1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/pagevec.h> 37 #include <linux/vm_event_item.h> 38 #include <linux/smp.h> 39 #include <linux/page-flags.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bit_spinlock.h> 42 #include <linux/rcupdate.h> 43 #include <linux/limits.h> 44 #include <linux/export.h> 45 #include <linux/list.h> 46 #include <linux/mutex.h> 47 #include <linux/rbtree.h> 48 #include <linux/slab.h> 49 #include <linux/swapops.h> 50 #include <linux/spinlock.h> 51 #include <linux/fs.h> 52 #include <linux/seq_file.h> 53 #include <linux/parser.h> 54 #include <linux/vmpressure.h> 55 #include <linux/memremap.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/resume_user_mode.h> 62 #include <linux/psi.h> 63 #include <linux/seq_buf.h> 64 #include <linux/sched/isolation.h> 65 #include <linux/kmemleak.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "memcontrol-v1.h" 71 72 #include <linux/uaccess.h> 73 74 #define CREATE_TRACE_POINTS 75 #include <trace/events/memcg.h> 76 #undef CREATE_TRACE_POINTS 77 78 #include <trace/events/vmscan.h> 79 80 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 81 EXPORT_SYMBOL(memory_cgrp_subsys); 82 83 struct mem_cgroup *root_mem_cgroup __read_mostly; 84 85 /* Active memory cgroup to use from an interrupt context */ 86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 88 89 /* Socket memory accounting disabled? */ 90 static bool cgroup_memory_nosocket __ro_after_init; 91 92 /* Kernel memory accounting disabled? */ 93 static bool cgroup_memory_nokmem __ro_after_init; 94 95 /* BPF memory accounting disabled? */ 96 static bool cgroup_memory_nobpf __ro_after_init; 97 98 #ifdef CONFIG_CGROUP_WRITEBACK 99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 100 #endif 101 102 static inline bool task_is_dying(void) 103 { 104 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 105 (current->flags & PF_EXITING); 106 } 107 108 /* Some nice accessors for the vmpressure. */ 109 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 110 { 111 if (!memcg) 112 memcg = root_mem_cgroup; 113 return &memcg->vmpressure; 114 } 115 116 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 117 { 118 return container_of(vmpr, struct mem_cgroup, vmpressure); 119 } 120 121 #define SEQ_BUF_SIZE SZ_4K 122 #define CURRENT_OBJCG_UPDATE_BIT 0 123 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 124 125 static DEFINE_SPINLOCK(objcg_lock); 126 127 bool mem_cgroup_kmem_disabled(void) 128 { 129 return cgroup_memory_nokmem; 130 } 131 132 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 133 unsigned int nr_pages); 134 135 static void obj_cgroup_release(struct percpu_ref *ref) 136 { 137 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 138 unsigned int nr_bytes; 139 unsigned int nr_pages; 140 unsigned long flags; 141 142 /* 143 * At this point all allocated objects are freed, and 144 * objcg->nr_charged_bytes can't have an arbitrary byte value. 145 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 146 * 147 * The following sequence can lead to it: 148 * 1) CPU0: objcg == stock->cached_objcg 149 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 150 * PAGE_SIZE bytes are charged 151 * 3) CPU1: a process from another memcg is allocating something, 152 * the stock if flushed, 153 * objcg->nr_charged_bytes = PAGE_SIZE - 92 154 * 5) CPU0: we do release this object, 155 * 92 bytes are added to stock->nr_bytes 156 * 6) CPU0: stock is flushed, 157 * 92 bytes are added to objcg->nr_charged_bytes 158 * 159 * In the result, nr_charged_bytes == PAGE_SIZE. 160 * This page will be uncharged in obj_cgroup_release(). 161 */ 162 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 163 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 164 nr_pages = nr_bytes >> PAGE_SHIFT; 165 166 if (nr_pages) 167 obj_cgroup_uncharge_pages(objcg, nr_pages); 168 169 spin_lock_irqsave(&objcg_lock, flags); 170 list_del(&objcg->list); 171 spin_unlock_irqrestore(&objcg_lock, flags); 172 173 percpu_ref_exit(ref); 174 kfree_rcu(objcg, rcu); 175 } 176 177 static struct obj_cgroup *obj_cgroup_alloc(void) 178 { 179 struct obj_cgroup *objcg; 180 int ret; 181 182 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 183 if (!objcg) 184 return NULL; 185 186 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 187 GFP_KERNEL); 188 if (ret) { 189 kfree(objcg); 190 return NULL; 191 } 192 INIT_LIST_HEAD(&objcg->list); 193 return objcg; 194 } 195 196 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 197 struct mem_cgroup *parent) 198 { 199 struct obj_cgroup *objcg, *iter; 200 201 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 202 203 spin_lock_irq(&objcg_lock); 204 205 /* 1) Ready to reparent active objcg. */ 206 list_add(&objcg->list, &memcg->objcg_list); 207 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 208 list_for_each_entry(iter, &memcg->objcg_list, list) 209 WRITE_ONCE(iter->memcg, parent); 210 /* 3) Move already reparented objcgs to the parent's list */ 211 list_splice(&memcg->objcg_list, &parent->objcg_list); 212 213 spin_unlock_irq(&objcg_lock); 214 215 percpu_ref_kill(&objcg->refcnt); 216 } 217 218 /* 219 * A lot of the calls to the cache allocation functions are expected to be 220 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 221 * conditional to this static branch, we'll have to allow modules that does 222 * kmem_cache_alloc and the such to see this symbol as well 223 */ 224 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 225 EXPORT_SYMBOL(memcg_kmem_online_key); 226 227 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 228 EXPORT_SYMBOL(memcg_bpf_enabled_key); 229 230 /** 231 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 232 * @folio: folio of interest 233 * 234 * If memcg is bound to the default hierarchy, css of the memcg associated 235 * with @folio is returned. The returned css remains associated with @folio 236 * until it is released. 237 * 238 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 239 * is returned. 240 */ 241 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 242 { 243 struct mem_cgroup *memcg = folio_memcg(folio); 244 245 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 246 memcg = root_mem_cgroup; 247 248 return &memcg->css; 249 } 250 251 /** 252 * page_cgroup_ino - return inode number of the memcg a page is charged to 253 * @page: the page 254 * 255 * Look up the closest online ancestor of the memory cgroup @page is charged to 256 * and return its inode number or 0 if @page is not charged to any cgroup. It 257 * is safe to call this function without holding a reference to @page. 258 * 259 * Note, this function is inherently racy, because there is nothing to prevent 260 * the cgroup inode from getting torn down and potentially reallocated a moment 261 * after page_cgroup_ino() returns, so it only should be used by callers that 262 * do not care (such as procfs interfaces). 263 */ 264 ino_t page_cgroup_ino(struct page *page) 265 { 266 struct mem_cgroup *memcg; 267 unsigned long ino = 0; 268 269 rcu_read_lock(); 270 /* page_folio() is racy here, but the entire function is racy anyway */ 271 memcg = folio_memcg_check(page_folio(page)); 272 273 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 274 memcg = parent_mem_cgroup(memcg); 275 if (memcg) 276 ino = cgroup_ino(memcg->css.cgroup); 277 rcu_read_unlock(); 278 return ino; 279 } 280 281 /* Subset of node_stat_item for memcg stats */ 282 static const unsigned int memcg_node_stat_items[] = { 283 NR_INACTIVE_ANON, 284 NR_ACTIVE_ANON, 285 NR_INACTIVE_FILE, 286 NR_ACTIVE_FILE, 287 NR_UNEVICTABLE, 288 NR_SLAB_RECLAIMABLE_B, 289 NR_SLAB_UNRECLAIMABLE_B, 290 WORKINGSET_REFAULT_ANON, 291 WORKINGSET_REFAULT_FILE, 292 WORKINGSET_ACTIVATE_ANON, 293 WORKINGSET_ACTIVATE_FILE, 294 WORKINGSET_RESTORE_ANON, 295 WORKINGSET_RESTORE_FILE, 296 WORKINGSET_NODERECLAIM, 297 NR_ANON_MAPPED, 298 NR_FILE_MAPPED, 299 NR_FILE_PAGES, 300 NR_FILE_DIRTY, 301 NR_WRITEBACK, 302 NR_SHMEM, 303 NR_SHMEM_THPS, 304 NR_FILE_THPS, 305 NR_ANON_THPS, 306 NR_KERNEL_STACK_KB, 307 NR_PAGETABLE, 308 NR_SECONDARY_PAGETABLE, 309 #ifdef CONFIG_SWAP 310 NR_SWAPCACHE, 311 #endif 312 #ifdef CONFIG_NUMA_BALANCING 313 PGPROMOTE_SUCCESS, 314 #endif 315 PGDEMOTE_KSWAPD, 316 PGDEMOTE_DIRECT, 317 PGDEMOTE_KHUGEPAGED, 318 #ifdef CONFIG_HUGETLB_PAGE 319 NR_HUGETLB, 320 #endif 321 }; 322 323 static const unsigned int memcg_stat_items[] = { 324 MEMCG_SWAP, 325 MEMCG_SOCK, 326 MEMCG_PERCPU_B, 327 MEMCG_VMALLOC, 328 MEMCG_KMEM, 329 MEMCG_ZSWAP_B, 330 MEMCG_ZSWAPPED, 331 }; 332 333 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 334 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 335 ARRAY_SIZE(memcg_stat_items)) 336 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 337 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 338 339 static void init_memcg_stats(void) 340 { 341 u8 i, j = 0; 342 343 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 344 345 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 346 347 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 348 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 349 350 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 351 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 352 } 353 354 static inline int memcg_stats_index(int idx) 355 { 356 return mem_cgroup_stats_index[idx]; 357 } 358 359 struct lruvec_stats_percpu { 360 /* Local (CPU and cgroup) state */ 361 long state[NR_MEMCG_NODE_STAT_ITEMS]; 362 363 /* Delta calculation for lockless upward propagation */ 364 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 365 }; 366 367 struct lruvec_stats { 368 /* Aggregated (CPU and subtree) state */ 369 long state[NR_MEMCG_NODE_STAT_ITEMS]; 370 371 /* Non-hierarchical (CPU aggregated) state */ 372 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 373 374 /* Pending child counts during tree propagation */ 375 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 376 }; 377 378 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 379 { 380 struct mem_cgroup_per_node *pn; 381 long x; 382 int i; 383 384 if (mem_cgroup_disabled()) 385 return node_page_state(lruvec_pgdat(lruvec), idx); 386 387 i = memcg_stats_index(idx); 388 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 389 return 0; 390 391 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 392 x = READ_ONCE(pn->lruvec_stats->state[i]); 393 #ifdef CONFIG_SMP 394 if (x < 0) 395 x = 0; 396 #endif 397 return x; 398 } 399 400 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 401 enum node_stat_item idx) 402 { 403 struct mem_cgroup_per_node *pn; 404 long x; 405 int i; 406 407 if (mem_cgroup_disabled()) 408 return node_page_state(lruvec_pgdat(lruvec), idx); 409 410 i = memcg_stats_index(idx); 411 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 412 return 0; 413 414 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 415 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 416 #ifdef CONFIG_SMP 417 if (x < 0) 418 x = 0; 419 #endif 420 return x; 421 } 422 423 /* Subset of vm_event_item to report for memcg event stats */ 424 static const unsigned int memcg_vm_event_stat[] = { 425 #ifdef CONFIG_MEMCG_V1 426 PGPGIN, 427 PGPGOUT, 428 #endif 429 PSWPIN, 430 PSWPOUT, 431 PGSCAN_KSWAPD, 432 PGSCAN_DIRECT, 433 PGSCAN_KHUGEPAGED, 434 PGSTEAL_KSWAPD, 435 PGSTEAL_DIRECT, 436 PGSTEAL_KHUGEPAGED, 437 PGFAULT, 438 PGMAJFAULT, 439 PGREFILL, 440 PGACTIVATE, 441 PGDEACTIVATE, 442 PGLAZYFREE, 443 PGLAZYFREED, 444 #ifdef CONFIG_SWAP 445 SWPIN_ZERO, 446 SWPOUT_ZERO, 447 #endif 448 #ifdef CONFIG_ZSWAP 449 ZSWPIN, 450 ZSWPOUT, 451 ZSWPWB, 452 #endif 453 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 454 THP_FAULT_ALLOC, 455 THP_COLLAPSE_ALLOC, 456 THP_SWPOUT, 457 THP_SWPOUT_FALLBACK, 458 #endif 459 #ifdef CONFIG_NUMA_BALANCING 460 NUMA_PAGE_MIGRATE, 461 NUMA_PTE_UPDATES, 462 NUMA_HINT_FAULTS, 463 #endif 464 }; 465 466 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 467 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 468 469 static void init_memcg_events(void) 470 { 471 u8 i; 472 473 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 474 475 memset(mem_cgroup_events_index, U8_MAX, 476 sizeof(mem_cgroup_events_index)); 477 478 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 479 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 480 } 481 482 static inline int memcg_events_index(enum vm_event_item idx) 483 { 484 return mem_cgroup_events_index[idx]; 485 } 486 487 struct memcg_vmstats_percpu { 488 /* Stats updates since the last flush */ 489 unsigned int stats_updates; 490 491 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 492 struct memcg_vmstats_percpu *parent; 493 struct memcg_vmstats *vmstats; 494 495 /* The above should fit a single cacheline for memcg_rstat_updated() */ 496 497 /* Local (CPU and cgroup) page state & events */ 498 long state[MEMCG_VMSTAT_SIZE]; 499 unsigned long events[NR_MEMCG_EVENTS]; 500 501 /* Delta calculation for lockless upward propagation */ 502 long state_prev[MEMCG_VMSTAT_SIZE]; 503 unsigned long events_prev[NR_MEMCG_EVENTS]; 504 } ____cacheline_aligned; 505 506 struct memcg_vmstats { 507 /* Aggregated (CPU and subtree) page state & events */ 508 long state[MEMCG_VMSTAT_SIZE]; 509 unsigned long events[NR_MEMCG_EVENTS]; 510 511 /* Non-hierarchical (CPU aggregated) page state & events */ 512 long state_local[MEMCG_VMSTAT_SIZE]; 513 unsigned long events_local[NR_MEMCG_EVENTS]; 514 515 /* Pending child counts during tree propagation */ 516 long state_pending[MEMCG_VMSTAT_SIZE]; 517 unsigned long events_pending[NR_MEMCG_EVENTS]; 518 519 /* Stats updates since the last flush */ 520 atomic64_t stats_updates; 521 }; 522 523 /* 524 * memcg and lruvec stats flushing 525 * 526 * Many codepaths leading to stats update or read are performance sensitive and 527 * adding stats flushing in such codepaths is not desirable. So, to optimize the 528 * flushing the kernel does: 529 * 530 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 531 * rstat update tree grow unbounded. 