inode majority-writer ownership switching, this works well
3450 * enough in most cases but there are some pathological cases. For
3451 * example, let's say there are two cgroups A and B which keep writing to
3452 * different but confined parts of the same inode. B owns the inode and
3453 * A's memory is limited far below B's. A's dirty ratio can rise enough to
3454 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3455 * triggering background writeback. A will be slowed down without a way to
3456 * make writeback of the dirty pages happen.
3457 *
3458 * Conditions like the above can lead to a cgroup getting repeatedly and
3459 * severely throttled after making some progress after each
3460 * dirty_expire_interval while the underlying IO device is almost
3461 * completely idle.
3462 *
3463 * Solving this problem completely requires matching the ownership tracking
3464 * granularities between memcg and writeback in either direction. However,
3465 * the more egregious behaviors can be avoided by simply remembering the
3466 * most recent foreign dirtying events and initiating remote flushes on
3467 * them when local writeback isn't enough to keep the memory clean enough.
3468 *
3469 * The following two functions implement such mechanism. When a foreign
3470 * page - a page whose memcg and writeback ownerships don't match - is
3471 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3472 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
3473 * decides that the memcg needs to sleep due to high dirty ratio, it calls
3474 * mem_cgroup_flush_foreign() which queues writeback on the recorded
3475 * foreign bdi_writebacks which haven't expired. Both the numbers of
3476 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3477 * limited to MEMCG_CGWB_FRN_CNT.
3478 *
3479 * The mechanism only remembers IDs and doesn't hold any object references.
3480 * As being wrong occasionally doesn't matter, updates and accesses to the
3481 * records are lockless and racy.
3482 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)3483 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3484 struct bdi_writeback *wb)
3485 {
3486 struct mem_cgroup *memcg = folio_memcg(folio);
3487 struct memcg_cgwb_frn *frn;
3488 u64 now = get_jiffies_64();
3489 u64 oldest_at = now;
3490 int oldest = -1;
3491 int i;
3492
3493 trace_track_foreign_dirty(folio, wb);
3494
3495 /*
3496 * Pick the slot to use. If there is already a slot for @wb, keep
3497 * using it. If not replace the oldest one which isn't being
3498 * written out.
3499 */
3500 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3501 frn = &memcg->cgwb_frn[i];
3502 if (frn->bdi_id == wb->bdi->id &&
3503 frn->memcg_id == wb->memcg_css->id)
3504 break;
3505 if (time_before64(frn->at, oldest_at) &&
3506 atomic_read(&frn->done.cnt) == 1) {
3507 oldest = i;
3508 oldest_at = frn->at;
3509 }
3510 }
3511
3512 if (i < MEMCG_CGWB_FRN_CNT) {
3513 /*
3514 * Re-using an existing one. Update timestamp lazily to
3515 * avoid making the cacheline hot. We want them to be
3516 * reasonably up-to-date and significantly shorter than
3517 * dirty_expire_interval as that's what expires the record.
3518 * Use the shorter of 1s and dirty_expire_interval / 8.
3519 */
3520 unsigned long update_intv =
3521 min_t(unsigned long, HZ,
3522 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3523
3524 if (time_before64(frn->at, now - update_intv))
3525 frn->at = now;
3526 } else if (oldest >= 0) {
3527 /* replace the oldest free one */
3528 frn = &memcg->cgwb_frn[oldest];
3529 frn->bdi_id = wb->bdi->id;
3530 frn->memcg_id = wb->memcg_css->id;
3531 frn->at = now;
3532 }
3533 }
3534
3535 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)3536 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3537 {
3538 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3539 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3540 u64 now = jiffies_64;
3541 int i;
3542
3543 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3544 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3545
3546 /*
3547 * If the record is older than dirty_expire_interval,
3548 * writeback on it has already started. No need to kick it
3549 * off again. Also, don't start a new one if there's
3550 * already one in flight.
3551 */
3552 if (time_after64(frn->at, now - intv) &&
3553 atomic_read(&frn->done.cnt) == 1) {
3554 frn->at = 0;
3555 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3556 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3557 WB_REASON_FOREIGN_FLUSH,
3558 &frn->done);
3559 }
3560 }
3561 }
3562
3563 #else /* CONFIG_CGROUP_WRITEBACK */
3564
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3565 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3566 {
3567 return 0;
3568 }
3569
memcg_wb_domain_exit(struct mem_cgroup * memcg)3570 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3571 {
3572 }
3573
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3574 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3575 {
3576 }
3577
3578 #endif /* CONFIG_CGROUP_WRITEBACK */
3579
3580 /*
3581 * Private memory cgroup IDR
3582 *
3583 * Swap-out records and page cache shadow entries need to store memcg
3584 * references in constrained space, so we maintain an ID space that is
3585 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3586 * memory-controlled cgroups to 64k.
3587 *
3588 * However, there usually are many references to the offline CSS after
3589 * the cgroup has been destroyed, such as page cache or reclaimable
3590 * slab objects, that don't need to hang on to the ID. We want to keep
3591 * those dead CSS from occupying IDs, or we might quickly exhaust the
3592 * relatively small ID space and prevent the creation of new cgroups
3593 * even when there are much fewer than 64k cgroups - possibly none.
3594 *
3595 * Maintain a private 16-bit ID space for memcg, and allow the ID to
3596 * be freed and recycled when it's no longer needed, which is usually
3597 * when the CSS is offlined.
3598 *
3599 * The only exception to that are records of swapped out tmpfs/shmem
3600 * pages that need to be attributed to live ancestors on swapin. But
3601 * those references are manageable from userspace.
3602 */
3603
3604 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3605 static DEFINE_XARRAY_ALLOC1(mem_cgroup_private_ids);
3606
mem_cgroup_private_id_remove(struct mem_cgroup * memcg)3607 static void mem_cgroup_private_id_remove(struct mem_cgroup *memcg)
3608 {
3609 if (memcg->id.id > 0) {
3610 xa_erase(&mem_cgroup_private_ids, memcg->id.id);
3611 memcg->id.id = 0;
3612 }
3613 }
3614
mem_cgroup_private_id_get_many(struct mem_cgroup * memcg,unsigned int n)3615 void __maybe_unused mem_cgroup_private_id_get_many(struct mem_cgroup *memcg,
3616 unsigned int n)
3617 {
3618 refcount_add(n, &memcg->id.ref);
3619 }
3620
mem_cgroup_private_id_put_many(struct mem_cgroup * memcg,unsigned int n)3621 static void mem_cgroup_private_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3622 {
3623 if (refcount_sub_and_test(n, &memcg->id.ref)) {
3624 mem_cgroup_private_id_remove(memcg);
3625
3626 /* Memcg ID pins CSS */
3627 css_put(&memcg->css);
3628 }
3629 }
3630
mem_cgroup_private_id_put(struct mem_cgroup * memcg)3631 static inline void mem_cgroup_private_id_put(struct mem_cgroup *memcg)
3632 {
3633 mem_cgroup_private_id_put_many(memcg, 1);
3634 }
3635
mem_cgroup_private_id_get_online(struct mem_cgroup * memcg)3636 struct mem_cgroup *mem_cgroup_private_id_get_online(struct mem_cgroup *memcg)
3637 {
3638 while (!refcount_inc_not_zero(&memcg->id.ref)) {
3639 /*
3640 * The root cgroup cannot be destroyed, so it's refcount must
3641 * always be >= 1.
3642 */
3643 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
3644 VM_BUG_ON(1);
3645 break;
3646 }
3647 memcg = parent_mem_cgroup(memcg);
3648 if (!memcg)
3649 memcg = root_mem_cgroup;
3650 }
3651 return memcg;
3652 }
3653
3654 /**
3655 * mem_cgroup_from_private_id - look up a memcg from a memcg id
3656 * @id: the memcg id to look up
3657 *
3658 * Caller must hold rcu_read_lock().