532 * 533 * 2) Flush the stats synchronously on reader side only when there are more than 534 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 535 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 536 * only for 2 seconds due to (1). 537 */ 538 static void flush_memcg_stats_dwork(struct work_struct *w); 539 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 540 static u64 flush_last_time; 541 542 #define FLUSH_TIME (2UL*HZ) 543 544 /* 545 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 546 * not rely on this as part of an acquired spinlock_t lock. These functions are 547 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 548 * is sufficient. 549 */ 550 static void memcg_stats_lock(void) 551 { 552 preempt_disable_nested(); 553 VM_WARN_ON_IRQS_ENABLED(); 554 } 555 556 static void __memcg_stats_lock(void) 557 { 558 preempt_disable_nested(); 559 } 560 561 static void memcg_stats_unlock(void) 562 { 563 preempt_enable_nested(); 564 } 565 566 567 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 568 { 569 return atomic64_read(&vmstats->stats_updates) > 570 MEMCG_CHARGE_BATCH * num_online_cpus(); 571 } 572 573 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 574 { 575 struct memcg_vmstats_percpu *statc; 576 int cpu = smp_processor_id(); 577 unsigned int stats_updates; 578 579 if (!val) 580 return; 581 582 cgroup_rstat_updated(memcg->css.cgroup, cpu); 583 statc = this_cpu_ptr(memcg->vmstats_percpu); 584 for (; statc; statc = statc->parent) { 585 stats_updates = READ_ONCE(statc->stats_updates) + abs(val); 586 WRITE_ONCE(statc->stats_updates, stats_updates); 587 if (stats_updates < MEMCG_CHARGE_BATCH) 588 continue; 589 590 /* 591 * If @memcg is already flush-able, increasing stats_updates is 592 * redundant. Avoid the overhead of the atomic update. 593 */ 594 if (!memcg_vmstats_needs_flush(statc->vmstats)) 595 atomic64_add(stats_updates, 596 &statc->vmstats->stats_updates); 597 WRITE_ONCE(statc->stats_updates, 0); 598 } 599 } 600 601 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) 602 { 603 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats); 604 605 trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates), 606 force, needs_flush); 607 608 if (!force && !needs_flush) 609 return; 610 611 if (mem_cgroup_is_root(memcg)) 612 WRITE_ONCE(flush_last_time, jiffies_64); 613 614 cgroup_rstat_flush(memcg->css.cgroup); 615 } 616 617 /* 618 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 619 * @memcg: root of the subtree to flush 620 * 621 * Flushing is serialized by the underlying global rstat lock. There is also a 622 * minimum amount of work to be done even if there are no stat updates to flush. 623 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 624 * avoids unnecessary work and contention on the underlying lock. 625 */ 626 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 627 { 628 if (mem_cgroup_disabled()) 629 return; 630 631 if (!memcg) 632 memcg = root_mem_cgroup; 633 634 __mem_cgroup_flush_stats(memcg, false); 635 } 636 637 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 638 { 639 /* Only flush if the periodic flusher is one full cycle late */ 640 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 641 mem_cgroup_flush_stats(memcg); 642 } 643 644 static void flush_memcg_stats_dwork(struct work_struct *w) 645 { 646 /* 647 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 648 * in latency-sensitive paths is as cheap as possible. 649 */ 650 __mem_cgroup_flush_stats(root_mem_cgroup, true); 651 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 652 } 653 654 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 655 { 656 long x; 657 int i = memcg_stats_index(idx); 658 659 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 660 return 0; 661 662 x = READ_ONCE(memcg->vmstats->state[i]); 663 #ifdef CONFIG_SMP 664 if (x < 0) 665 x = 0; 666 #endif 667 return x; 668 } 669 670 static int memcg_page_state_unit(int item); 671 672 /* 673 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 674 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 675 */ 676 static int memcg_state_val_in_pages(int idx, int val) 677 { 678 int unit = memcg_page_state_unit(idx); 679 680 if (!val || unit == PAGE_SIZE) 681 return val; 682 else 683 return max(val * unit / PAGE_SIZE, 1UL); 684 } 685 686 /** 687 * __mod_memcg_state - update cgroup memory statistics 688 * @memcg: the memory cgroup 689 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 690 * @val: delta to add to the counter, can be negative 691 */ 692 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 693 int val) 694 { 695 int i = memcg_stats_index(idx); 696 697 if (mem_cgroup_disabled()) 698 return; 699 700 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 701 return; 702 703 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 704 val = memcg_state_val_in_pages(idx, val); 705 memcg_rstat_updated(memcg, val); 706 trace_mod_memcg_state(memcg, idx, val); 707 } 708 709 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 710 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 711 { 712 long x; 713 int i = memcg_stats_index(idx); 714 715 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 716 return 0; 717 718 x = READ_ONCE(memcg->vmstats->state_local[i]); 719 #ifdef CONFIG_SMP 720 if (x < 0) 721 x = 0; 722 #endif 723 return x; 724 } 725 726 static void __mod_memcg_lruvec_state(struct lruvec *lruvec, 727 enum node_stat_item idx, 728 int val) 729 { 730 struct mem_cgroup_per_node *pn; 731 struct mem_cgroup *memcg; 732 int i = memcg_stats_index(idx); 733 734 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 735 return; 736 737 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 738 memcg = pn->memcg; 739 740 /* 741 * The caller from rmap relies on disabled preemption because they never 742 * update their counter from in-interrupt context. For these two 743 * counters we check that the update is never performed from an 744 * interrupt context while other caller need to have disabled interrupt. 745 */ 746 __memcg_stats_lock(); 747 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 748 switch (idx) { 749 case NR_ANON_MAPPED: 750 case NR_FILE_MAPPED: 751 case NR_ANON_THPS: 752 WARN_ON_ONCE(!in_task()); 753 break; 754 default: 755 VM_WARN_ON_IRQS_ENABLED(); 756 } 757 } 758 759 /* Update memcg */ 760 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 761 762 /* Update lruvec */ 763 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 764 765 val = memcg_state_val_in_pages(idx, val); 766 memcg_rstat_updated(memcg, val); 767 trace_mod_memcg_lruvec_state(memcg, idx, val); 768 memcg_stats_unlock(); 769 } 770 771 /** 772 * __mod_lruvec_state - update lruvec memory statistics 773 * @lruvec: the lruvec 774 * @idx: the stat item 775 * @val: delta to add to the counter, can be negative 776 * 777 * The lruvec is the intersection of the NUMA node and a cgroup. This 778 * function updates the all three counters that are affected by a 779 * change of state at this level: per-node, per-cgroup, per-lruvec. 780 */ 781 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 782 int val) 783 { 784 /* Update node */ 785 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 786 787 /* Update memcg and lruvec */ 788 if (!mem_cgroup_disabled()) 789 __mod_memcg_lruvec_state(lruvec, idx, val); 790 } 791 792 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 793 int val) 794 { 795 struct mem_cgroup *memcg; 796 pg_data_t *pgdat = folio_pgdat(folio); 797 struct lruvec *lruvec; 798 799 rcu_read_lock(); 800 memcg = folio_memcg(folio); 801 /* Untracked pages have no memcg, no lruvec. Update only the node */ 802 if (!memcg) { 803 rcu_read_unlock(); 804 __mod_node_page_state(pgdat, idx, val); 805 return; 806 } 807 808 lruvec = mem_cgroup_lruvec(memcg, pgdat); 809 __mod_lruvec_state(lruvec, idx, val); 810 rcu_read_unlock(); 811 } 812 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 813 814 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 815 { 816 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 817 struct mem_cgroup *memcg; 818 struct lruvec *lruvec; 819 820 rcu_read_lock(); 821 memcg = mem_cgroup_from_slab_obj(p); 822 823 /* 824 * Untracked pages have no memcg, no lruvec. Update only the 825 * node. If we reparent the slab objects to the root memcg, 826 * when we free the slab object, we need to update the per-memcg 827 * vmstats to keep it correct for the root memcg. 828 */ 829 if (!memcg) { 830 __mod_node_page_state(pgdat, idx, val); 831 } else { 832 lruvec = mem_cgroup_lruvec(memcg, pgdat); 833 __mod_lruvec_state(lruvec, idx, val); 834 } 835 rcu_read_unlock(); 836 } 837 838 /** 839 * __count_memcg_events - account VM events in a cgroup 840 * @memcg: the memory cgroup 841 * @idx: the event item 842 * @count: the number of events that occurred 843 */ 844 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 845 unsigned long count) 846 { 847 int i = memcg_events_index(idx); 848 849 if (mem_cgroup_disabled()) 850 return; 851 852 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 853 return; 854 855 memcg_stats_lock(); 856 __this_cpu_add(memcg->vmstats_percpu->events[i], count); 857 memcg_rstat_updated(memcg, count); 858 trace_count_memcg_events(memcg, idx, count); 859 memcg_stats_unlock(); 860 } 861 862 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 863 { 864 int i = memcg_events_index(event); 865 866 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 867 return 0; 868 869 return READ_ONCE(memcg->vmstats->events[i]); 870 } 871 872 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 873 { 874 int i = memcg_events_index(event); 875 876 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 877 return 0; 878 879 return READ_ONCE(memcg->vmstats->events_local[i]); 880 } 881 882 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 883 { 884 /* 885 * mm_update_next_owner() may clear mm->owner to NULL 886 * if it races with swapoff, page migration, etc. 887 * So this can be called with p == NULL. 888 */ 889 if (unlikely(!p)) 890 return NULL; 891 892 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 893 } 894 EXPORT_SYMBOL(mem_cgroup_from_task); 895 896 static __always_inline struct mem_cgroup *active_memcg(void) 897 { 898 if (!in_task()) 899 return this_cpu_read(int_active_memcg); 900 else 901 return current->active_memcg; 902 } 903 904 /** 905 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 906 * @mm: mm from which memcg should be extracted. It can be NULL. 907 * 908 * Obtain a reference on mm->memcg and returns it if successful. If mm 909 * is NULL, then the memcg is chosen as follows: 910 * 1) The active memcg, if set. 911 * 2) current->mm->memcg, if available 912 * 3) root memcg 913 * If mem_cgroup is disabled, NULL is returned. 914 */ 915 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 916 { 917 struct mem_cgroup *memcg; 918 919 if (mem_cgroup_disabled()) 920 return NULL; 921 922 /* 923 * Page cache insertions can happen without an 924 * actual mm context, e.g. during disk probing 925 * on boot, loopback IO, acct() writes etc. 926 * 927 * No need to css_get on root memcg as the reference 928 * counting is disabled on the root level in the 929 * cgroup core. See CSS_NO_REF. 930 */ 931 if (unlikely(!mm)) { 932 memcg = active_memcg(); 933 if (unlikely(memcg)) { 934 /* remote memcg must hold a ref */ 935 css_get(&memcg->css); 936 return memcg; 937 } 938 mm = current->mm; 939 if (unlikely(!mm)) 940 return root_mem_cgroup; 941 } 942 943 rcu_read_lock(); 944 do { 945 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 946 if (unlikely(!memcg)) 947 memcg = root_mem_cgroup; 948 } while (!css_tryget(&memcg->css)); 949 rcu_read_unlock(); 950 return memcg; 951 } 952 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 953 954 /** 955 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 956 */ 957 struct mem_cgroup *get_mem_cgroup_from_current(void) 958 { 959 struct mem_cgroup *memcg; 960 961 if (mem_cgroup_disabled()) 962 return NULL; 963 964 again: 965 rcu_read_lock(); 966 memcg = mem_cgroup_from_task(current); 967 if (!css_tryget(&memcg->css)) { 968 rcu_read_unlock(); 969 goto again; 970 } 971 rcu_read_unlock(); 972 return memcg; 973 } 974 975 /** 976 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 977 * @folio: folio from which memcg should be extracted. 978 */ 979 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 980 { 981 struct mem_cgroup *memcg = folio_memcg(folio); 982 983 if (mem_cgroup_disabled()) 984 return NULL; 985 986 rcu_read_lock(); 987 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 988 memcg = root_mem_cgroup; 989 rcu_read_unlock(); 990 return memcg; 991 } 992 993 /** 994 * mem_cgroup_iter - iterate over memory cgroup hierarchy 995 * @root: hierarchy root 996 * @prev: previously returned memcg, NULL on first invocation 997 * @reclaim: cookie for shared reclaim walks, NULL for full walks 998 * 999 * Returns references to children of the hierarchy below @root, or 1000 * @root itself, or %NULL after a full round-trip. 1001 * 1002 * Caller must pass the return value in @prev on subsequent 1003 * invocations for reference counting, or use mem_cgroup_iter_break() 1004 * to cancel a hierarchy walk before the round-trip is complete. 1005 * 1006 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1007 * in the hierarchy among all concurrent reclaimers operating on the 1008 * same node. 1009 */ 1010 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1011 struct mem_cgroup *prev, 1012 struct mem_cgroup_reclaim_cookie *reclaim) 1013 { 1014 struct mem_cgroup_reclaim_iter *iter; 1015 struct cgroup_subsys_state *css; 1016 struct mem_cgroup *pos; 1017 struct mem_cgroup *next; 1018 1019 if (mem_cgroup_disabled()) 1020 return NULL; 1021 1022 if (!root) 1023 root = root_mem_cgroup; 1024 1025 rcu_read_lock(); 1026 restart: 1027 next = NULL; 1028 1029 if (reclaim) { 1030 int gen; 1031 int nid = reclaim->pgdat->node_id; 1032 1033 iter = &root->nodeinfo[nid]->iter; 1034 gen = atomic_read(&iter->generation); 1035 1036 /* 1037 * On start, join the current reclaim iteration cycle. 1038 * Exit when a concurrent walker completes it. 1039 */ 1040 if (!prev) 1041 reclaim->generation = gen; 1042 else if (reclaim->generation != gen) 1043 goto out_unlock; 1044 1045 pos = READ_ONCE(iter->position); 1046 } else 1047 pos = prev; 1048 1049 css = pos ? &pos->css : NULL; 1050 1051 while ((css = css_next_descendant_pre(css, &root->css))) { 1052 /* 1053 * Verify the css and acquire a reference. The root 1054 * is provided by the caller, so we know it's alive 1055 * and kicking, and don't take an extra reference. 1056 */ 1057 if (css == &root->css || css_tryget(css)) 1058 break; 1059 } 1060 1061 next = mem_cgroup_from_css(css); 1062 1063 if (reclaim) { 1064 /* 1065 * The position could have already been updated by a competing 1066 * thread, so check that the value hasn't changed since we read 1067 * it to avoid reclaiming from the same cgroup twice. 1068 */ 1069 if (cmpxchg(&iter->position, pos, next) != pos) { 1070 if (css && css != &root->css) 1071 css_put(css); 1072 goto restart; 1073 } 1074 1075 if (!next) { 1076 atomic_inc(&iter->generation); 1077 1078 /* 1079 * Reclaimers share the hierarchy walk, and a 1080 * new one might jump in right at the end of 1081 * the hierarchy - make sure they see at least 1082 * one group and restart from the beginning. 1083 */ 1084 if (!prev) 1085 goto restart; 1086 } 1087 } 1088 1089 out_unlock: 1090 rcu_read_unlock(); 1091 if (prev && prev != root) 1092 css_put(&prev->css); 1093 1094 return next; 1095 } 1096 1097 /** 1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1099 * @root: hierarchy root 1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1101 */ 1102 void mem_cgroup_iter_break(struct mem_cgroup *root, 1103 struct mem_cgroup *prev) 1104 { 1105 if (!root) 1106 root = root_mem_cgroup; 1107 if (prev && prev != root) 1108 css_put(&prev->css); 1109 } 1110 1111 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1112 struct mem_cgroup *dead_memcg) 1113 { 1114 struct mem_cgroup_reclaim_iter *iter; 1115 struct mem_cgroup_per_node *mz; 1116 int nid; 1117 1118 for_each_node(nid) { 1119 mz = from->nodeinfo[nid]; 1120 iter = &mz->iter; 1121 cmpxchg(&iter->position, dead_memcg, NULL); 1122 } 1123 } 1124 1125 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1126 { 1127 struct mem_cgroup *memcg = dead_memcg; 1128 struct mem_cgroup *last; 1129 1130 do { 1131 __invalidate_reclaim_iterators(memcg, dead_memcg); 1132 last = memcg; 1133 } while ((memcg = parent_mem_cgroup(memcg))); 1134 1135 /* 1136 * When cgroup1 non-hierarchy mode is used, 1137 * parent_mem_cgroup() does not walk all the way up to the 1138 * cgroup root (root_mem_cgroup). So we have to handle 1139 * dead_memcg from cgroup root separately. 1140 */ 1141 if (!mem_cgroup_is_root(last)) 1142 __invalidate_reclaim_iterators(root_mem_cgroup, 1143 dead_memcg); 1144 } 1145 1146 /** 1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1148 * @memcg: hierarchy root 1149 * @fn: function to call for each task 1150 * @arg: argument passed to @fn 1151 * 1152 * This function iterates over tasks attached to @memcg or to any of its 1153 * descendants and calls @fn for each task. If @fn returns a non-zero 1154 * value, the function breaks the iteration loop. Otherwise, it will iterate 1155 * over all tasks and return 0. 1156 * 1157 * This function must not be called for the root memory cgroup. 1158 */ 1159 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1160 int (*fn)(struct task_struct *, void *), void *arg) 1161 { 1162 struct mem_cgroup *iter; 1163 int ret = 0; 1164 int i = 0; 1165 1166 BUG_ON(mem_cgroup_is_root(memcg)); 1167 1168 for_each_mem_cgroup_tree(iter, memcg) { 1169 struct css_task_iter it; 1170 struct task_struct *task; 1171 1172 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1173 while (!ret && (task = css_task_iter_next(&it))) { 1174 /* Avoid potential softlockup warning */ 1175 if ((++i & 1023) == 0) 1176 cond_resched(); 1177 ret = fn(task, arg); 1178 } 1179 css_task_iter_end(&it); 1180 if (ret) { 1181 mem_cgroup_iter_break(memcg, iter); 1182 break; 1183 } 1184 } 1185 } 1186 1187 #ifdef CONFIG_DEBUG_VM 1188 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1189 { 1190 struct mem_cgroup *memcg; 1191 1192 if (mem_cgroup_disabled()) 1193 return; 1194 1195 memcg = folio_memcg(folio); 1196 1197 if (!memcg) 1198 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1199 else 1200 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1201 } 1202 #endif 1203 1204 /** 1205 * folio_lruvec_lock - Lock the lruvec for a folio. 1206 * @folio: Pointer to the folio. 1207 * 1208 * These functions are safe to use under any of the following conditions: 1209 * - folio locked 1210 * - folio_test_lru false 1211 * - folio frozen (refcount of 0) 1212 * 1213 * Return: The lruvec this folio is on with its lock held. 1214 */ 1215 struct lruvec *folio_lruvec_lock(struct folio *folio) 1216 { 1217 struct lruvec *lruvec = folio_lruvec(folio); 1218 1219 spin_lock(&lruvec->lru_lock); 1220 lruvec_memcg_debug(lruvec, folio); 1221 1222 return lruvec; 1223 } 1224 1225 /** 1226 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1227 * @folio: Pointer to the folio. 1228 * 1229 * These functions are safe to use under any of the following conditions: 1230 * - folio locked 1231 * - folio_test_lru false 1232 * - folio frozen (refcount of 0) 1233 * 1234 * Return: The lruvec this folio is on with its lock held and interrupts 1235 * disabled. 1236 */ 1237 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1238 { 1239 struct lruvec *lruvec = folio_lruvec(folio); 1240 1241 spin_lock_irq(&lruvec->lru_lock); 1242 lruvec_memcg_debug(lruvec, folio); 1243 1244 return lruvec; 1245 } 1246 1247 /** 1248 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1249 * @folio: Pointer to the folio. 1250 * @flags: Pointer to irqsave flags. 1251 * 1252 * These functions are safe to use under any of the following conditions: 1253 * - folio locked 1254 * - folio_test_lru false 1255 * - folio frozen (refcount of 0) 1256 * 1257 * Return: The lruvec this folio is on with its lock held and interrupts 1258 * disabled. 1259 */ 1260 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1261 unsigned long *flags) 1262 { 1263 struct lruvec *lruvec = folio_lruvec(folio); 1264 1265 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1266 lruvec_memcg_debug(lruvec, folio); 1267 1268 return lruvec; 1269 } 1270 1271 /** 1272 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1273 * @lruvec: mem_cgroup per zone lru vector 1274 * @lru: index of lru list the page is sitting on 1275 * @zid: zone id of the accounted pages 1276 * @nr_pages: positive when adding or negative when removing 1277 * 1278 * This function must be called under lru_lock, just before a page is added 1279 * to or just after a page is removed from an lru list. 1280 */ 1281 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1282 int zid, int nr_pages) 1283 { 1284 struct mem_cgroup_per_node *mz; 1285 unsigned long *lru_size; 1286 long size; 1287 1288 if (mem_cgroup_disabled()) 1289 return; 1290 1291 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1292 lru_size = &mz->lru_zone_size[zid][lru]; 1293 1294 if (nr_pages < 0) 1295 *lru_size += nr_pages; 1296 1297 size = *lru_size; 1298 if (WARN_ONCE(size < 0, 1299 "%s(%p, %d, %d): lru_size %ld\n", 1300 __func__, lruvec, lru, nr_pages, size)) { 1301 VM_BUG_ON(1); 1302 *lru_size = 0; 1303 } 1304 1305 if (nr_pages > 0) 1306 *lru_size += nr_pages; 1307 } 1308 1309 /** 1310 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1311 * @memcg: the memory cgroup 1312 * 1313 * Returns the maximum amount of memory @mem can be charged with, in 1314 * pages. 1315 */ 1316 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1317 { 1318 unsigned long margin = 0; 1319 unsigned long count; 1320 unsigned long limit; 1321 1322 count = page_counter_read(&memcg->memory); 1323 limit = READ_ONCE(memcg->memory.max); 1324 if (count < limit) 1325 margin = limit - count; 1326 1327 if (do_memsw_account()) { 1328 count = page_counter_read(&memcg->memsw); 1329 limit = READ_ONCE(memcg->memsw.max); 1330 if (count < limit) 1331 margin = min(margin, limit - count); 1332 else 1333 margin = 0; 1334 } 1335 1336 return margin; 1337 } 1338 1339 struct memory_stat { 1340 const char *name; 1341 unsigned int idx; 1342 }; 1343 1344 static const struct memory_stat memory_stats[] = { 1345 { "anon", NR_ANON_MAPPED }, 1346 { "file", NR_FILE_PAGES }, 1347 { "kernel", MEMCG_KMEM }, 1348 { "kernel_stack", NR_KERNEL_STACK_KB }, 1349 { "pagetables", NR_PAGETABLE }, 1350 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1351 { "percpu", MEMCG_PERCPU_B }, 1352 { "sock", MEMCG_SOCK }, 1353 { "vmalloc", MEMCG_VMALLOC }, 1354 { "shmem", NR_SHMEM }, 1355 #ifdef CONFIG_ZSWAP 1356 { "zswap", MEMCG_ZSWAP_B }, 1357 { "zswapped", MEMCG_ZSWAPPED }, 1358 #endif 1359 { "file_mapped", NR_FILE_MAPPED }, 1360 { "file_dirty", NR_FILE_DIRTY }, 1361 { "file_writeback", NR_WRITEBACK }, 1362 #ifdef CONFIG_SWAP 1363 { "swapcached", NR_SWAPCACHE }, 1364 #endif 1365 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1366 { "anon_thp", NR_ANON_THPS }, 1367 { "file_thp", NR_FILE_THPS }, 1368 { "shmem_thp", NR_SHMEM_THPS }, 1369 #endif 1370 { "inactive_anon", NR_INACTIVE_ANON }, 1371 { "active_anon", NR_ACTIVE_ANON }, 1372 { "inactive_file", NR_INACTIVE_FILE }, 1373 { "active_file", NR_ACTIVE_FILE }, 1374 { "unevictable", NR_UNEVICTABLE }, 1375 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1376 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1377 #ifdef CONFIG_HUGETLB_PAGE 1378 { "hugetlb", NR_HUGETLB }, 1379 #endif 1380 1381 /* The memory events */ 1382 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1383 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1384 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1385 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1386 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1387 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1388 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1389 1390 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1391 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1392 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1393 #ifdef CONFIG_NUMA_BALANCING 1394 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1395 #endif 1396 }; 1397 1398 /* The actual unit of the state item, not the same as the output unit */ 1399 static int memcg_page_state_unit(int item) 1400 { 1401 switch (item) { 1402 case MEMCG_PERCPU_B: 1403 case MEMCG_ZSWAP_B: 1404 case NR_SLAB_RECLAIMABLE_B: 1405 case NR_SLAB_UNRECLAIMABLE_B: 1406 return 1; 1407 case NR_KERNEL_STACK_KB: 1408 return SZ_1K; 1409 default: 1410 return PAGE_SIZE; 1411 } 1412 } 1413 1414 /* Translate stat items to the correct unit for memory.stat output */ 1415 static int memcg_page_state_output_unit(int item) 1416 { 1417 /* 1418 * Workingset state is actually in pages, but we export it to userspace 1419 * as a scalar count of events, so special case it here. 1420 * 1421 * Demotion and promotion activities are exported in pages, consistent 1422 * with their global counterparts. 1423 */ 1424 switch (item) { 1425 case WORKINGSET_REFAULT_ANON: 1426 case WORKINGSET_REFAULT_FILE: 1427 case WORKINGSET_ACTIVATE_ANON: 1428 case WORKINGSET_ACTIVATE_FILE: 1429 case WORKINGSET_RESTORE_ANON: 1430 case WORKINGSET_RESTORE_FILE: 1431 case WORKINGSET_NODERECLAIM: 1432 case PGDEMOTE_KSWAPD: 1433 case PGDEMOTE_DIRECT: 1434 case PGDEMOTE_KHUGEPAGED: 1435 #ifdef CONFIG_NUMA_BALANCING 1436 case PGPROMOTE_SUCCESS: 1437 #endif 1438 return 1; 1439 default: 1440 return memcg_page_state_unit(item); 1441 } 1442 } 1443 1444 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1445 { 1446 return memcg_page_state(memcg, item) * 1447 memcg_page_state_output_unit(item); 1448 } 1449 1450 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1451 { 1452 return memcg_page_state_local(memcg, item) * 1453 memcg_page_state_output_unit(item); 1454 } 1455 1456 #ifdef CONFIG_HUGETLB_PAGE 1457 static bool memcg_accounts_hugetlb(void) 1458 { 1459 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1460 } 1461 #else /* CONFIG_HUGETLB_PAGE */ 1462 static bool memcg_accounts_hugetlb(void) 1463 { 1464 return false; 1465 } 1466 #endif /* CONFIG_HUGETLB_PAGE */ 1467 1468 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1469 { 1470 int i; 1471 1472 /* 1473 * Provide statistics on the state of the memory subsystem as 1474 * well as cumulative event counters that show past behavior. 