3659 */
mem_cgroup_from_private_id(unsigned short id)3660 struct mem_cgroup *mem_cgroup_from_private_id(unsigned short id)
3661 {
3662 WARN_ON_ONCE(!rcu_read_lock_held());
3663 return xa_load(&mem_cgroup_private_ids, id);
3664 }
3665
mem_cgroup_get_from_id(u64 id)3666 struct mem_cgroup *mem_cgroup_get_from_id(u64 id)
3667 {
3668 struct cgroup *cgrp;
3669 struct cgroup_subsys_state *css;
3670 struct mem_cgroup *memcg = NULL;
3671
3672 cgrp = cgroup_get_from_id(id);
3673 if (IS_ERR(cgrp))
3674 return NULL;
3675
3676 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3677 if (css)
3678 memcg = container_of(css, struct mem_cgroup, css);
3679
3680 cgroup_put(cgrp);
3681
3682 return memcg;
3683 }
3684
free_mem_cgroup_per_node_info(struct mem_cgroup_per_node * pn)3685 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn)
3686 {
3687 if (!pn)
3688 return;
3689
3690 free_percpu(pn->lruvec_stats_percpu);
3691 kfree(pn->lruvec_stats);
3692 kfree(pn);
3693 }
3694
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3695 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3696 {
3697 struct mem_cgroup_per_node *pn;
3698
3699 pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO,
3700 node);
3701 if (!pn)
3702 return false;
3703
3704 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3705 GFP_KERNEL_ACCOUNT, node);
3706 if (!pn->lruvec_stats)
3707 goto fail;
3708
3709 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3710 GFP_KERNEL_ACCOUNT);
3711 if (!pn->lruvec_stats_percpu)
3712 goto fail;
3713
3714 lruvec_init(&pn->lruvec);
3715 pn->memcg = memcg;
3716
3717 memcg->nodeinfo[node] = pn;
3718 return true;
3719 fail:
3720 free_mem_cgroup_per_node_info(pn);
3721 return false;
3722 }
3723
__mem_cgroup_free(struct mem_cgroup * memcg)3724 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3725 {
3726 int node;
3727
3728 obj_cgroup_put(memcg->orig_objcg);
3729
3730 for_each_node(node)
3731 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]);
3732 memcg1_free_events(memcg);
3733 kfree(memcg->vmstats);
3734 free_percpu(memcg->vmstats_percpu);
3735 kfree(memcg);
3736 }
3737
mem_cgroup_free(struct mem_cgroup * memcg)3738 static void mem_cgroup_free(struct mem_cgroup *memcg)
3739 {
3740 lru_gen_exit_memcg(memcg);
3741 memcg_wb_domain_exit(memcg);
3742 __mem_cgroup_free(memcg);
3743 }
3744
mem_cgroup_alloc(struct mem_cgroup * parent)3745 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3746 {
3747 struct memcg_vmstats_percpu *statc;
3748 struct memcg_vmstats_percpu __percpu *pstatc_pcpu;
3749 struct mem_cgroup *memcg;
3750 int node, cpu;
3751 int __maybe_unused i;
3752 long error;
3753
3754 memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL);
3755 if (!memcg)
3756 return ERR_PTR(-ENOMEM);
3757
3758 error = xa_alloc(&mem_cgroup_private_ids, &memcg->id.id, NULL,
3759 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3760 if (error)
3761 goto fail;
3762 error = -ENOMEM;
3763
3764 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3765 GFP_KERNEL_ACCOUNT);
3766 if (!memcg->vmstats)
3767 goto fail;
3768
3769 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3770 GFP_KERNEL_ACCOUNT);
3771 if (!memcg->vmstats_percpu)
3772 goto fail;
3773
3774 if (!memcg1_alloc_events(memcg))
3775 goto fail;
3776
3777 for_each_possible_cpu(cpu) {
3778 if (parent)
3779 pstatc_pcpu = parent->vmstats_percpu;
3780 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3781 statc->parent_pcpu = parent ? pstatc_pcpu : NULL;
3782 statc->vmstats = memcg->vmstats;
3783 }
3784
3785 for_each_node(node)
3786 if (!alloc_mem_cgroup_per_node_info(memcg, node))
3787 goto fail;
3788
3789 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3790 goto fail;
3791
3792 INIT_WORK(&memcg->high_work, high_work_func);
3793 vmpressure_init(&memcg->vmpressure);
3794 INIT_LIST_HEAD(&memcg->memory_peaks);
3795 INIT_LIST_HEAD(&memcg->swap_peaks);
3796 spin_lock_init(&memcg->peaks_lock);
3797 memcg->socket_pressure = get_jiffies_64();
3798 #if BITS_PER_LONG < 64
3799 seqlock_init(&memcg->socket_pressure_seqlock);
3800 #endif
3801 memcg1_memcg_init(memcg);
3802 memcg->kmemcg_id = -1;
3803 INIT_LIST_HEAD(&memcg->objcg_list);
3804 #ifdef CONFIG_CGROUP_WRITEBACK
3805 INIT_LIST_HEAD(&memcg->cgwb_list);
3806 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3807 memcg->cgwb_frn[i].done =
3808 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3809 #endif
3810 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3811 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3812 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3813 memcg->deferred_split_queue.split_queue_len = 0;
3814 #endif
3815 lru_gen_init_memcg(memcg);
3816 return memcg;
3817 fail:
3818 mem_cgroup_private_id_remove(memcg);
3819 __mem_cgroup_free(memcg);
3820 return ERR_PTR(error);
3821 }
3822
3823 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)3824 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3825 {
3826 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3827 struct mem_cgroup *memcg, *old_memcg;
3828 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys);
3829
3830 old_memcg = set_active_memcg(parent);
3831 memcg = mem_cgroup_alloc(parent);
3832 set_active_memcg(old_memcg);
3833 if (IS_ERR(memcg))
3834 return ERR_CAST(memcg);
3835
3836 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3837 memcg1_soft_limit_reset(memcg);
3838 #ifdef CONFIG_ZSWAP
3839 memcg->zswap_max = PAGE_COUNTER_MAX;
3840 WRITE_ONCE(memcg->zswap_writeback, true);
3841 #endif
3842 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3843 if (parent) {
3844 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3845
3846 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl);
3847 page_counter_init(&memcg->swap, &parent->swap, false);
3848 #ifdef CONFIG_MEMCG_V1
3849 memcg->memory.track_failcnt = !memcg_on_dfl;
3850 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3851 page_counter_init(&memcg->kmem, &parent->kmem, false);
3852 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3853 #endif
3854 } else {
3855 init_memcg_stats();
3856 init_memcg_events();
3857 page_counter_init(&memcg->memory, NULL, true);
3858 page_counter_init(&memcg->swap, NULL, false);
3859 #ifdef CONFIG_MEMCG_V1
3860 page_counter_init(&memcg->kmem, NULL, false);
3861 page_counter_init(&memcg->tcpmem, NULL, false);
3862 #endif
3863 root_mem_cgroup = memcg;
3864 return &memcg->css;
3865 }
3866
3867 if (memcg_on_dfl && !cgroup_memory_nosocket)
3868 static_branch_inc(&memcg_sockets_enabled_key);
3869
3870 if (!cgroup_memory_nobpf)
3871 static_branch_inc(&memcg_bpf_enabled_key);
3872
3873 return &memcg->css;
3874 }
3875
mem_cgroup_css_online(struct cgroup_subsys_state * css)3876 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3877 {
3878 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3879
3880 if (memcg_online_kmem(memcg))
3881 goto remove_id;
3882
3883 /*
3884 * A memcg must be visible for expand_shrinker_info()
3885 * by the time the maps are allocated. So, we allocate maps
3886 * here, when for_each_mem_cgroup() can't skip it.
3887 */
3888 if (alloc_shrinker_info(memcg))
3889 goto offline_kmem;
3890
3891 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3892 queue_delayed_work(system_dfl_wq, &stats_flush_dwork,
3893 FLUSH_TIME);
3894 lru_gen_online_memcg(memcg);
3895
3896 /* Online state pins memcg ID, memcg ID pins CSS */
3897 refcount_set(&memcg->id.ref, 1);
3898 css_get(css);
3899
3900 /*
3901 * Ensure mem_cgroup_from_private_id() works once we're fully online.
3902 *
3903 * We could do this earlier and require callers to filter with
3904 * css_tryget_online(). But right now there are no users that
3905 * need earlier access, and the workingset code relies on the
3906 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3907 * publish it here at the end of onlining. This matches the
3908 * regular ID destruction during offlining.