1475 * 1476 * This list is ordered following a combination of these gradients: 1477 * 1) generic big picture -> specifics and details 1478 * 2) reflecting userspace activity -> reflecting kernel heuristics 1479 * 1480 * Current memory state: 1481 */ 1482 mem_cgroup_flush_stats(memcg); 1483 1484 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1485 u64 size; 1486 1487 #ifdef CONFIG_HUGETLB_PAGE 1488 if (unlikely(memory_stats[i].idx == NR_HUGETLB) && 1489 !memcg_accounts_hugetlb()) 1490 continue; 1491 #endif 1492 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1493 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1494 1495 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1496 size += memcg_page_state_output(memcg, 1497 NR_SLAB_RECLAIMABLE_B); 1498 seq_buf_printf(s, "slab %llu\n", size); 1499 } 1500 } 1501 1502 /* Accumulated memory events */ 1503 seq_buf_printf(s, "pgscan %lu\n", 1504 memcg_events(memcg, PGSCAN_KSWAPD) + 1505 memcg_events(memcg, PGSCAN_DIRECT) + 1506 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1507 seq_buf_printf(s, "pgsteal %lu\n", 1508 memcg_events(memcg, PGSTEAL_KSWAPD) + 1509 memcg_events(memcg, PGSTEAL_DIRECT) + 1510 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1511 1512 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1513 #ifdef CONFIG_MEMCG_V1 1514 if (memcg_vm_event_stat[i] == PGPGIN || 1515 memcg_vm_event_stat[i] == PGPGOUT) 1516 continue; 1517 #endif 1518 seq_buf_printf(s, "%s %lu\n", 1519 vm_event_name(memcg_vm_event_stat[i]), 1520 memcg_events(memcg, memcg_vm_event_stat[i])); 1521 } 1522 } 1523 1524 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1525 { 1526 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1527 memcg_stat_format(memcg, s); 1528 else 1529 memcg1_stat_format(memcg, s); 1530 if (seq_buf_has_overflowed(s)) 1531 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1532 } 1533 1534 /** 1535 * mem_cgroup_print_oom_context: Print OOM information relevant to 1536 * memory controller. 1537 * @memcg: The memory cgroup that went over limit 1538 * @p: Task that is going to be killed 1539 * 1540 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1541 * enabled 1542 */ 1543 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1544 { 1545 rcu_read_lock(); 1546 1547 if (memcg) { 1548 pr_cont(",oom_memcg="); 1549 pr_cont_cgroup_path(memcg->css.cgroup); 1550 } else 1551 pr_cont(",global_oom"); 1552 if (p) { 1553 pr_cont(",task_memcg="); 1554 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1555 } 1556 rcu_read_unlock(); 1557 } 1558 1559 /** 1560 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1561 * memory controller. 1562 * @memcg: The memory cgroup that went over limit 1563 */ 1564 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1565 { 1566 /* Use static buffer, for the caller is holding oom_lock. */ 1567 static char buf[SEQ_BUF_SIZE]; 1568 struct seq_buf s; 1569 1570 lockdep_assert_held(&oom_lock); 1571 1572 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1573 K((u64)page_counter_read(&memcg->memory)), 1574 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1575 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1576 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1577 K((u64)page_counter_read(&memcg->swap)), 1578 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1579 #ifdef CONFIG_MEMCG_V1 1580 else { 1581 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1582 K((u64)page_counter_read(&memcg->memsw)), 1583 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1584 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1585 K((u64)page_counter_read(&memcg->kmem)), 1586 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1587 } 1588 #endif 1589 1590 pr_info("Memory cgroup stats for "); 1591 pr_cont_cgroup_path(memcg->css.cgroup); 1592 pr_cont(":"); 1593 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 1594 memory_stat_format(memcg, &s); 1595 seq_buf_do_printk(&s, KERN_INFO); 1596 } 1597 1598 /* 1599 * Return the memory (and swap, if configured) limit for a memcg. 1600 */ 1601 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1602 { 1603 unsigned long max = READ_ONCE(memcg->memory.max); 1604 1605 if (do_memsw_account()) { 1606 if (mem_cgroup_swappiness(memcg)) { 1607 /* Calculate swap excess capacity from memsw limit */ 1608 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1609 1610 max += min(swap, (unsigned long)total_swap_pages); 1611 } 1612 } else { 1613 if (mem_cgroup_swappiness(memcg)) 1614 max += min(READ_ONCE(memcg->swap.max), 1615 (unsigned long)total_swap_pages); 1616 } 1617 return max; 1618 } 1619 1620 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1621 { 1622 return page_counter_read(&memcg->memory); 1623 } 1624 1625 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1626 int order) 1627 { 1628 struct oom_control oc = { 1629 .zonelist = NULL, 1630 .nodemask = NULL, 1631 .memcg = memcg, 1632 .gfp_mask = gfp_mask, 1633 .order = order, 1634 }; 1635 bool ret = true; 1636 1637 if (mutex_lock_killable(&oom_lock)) 1638 return true; 1639 1640 if (mem_cgroup_margin(memcg) >= (1 << order)) 1641 goto unlock; 1642 1643 /* 1644 * A few threads which were not waiting at mutex_lock_killable() can 1645 * fail to bail out. Therefore, check again after holding oom_lock. 1646 */ 1647 ret = task_is_dying() || out_of_memory(&oc); 1648 1649 unlock: 1650 mutex_unlock(&oom_lock); 1651 return ret; 1652 } 1653 1654 /* 1655 * Returns true if successfully killed one or more processes. Though in some 1656 * corner cases it can return true even without killing any process. 1657 */ 1658 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1659 { 1660 bool locked, ret; 1661 1662 if (order > PAGE_ALLOC_COSTLY_ORDER) 1663 return false; 1664 1665 memcg_memory_event(memcg, MEMCG_OOM); 1666 1667 if (!memcg1_oom_prepare(memcg, &locked)) 1668 return false; 1669 1670 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1671 1672 memcg1_oom_finish(memcg, locked); 1673 1674 return ret; 1675 } 1676 1677 /** 1678 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1679 * @victim: task to be killed by the OOM killer 1680 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1681 * 1682 * Returns a pointer to a memory cgroup, which has to be cleaned up 1683 * by killing all belonging OOM-killable tasks. 1684 * 1685 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1686 */ 1687 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1688 struct mem_cgroup *oom_domain) 1689 { 1690 struct mem_cgroup *oom_group = NULL; 1691 struct mem_cgroup *memcg; 1692 1693 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1694 return NULL; 1695 1696 if (!oom_domain) 1697 oom_domain = root_mem_cgroup; 1698 1699 rcu_read_lock(); 1700 1701 memcg = mem_cgroup_from_task(victim); 1702 if (mem_cgroup_is_root(memcg)) 1703 goto out; 1704 1705 /* 1706 * If the victim task has been asynchronously moved to a different 1707 * memory cgroup, we might end up killing tasks outside oom_domain. 1708 * In this case it's better to ignore memory.group.oom. 1709 */ 1710 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1711 goto out; 1712 1713 /* 1714 * Traverse the memory cgroup hierarchy from the victim task's 1715 * cgroup up to the OOMing cgroup (or root) to find the 1716 * highest-level memory cgroup with oom.group set. 1717 */ 1718 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1719 if (READ_ONCE(memcg->oom_group)) 1720 oom_group = memcg; 1721 1722 if (memcg == oom_domain) 1723 break; 1724 } 1725 1726 if (oom_group) 1727 css_get(&oom_group->css); 1728 out: 1729 rcu_read_unlock(); 1730 1731 return oom_group; 1732 } 1733 1734 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1735 { 1736 pr_info("Tasks in "); 1737 pr_cont_cgroup_path(memcg->css.cgroup); 1738 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1739 } 1740 1741 struct memcg_stock_pcp { 1742 local_lock_t stock_lock; 1743 struct mem_cgroup *cached; /* this never be root cgroup */ 1744 unsigned int nr_pages; 1745 1746 struct obj_cgroup *cached_objcg; 1747 struct pglist_data *cached_pgdat; 1748 unsigned int nr_bytes; 1749 int nr_slab_reclaimable_b; 1750 int nr_slab_unreclaimable_b; 1751 1752 struct work_struct work; 1753 unsigned long flags; 1754 #define FLUSHING_CACHED_CHARGE 0 1755 }; 1756 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 1757 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 1758 }; 1759 static DEFINE_MUTEX(percpu_charge_mutex); 1760 1761 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 1762 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 1763 struct mem_cgroup *root_memcg); 1764 1765 /** 1766 * consume_stock: Try to consume stocked charge on this cpu. 1767 * @memcg: memcg to consume from. 1768 * @nr_pages: how many pages to charge. 1769 * 1770 * The charges will only happen if @memcg matches the current cpu's memcg 1771 * stock, and at least @nr_pages are available in that stock. Failure to 1772 * service an allocation will refill the stock. 1773 * 1774 * returns true if successful, false otherwise. 1775 */ 1776 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1777 { 1778 struct memcg_stock_pcp *stock; 1779 unsigned int stock_pages; 1780 unsigned long flags; 1781 bool ret = false; 1782 1783 if (nr_pages > MEMCG_CHARGE_BATCH) 1784 return ret; 1785 1786 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1787 1788 stock = this_cpu_ptr(&memcg_stock); 1789 stock_pages = READ_ONCE(stock->nr_pages); 1790 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) { 1791 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages); 1792 ret = true; 1793 } 1794 1795 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1796 1797 return ret; 1798 } 1799 1800 /* 1801 * Returns stocks cached in percpu and reset cached information. 1802 */ 1803 static void drain_stock(struct memcg_stock_pcp *stock) 1804 { 1805 unsigned int stock_pages = READ_ONCE(stock->nr_pages); 1806 struct mem_cgroup *old = READ_ONCE(stock->cached); 1807 1808 if (!old) 1809 return; 1810 1811 if (stock_pages) { 1812 page_counter_uncharge(&old->memory, stock_pages); 1813 if (do_memsw_account()) 1814 page_counter_uncharge(&old->memsw, stock_pages); 1815 1816 WRITE_ONCE(stock->nr_pages, 0); 1817 } 1818 1819 css_put(&old->css); 1820 WRITE_ONCE(stock->cached, NULL); 1821 } 1822 1823 static void drain_local_stock(struct work_struct *dummy) 1824 { 1825 struct memcg_stock_pcp *stock; 1826 struct obj_cgroup *old = NULL; 1827 unsigned long flags; 1828 1829 /* 1830 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 1831 * drain_stock races is that we always operate on local CPU stock 1832 * here with IRQ disabled 1833 */ 1834 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1835 1836 stock = this_cpu_ptr(&memcg_stock); 1837 old = drain_obj_stock(stock); 1838 drain_stock(stock); 1839 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1840 1841 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1842 obj_cgroup_put(old); 1843 } 1844 1845 /* 1846 * Cache charges(val) to local per_cpu area. 1847 * This will be consumed by consume_stock() function, later. 1848 */ 1849 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1850 { 1851 struct memcg_stock_pcp *stock; 1852 unsigned int stock_pages; 1853 1854 stock = this_cpu_ptr(&memcg_stock); 1855 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 1856 drain_stock(stock); 1857 css_get(&memcg->css); 1858 WRITE_ONCE(stock->cached, memcg); 1859 } 1860 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages; 1861 WRITE_ONCE(stock->nr_pages, stock_pages); 1862 1863 if (stock_pages > MEMCG_CHARGE_BATCH) 1864 drain_stock(stock); 1865 } 1866 1867 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1868 { 1869 unsigned long flags; 1870 1871 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1872 __refill_stock(memcg, nr_pages); 1873 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1874 } 1875 1876 /* 1877 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1878 * of the hierarchy under it. 1879 */ 1880 void drain_all_stock(struct mem_cgroup *root_memcg) 1881 { 1882 int cpu, curcpu; 1883 1884 /* If someone's already draining, avoid adding running more workers. */ 1885 if (!mutex_trylock(&percpu_charge_mutex)) 1886 return; 1887 /* 1888 * Notify other cpus that system-wide "drain" is running 1889 * We do not care about races with the cpu hotplug because cpu down 1890 * as well as workers from this path always operate on the local 1891 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1892 */ 1893 migrate_disable(); 1894 curcpu = smp_processor_id(); 1895 for_each_online_cpu(cpu) { 1896 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1897 struct mem_cgroup *memcg; 1898 bool flush = false; 1899 1900 rcu_read_lock(); 1901 memcg = READ_ONCE(stock->cached); 1902 if (memcg && READ_ONCE(stock->nr_pages) && 1903 mem_cgroup_is_descendant(memcg, root_memcg)) 1904 flush = true; 1905 else if (obj_stock_flush_required(stock, root_memcg)) 1906 flush = true; 1907 rcu_read_unlock(); 1908 1909 if (flush && 1910 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1911 if (cpu == curcpu) 1912 drain_local_stock(&stock->work); 1913 else if (!cpu_is_isolated(cpu)) 1914 schedule_work_on(cpu, &stock->work); 1915 } 1916 } 1917 migrate_enable(); 1918 mutex_unlock(&percpu_charge_mutex); 1919 } 1920 1921 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1922 { 1923 struct memcg_stock_pcp *stock; 1924 struct obj_cgroup *old; 1925 unsigned long flags; 1926 1927 stock = &per_cpu(memcg_stock, cpu); 1928 1929 /* drain_obj_stock requires stock_lock */ 1930 local_lock_irqsave(&memcg_stock.stock_lock, flags); 1931 old = drain_obj_stock(stock); 1932 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1933 1934 drain_stock(stock); 1935 obj_cgroup_put(old); 1936 1937 return 0; 1938 } 1939 1940 static unsigned long reclaim_high(struct mem_cgroup *memcg, 1941 unsigned int nr_pages, 1942 gfp_t gfp_mask) 1943 { 1944 unsigned long nr_reclaimed = 0; 1945 1946 do { 1947 unsigned long pflags; 1948 1949 if (page_counter_read(&memcg->memory) <= 1950 READ_ONCE(memcg->memory.high)) 1951 continue; 1952 1953 memcg_memory_event(memcg, MEMCG_HIGH); 1954 1955 psi_memstall_enter(&pflags); 1956 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 1957 gfp_mask, 1958 MEMCG_RECLAIM_MAY_SWAP, 1959 NULL); 1960 psi_memstall_leave(&pflags); 1961 } while ((memcg = parent_mem_cgroup(memcg)) && 1962 !mem_cgroup_is_root(memcg)); 1963 1964 return nr_reclaimed; 1965 } 1966 1967 static void high_work_func(struct work_struct *work) 1968 { 1969 struct mem_cgroup *memcg; 1970 1971 memcg = container_of(work, struct mem_cgroup, high_work); 1972 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 1973 } 1974 1975 /* 1976 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 1977 * enough to still cause a significant slowdown in most cases, while still 1978 * allowing diagnostics and tracing to proceed without becoming stuck. 1979 */ 1980 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 1981 1982 /* 1983 * When calculating the delay, we use these either side of the exponentiation to 1984 * maintain precision and scale to a reasonable number of jiffies (see the table 1985 * below. 1986 * 1987 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 1988 * overage ratio to a delay. 1989 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 1990 * proposed penalty in order to reduce to a reasonable number of jiffies, and 1991 * to produce a reasonable delay curve. 1992 * 1993 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 1994 * reasonable delay curve compared to precision-adjusted overage, not 1995 * penalising heavily at first, but still making sure that growth beyond the 1996 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 1997 * example, with a high of 100 megabytes: 1998 * 1999 * +-------+------------------------+ 2000 * | usage | time to allocate in ms | 2001 * +-------+------------------------+ 2002 * | 100M | 0 | 2003 * | 101M | 6 | 2004 * | 102M | 25 | 2005 * | 103M | 57 | 2006 * | 104M | 102 | 2007 * | 105M | 159 | 2008 * | 106M | 230 | 2009 * | 107M | 313 | 2010 * | 108M | 409 | 2011 * | 109M | 518 | 2012 * | 110M | 639 | 2013 * | 111M | 774 | 2014 * | 112M | 921 | 2015 * | 113M | 1081 | 2016 * | 114M | 1254 | 2017 * | 115M | 1439 | 2018 * | 116M | 1638 | 2019 * | 117M | 1849 | 2020 * | 118M | 2000 | 2021 * | 119M | 2000 | 2022 * | 120M | 2000 | 2023 * +-------+------------------------+ 2024 */ 2025 #define MEMCG_DELAY_PRECISION_SHIFT 20 2026 #define MEMCG_DELAY_SCALING_SHIFT 14 2027 2028 static u64 calculate_overage(unsigned long usage, unsigned long high) 2029 { 2030 u64 overage; 2031 2032 if (usage <= high) 2033 return 0; 2034 2035 /* 2036 * Prevent division by 0 in overage calculation by acting as if 2037 * it was a threshold of 1 page 2038 */ 2039 high = max(high, 1UL); 2040 2041 overage = usage - high; 2042 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2043 return div64_u64(overage, high); 2044 } 2045 2046 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2047 { 2048 u64 overage, max_overage = 0; 2049 2050 do { 2051 overage = calculate_overage(page_counter_read(&memcg->memory), 2052 READ_ONCE(memcg->memory.high)); 2053 max_overage = max(overage, max_overage); 2054 } while ((memcg = parent_mem_cgroup(memcg)) && 2055 !mem_cgroup_is_root(memcg)); 2056 2057 return max_overage; 2058 } 2059 2060 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2061 { 2062 u64 overage, max_overage = 0; 2063 2064 do { 2065 overage = calculate_overage(page_counter_read(&memcg->swap), 2066 READ_ONCE(memcg->swap.high)); 2067 if (overage) 2068 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2069 max_overage = max(overage, max_overage); 2070 } while ((memcg = parent_mem_cgroup(memcg)) && 2071 !mem_cgroup_is_root(memcg)); 2072 2073 return max_overage; 2074 } 2075 2076 /* 2077 * Get the number of jiffies that we should penalise a mischievous cgroup which 2078 * is exceeding its memory.high by checking both it and its ancestors. 2079 */ 2080 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2081 unsigned int nr_pages, 2082 u64 max_overage) 2083 { 2084 unsigned long penalty_jiffies; 2085 2086 if (!max_overage) 2087 return 0; 2088 2089 /* 2090 * We use overage compared to memory.high to calculate the number of 2091 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2092 * fairly lenient on small overages, and increasingly harsh when the 2093 * memcg in question makes it clear that it has no intention of stopping 2094 * its crazy behaviour, so we exponentially increase the delay based on 2095 * overage amount. 2096 */ 2097 penalty_jiffies = max_overage * max_overage * HZ; 2098 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2099 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2100 2101 /* 2102 * Factor in the task's own contribution to the overage, such that four 2103 * N-sized allocations are throttled approximately the same as one 2104 * 4N-sized allocation. 2105 * 2106 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2107 * larger the current charge patch is than that. 2108 */ 2109 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2110 } 2111 2112 /* 2113 * Reclaims memory over the high limit. Called directly from 2114 * try_charge() (context permitting), as well as from the userland 2115 * return path where reclaim is always able to block. 2116 */ 2117 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2118 { 2119 unsigned long penalty_jiffies; 2120 unsigned long pflags; 2121 unsigned long nr_reclaimed; 2122 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2123 int nr_retries = MAX_RECLAIM_RETRIES; 2124 struct mem_cgroup *memcg; 2125 bool in_retry = false; 2126 2127 if (likely(!nr_pages)) 2128 return; 2129 2130 memcg = get_mem_cgroup_from_mm(current->mm); 2131 current->memcg_nr_pages_over_high = 0; 2132 2133 retry_reclaim: 2134 /* 2135 * Bail if the task is already exiting. Unlike memory.max, 2136 * memory.high enforcement isn't as strict, and there is no 2137 * OOM killer involved, which means the excess could already 2138 * be much bigger (and still growing) than it could for 2139 * memory.max; the dying task could get stuck in fruitless 2140 * reclaim for a long time, which isn't desirable. 2141 */ 2142 if (task_is_dying()) 2143 goto out; 2144 2145 /* 2146 * The allocating task should reclaim at least the batch size, but for 2147 * subsequent retries we only want to do what's necessary to prevent oom 2148 * or breaching resource isolation. 2149 * 2150 * This is distinct from memory.max or page allocator behaviour because 2151 * memory.high is currently batched, whereas memory.max and the page 2152 * allocator run every time an allocation is made. 2153 */ 2154 nr_reclaimed = reclaim_high(memcg, 2155 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2156 gfp_mask); 2157 2158 /* 2159 * memory.high is breached and reclaim is unable to keep up. Throttle 2160 * allocators proactively to slow down excessive growth. 2161 */ 2162 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2163 mem_find_max_overage(memcg)); 2164 2165 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2166 swap_find_max_overage(memcg)); 2167 2168 /* 2169 * Clamp the max delay per usermode return so as to still keep the 2170 * application moving forwards and also permit diagnostics, albeit 2171 * extremely slowly. 2172 */ 2173 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2174 2175 /* 2176 * Don't sleep if the amount of jiffies this memcg owes us is so low 2177 * that it's not even worth doing, in an attempt to be nice to those who 2178 * go only a small amount over their memory.high value and maybe haven't 2179 * been aggressively reclaimed enough yet. 2180 */ 2181 if (penalty_jiffies <= HZ / 100) 2182 goto out; 2183 2184 /* 2185 * If reclaim is making forward progress but we're still over 2186 * memory.high, we want to encourage that rather than doing allocator 2187 * throttling. 2188 */ 2189 if (nr_reclaimed || nr_retries--) { 2190 in_retry = true; 2191 goto retry_reclaim; 2192 } 2193 2194 /* 2195 * Reclaim didn't manage to push usage below the limit, slow 2196 * this allocating task down. 2197 * 2198 * If we exit early, we're guaranteed to die (since 2199 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2200 * need to account for any ill-begotten jiffies to pay them off later. 2201 */ 2202 psi_memstall_enter(&pflags); 2203 schedule_timeout_killable(penalty_jiffies); 2204 psi_memstall_leave(&pflags); 2205 2206 out: 2207 css_put(&memcg->css); 2208 } 2209 2210 int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2211 unsigned int nr_pages) 2212 { 2213 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2214 int nr_retries = MAX_RECLAIM_RETRIES; 2215 struct mem_cgroup *mem_over_limit; 2216 struct page_counter *counter; 2217 unsigned long nr_reclaimed; 2218 bool passed_oom = false; 2219 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2220 bool drained = false; 2221 bool raised_max_event = false; 2222 unsigned long pflags; 2223 2224 retry: 2225 if (consume_stock(memcg, nr_pages)) 2226 return 0; 2227 2228 if (!do_memsw_account() || 2229 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2230 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2231 goto done_restock; 2232 if (do_memsw_account()) 2233 page_counter_uncharge(&memcg->memsw, batch); 2234 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2235 } else { 2236 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2237 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2238 } 2239 2240 if (batch > nr_pages) { 2241 batch = nr_pages; 2242 goto retry; 2243 } 2244 2245 /* 2246 * Prevent unbounded recursion when reclaim operations need to 2247 * allocate memory. This might exceed the limits temporarily, 2248 * but we prefer facilitating memory reclaim and getting back 2249 * under the limit over triggering OOM kills in these cases. 2250 */ 2251 if (unlikely(current->flags & PF_MEMALLOC)) 2252 goto force; 2253 2254 if (unlikely(task_in_memcg_oom(current))) 2255 goto nomem; 2256 2257 if (!gfpflags_allow_blocking(gfp_mask)) 2258 goto nomem; 2259 2260 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2261 raised_max_event = true; 2262 2263 psi_memstall_enter(&pflags); 2264 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2265 gfp_mask, reclaim_options, NULL); 2266 psi_memstall_leave(&pflags); 2267 2268 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2269 goto retry; 2270 2271 if (!drained) { 2272 drain_all_stock(mem_over_limit); 2273 drained = true; 2274 goto retry; 2275 } 2276 2277 if (gfp_mask & __GFP_NORETRY) 2278 goto nomem; 2279 /* 2280 * Even though the limit is exceeded at this point, reclaim 2281 * may have been able to free some pages. Retry the charge 2282 * before killing the task. 2283 * 2284 * Only for regular pages, though: huge pages are rather 2285 * unlikely to succeed so close to the limit, and we fall back 2286 * to regular pages anyway in case of failure. 2287 */ 2288 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2289 goto retry; 2290 2291 if (nr_retries--) 2292 goto retry; 2293 2294 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2295 goto nomem; 2296 2297 /* Avoid endless loop for tasks bypassed by the oom killer */ 2298 if (passed_oom && task_is_dying()) 2299 goto nomem; 2300 2301 /* 2302 * keep retrying as long as the memcg oom killer is able to make 2303 * a forward progress or bypass the charge if the oom killer 2304 * couldn't make any progress. 2305 */ 2306 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2307 get_order(nr_pages * PAGE_SIZE))) { 2308 passed_oom = true; 2309 nr_retries = MAX_RECLAIM_RETRIES; 2310 goto retry; 2311 } 2312 nomem: 2313 /* 2314 * Memcg doesn't have a dedicated reserve for atomic 2315 * allocations. But like the global atomic pool, we need to 2316 * put the burden of reclaim on regular allocation requests 2317 * and let these go through as privileged allocations. 2318 */ 2319 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2320 return -ENOMEM; 2321 force: 2322 /* 2323 * If the allocation has to be enforced, don't forget to raise 2324 * a MEMCG_MAX event. 2325 */ 2326 if (!raised_max_event) 2327 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2328 2329 /* 2330 * The allocation either can't fail or will lead to more memory 2331 * being freed very soon. Allow memory usage go over the limit 2332 * temporarily by force charging it. 2333 */ 2334 page_counter_charge(&memcg->memory, nr_pages); 2335 if (do_memsw_account()) 2336 page_counter_charge(&memcg->memsw, nr_pages); 2337 2338 return 0; 2339 2340 done_restock: 2341 if (batch > nr_pages) 2342 refill_stock(memcg, batch - nr_pages); 2343 2344 /* 2345 * If the hierarchy is above the normal consumption range, schedule 2346 * reclaim on returning to userland. We can perform reclaim here 2347 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2348 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2349 * not recorded as it most likely matches current's and won't 2350 * change in the meantime. As high limit is checked again before 2351 * reclaim, the cost of mismatch is negligible. 2352 */ 2353 do { 2354 bool mem_high, swap_high; 2355 2356 mem_high = page_counter_read(&memcg->memory) > 2357 READ_ONCE(memcg->memory.high); 2358 swap_high = page_counter_read(&memcg->swap) > 2359 READ_ONCE(memcg->swap.high); 2360 2361 /* Don't bother a random interrupted task */ 2362 if (!in_task()) { 2363 if (mem_high) { 2364 schedule_work(&memcg->high_work); 2365 break; 2366 } 2367 continue; 2368 } 2369 2370 if (mem_high || swap_high) { 2371 /* 2372 * The allocating tasks in this cgroup will need to do 2373 * reclaim or be throttled to prevent further growth 2374 * of the memory or swap footprints. 2375 * 2376 * Target some best-effort fairness between the tasks, 2377 * and distribute reclaim work and delay penalties 2378 * based on how much each task is actually allocating. 2379 */ 2380 current->memcg_nr_pages_over_high += batch; 2381 set_notify_resume(current); 2382 break; 2383 } 2384 } while ((memcg = parent_mem_cgroup(memcg))); 2385 2386 /* 2387 * Reclaim is set up above to be called from the userland 2388 * return path. But also attempt synchronous reclaim to avoid 2389 * excessive overrun while the task is still inside the 2390 * kernel. If this is successful, the return path will see it 2391 * when it rechecks the overage and simply bail out. 2392 */ 2393 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2394 !