3909 */
3910 xa_store(&mem_cgroup_private_ids, memcg->id.id, memcg, GFP_KERNEL);
3911
3912 return 0;
3913 offline_kmem:
3914 memcg_offline_kmem(memcg);
3915 remove_id:
3916 mem_cgroup_private_id_remove(memcg);
3917 return -ENOMEM;
3918 }
3919
mem_cgroup_css_offline(struct cgroup_subsys_state * css)3920 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3921 {
3922 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3923
3924 memcg1_css_offline(memcg);
3925
3926 page_counter_set_min(&memcg->memory, 0);
3927 page_counter_set_low(&memcg->memory, 0);
3928
3929 zswap_memcg_offline_cleanup(memcg);
3930
3931 memcg_offline_kmem(memcg);
3932 reparent_deferred_split_queue(memcg);
3933 reparent_shrinker_deferred(memcg);
3934 wb_memcg_offline(memcg);
3935 lru_gen_offline_memcg(memcg);
3936
3937 drain_all_stock(memcg);
3938
3939 mem_cgroup_private_id_put(memcg);
3940 }
3941
mem_cgroup_css_released(struct cgroup_subsys_state * css)3942 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3943 {
3944 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3945
3946 invalidate_reclaim_iterators(memcg);
3947 lru_gen_release_memcg(memcg);
3948 }
3949
mem_cgroup_css_free(struct cgroup_subsys_state * css)3950 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3951 {
3952 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3953 int __maybe_unused i;
3954
3955 #ifdef CONFIG_CGROUP_WRITEBACK
3956 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3957 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3958 #endif
3959 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3960 static_branch_dec(&memcg_sockets_enabled_key);
3961
3962 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3963 static_branch_dec(&memcg_sockets_enabled_key);
3964
3965 if (!cgroup_memory_nobpf)
3966 static_branch_dec(&memcg_bpf_enabled_key);
3967
3968 vmpressure_cleanup(&memcg->vmpressure);
3969 cancel_work_sync(&memcg->high_work);
3970 memcg1_remove_from_trees(memcg);
3971 free_shrinker_info(memcg);
3972 mem_cgroup_free(memcg);
3973 }
3974
3975 /**
3976 * mem_cgroup_css_reset - reset the states of a mem_cgroup
3977 * @css: the target css
3978 *
3979 * Reset the states of the mem_cgroup associated with @css. This is
3980 * invoked when the userland requests disabling on the default hierarchy
3981 * but the memcg is pinned through dependency. The memcg should stop
3982 * applying policies and should revert to the vanilla state as it may be
3983 * made visible again.
3984 *
3985 * The current implementation only resets the essential configurations.
3986 * This needs to be expanded to cover all the visible parts.
3987 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)3988 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3989 {
3990 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3991
3992 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3993 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3994 #ifdef CONFIG_MEMCG_V1
3995 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3996 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3997 #endif
3998 page_counter_set_min(&memcg->memory, 0);
3999 page_counter_set_low(&memcg->memory, 0);
4000 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
4001 memcg1_soft_limit_reset(memcg);
4002 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
4003 memcg_wb_domain_size_changed(memcg);
4004 }
4005
4006 struct aggregate_control {
4007 /* pointer to the aggregated (CPU and subtree aggregated) counters */
4008 long *aggregate;
4009 /* pointer to the non-hierarchichal (CPU aggregated) counters */
4010 long *local;
4011 /* pointer to the pending child counters during tree propagation */
4012 long *pending;
4013 /* pointer to the parent's pending counters, could be NULL */
4014 long *ppending;
4015 /* pointer to the percpu counters to be aggregated */
4016 long *cstat;
4017 /* pointer to the percpu counters of the last aggregation*/
4018 long *cstat_prev;
4019 /* size of the above counters */
4020 int size;
4021 };
4022
mem_cgroup_stat_aggregate(struct aggregate_control * ac)4023 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
4024 {
4025 int i;
4026 long delta, delta_cpu, v;
4027
4028 for (i = 0; i < ac->size; i++) {
4029 /*
4030 * Collect the aggregated propagation counts of groups
4031 * below us. We're in a per-cpu loop here and this is
4032 * a global counter, so the first cycle will get them.
4033 */
4034 delta = ac->pending[i];
4035 if (delta)
4036 ac->pending[i] = 0;
4037
4038 /* Add CPU changes on this level since the last flush */
4039 delta_cpu = 0;
4040 v = READ_ONCE(ac->cstat[i]);
4041 if (v != ac->cstat_prev[i]) {
4042 delta_cpu = v - ac->cstat_prev[i];
4043 delta += delta_cpu;
4044 ac->cstat_prev[i] = v;
4045 }
4046
4047 /* Aggregate counts on this level and propagate upwards */
4048 if (delta_cpu)
4049 ac->local[i] += delta_cpu;
4050
4051 if (delta) {
4052 ac->aggregate[i] += delta;
4053 if (ac->ppending)
4054 ac->ppending[i] += delta;
4055 }
4056 }
4057 }
4058
4059 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4060 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4061 int cpu)
4062 {
4063 int nid;
4064
4065 if (atomic_read(&memcg->kmem_stat)) {
4066 int kmem = atomic_xchg(&memcg->kmem_stat, 0);
4067 int index = memcg_stats_index(MEMCG_KMEM);
4068
4069 memcg->vmstats->state[index] += kmem;
4070 if (parent)
4071 parent->vmstats->state_pending[index] += kmem;
4072 }
4073
4074 for_each_node_state(nid, N_MEMORY) {
4075 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4076 struct lruvec_stats *lstats = pn->lruvec_stats;
4077 struct lruvec_stats *plstats = NULL;
4078
4079 if (parent)
4080 plstats = parent->nodeinfo[nid]->lruvec_stats;
4081
4082 if (atomic_read(&pn->slab_reclaimable)) {
4083 int slab = atomic_xchg(&pn->slab_reclaimable, 0);
4084 int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B);
4085
4086 lstats->state[index] += slab;
4087 if (plstats)
4088 plstats->state_pending[index] += slab;
4089 }
4090 if (atomic_read(&pn->slab_unreclaimable)) {
4091 int slab = atomic_xchg(&pn->slab_unreclaimable, 0);
4092 int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B);
4093
4094 lstats->state[index] += slab;
4095 if (plstats)
4096 plstats->state_pending[index] += slab;
4097 }
4098 }
4099 }
4100 #else
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4101 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4102 int cpu)
4103 {}
4104 #endif
4105
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)4106 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
4107 {
4108 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4109 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4110 struct memcg_vmstats_percpu *statc;
4111 struct aggregate_control ac;
4112 int nid;
4113
4114 flush_nmi_stats(memcg, parent, cpu);
4115
4116 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
4117
4118 ac = (struct aggregate_control) {
4119 .aggregate = memcg->vmstats->state,
4120 .local = memcg->vmstats->state_local,
4121 .pending = memcg->vmstats->state_pending,
4122 .ppending = parent ? parent->vmstats->state_pending : NULL,
4123 .cstat = statc->state,
4124 .cstat_prev = statc->state_prev,
4125 .size = MEMCG_VMSTAT_SIZE,
4126 };
4127 mem_cgroup_stat_aggregate(&ac);
4128
4129 ac = (struct aggregate_control) {
4130 .aggregate = memcg->vmstats->events,
4131 .local = memcg->vmstats->events_local,
4132 .pending = memcg->vmstats->events_pending,
4133 .ppending = parent ? parent->vmstats->events_pending : NULL,
4134 .cstat = statc->events,
4135 .cstat_prev = statc->events_prev,
4136 .size = NR_MEMCG_EVENTS,
4137 };
4138 mem_cgroup_stat_aggregate(&ac);
4139
4140 for_each_node_state(nid, N_MEMORY) {
4141 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4142 struct lruvec_stats *lstats = pn->lruvec_stats;
4143 struct lruvec_stats *plstats = NULL;
4144 struct lruvec_stats_percpu *lstatc;
4145
4146 if (parent)
4147 plstats = parent->nodeinfo[nid]->lruvec_stats;
4148
4149 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
4150
4151 ac = (struct aggregate_control) {
4152 .aggregate = lstats->state,
4153 .local = lstats->state_local,
4154 .pending = lstats->state_pending,
4155 .ppending = plstats ? plstats->state_pending : NULL,
4156 .cstat = lstatc->state,
4157 .cstat_prev = lstatc->state_prev,
4158 .size = NR_MEMCG_NODE_STAT_ITEMS,
4159 };
4160 mem_cgroup_stat_aggregate(&ac);
4161
4162 }
4163 WRITE_ONCE(statc->stats_updates, 0);
4164 /* We are in a per-cpu loop here, only do the atomic write once */
4165 if (atomic_read(&memcg->vmstats->stats_updates))
4166 atomic_set(&memcg->vmstats->stats_updates, 0);
4167 }
4168
mem_cgroup_fork(struct task_struct * task)4169 static void mem_cgroup_fork(struct task_struct *task)
4170 {
4171 /*
4172 * Set the update flag to cause task->objcg to be initialized lazily
4173 * on the first allocation. It can be done without any synchronization
4174 * because it's always performed on the current task, so does
4175 * current_objcg_update().
4176 */
4177 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
4178 }
4179
mem_cgroup_exit(struct task_struct * task)4180 static void mem_cgroup_exit(struct task_struct *task)
4181 {
4182 struct obj_cgroup *objcg = task->objcg;
4183
4184 objcg = (struct obj_cgroup *)
4185 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
4186 obj_cgroup_put(objcg);
4187
4188 /*
4189 * Some kernel allocations can happen after this point,
4190 * but let's ignore them. It can be done without any synchronization
4191 * because it's always performed on the current task, so does
4192 * current_objcg_update().
4193 */
4194 task->objcg = NULL;
4195 }
4196
4197 #ifdef CONFIG_LRU_GEN
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4198 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
4199 {
4200 struct task_struct *task;
4201 struct cgroup_subsys_state *css;
4202
4203 /* find the first leader if there is any */
4204 cgroup_taskset_for_each_leader(task, css, tset)
4205 break;
4206
4207 if (!task)
4208 return;
4209
4210 task_lock(task);
4211 if (task->mm && READ_ONCE(task->mm->owner) == task)
4212 lru_gen_migrate_mm(task->mm);
4213 task_unlock(task);
4214 }
4215 #else
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4216 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
4217 #endif /* CONFIG_LRU_GEN */
4218
mem_cgroup_kmem_attach(struct cgroup_taskset * tset)4219 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
4220 {
4221 struct task_struct *task;
4222 struct cgroup_subsys_state *css;
4223
4224 cgroup_taskset_for_each(task, css, tset) {
4225 /* atomically set the update bit */
4226 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
4227 }
4228 }
4229
mem_cgroup_attach(struct cgroup_taskset * tset)4230 static void mem_cgroup_attach(struct cgroup_taskset *tset)
4231 {
4232 mem_cgroup_lru_gen_attach(tset);
4233 mem_cgroup_kmem_attach(tset);
4234 }
4235
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)4236 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
4237 {
4238 if (value == PAGE_COUNTER_MAX)
4239 seq_puts(m, "max\n");
4240 else
4241 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
4242
4243 return 0;
4244 }
4245
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)4246 static u64 memory_current_read(struct cgroup_subsys_state *css,
4247 struct cftype *cft)
4248 {
4249 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4250
4251 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4252 }
4253
4254 #define OFP_PEAK_UNSET (((-1UL)))
4255
peak_show(struct seq_file * sf,void * v,struct page_counter * pc)4256 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
4257 {
4258 struct cgroup_of_peak *ofp = of_peak(sf->private);
4259 u64 fd_peak = READ_ONCE(ofp->value), peak;
4260
4261 /* User wants global or local peak? */
4262 if (fd_peak == OFP_PEAK_UNSET)
4263 peak = pc->watermark;
4264 else
4265 peak = max(fd_peak, READ_ONCE(pc->local_watermark));
4266
4267 seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
4268 return 0;
4269 }
4270
memory_peak_show(struct seq_file * sf,void * v)4271 static int memory_peak_show(struct seq_file *sf, void *v)
4272 {
4273 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4274
4275 return peak_show(sf, v, &memcg->memory);
4276 }
4277
peak_open(struct kernfs_open_file * of)4278 static int peak_open(struct kernfs_open_file *of)
4279 {
4280 struct cgroup_of_peak *ofp = of_peak(of);
4281
4282 ofp->value = OFP_PEAK_UNSET;
4283 return 0;
4284 }
4285
peak_release(struct kernfs_open_file * of)4286 static void peak_release(struct kernfs_open_file *of)
4287 {
4288 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4289 struct cgroup_of_peak *ofp = of_peak(of);
4290
4291 if (ofp->value == OFP_PEAK_UNSET) {
4292 /* fast path (no writes on this fd) */
4293 return;
4294 }
4295 spin_lock(&memcg->peaks_lock);
4296 list_del(&ofp->list);
4297 spin_unlock(&memcg->peaks_lock);
4298 }
4299
peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,struct page_counter * pc,struct list_head * watchers)4300 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
4301 loff_t off, struct page_counter *pc,
4302 struct list_head *watchers)
4303 {
4304 unsigned long usage;
4305 struct cgroup_of_peak *peer_ctx;
4306 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4307 struct cgroup_of_peak *ofp = of_peak(of);
4308
4309 spin_lock(&memcg->peaks_lock);
4310
4311 usage = page_counter_read(pc);
4312 WRITE_ONCE(pc->local_watermark, usage);
4313
4314 list_for_each_entry(peer_ctx, watchers, list)
4315 if (usage > peer_ctx->value)
4316 WRITE_ONCE(peer_ctx->value, usage);
4317
4318 /* initial write, register watcher */
4319 if (ofp->value == OFP_PEAK_UNSET)
4320 list_add(&ofp->list, watchers);
4321
4322 WRITE_ONCE(ofp->value, usage);
4323 spin_unlock(&memcg->peaks_lock);
4324
4325 return nbytes;
4326 }
4327
memory_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4328 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4329 size_t nbytes, loff_t off)
4330 {
4331 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4332
4333 return peak_write(of, buf, nbytes, off, &memcg->memory,
4334 &memcg->memory_peaks);
4335 }
4336
4337 #undef OFP_PEAK_UNSET
4338
memory_min_show(struct seq_file * m,void * v)4339 static int memory_min_show(struct seq_file *m, void *v)
4340 {
4341 return seq_puts_memcg_tunable(m,
4342 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4343 }
4344
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4345 static ssize_t memory_min_write(struct kernfs_open_file *of,
4346 char *buf, size_t nbytes, loff_t off)
4347 {
4348 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4349 unsigned long min;
4350 int err;
4351
4352 buf = strstrip(buf);
4353 err = page_counter_memparse(buf, "max", &min);
4354 if (err)
4355 return err;
4356
4357 page_counter_set_min(&memcg->memory, min);
4358
4359 return nbytes;
4360 }
4361
memory_low_show(struct seq_file * m,void * v)4362 static int memory_low_show(struct seq_file *m, void *v)
4363 {
4364 return seq_puts_memcg_tunable(m,
4365 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4366 }
4367
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4368 static ssize_t memory_low_write(struct kernfs_open_file *of,
4369 char *buf, size_t nbytes, loff_t off)
4370 {
4371 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4372 unsigned long low;
4373 int err;
4374
4375 buf = strstrip(buf);
4376 err = page_counter_memparse(buf, "max", &low);
4377 if (err)
4378 return err;
4379
4380 page_counter_set_low(&memcg->memory, low);
4381
4382 return nbytes;
4383 }
4384
memory_high_show(struct seq_file * m,void * v)4385 static int memory_high_show(struct seq_file *m, void *v)
4386 {
4387 return seq_puts_memcg_tunable(m,
4388 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4389 }
4390
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4391 static ssize_t memory_high_write(struct kernfs_open_file *of,
4392 char *buf, size_t nbytes, loff_t off)
4393 {
4394 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4395 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4396 bool drained = false;
4397 unsigned long high;
4398 int err;
4399
4400 buf = strstrip(buf);
4401 err = page_counter_memparse(buf, "max", &high);
4402 if (err)
4403 return err;
4404
4405 page_counter_set_high(&memcg->memory, high);
4406
4407 if (of->file->f_flags & O_NONBLOCK)
4408 goto out;
4409
4410 for (;;) {
4411 unsigned long nr_pages = page_counter_read(&memcg->memory);
4412 unsigned long reclaimed;
4413
4414 if (nr_pages <= high)
4415 break;
4416
4417 if (signal_pending(current))
4418 break;
4419
4420 if (!drained) {
4421 drain_all_stock(memcg);
4422 drained = true;
4423 continue;
4424 }
4425
4426 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4427 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4428
4429 if (!reclaimed && !nr_retries--)
4430 break;
4431 }
4432 out:
4433 memcg_wb_domain_size_changed(memcg);
4434 return nbytes;
4435 }
4436
memory_max_show(struct seq_file * m,void * v)4437 static int memory_max_show(struct seq_file *m, void *v)
4438 {
4439 return seq_puts_memcg_tunable(m,
4440 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4441 }
4442
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4443 static ssize_t memory_max_write(struct kernfs_open_file *of,
4444 char *buf, size_t nbytes, loff_t off)
4445 {
4446 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4447 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4448 bool drained = false;
4449 unsigned long max;
4450 int err;
4451
4452 buf = strstrip(buf);
4453 err = page_counter_memparse(buf, "max", &max);
4454 if (err)
4455 return err;
4456
4457 xchg(&memcg->memory.max, max);
4458
4459 if (of->file->f_flags & O_NONBLOCK)
4460 goto out;
4461
4462 for (;;) {
4463 unsigned long nr_pages = page_counter_read(&memcg->memory);
4464
4465 if (nr_pages <= max)
4466 break;
4467
4468 if (signal_pending(current))
4469 break;
4470
4471 if (!drained) {
4472 drain_all_stock(memcg);
4473 drained = true;
4474 continue;
4475 }
4476
4477 if (nr_reclaims) {
4478 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4479 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4480 nr_reclaims--;
4481 continue;
4482 }
4483
4484 memcg_memory_event(memcg, MEMCG_OOM);
4485 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4486 break;
4487 cond_resched();
4488 }
4489 out:
4490 memcg_wb_domain_size_changed(memcg);
4491 return nbytes;
4492 }
4493
4494 /*
4495 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4496 * if any new events become available.