(current->flags & PF_MEMALLOC) && 2395 gfpflags_allow_blocking(gfp_mask)) 2396 mem_cgroup_handle_over_high(gfp_mask); 2397 return 0; 2398 } 2399 2400 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2401 { 2402 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2403 /* 2404 * Any of the following ensures page's memcg stability: 2405 * 2406 * - the page lock 2407 * - LRU isolation 2408 * - exclusive reference 2409 */ 2410 folio->memcg_data = (unsigned long)memcg; 2411 } 2412 2413 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg, 2414 struct pglist_data *pgdat, 2415 enum node_stat_item idx, int nr) 2416 { 2417 struct mem_cgroup *memcg; 2418 struct lruvec *lruvec; 2419 2420 rcu_read_lock(); 2421 memcg = obj_cgroup_memcg(objcg); 2422 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2423 __mod_memcg_lruvec_state(lruvec, idx, nr); 2424 rcu_read_unlock(); 2425 } 2426 2427 static __always_inline 2428 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2429 { 2430 /* 2431 * Slab objects are accounted individually, not per-page. 2432 * Memcg membership data for each individual object is saved in 2433 * slab->obj_exts. 2434 */ 2435 if (folio_test_slab(folio)) { 2436 struct slabobj_ext *obj_exts; 2437 struct slab *slab; 2438 unsigned int off; 2439 2440 slab = folio_slab(folio); 2441 obj_exts = slab_obj_exts(slab); 2442 if (!obj_exts) 2443 return NULL; 2444 2445 off = obj_to_index(slab->slab_cache, slab, p); 2446 if (obj_exts[off].objcg) 2447 return obj_cgroup_memcg(obj_exts[off].objcg); 2448 2449 return NULL; 2450 } 2451 2452 /* 2453 * folio_memcg_check() is used here, because in theory we can encounter 2454 * a folio where the slab flag has been cleared already, but 2455 * slab->obj_exts has not been freed yet 2456 * folio_memcg_check() will guarantee that a proper memory 2457 * cgroup pointer or NULL will be returned. 2458 */ 2459 return folio_memcg_check(folio); 2460 } 2461 2462 /* 2463 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2464 * It is not suitable for objects allocated using vmalloc(). 2465 * 2466 * A passed kernel object must be a slab object or a generic kernel page. 2467 * 2468 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2469 * cgroup_mutex, etc. 2470 */ 2471 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2472 { 2473 if (mem_cgroup_disabled()) 2474 return NULL; 2475 2476 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2477 } 2478 2479 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2480 { 2481 struct obj_cgroup *objcg = NULL; 2482 2483 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2484 objcg = rcu_dereference(memcg->objcg); 2485 if (likely(objcg && obj_cgroup_tryget(objcg))) 2486 break; 2487 objcg = NULL; 2488 } 2489 return objcg; 2490 } 2491 2492 static struct obj_cgroup *current_objcg_update(void) 2493 { 2494 struct mem_cgroup *memcg; 2495 struct obj_cgroup *old, *objcg = NULL; 2496 2497 do { 2498 /* Atomically drop the update bit. */ 2499 old = xchg(¤t->objcg, NULL); 2500 if (old) { 2501 old = (struct obj_cgroup *) 2502 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2503 obj_cgroup_put(old); 2504 2505 old = NULL; 2506 } 2507 2508 /* If new objcg is NULL, no reason for the second atomic update. */ 2509 if (!current->mm || (current->flags & PF_KTHREAD)) 2510 return NULL; 2511 2512 /* 2513 * Release the objcg pointer from the previous iteration, 2514 * if try_cmpxcg() below fails. 2515 */ 2516 if (unlikely(objcg)) { 2517 obj_cgroup_put(objcg); 2518 objcg = NULL; 2519 } 2520 2521 /* 2522 * Obtain the new objcg pointer. The current task can be 2523 * asynchronously moved to another memcg and the previous 2524 * memcg can be offlined. So let's get the memcg pointer 2525 * and try get a reference to objcg under a rcu read lock. 2526 */ 2527 2528 rcu_read_lock(); 2529 memcg = mem_cgroup_from_task(current); 2530 objcg = __get_obj_cgroup_from_memcg(memcg); 2531 rcu_read_unlock(); 2532 2533 /* 2534 * Try set up a new objcg pointer atomically. If it 2535 * fails, it means the update flag was set concurrently, so 2536 * the whole procedure should be repeated. 2537 */ 2538 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2539 2540 return objcg; 2541 } 2542 2543 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2544 { 2545 struct mem_cgroup *memcg; 2546 struct obj_cgroup *objcg; 2547 2548 if (in_task()) { 2549 memcg = current->active_memcg; 2550 if (unlikely(memcg)) 2551 goto from_memcg; 2552 2553 objcg = READ_ONCE(current->objcg); 2554 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2555 objcg = current_objcg_update(); 2556 /* 2557 * Objcg reference is kept by the task, so it's safe 2558 * to use the objcg by the current task. 2559 */ 2560 return objcg; 2561 } 2562 2563 memcg = this_cpu_read(int_active_memcg); 2564 if (unlikely(memcg)) 2565 goto from_memcg; 2566 2567 return NULL; 2568 2569 from_memcg: 2570 objcg = NULL; 2571 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2572 /* 2573 * Memcg pointer is protected by scope (see set_active_memcg()) 2574 * and is pinning the corresponding objcg, so objcg can't go 2575 * away and can be used within the scope without any additional 2576 * protection. 2577 */ 2578 objcg = rcu_dereference_check(memcg->objcg, 1); 2579 if (likely(objcg)) 2580 break; 2581 } 2582 2583 return objcg; 2584 } 2585 2586 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2587 { 2588 struct obj_cgroup *objcg; 2589 2590 if (!memcg_kmem_online()) 2591 return NULL; 2592 2593 if (folio_memcg_kmem(folio)) { 2594 objcg = __folio_objcg(folio); 2595 obj_cgroup_get(objcg); 2596 } else { 2597 struct mem_cgroup *memcg; 2598 2599 rcu_read_lock(); 2600 memcg = __folio_memcg(folio); 2601 if (memcg) 2602 objcg = __get_obj_cgroup_from_memcg(memcg); 2603 else 2604 objcg = NULL; 2605 rcu_read_unlock(); 2606 } 2607 return objcg; 2608 } 2609 2610 /* 2611 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2612 * @objcg: object cgroup to uncharge 2613 * @nr_pages: number of pages to uncharge 2614 */ 2615 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2616 unsigned int nr_pages) 2617 { 2618 struct mem_cgroup *memcg; 2619 2620 memcg = get_mem_cgroup_from_objcg(objcg); 2621 2622 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2623 memcg1_account_kmem(memcg, -nr_pages); 2624 refill_stock(memcg, nr_pages); 2625 2626 css_put(&memcg->css); 2627 } 2628 2629 /* 2630 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2631 * @objcg: object cgroup to charge 2632 * @gfp: reclaim mode 2633 * @nr_pages: number of pages to charge 2634 * 2635 * Returns 0 on success, an error code on failure. 2636 */ 2637 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2638 unsigned int nr_pages) 2639 { 2640 struct mem_cgroup *memcg; 2641 int ret; 2642 2643 memcg = get_mem_cgroup_from_objcg(objcg); 2644 2645 ret = try_charge_memcg(memcg, gfp, nr_pages); 2646 if (ret) 2647 goto out; 2648 2649 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2650 memcg1_account_kmem(memcg, nr_pages); 2651 out: 2652 css_put(&memcg->css); 2653 2654 return ret; 2655 } 2656 2657 /** 2658 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2659 * @page: page to charge 2660 * @gfp: reclaim mode 2661 * @order: allocation order 2662 * 2663 * Returns 0 on success, an error code on failure. 2664 */ 2665 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2666 { 2667 struct obj_cgroup *objcg; 2668 int ret = 0; 2669 2670 objcg = current_obj_cgroup(); 2671 if (objcg) { 2672 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2673 if (!ret) { 2674 obj_cgroup_get(objcg); 2675 page->memcg_data = (unsigned long)objcg | 2676 MEMCG_DATA_KMEM; 2677 return 0; 2678 } 2679 } 2680 return ret; 2681 } 2682 2683 /** 2684 * __memcg_kmem_uncharge_page: uncharge a kmem page 2685 * @page: page to uncharge 2686 * @order: allocation order 2687 */ 2688 void __memcg_kmem_uncharge_page(struct page *page, int order) 2689 { 2690 struct folio *folio = page_folio(page); 2691 struct obj_cgroup *objcg; 2692 unsigned int nr_pages = 1 << order; 2693 2694 if (!folio_memcg_kmem(folio)) 2695 return; 2696 2697 objcg = __folio_objcg(folio); 2698 obj_cgroup_uncharge_pages(objcg, nr_pages); 2699 folio->memcg_data = 0; 2700 obj_cgroup_put(objcg); 2701 } 2702 2703 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 2704 enum node_stat_item idx, int nr) 2705 { 2706 struct memcg_stock_pcp *stock; 2707 struct obj_cgroup *old = NULL; 2708 unsigned long flags; 2709 int *bytes; 2710 2711 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2712 stock = this_cpu_ptr(&memcg_stock); 2713 2714 /* 2715 * Save vmstat data in stock and skip vmstat array update unless 2716 * accumulating over a page of vmstat data or when pgdat or idx 2717 * changes. 2718 */ 2719 if (READ_ONCE(stock->cached_objcg) != objcg) { 2720 old = drain_obj_stock(stock); 2721 obj_cgroup_get(objcg); 2722 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2723 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2724 WRITE_ONCE(stock->cached_objcg, objcg); 2725 stock->cached_pgdat = pgdat; 2726 } else if (stock->cached_pgdat != pgdat) { 2727 /* Flush the existing cached vmstat data */ 2728 struct pglist_data *oldpg = stock->cached_pgdat; 2729 2730 if (stock->nr_slab_reclaimable_b) { 2731 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2732 stock->nr_slab_reclaimable_b); 2733 stock->nr_slab_reclaimable_b = 0; 2734 } 2735 if (stock->nr_slab_unreclaimable_b) { 2736 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2737 stock->nr_slab_unreclaimable_b); 2738 stock->nr_slab_unreclaimable_b = 0; 2739 } 2740 stock->cached_pgdat = pgdat; 2741 } 2742 2743 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2744 : &stock->nr_slab_unreclaimable_b; 2745 /* 2746 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2747 * cached locally at least once before pushing it out. 2748 */ 2749 if (!*bytes) { 2750 *bytes = nr; 2751 nr = 0; 2752 } else { 2753 *bytes += nr; 2754 if (abs(*bytes) > PAGE_SIZE) { 2755 nr = *bytes; 2756 *bytes = 0; 2757 } else { 2758 nr = 0; 2759 } 2760 } 2761 if (nr) 2762 __mod_objcg_mlstate(objcg, pgdat, idx, nr); 2763 2764 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2765 obj_cgroup_put(old); 2766 } 2767 2768 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 2769 { 2770 struct memcg_stock_pcp *stock; 2771 unsigned long flags; 2772 bool ret = false; 2773 2774 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2775 2776 stock = this_cpu_ptr(&memcg_stock); 2777 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2778 stock->nr_bytes -= nr_bytes; 2779 ret = true; 2780 } 2781 2782 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2783 2784 return ret; 2785 } 2786 2787 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2788 { 2789 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2790 2791 if (!old) 2792 return NULL; 2793 2794 if (stock->nr_bytes) { 2795 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2796 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2797 2798 if (nr_pages) { 2799 struct mem_cgroup *memcg; 2800 2801 memcg = get_mem_cgroup_from_objcg(old); 2802 2803 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2804 memcg1_account_kmem(memcg, -nr_pages); 2805 __refill_stock(memcg, nr_pages); 2806 2807 css_put(&memcg->css); 2808 } 2809 2810 /* 2811 * The leftover is flushed to the centralized per-memcg value. 2812 * On the next attempt to refill obj stock it will be moved 2813 * to a per-cpu stock (probably, on an other CPU), see 2814 * refill_obj_stock(). 2815 * 2816 * How often it's flushed is a trade-off between the memory 2817 * limit enforcement accuracy and potential CPU contention, 2818 * so it might be changed in the future. 2819 */ 2820 atomic_add(nr_bytes, &old->nr_charged_bytes); 2821 stock->nr_bytes = 0; 2822 } 2823 2824 /* 2825 * Flush the vmstat data in current stock 2826 */ 2827 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2828 if (stock->nr_slab_reclaimable_b) { 2829 __mod_objcg_mlstate(old, stock->cached_pgdat, 2830 NR_SLAB_RECLAIMABLE_B, 2831 stock->nr_slab_reclaimable_b); 2832 stock->nr_slab_reclaimable_b = 0; 2833 } 2834 if (stock->nr_slab_unreclaimable_b) { 2835 __mod_objcg_mlstate(old, stock->cached_pgdat, 2836 NR_SLAB_UNRECLAIMABLE_B, 2837 stock->nr_slab_unreclaimable_b); 2838 stock->nr_slab_unreclaimable_b = 0; 2839 } 2840 stock->cached_pgdat = NULL; 2841 } 2842 2843 WRITE_ONCE(stock->cached_objcg, NULL); 2844 /* 2845 * The `old' objects needs to be released by the caller via 2846 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 2847 */ 2848 return old; 2849 } 2850 2851 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2852 struct mem_cgroup *root_memcg) 2853 { 2854 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 2855 struct mem_cgroup *memcg; 2856 2857 if (objcg) { 2858 memcg = obj_cgroup_memcg(objcg); 2859 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 2860 return true; 2861 } 2862 2863 return false; 2864 } 2865 2866 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2867 bool allow_uncharge) 2868 { 2869 struct memcg_stock_pcp *stock; 2870 struct obj_cgroup *old = NULL; 2871 unsigned long flags; 2872 unsigned int nr_pages = 0; 2873 2874 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2875 2876 stock = this_cpu_ptr(&memcg_stock); 2877 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 2878 old = drain_obj_stock(stock); 2879 obj_cgroup_get(objcg); 2880 WRITE_ONCE(stock->cached_objcg, objcg); 2881 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2882 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2883 allow_uncharge = true; /* Allow uncharge when objcg changes */ 2884 } 2885 stock->nr_bytes += nr_bytes; 2886 2887 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 2888 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2889 stock->nr_bytes &= (PAGE_SIZE - 1); 2890 } 2891 2892 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2893 obj_cgroup_put(old); 2894 2895 if (nr_pages) 2896 obj_cgroup_uncharge_pages(objcg, nr_pages); 2897 } 2898 2899 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 2900 { 2901 unsigned int nr_pages, nr_bytes; 2902 int ret; 2903 2904 if (consume_obj_stock(objcg, size)) 2905 return 0; 2906 2907 /* 2908 * In theory, objcg->nr_charged_bytes can have enough 2909 * pre-charged bytes to satisfy the allocation. However, 2910 * flushing objcg->nr_charged_bytes requires two atomic 2911 * operations, and objcg->nr_charged_bytes can't be big. 2912 * The shared objcg->nr_charged_bytes can also become a 2913 * performance bottleneck if all tasks of the same memcg are 2914 * trying to update it. So it's better to ignore it and try 2915 * grab some new pages. The stock's nr_bytes will be flushed to 2916 * objcg->nr_charged_bytes later on when objcg changes. 