4497 */
__memory_events_show(struct seq_file * m,atomic_long_t * events)4498 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4499 {
4500 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4501 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4502 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4503 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4504 seq_printf(m, "oom_kill %lu\n",
4505 atomic_long_read(&events[MEMCG_OOM_KILL]));
4506 seq_printf(m, "oom_group_kill %lu\n",
4507 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4508 seq_printf(m, "sock_throttled %lu\n",
4509 atomic_long_read(&events[MEMCG_SOCK_THROTTLED]));
4510 }
4511
memory_events_show(struct seq_file * m,void * v)4512 static int memory_events_show(struct seq_file *m, void *v)
4513 {
4514 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4515
4516 __memory_events_show(m, memcg->memory_events);
4517 return 0;
4518 }
4519
memory_events_local_show(struct seq_file * m,void * v)4520 static int memory_events_local_show(struct seq_file *m, void *v)
4521 {
4522 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4523
4524 __memory_events_show(m, memcg->memory_events_local);
4525 return 0;
4526 }
4527
memory_stat_show(struct seq_file * m,void * v)4528 int memory_stat_show(struct seq_file *m, void *v)
4529 {
4530 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4531 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4532 struct seq_buf s;
4533
4534 if (!buf)
4535 return -ENOMEM;
4536 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4537 memory_stat_format(memcg, &s);
4538 seq_puts(m, buf);
4539 kfree(buf);
4540 return 0;
4541 }
4542
4543 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)4544 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4545 int item)
4546 {
4547 return lruvec_page_state(lruvec, item) *
4548 memcg_page_state_output_unit(item);
4549 }
4550
memory_numa_stat_show(struct seq_file * m,void * v)4551 static int memory_numa_stat_show(struct seq_file *m, void *v)
4552 {
4553 int i;
4554 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4555
4556 mem_cgroup_flush_stats(memcg);
4557
4558 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4559 int nid;
4560
4561 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4562 continue;
4563
4564 seq_printf(m, "%s", memory_stats[i].name);
4565 for_each_node_state(nid, N_MEMORY) {
4566 u64 size;
4567 struct lruvec *lruvec;
4568
4569 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4570 size = lruvec_page_state_output(lruvec,
4571 memory_stats[i].idx);
4572 seq_printf(m, " N%d=%llu", nid, size);
4573 }
4574 seq_putc(m, '\n');
4575 }
4576
4577 return 0;
4578 }
4579 #endif
4580
memory_oom_group_show(struct seq_file * m,void * v)4581 static int memory_oom_group_show(struct seq_file *m, void *v)
4582 {
4583 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4584
4585 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4586
4587 return 0;
4588 }
4589
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4590 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4591 char *buf, size_t nbytes, loff_t off)
4592 {
4593 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4594 int ret, oom_group;
4595
4596 buf = strstrip(buf);
4597 if (!buf)
4598 return -EINVAL;
4599
4600 ret = kstrtoint(buf, 0, &oom_group);
4601 if (ret)
4602 return ret;
4603
4604 if (oom_group != 0 && oom_group != 1)
4605 return -EINVAL;
4606
4607 WRITE_ONCE(memcg->oom_group, oom_group);
4608
4609 return nbytes;
4610 }
4611
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4612 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4613 size_t nbytes, loff_t off)
4614 {
4615 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4616 int ret;
4617
4618 ret = user_proactive_reclaim(buf, memcg, NULL);
4619 if (ret)
4620 return ret;
4621
4622 return nbytes;
4623 }
4624
4625 static struct cftype memory_files[] = {
4626 {
4627 .name = "current",
4628 .flags = CFTYPE_NOT_ON_ROOT,
4629 .read_u64 = memory_current_read,
4630 },
4631 {
4632 .name = "peak",
4633 .flags = CFTYPE_NOT_ON_ROOT,
4634 .open = peak_open,
4635 .release = peak_release,
4636 .seq_show = memory_peak_show,
4637 .write = memory_peak_write,
4638 },
4639 {
4640 .name = "min",
4641 .flags = CFTYPE_NOT_ON_ROOT,
4642 .seq_show = memory_min_show,
4643 .write = memory_min_write,
4644 },
4645 {
4646 .name = "low",
4647 .flags = CFTYPE_NOT_ON_ROOT,
4648 .seq_show = memory_low_show,
4649 .write = memory_low_write,
4650 },
4651 {
4652 .name = "high",
4653 .flags = CFTYPE_NOT_ON_ROOT,
4654 .seq_show = memory_high_show,
4655 .write = memory_high_write,
4656 },
4657 {
4658 .name = "max",
4659 .flags = CFTYPE_NOT_ON_ROOT,
4660 .seq_show = memory_max_show,
4661 .write = memory_max_write,
4662 },
4663 {
4664 .name = "events",
4665 .flags = CFTYPE_NOT_ON_ROOT,
4666 .file_offset = offsetof(struct mem_cgroup, events_file),
4667 .seq_show = memory_events_show,
4668 },
4669 {
4670 .name = "events.local",
4671 .flags = CFTYPE_NOT_ON_ROOT,
4672 .file_offset = offsetof(struct mem_cgroup, events_local_file),
4673 .seq_show = memory_events_local_show,
4674 },
4675 {
4676 .name = "stat",
4677 .seq_show = memory_stat_show,
4678 },
4679 #ifdef CONFIG_NUMA
4680 {
4681 .name = "numa_stat",
4682 .seq_show = memory_numa_stat_show,
4683 },
4684 #endif
4685 {
4686 .name = "oom.group",
4687 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4688 .seq_show = memory_oom_group_show,
4689 .write = memory_oom_group_write,
4690 },
4691 {
4692 .name = "reclaim",
4693 .flags = CFTYPE_NS_DELEGATABLE,
4694 .write = memory_reclaim,
4695 },
4696 { } /* terminate */
4697 };
4698
4699 struct cgroup_subsys memory_cgrp_subsys = {
4700 .css_alloc = mem_cgroup_css_alloc,
4701 .css_online = mem_cgroup_css_online,
4702 .css_offline = mem_cgroup_css_offline,
4703 .css_released = mem_cgroup_css_released,
4704 .css_free = mem_cgroup_css_free,
4705 .css_reset = mem_cgroup_css_reset,
4706 .css_rstat_flush = mem_cgroup_css_rstat_flush,
4707 .attach = mem_cgroup_attach,
4708 .fork = mem_cgroup_fork,
4709 .exit = mem_cgroup_exit,
4710 .dfl_cftypes = memory_files,
4711 #ifdef CONFIG_MEMCG_V1
4712 .legacy_cftypes = mem_cgroup_legacy_files,
4713 #endif
4714 .early_init = 0,
4715 };
4716
4717 /**
4718 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4719 * @root: the top ancestor of the sub-tree being checked
4720 * @memcg: the memory cgroup to check
4721 *
4722 * WARNING: This function is not stateless! It can only be used as part
4723 * of a top-down tree iteration, not for isolated queries.
4724 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)4725 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4726 struct mem_cgroup *memcg)
4727 {
4728 bool recursive_protection =
4729 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4730
4731 if (mem_cgroup_disabled())
4732 return;
4733
4734 if (!root)
4735 root = root_mem_cgroup;
4736
4737 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4738 }
4739
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)4740 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4741 gfp_t gfp)
4742 {
4743 int ret;
4744
4745 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4746 if (ret)
4747 goto out;
4748
4749 css_get(&memcg->css);
4750 commit_charge(folio, memcg);
4751 memcg1_commit_charge(folio, memcg);
4752 out:
4753 return ret;
4754 }
4755
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)4756 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4757 {
4758 struct mem_cgroup *memcg;
4759 int ret;
4760
4761 memcg = get_mem_cgroup_from_mm(mm);
4762 ret = charge_memcg(folio, memcg, gfp);
4763 css_put(&memcg->css);
4764
4765 return ret;
4766 }
4767
4768 /**
4769 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
4770 * @folio: folio being charged
4771 * @gfp: reclaim mode
4772 *
4773 * This function is called when allocating a huge page folio, after the page has
4774 * already been obtained and charged to the appropriate hugetlb cgroup
4775 * controller (if it is enabled).
4776 *
4777 * Returns ENOMEM if the memcg is already full.
4778 * Returns 0 if either the charge was successful, or if we skip the charging.
4779 */
mem_cgroup_charge_hugetlb(struct folio * folio,gfp_t gfp)4780 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
4781 {
4782 struct mem_cgroup *memcg = get_mem_cgroup_from_current();
4783 int ret = 0;
4784
4785 /*
4786 * Even memcg does not account for hugetlb, we still want to update
4787 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
4788 * charging the memcg.
4789 */
4790 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
4791 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
4792 goto out;
4793
4794 if (charge_memcg(folio, memcg, gfp))
4795 ret = -ENOMEM;
4796
4797 out:
4798 mem_cgroup_put(memcg);
4799 return ret;
4800 }
4801
4802 /**
4803 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4804 * @folio: folio to charge.
4805 * @mm: mm context of the victim
4806 * @gfp: reclaim mode
4807 * @entry: swap entry for which the folio is allocated
4808 *
4809 * This function charges a folio allocated for swapin. Please call this before
4810 * adding the folio to the swapcache.
4811 *
4812 * Returns 0 on success. Otherwise, an error code is returned.
4813 */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)4814 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4815 gfp_t gfp, swp_entry_t entry)
4816 {
4817 struct mem_cgroup *memcg;
4818 unsigned short id;
4819 int ret;
4820
4821 if (mem_cgroup_disabled())
4822 return 0;
4823
4824 id = lookup_swap_cgroup_id(entry);
4825 rcu_read_lock();
4826 memcg = mem_cgroup_from_private_id(id);
4827 if (!memcg || !css_tryget_online(&memcg->css))
4828 memcg = get_mem_cgroup_from_mm(mm);
4829 rcu_read_unlock();
4830
4831 ret = charge_memcg(folio, memcg, gfp);
4832
4833 css_put(&memcg->css);
4834 return ret;
4835 }
4836
4837 struct uncharge_gather {
4838 struct mem_cgroup *memcg;
4839 unsigned long nr_memory;
4840 unsigned long pgpgout;
4841 unsigned long nr_kmem;
4842 int nid;
4843 };
4844
uncharge_gather_clear(struct uncharge_gather * ug)4845 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4846 {
4847 memset(ug, 0, sizeof(*ug));
4848 }
4849
uncharge_batch(const struct uncharge_gather * ug)4850 static void uncharge_batch(const struct uncharge_gather *ug)
4851 {
4852 if (ug->nr_memory) {
4853 memcg_uncharge(ug->memcg, ug->nr_memory);
4854 if (ug->nr_kmem) {
4855 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4856 memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4857 }
4858 memcg1_oom_recover(ug->memcg);
4859 }
4860
4861 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4862
4863 /* drop reference from uncharge_folio */
4864 css_put(&ug->memcg->css);
4865 }
4866
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)4867 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4868 {
4869 long nr_pages;
4870 struct mem_cgroup *memcg;
4871 struct obj_cgroup *objcg;
4872
4873 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4874
4875 /*
4876 * Nobody should be changing or seriously looking at
4877 * folio memcg or objcg at this point, we have fully
4878 * exclusive access to the folio.
4879 */
4880 if (folio_memcg_kmem(folio)) {
4881 objcg = __folio_objcg(folio);
4882 /*
4883 * This get matches the put at the end of the function and
4884 * kmem pages do not hold memcg references anymore.
4885 */
4886 memcg = get_mem_cgroup_from_objcg(objcg);
4887 } else {
4888 memcg = __folio_memcg(folio);
4889 }
4890
4891 if (!memcg)
4892 return;
4893
4894 if (ug->memcg != memcg) {
4895 if (ug->memcg) {
4896 uncharge_batch(ug);
4897 uncharge_gather_clear(ug);
4898 }
4899 ug->memcg = memcg;
4900 ug->nid = folio_nid(folio);
4901
4902 /* pairs with css_put in uncharge_batch */
4903 css_get(&memcg->css);
4904 }
4905
4906 nr_pages = folio_nr_pages(folio);
4907
4908 if (folio_memcg_kmem(folio)) {
4909 ug->nr_memory += nr_pages;
4910 ug->nr_kmem += nr_pages;
4911
4912 folio->memcg_data = 0;
4913 obj_cgroup_put(objcg);
4914 } else {
4915 /* LRU pages aren't accounted at the root level */
4916 if (!mem_cgroup_is_root(memcg))
4917 ug->nr_memory += nr_pages;
4918 ug->pgpgout++;
4919
4920 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4921 folio->memcg_data = 0;
4922 }
4923
4924 css_put(&memcg->css);
4925 }
4926
__mem_cgroup_uncharge(struct folio * folio)4927 void __mem_cgroup_uncharge(struct folio *folio)
4928 {
4929 struct uncharge_gather ug;
4930
4931 /* Don't touch folio->lru of any random page, pre-check: */
4932 if (!folio_memcg_charged(folio))
4933 return;
4934
4935 uncharge_gather_clear(&ug);
4936 uncharge_folio(folio, &ug);
4937 uncharge_batch(&ug);
4938 }
4939
__mem_cgroup_uncharge_folios(struct folio_batch * folios)4940 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4941 {
4942 struct uncharge_gather ug;
4943 unsigned int i;
4944
4945 uncharge_gather_clear(&ug);
4946 for (i = 0; i < folios->nr; i++)
4947 uncharge_folio(folios->folios[i], &ug);
4948 if (ug.memcg)
4949 uncharge_batch(&ug);
4950 }
4951
4952 /**
4953 * mem_cgroup_replace_folio - Charge a folio's replacement.
4954 * @old: Currently circulating folio.
4955 * @new: Replacement folio.
4956 *
4957 * Charge @new as a replacement folio for @old. @old will
4958 * be uncharged upon free.
4959 *
4960 * Both folios must be locked, @new->mapping must be set up.
4961 */
mem_cgroup_replace_folio(struct folio * old,struct folio * new)4962 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4963 {
4964 struct mem_cgroup *memcg;
4965 long nr_pages = folio_nr_pages(new);
4966
4967 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4968 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4969 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4970 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4971
4972 if (mem_cgroup_disabled())
4973 return;
4974
4975 /* Page cache replacement: new folio already charged? */
4976 if (folio_memcg_charged(new))
4977 return;
4978
4979 memcg = folio_memcg(old);
4980 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4981 if (!memcg)
4982 return;
4983
4984 /* Force-charge the new page. The old one will be freed soon */
4985 if (!mem_cgroup_is_root(memcg)) {
4986 page_counter_charge(&memcg->memory, nr_pages);
4987 if (do_memsw_account())
4988 page_counter_charge(&memcg->memsw, nr_pages);
4989 }
4990
4991 css_get(&memcg->css);
4992 commit_charge(new, memcg);
4993 memcg1_commit_charge(new, memcg);
4994 }
4995
4996 /**
4997 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4998 * @old: Currently circulating folio.
4999 * @new: Replacement folio.
5000 *
5001 * Transfer the memcg data from the old folio to the new folio for migration.
5002 * The old folio's data info will be cleared. Note that the memory counters
5003 * will remain unchanged throughout the process.
5004 *
5005 * Both folios must be locked, @new->mapping must be set up.
5006 */
mem_cgroup_migrate(struct folio * old,struct folio * new)5007 void mem_cgroup_migrate(struct folio *old, struct folio *new)
5008 {
5009 struct mem_cgroup *memcg;
5010
5011 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
5012 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
5013 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
5014 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
5015 VM_BUG_ON_FOLIO(folio_test_lru(old), old);
5016
5017 if (mem_cgroup_disabled())
5018 return;
5019
5020 memcg = folio_memcg(old);
5021 /*
5022 * Note that it is normal to see !memcg for a hugetlb folio.
5023 * For e.g, it could have been allocated when memory_hugetlb_accounting
5024 * was not selected.
5025 */
5026 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
5027 if (!memcg)
5028 return;
5029
5030 /* Transfer the charge and the css ref */
5031 commit_charge(new, memcg);
5032
5033 /* Warning should never happen, so don't worry about refcount non-0 */
5034 WARN_ON_ONCE(folio_unqueue_deferred_split(old));
5035 old->memcg_data = 0;
5036 }
5037
5038 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5039 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5040
mem_cgroup_sk_alloc(struct sock * sk)5041 void mem_cgroup_sk_alloc(struct sock *sk)
5042 {
5043 struct mem_cgroup *memcg;
5044
5045 if (!mem_cgroup_sockets_enabled)
5046 return;
5047
5048 /* Do not associate the sock with unrelated interrupted task's memcg. */
5049 if (!in_task())
5050 return;
5051
5052 rcu_read_lock();
5053 memcg = mem_cgroup_from_task(current);
5054 if (mem_cgroup_is_root(memcg))
5055 goto out;
5056 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
5057 goto out;
5058 if (css_tryget(&memcg->css))
5059 sk->sk_memcg = memcg;
5060 out:
5061 rcu_read_unlock();
5062 }
5063
mem_cgroup_sk_free(struct sock * sk)5064 void mem_cgroup_sk_free(struct sock *sk)
5065 {
5066 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5067
5068 if (memcg)
5069 css_put(&memcg->css);
5070 }
5071
mem_cgroup_sk_inherit(const struct sock * sk,struct sock * newsk)5072 void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk)
5073 {
5074 struct mem_cgroup *memcg;
5075
5076 if (sk->sk_memcg == newsk->sk_memcg)
5077 return;
5078
5079 mem_cgroup_sk_free(newsk);
5080
5081 memcg = mem_cgroup_from_sk(sk);
5082 if (memcg)
5083 css_get(&memcg->css);
5084
5085 newsk->sk_memcg = sk->sk_memcg;
5086 }
5087
5088 /**
5089 * mem_cgroup_sk_charge - charge socket memory
5090 * @sk: socket in memcg to charge
5091 * @nr_pages: number of pages to charge
5092 * @gfp_mask: reclaim mode
5093 *
5094 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5095 * @memcg's configured limit, %false if it doesn't.