2917 * 2918 * The stock's nr_bytes may contain enough pre-charged bytes 2919 * to allow one less page from being charged, but we can't rely 2920 * on the pre-charged bytes not being changed outside of 2921 * consume_obj_stock() or refill_obj_stock(). So ignore those 2922 * pre-charged bytes as well when charging pages. To avoid a 2923 * page uncharge right after a page charge, we set the 2924 * allow_uncharge flag to false when calling refill_obj_stock() 2925 * to temporarily allow the pre-charged bytes to exceed the page 2926 * size limit. The maximum reachable value of the pre-charged 2927 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 2928 * race. 2929 */ 2930 nr_pages = size >> PAGE_SHIFT; 2931 nr_bytes = size & (PAGE_SIZE - 1); 2932 2933 if (nr_bytes) 2934 nr_pages += 1; 2935 2936 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 2937 if (!ret && nr_bytes) 2938 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 2939 2940 return ret; 2941 } 2942 2943 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 2944 { 2945 refill_obj_stock(objcg, size, true); 2946 } 2947 2948 static inline size_t obj_full_size(struct kmem_cache *s) 2949 { 2950 /* 2951 * For each accounted object there is an extra space which is used 2952 * to store obj_cgroup membership. Charge it too. 2953 */ 2954 return s->size + sizeof(struct obj_cgroup *); 2955 } 2956 2957 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2958 gfp_t flags, size_t size, void **p) 2959 { 2960 struct obj_cgroup *objcg; 2961 struct slab *slab; 2962 unsigned long off; 2963 size_t i; 2964 2965 /* 2966 * The obtained objcg pointer is safe to use within the current scope, 2967 * defined by current task or set_active_memcg() pair. 2968 * obj_cgroup_get() is used to get a permanent reference. 2969 */ 2970 objcg = current_obj_cgroup(); 2971 if (!objcg) 2972 return true; 2973 2974 /* 2975 * slab_alloc_node() avoids the NULL check, so we might be called with a 2976 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 2977 * the whole requested size. 2978 * return success as there's nothing to free back 2979 */ 2980 if (unlikely(*p == NULL)) 2981 return true; 2982 2983 flags &= gfp_allowed_mask; 2984 2985 if (lru) { 2986 int ret; 2987 struct mem_cgroup *memcg; 2988 2989 memcg = get_mem_cgroup_from_objcg(objcg); 2990 ret = memcg_list_lru_alloc(memcg, lru, flags); 2991 css_put(&memcg->css); 2992 2993 if (ret) 2994 return false; 2995 } 2996 2997 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s))) 2998 return false; 2999 3000 for (i = 0; i < size; i++) { 3001 slab = virt_to_slab(p[i]); 3002 3003 if (!slab_obj_exts(slab) && 3004 alloc_slab_obj_exts(slab, s, flags, false)) { 3005 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3006 continue; 3007 } 3008 3009 off = obj_to_index(s, slab, p[i]); 3010 obj_cgroup_get(objcg); 3011 slab_obj_exts(slab)[off].objcg = objcg; 3012 mod_objcg_state(objcg, slab_pgdat(slab), 3013 cache_vmstat_idx(s), obj_full_size(s)); 3014 } 3015 3016 return true; 3017 } 3018 3019 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3020 void **p, int objects, struct slabobj_ext *obj_exts) 3021 { 3022 for (int i = 0; i < objects; i++) { 3023 struct obj_cgroup *objcg; 3024 unsigned int off; 3025 3026 off = obj_to_index(s, slab, p[i]); 3027 objcg = obj_exts[off].objcg; 3028 if (!objcg) 3029 continue; 3030 3031 obj_exts[off].objcg = NULL; 3032 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3033 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), 3034 -obj_full_size(s)); 3035 obj_cgroup_put(objcg); 3036 } 3037 } 3038 3039 /* 3040 * Because folio_memcg(head) is not set on tails, set it now. 3041 */ 3042 void split_page_memcg(struct page *head, int old_order, int new_order) 3043 { 3044 struct folio *folio = page_folio(head); 3045 int i; 3046 unsigned int old_nr = 1 << old_order; 3047 unsigned int new_nr = 1 << new_order; 3048 3049 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3050 return; 3051 3052 for (i = new_nr; i < old_nr; i += new_nr) 3053 folio_page(folio, i)->memcg_data = folio->memcg_data; 3054 3055 if (folio_memcg_kmem(folio)) 3056 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1); 3057 else 3058 css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1); 3059 } 3060 3061 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3062 { 3063 unsigned long val; 3064 3065 if (mem_cgroup_is_root(memcg)) { 3066 /* 3067 * Approximate root's usage from global state. This isn't 3068 * perfect, but the root usage was always an approximation. 3069 */ 3070 val = global_node_page_state(NR_FILE_PAGES) + 3071 global_node_page_state(NR_ANON_MAPPED); 3072 if (swap) 3073 val += total_swap_pages - get_nr_swap_pages(); 3074 } else { 3075 if (!swap) 3076 val = page_counter_read(&memcg->memory); 3077 else 3078 val = page_counter_read(&memcg->memsw); 3079 } 3080 return val; 3081 } 3082 3083 static int memcg_online_kmem(struct mem_cgroup *memcg) 3084 { 3085 struct obj_cgroup *objcg; 3086 3087 if (mem_cgroup_kmem_disabled()) 3088 return 0; 3089 3090 if (unlikely(mem_cgroup_is_root(memcg))) 3091 return 0; 3092 3093 objcg = obj_cgroup_alloc(); 3094 if (!objcg) 3095 return -ENOMEM; 3096 3097 objcg->memcg = memcg; 3098 rcu_assign_pointer(memcg->objcg, objcg); 3099 obj_cgroup_get(objcg); 3100 memcg->orig_objcg = objcg; 3101 3102 static_branch_enable(&memcg_kmem_online_key); 3103 3104 memcg->kmemcg_id = memcg->id.id; 3105 3106 return 0; 3107 } 3108 3109 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3110 { 3111 struct mem_cgroup *parent; 3112 3113 if (mem_cgroup_kmem_disabled()) 3114 return; 3115 3116 if (unlikely(mem_cgroup_is_root(memcg))) 3117 return; 3118 3119 parent = parent_mem_cgroup(memcg); 3120 if (!parent) 3121 parent = root_mem_cgroup; 3122 3123 memcg_reparent_list_lrus(memcg, parent); 3124 3125 /* 3126 * Objcg's reparenting must be after list_lru's, make sure list_lru 3127 * helpers won't use parent's list_lru until child is drained. 3128 */ 3129 memcg_reparent_objcgs(memcg, parent); 3130 } 3131 3132 #ifdef CONFIG_CGROUP_WRITEBACK 3133 3134 #include <trace/events/writeback.h> 3135 3136 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3137 { 3138 return wb_domain_init(&memcg->cgwb_domain, gfp); 3139 } 3140 3141 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3142 { 3143 wb_domain_exit(&memcg->cgwb_domain); 3144 } 3145 3146 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3147 { 3148 wb_domain_size_changed(&memcg->cgwb_domain); 3149 } 3150 3151 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3152 { 3153 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3154 3155 if (!memcg->css.parent) 3156 return NULL; 3157 3158 return &memcg->cgwb_domain; 3159 } 3160 3161 /** 3162 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3163 * @wb: bdi_writeback in question 3164 * @pfilepages: out parameter for number of file pages 3165 * @pheadroom: out parameter for number of allocatable pages according to memcg 3166 * @pdirty: out parameter for number of dirty pages 3167 * @pwriteback: out parameter for number of pages under writeback 3168 * 3169 * Determine the numbers of file, headroom, dirty, and writeback pages in 3170 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3171 * is a bit more involved. 3172 * 3173 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3174 * headroom is calculated as the lowest headroom of itself and the 3175 * ancestors. Note that this doesn't consider the actual amount of 3176 * available memory in the system. The caller should further cap 3177 * *@pheadroom accordingly. 3178 */ 3179 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3180 unsigned long *pheadroom, unsigned long *pdirty, 3181 unsigned long *pwriteback) 3182 { 3183 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3184 struct mem_cgroup *parent; 3185 3186 mem_cgroup_flush_stats_ratelimited(memcg); 3187 3188 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3189 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3190 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3191 memcg_page_state(memcg, NR_ACTIVE_FILE); 3192 3193 *pheadroom = PAGE_COUNTER_MAX; 3194 while ((parent = parent_mem_cgroup(memcg))) { 3195 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3196 READ_ONCE(memcg->memory.high)); 3197 unsigned long used = page_counter_read(&memcg->memory); 3198 3199 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3200 memcg = parent; 3201 } 3202 } 3203 3204 /* 3205 * Foreign dirty flushing 3206 * 3207 * There's an inherent mismatch between memcg and writeback. The former 3208 * tracks ownership per-page while the latter per-inode. This was a 3209 * deliberate design decision because honoring per-page ownership in the 3210 * writeback path is complicated, may lead to higher CPU and IO overheads 3211 * and deemed unnecessary given that write-sharing an inode across 3212 * different cgroups isn't a common use-case. 3213 * 3214 * Combined with inode majority-writer ownership switching, this works well 3215 * enough in most cases but there are some pathological cases. For 3216 * example, let's say there are two cgroups A and B which keep writing to 3217 * different but confined parts of the same inode. B owns the inode and 3218 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3219 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3220 * triggering background writeback. A will be slowed down without a way to 3221 * make writeback of the dirty pages happen. 3222 * 3223 * Conditions like the above can lead to a cgroup getting repeatedly and 3224 * severely throttled after making some progress after each 3225 * dirty_expire_interval while the underlying IO device is almost 3226 * completely idle. 3227 * 3228 * Solving this problem completely requires matching the ownership tracking 3229 * granularities between memcg and writeback in either direction. However, 3230 * the more egregious behaviors can be avoided by simply remembering the 3231 * most recent foreign dirtying events and initiating remote flushes on 3232 * them when local writeback isn't enough to keep the memory clean enough. 3233 * 3234 * The following two functions implement such mechanism. When a foreign 3235 * page - a page whose memcg and writeback ownerships don't match - is 3236 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3237 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3238 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3239 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3240 * foreign bdi_writebacks which haven't expired. Both the numbers of 3241 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3242 * limited to MEMCG_CGWB_FRN_CNT. 3243 * 3244 * The mechanism only remembers IDs and doesn't hold any object references. 3245 * As being wrong occasionally doesn't matter, updates and accesses to the 3246 * records are lockless and racy. 3247 */ 3248 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3249 struct bdi_writeback *wb) 3250 { 3251 struct mem_cgroup *memcg = folio_memcg(folio); 3252 struct memcg_cgwb_frn *frn; 3253 u64 now = get_jiffies_64(); 3254 u64 oldest_at = now; 3255 int oldest = -1; 3256 int i; 3257 3258 trace_track_foreign_dirty(folio, wb); 3259 3260 /* 3261 * Pick the slot to use. If there is already a slot for @wb, keep 3262 * using it. If not replace the oldest one which isn't being 3263 * written out. 3264 */ 3265 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3266 frn = &memcg->cgwb_frn[i]; 3267 if (frn->bdi_id == wb->bdi->id && 3268 frn->memcg_id == wb->memcg_css->id) 3269 break; 3270 if (time_before64(frn->at, oldest_at) && 3271 atomic_read(&frn->done.cnt) == 1) { 3272 oldest = i; 3273 oldest_at = frn->at; 3274 } 3275 } 3276 3277 if (i < MEMCG_CGWB_FRN_CNT) { 3278 /* 3279 * Re-using an existing one. Update timestamp lazily to 3280 * avoid making the cacheline hot. We want them to be 3281 * reasonably up-to-date and significantly shorter than 3282 * dirty_expire_interval as that's what expires the record. 3283 * Use the shorter of 1s and dirty_expire_interval / 8. 3284 */ 3285 unsigned long update_intv = 3286 min_t(unsigned long, HZ, 3287 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3288 3289 if (time_before64(frn->at, now - update_intv)) 3290 frn->at = now; 3291 } else if (oldest >= 0) { 3292 /* replace the oldest free one */ 3293 frn = &memcg->cgwb_frn[oldest]; 3294 frn->bdi_id = wb->bdi->id; 3295 frn->memcg_id = wb->memcg_css->id; 3296 frn->at = now; 3297 } 3298 } 3299 3300 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3301 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3302 { 3303 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3304 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3305 u64 now = jiffies_64; 3306 int i; 3307 3308 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3309 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3310 3311 /* 3312 * If the record is older than dirty_expire_interval, 3313 * writeback on it has already started. No need to kick it 3314 * off again. Also, don't start a new one if there's 3315 * already one in flight. 