5096 */
mem_cgroup_sk_charge(const struct sock * sk,unsigned int nr_pages,gfp_t gfp_mask)5097 bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages,
5098 gfp_t gfp_mask)
5099 {
5100 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5101
5102 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5103 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
5104
5105 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) {
5106 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5107 return true;
5108 }
5109
5110 return false;
5111 }
5112
5113 /**
5114 * mem_cgroup_sk_uncharge - uncharge socket memory
5115 * @sk: socket in memcg to uncharge
5116 * @nr_pages: number of pages to uncharge
5117 */
mem_cgroup_sk_uncharge(const struct sock * sk,unsigned int nr_pages)5118 void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages)
5119 {
5120 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5121
5122 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5123 memcg1_uncharge_skmem(memcg, nr_pages);
5124 return;
5125 }
5126
5127 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5128
5129 refill_stock(memcg, nr_pages);
5130 }
5131
mem_cgroup_flush_workqueue(void)5132 void mem_cgroup_flush_workqueue(void)
5133 {
5134 flush_workqueue(memcg_wq);
5135 }
5136
cgroup_memory(char * s)5137 static int __init cgroup_memory(char *s)
5138 {
5139 char *token;
5140
5141 while ((token = strsep(&s, ",")) != NULL) {
5142 if (!*token)
5143 continue;
5144 if (!strcmp(token, "nosocket"))
5145 cgroup_memory_nosocket = true;
5146 if (!strcmp(token, "nokmem"))
5147 cgroup_memory_nokmem = true;
5148 if (!strcmp(token, "nobpf"))
5149 cgroup_memory_nobpf = true;
5150 }
5151 return 1;
5152 }
5153 __setup("cgroup.memory=", cgroup_memory);
5154
5155 /*
5156 * Memory controller init before cgroup_init() initialize root_mem_cgroup.
5157 *
5158 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5159 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5160 * basically everything that doesn't depend on a specific mem_cgroup structure
5161 * should be initialized from here.
5162 */
mem_cgroup_init(void)5163 int __init mem_cgroup_init(void)
5164 {
5165 unsigned int memcg_size;
5166 int cpu;
5167
5168 /*
5169 * Currently s32 type (can refer to struct batched_lruvec_stat) is
5170 * used for per-memcg-per-cpu caching of per-node statistics. In order
5171 * to work fine, we should make sure that the overfill threshold can't
5172 * exceed S32_MAX / PAGE_SIZE.
5173 */
5174 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
5175
5176 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5177 memcg_hotplug_cpu_dead);
5178
5179 memcg_wq = alloc_workqueue("memcg", WQ_PERCPU, 0);
5180 WARN_ON(!memcg_wq);
5181
5182 for_each_possible_cpu(cpu) {
5183 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5184 drain_local_memcg_stock);
5185 INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work,
5186 drain_local_obj_stock);
5187 }
5188
5189 memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids);
5190 memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0,
5191 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
5192
5193 memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node,
5194 SLAB_PANIC | SLAB_HWCACHE_ALIGN);
5195
5196 return 0;
5197 }
5198
5199 #ifdef CONFIG_SWAP
5200 /**
5201 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5202 * @folio: folio being added to swap
5203 * @entry: swap entry to charge
5204 *
5205 * Try to charge @folio's memcg for the swap space at @entry.
5206 *
5207 * Returns 0 on success, -ENOMEM on failure.
5208 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)5209 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5210 {
5211 unsigned int nr_pages = folio_nr_pages(folio);
5212 struct page_counter *counter;
5213 struct mem_cgroup *memcg;
5214
5215 if (do_memsw_account())
5216 return 0;
5217
5218 memcg = folio_memcg(folio);
5219
5220 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5221 if (!memcg)
5222 return 0;
5223
5224 if (!entry.val) {
5225 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5226 return 0;
5227 }
5228
5229 memcg = mem_cgroup_private_id_get_online(memcg);
5230
5231 if (!mem_cgroup_is_root(memcg) &&
5232 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5233 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5234 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5235 mem_cgroup_private_id_put(memcg);
5236 return -ENOMEM;
5237 }
5238
5239 /* Get references for the tail pages, too */
5240 if (nr_pages > 1)
5241 mem_cgroup_private_id_get_many(memcg, nr_pages - 1);
5242 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5243
5244 swap_cgroup_record(folio, mem_cgroup_private_id(memcg), entry);
5245
5246 return 0;
5247 }
5248
5249 /**
5250 * __mem_cgroup_uncharge_swap - uncharge swap space
5251 * @entry: swap entry to uncharge
5252 * @nr_pages: the amount of swap space to uncharge
5253 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)5254 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5255 {
5256 struct mem_cgroup *memcg;
5257 unsigned short id;
5258
5259 id = swap_cgroup_clear(entry, nr_pages);
5260 rcu_read_lock();
5261 memcg = mem_cgroup_from_private_id(id);
5262 if (memcg) {
5263 if (!mem_cgroup_is_root(memcg)) {
5264 if (do_memsw_account())
5265 page_counter_uncharge(&memcg->memsw, nr_pages);
5266 else
5267 page_counter_uncharge(&memcg->swap, nr_pages);
5268 }
5269 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5270 mem_cgroup_private_id_put_many(memcg, nr_pages);
5271 }
5272 rcu_read_unlock();
5273 }
5274
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)5275 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5276 {
5277 long nr_swap_pages = get_nr_swap_pages();
5278
5279 if (mem_cgroup_disabled() || do_memsw_account())
5280 return nr_swap_pages;
5281 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5282 nr_swap_pages = min_t(long, nr_swap_pages,
5283 READ_ONCE(memcg->swap.max) -
5284 page_counter_read(&memcg->swap));
5285 return nr_swap_pages;
5286 }
5287
mem_cgroup_swap_full(struct folio * folio)5288 bool mem_cgroup_swap_full(struct folio *folio)
5289 {
5290 struct mem_cgroup *memcg;
5291
5292 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5293
5294 if (vm_swap_full())
5295 return true;
5296 if (do_memsw_account())
5297 return false;
5298
5299 memcg = folio_memcg(folio);
5300 if (!memcg)
5301 return false;
5302
5303 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5304 unsigned long usage = page_counter_read(&memcg->swap);
5305
5306 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5307 usage * 2 >= READ_ONCE(memcg->swap.max))
5308 return true;
5309 }
5310
5311 return false;
5312 }
5313
setup_swap_account(char * s)5314 static int __init setup_swap_account(char *s)
5315 {
5316 bool res;
5317
5318 if (!kstrtobool(s, &res) && !res)
5319 pr_warn_once("The swapaccount=0 commandline option is deprecated "
5320 "in favor of configuring swap control via cgroupfs. "
5321 "Please report your usecase to linux-mm@kvack.org if you "
5322 "depend on this functionality.\n");
5323 return 1;
5324 }
5325 __setup("swapaccount=", setup_swap_account);
5326
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5327 static u64 swap_current_read(struct cgroup_subsys_state *css,
5328 struct cftype *cft)
5329 {
5330 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5331
5332 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5333 }
5334
swap_peak_show(struct seq_file * sf,void * v)5335 static int swap_peak_show(struct seq_file *sf, void *v)
5336 {
5337 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5338
5339 return peak_show(sf, v, &memcg->swap);
5340 }
5341
swap_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5342 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5343 size_t nbytes, loff_t off)
5344 {
5345 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5346
5347 return peak_write(of, buf, nbytes, off, &memcg->swap,
5348 &memcg->swap_peaks);
5349 }
5350
swap_high_show(struct seq_file * m,void * v)5351 static int swap_high_show(struct seq_file *m, void *v)
5352 {
5353 return seq_puts_memcg_tunable(m,
5354 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5355 }
5356
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5357 static ssize_t swap_high_write(struct kernfs_open_file *of,
5358 char *buf, size_t nbytes, loff_t off)
5359 {
5360 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5361 unsigned long high;
5362 int err;
5363
5364 buf = strstrip(buf);
5365 err = page_counter_memparse(buf, "max", &high);
5366 if (err)
5367 return err;
5368
5369 page_counter_set_high(&memcg->swap, high);
5370
5371 return nbytes;
5372 }
5373
swap_max_show(struct seq_file * m,void * v)5374 static int swap_max_show(struct seq_file *m, void *v)
5375 {
5376 return seq_puts_memcg_tunable(m,
5377 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5378 }
5379
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5380 static ssize_t swap_max_write(struct kernfs_open_file *of,
5381 char *buf, size_t nbytes, loff_t off)
5382 {
5383 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5384 unsigned long max;
5385 int err;
5386
5387 buf = strstrip(buf);
5388 err = page_counter_memparse(buf, "max", &max);
5389 if (err)
5390 return err;
5391
5392 xchg(&memcg->swap.max, max);
5393
5394 return nbytes;
5395 }
5396
swap_events_show(struct seq_file * m,void * v)5397 static int swap_events_show(struct seq_file *m, void *v)
5398 {
5399 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5400
5401 seq_printf(m, "high %lu\n",
5402 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5403 seq_printf(m, "max %lu\n",
5404 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5405 seq_printf(m, "fail %lu\n",
5406 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5407
5408 return 0;
5409 }
5410
5411 static struct cftype swap_files[] = {
5412 {
5413 .name = "swap.current",
5414 .flags = CFTYPE_NOT_ON_ROOT,
5415 .read_u64 = swap_current_read,
5416 },
5417 {
5418 .name = "swap.high",
5419 .flags = CFTYPE_NOT_ON_ROOT,
5420 .seq_show = swap_high_show,
5421 .write = swap_high_write,
5422 },
5423 {
5424 .name = "swap.max",
5425 .flags = CFTYPE_NOT_ON_ROOT,
5426 .seq_show = swap_max_show,
5427 .write = swap_max_write,
5428 },
5429 {
5430 .name = "swap.peak",
5431 .flags = CFTYPE_NOT_ON_ROOT,
5432 .open = peak_open,
5433 .release = peak_release,
5434 .seq_show = swap_peak_show,
5435 .write = swap_peak_write,
5436 },
5437 {
5438 .name = "swap.events",
5439 .flags = CFTYPE_NOT_ON_ROOT,
5440 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
5441 .seq_show = swap_events_show,
5442 },
5443 { } /* terminate */
5444 };
5445
5446 #ifdef CONFIG_ZSWAP
5447 /**
5448 * obj_cgroup_may_zswap - check if this cgroup can zswap
5449 * @objcg: the object cgroup
5450 *
5451 * Check if the hierarchical zswap limit has been reached.
5452 *
5453 * This doesn't check for specific headroom, and it is not atomic
5454 * either. But with zswap, the size of the allocation is only known
5455 * once compression has occurred, and this optimistic pre-check avoids
5456 * spending cycles on compression when there is already no room left
5457 * or zswap is disabled altogether somewhere in the hierarchy.
5458 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)5459 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5460 {
5461 struct mem_cgroup *memcg, *original_memcg;
5462 bool ret = true;
5463
5464 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5465 return true;
5466
5467 original_memcg = get_mem_cgroup_from_objcg(objcg);
5468 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5469 memcg = parent_mem_cgroup(memcg)) {
5470 unsigned long max = READ_ONCE(memcg->zswap_max);
5471 unsigned long pages;
5472
5473 if (max == PAGE_COUNTER_MAX)
5474 continue;
5475 if (max == 0) {
5476 ret = false;
5477 break;
5478 }
5479
5480 /* Force flush to get accurate stats for charging */
5481 __mem_cgroup_flush_stats(memcg, true);
5482 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5483 if (pages < max)
5484 continue;
5485 ret = false;
5486 break;
5487 }
5488 mem_cgroup_put(original_memcg);
5489 return ret;
5490 }
5491
5492 /**
5493 * obj_cgroup_charge_zswap - charge compression backend memory
5494 * @objcg: the object cgroup
5495 * @size: size of compressed object
5496 *
5497 * This forces the charge after obj_cgroup_may_zswap() allowed
5498 * compression and storage in zswap for this cgroup to go ahead.
5499 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)5500 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5501 {
5502 struct mem_cgroup *memcg;
5503
5504 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5505 return;
5506
5507 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5508
5509 /* PF_MEMALLOC context, charging must succeed */
5510 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5511 VM_WARN_ON_ONCE(1);
5512
5513 rcu_read_lock();
5514 memcg = obj_cgroup_memcg(objcg);
5515 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5516 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5517 rcu_read_unlock();
5518 }
5519
5520 /**
5521 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5522 * @objcg: the object cgroup
5523 * @size: size of compressed object
5524 *
5525 * Uncharges zswap memory on page in.
5526 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)5527 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5528 {
5529 struct mem_cgroup *memcg;
5530
5531 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5532 return;
5533
5534 obj_cgroup_uncharge(objcg, size);
5535
5536 rcu_read_lock();
5537 memcg = obj_cgroup_memcg(objcg);
5538 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5539 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5540 rcu_read_unlock();
5541 }
5542
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)5543 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5544 {
5545 /* if zswap is disabled, do not block pages going to the swapping device */
5546 if (!zswap_is_enabled())
5547 return true;
5548
5549 for (; memcg; memcg = parent_mem_cgroup(memcg))
5550 if (!READ_ONCE(memcg->zswap_writeback))
5551 return false;
5552
5553 return true;
5554 }
5555
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5556 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5557 struct cftype *cft)
5558 {
5559 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5560
5561 mem_cgroup_flush_stats(memcg);
5562 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5563 }
5564
zswap_max_show(struct seq_file * m,void * v)5565 static int zswap_max_show(struct seq_file *m, void *v)
5566 {
5567 return seq_puts_memcg_tunable(m,
5568 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5569 }
5570
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5571 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5572 char *buf, size_t nbytes, loff_t off)
5573 {
5574 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5575 unsigned long max;
5576 int err;
5577
5578 buf = strstrip(buf);
5579 err = page_counter_memparse(buf, "max", &max);
5580 if (err)
5581 return err;
5582
5583 xchg(&memcg->zswap_max, max);
5584
5585 return nbytes;
5586 }
5587
zswap_writeback_show(struct seq_file * m,void * v)5588 static int zswap_writeback_show(struct seq_file *m, void *v)
5589 {
5590 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5591
5592 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5593 return 0;
5594 }
5595
zswap_writeback_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5596 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5597 char *buf, size_t nbytes, loff_t off)
5598 {
5599 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5600 int zswap_writeback;
5601 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5602
5603 if (parse_ret)
5604 return parse_ret;
5605
5606 if (zswap_writeback != 0 && zswap_writeback != 1)
5607 return -EINVAL;
5608
5609 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5610 return nbytes;
5611 }
5612
5613 static struct cftype zswap_files[] = {
5614 {
5615 .name = "zswap.current",
5616 .flags = CFTYPE_NOT_ON_ROOT,
5617 .read_u64 = zswap_current_read,
5618 },
5619 {
5620 .name = "zswap.max",
5621 .flags = CFTYPE_NOT_ON_ROOT,
5622 .seq_show = zswap_max_show,
5623 .write = zswap_max_write,
5624 },
5625 {
5626 .name = "zswap.writeback",
5627 .seq_show = zswap_writeback_show,
5628 .write = zswap_writeback_write,
5629 },
5630 { } /* terminate */
5631 };
5632 #endif /* CONFIG_ZSWAP */
5633
mem_cgroup_swap_init(void)5634 static int __init mem_cgroup_swap_init(void)
5635 {
5636 if (mem_cgroup_disabled())
5637 return 0;
5638
5639 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5640 #ifdef CONFIG_MEMCG_V1
5641 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5642 #endif
5643 #ifdef CONFIG_ZSWAP
5644 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5645 #endif
5646 return 0;
5647 }
5648 subsys_initcall(mem_cgroup_swap_init);
5649
5650 #endif /* CONFIG_SWAP */
5651
mem_cgroup_node_filter_allowed(struct mem_cgroup * memcg,nodemask_t * mask)5652 void mem_cgroup_node_filter_allowed(struct mem_cgroup *memcg, nodemask_t *mask)
5653 {
5654 nodemask_t allowed;
5655
5656 if (!memcg)
5657 return;
5658
5659 /*
5660 * Since this interface is intended for use by migration paths, and
5661 * reclaim and migration are subject to race conditions such as changes
5662 * in effective_mems and hot-unpluging of nodes, inaccurate allowed
5663 * mask is acceptable.
5664 */
5665 cpuset_nodes_allowed(memcg->css.cgroup, &allowed);
5666 nodes_and(*mask, *mask, allowed);
5667 }
5668
mem_cgroup_show_protected_memory(struct mem_cgroup * memcg)5669 void mem_cgroup_show_protected_memory(struct mem_cgroup *memcg)
5670 {
5671 if (mem_cgroup_disabled() || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5672 return;
5673
5674 if (!memcg)
5675 memcg = root_mem_cgroup;
5676
5677 pr_warn("Memory cgroup min protection %lukB -- low protection %lukB",
5678 K(atomic_long_read(&memcg->memory.children_min_usage)),
5679 K(atomic_long_read(&memcg->memory.children_low_usage)));
5680 }
5681