3316 */ 3317 if (time_after64(frn->at, now - intv) && 3318 atomic_read(&frn->done.cnt) == 1) { 3319 frn->at = 0; 3320 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3321 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3322 WB_REASON_FOREIGN_FLUSH, 3323 &frn->done); 3324 } 3325 } 3326 } 3327 3328 #else /* CONFIG_CGROUP_WRITEBACK */ 3329 3330 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3331 { 3332 return 0; 3333 } 3334 3335 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3336 { 3337 } 3338 3339 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3340 { 3341 } 3342 3343 #endif /* CONFIG_CGROUP_WRITEBACK */ 3344 3345 /* 3346 * Private memory cgroup IDR 3347 * 3348 * Swap-out records and page cache shadow entries need to store memcg 3349 * references in constrained space, so we maintain an ID space that is 3350 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3351 * memory-controlled cgroups to 64k. 3352 * 3353 * However, there usually are many references to the offline CSS after 3354 * the cgroup has been destroyed, such as page cache or reclaimable 3355 * slab objects, that don't need to hang on to the ID. We want to keep 3356 * those dead CSS from occupying IDs, or we might quickly exhaust the 3357 * relatively small ID space and prevent the creation of new cgroups 3358 * even when there are much fewer than 64k cgroups - possibly none. 3359 * 3360 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3361 * be freed and recycled when it's no longer needed, which is usually 3362 * when the CSS is offlined. 3363 * 3364 * The only exception to that are records of swapped out tmpfs/shmem 3365 * pages that need to be attributed to live ancestors on swapin. But 3366 * those references are manageable from userspace. 3367 */ 3368 3369 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3370 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3371 3372 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3373 { 3374 if (memcg->id.id > 0) { 3375 xa_erase(&mem_cgroup_ids, memcg->id.id); 3376 memcg->id.id = 0; 3377 } 3378 } 3379 3380 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3381 unsigned int n) 3382 { 3383 refcount_add(n, &memcg->id.ref); 3384 } 3385 3386 void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3387 { 3388 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3389 mem_cgroup_id_remove(memcg); 3390 3391 /* Memcg ID pins CSS */ 3392 css_put(&memcg->css); 3393 } 3394 } 3395 3396 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3397 { 3398 mem_cgroup_id_put_many(memcg, 1); 3399 } 3400 3401 /** 3402 * mem_cgroup_from_id - look up a memcg from a memcg id 3403 * @id: the memcg id to look up 3404 * 3405 * Caller must hold rcu_read_lock(). 3406 */ 3407 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3408 { 3409 WARN_ON_ONCE(!rcu_read_lock_held()); 3410 return xa_load(&mem_cgroup_ids, id); 3411 } 3412 3413 #ifdef CONFIG_SHRINKER_DEBUG 3414 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3415 { 3416 struct cgroup *cgrp; 3417 struct cgroup_subsys_state *css; 3418 struct mem_cgroup *memcg; 3419 3420 cgrp = cgroup_get_from_id(ino); 3421 if (IS_ERR(cgrp)) 3422 return ERR_CAST(cgrp); 3423 3424 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3425 if (css) 3426 memcg = container_of(css, struct mem_cgroup, css); 3427 else 3428 memcg = ERR_PTR(-ENOENT); 3429 3430 cgroup_put(cgrp); 3431 3432 return memcg; 3433 } 3434 #endif 3435 3436 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3437 { 3438 struct mem_cgroup_per_node *pn; 3439 3440 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 3441 if (!pn) 3442 return false; 3443 3444 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3445 GFP_KERNEL_ACCOUNT, node); 3446 if (!pn->lruvec_stats) 3447 goto fail; 3448 3449 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3450 GFP_KERNEL_ACCOUNT); 3451 if (!pn->lruvec_stats_percpu) 3452 goto fail; 3453 3454 lruvec_init(&pn->lruvec); 3455 pn->memcg = memcg; 3456 3457 memcg->nodeinfo[node] = pn; 3458 return true; 3459 fail: 3460 kfree(pn->lruvec_stats); 3461 kfree(pn); 3462 return false; 3463 } 3464 3465 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3466 { 3467 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3468 3469 if (!pn) 3470 return; 3471 3472 free_percpu(pn->lruvec_stats_percpu); 3473 kfree(pn->lruvec_stats); 3474 kfree(pn); 3475 } 3476 3477 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3478 { 3479 int node; 3480 3481 obj_cgroup_put(memcg->orig_objcg); 3482 3483 for_each_node(node) 3484 free_mem_cgroup_per_node_info(memcg, node); 3485 memcg1_free_events(memcg); 3486 kfree(memcg->vmstats); 3487 free_percpu(memcg->vmstats_percpu); 3488 kfree(memcg); 3489 } 3490 3491 static void mem_cgroup_free(struct mem_cgroup *memcg) 3492 { 3493 lru_gen_exit_memcg(memcg); 3494 memcg_wb_domain_exit(memcg); 3495 __mem_cgroup_free(memcg); 3496 } 3497 3498 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3499 { 3500 struct memcg_vmstats_percpu *statc, *pstatc; 3501 struct mem_cgroup *memcg; 3502 int node, cpu; 3503 int __maybe_unused i; 3504 long error; 3505 3506 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 3507 if (!memcg) 3508 return ERR_PTR(-ENOMEM); 3509 3510 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3511 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3512 if (error) 3513 goto fail; 3514 error = -ENOMEM; 3515 3516 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3517 GFP_KERNEL_ACCOUNT); 3518 if (!memcg->vmstats) 3519 goto fail; 3520 3521 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3522 GFP_KERNEL_ACCOUNT); 3523 if (!memcg->vmstats_percpu) 3524 goto fail; 3525 3526 if (!memcg1_alloc_events(memcg)) 3527 goto fail; 3528 3529 for_each_possible_cpu(cpu) { 3530 if (parent) 3531 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 3532 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3533 statc->parent = parent ? pstatc : NULL; 3534 statc->vmstats = memcg->vmstats; 3535 } 3536 3537 for_each_node(node) 3538 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3539 goto fail; 3540 3541 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3542 goto fail; 3543 3544 INIT_WORK(&memcg->high_work, high_work_func); 3545 vmpressure_init(&memcg->vmpressure); 3546 INIT_LIST_HEAD(&memcg->memory_peaks); 3547 INIT_LIST_HEAD(&memcg->swap_peaks); 3548 spin_lock_init(&memcg->peaks_lock); 3549 memcg->socket_pressure = jiffies; 3550 memcg1_memcg_init(memcg); 3551 memcg->kmemcg_id = -1; 3552 INIT_LIST_HEAD(&memcg->objcg_list); 3553 #ifdef CONFIG_CGROUP_WRITEBACK 3554 INIT_LIST_HEAD(&memcg->cgwb_list); 3555 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3556 memcg->cgwb_frn[i].done = 3557 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3558 #endif 3559 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3560 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3561 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3562 memcg->deferred_split_queue.split_queue_len = 0; 3563 #endif 3564 lru_gen_init_memcg(memcg); 3565 return memcg; 3566 fail: 3567 mem_cgroup_id_remove(memcg); 3568 __mem_cgroup_free(memcg); 3569 return ERR_PTR(error); 3570 } 3571 3572 static struct cgroup_subsys_state * __ref 3573 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3574 { 3575 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3576 struct mem_cgroup *memcg, *old_memcg; 3577 3578 old_memcg = set_active_memcg(parent); 3579 memcg = mem_cgroup_alloc(parent); 3580 set_active_memcg(old_memcg); 3581 if (IS_ERR(memcg)) 3582 return ERR_CAST(memcg); 3583 3584 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3585 memcg1_soft_limit_reset(memcg); 3586 #ifdef CONFIG_ZSWAP 3587 memcg->zswap_max = PAGE_COUNTER_MAX; 3588 WRITE_ONCE(memcg->zswap_writeback, true); 3589 #endif 3590 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3591 if (parent) { 3592 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3593 3594 page_counter_init(&memcg->memory, &parent->memory, true); 3595 page_counter_init(&memcg->swap, &parent->swap, false); 3596 #ifdef CONFIG_MEMCG_V1 3597 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3598 page_counter_init(&memcg->kmem, &parent->kmem, false); 3599 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3600 #endif 3601 } else { 3602 init_memcg_stats(); 3603 init_memcg_events(); 3604 page_counter_init(&memcg->memory, NULL, true); 3605 page_counter_init(&memcg->swap, NULL, false); 3606 #ifdef CONFIG_MEMCG_V1 3607 page_counter_init(&memcg->kmem, NULL, false); 3608 page_counter_init(&memcg->tcpmem, NULL, false); 3609 #endif 3610 root_mem_cgroup = memcg; 3611 return &memcg->css; 3612 } 3613 3614 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3615 static_branch_inc(&memcg_sockets_enabled_key); 3616 3617 if (!cgroup_memory_nobpf) 3618 static_branch_inc(&memcg_bpf_enabled_key); 3619 3620 return &memcg->css; 3621 } 3622 3623 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3624 { 3625 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3626 3627 if (memcg_online_kmem(memcg)) 3628 goto remove_id; 3629 3630 /* 3631 * A memcg must be visible for expand_shrinker_info() 3632 * by the time the maps are allocated. So, we allocate maps 3633 * here, when for_each_mem_cgroup() can't skip it. 3634 */ 3635 if (alloc_shrinker_info(memcg)) 3636 goto offline_kmem; 3637 3638 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3639 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3640 FLUSH_TIME); 3641 lru_gen_online_memcg(memcg); 3642 3643 /* Online state pins memcg ID, memcg ID pins CSS */ 3644 refcount_set(&memcg->id.ref, 1); 3645 css_get(css); 3646 3647 /* 3648 * Ensure mem_cgroup_from_id() works once we're fully online. 3649 * 3650 * We could do this earlier and require callers to filter with 3651 * css_tryget_online(). But right now there are no users that 3652 * need earlier access, and the workingset code relies on the 3653 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3654 * publish it here at the end of onlining. This matches the 3655 * regular ID destruction during offlining. 3656 */ 3657 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3658 3659 return 0; 3660 offline_kmem: 3661 memcg_offline_kmem(memcg); 3662 remove_id: 3663 mem_cgroup_id_remove(memcg); 3664 return -ENOMEM; 3665 } 3666 3667 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3668 { 3669 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3670 3671 memcg1_css_offline(memcg); 3672 3673 page_counter_set_min(&memcg->memory, 0); 3674 page_counter_set_low(&memcg->memory, 0); 3675 3676 zswap_memcg_offline_cleanup(memcg); 3677 3678 memcg_offline_kmem(memcg); 3679 reparent_shrinker_deferred(memcg); 3680 wb_memcg_offline(memcg); 3681 lru_gen_offline_memcg(memcg); 3682 3683 drain_all_stock(memcg); 3684 3685 mem_cgroup_id_put(memcg); 3686 } 3687 3688 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3689 { 3690 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3691 3692 invalidate_reclaim_iterators(memcg); 3693 lru_gen_release_memcg(memcg); 3694 } 3695 3696 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3697 { 3698 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3699 int __maybe_unused i; 3700 3701 #ifdef CONFIG_CGROUP_WRITEBACK 3702 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3703 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3704 #endif 3705 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3706 static_branch_dec(&memcg_sockets_enabled_key); 3707 3708 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3709 static_branch_dec(&memcg_sockets_enabled_key); 3710 3711 if (!cgroup_memory_nobpf) 3712 static_branch_dec(&memcg_bpf_enabled_key); 3713 3714 vmpressure_cleanup(&memcg->vmpressure); 3715 cancel_work_sync(&memcg->high_work); 3716 memcg1_remove_from_trees(memcg); 3717 free_shrinker_info(memcg); 3718 mem_cgroup_free(memcg); 3719 } 3720 3721 /** 3722 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3723 * @css: the target css 3724 * 3725 * Reset the states of the mem_cgroup associated with @css. This is 3726 * invoked when the userland requests disabling on the default hierarchy 3727 * but the memcg is pinned through dependency. The memcg should stop 3728 * applying policies and should revert to the vanilla state as it may be 3729 * made visible again. 3730 * 3731 * The current implementation only resets the essential configurations. 3732 * This needs to be expanded to cover all the visible parts. 3733 */ 3734 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3735 { 3736 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3737 3738 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3739 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3740 #ifdef CONFIG_MEMCG_V1 3741 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3742 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3743 #endif 3744 page_counter_set_min(&memcg->memory, 0); 3745 page_counter_set_low(&memcg->memory, 0); 3746 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3747 memcg1_soft_limit_reset(memcg); 3748 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3749 memcg_wb_domain_size_changed(memcg); 3750 } 3751 3752 struct aggregate_control { 3753 /* pointer to the aggregated (CPU and subtree aggregated) counters */ 3754 long *aggregate; 3755 /* pointer to the non-hierarchichal (CPU aggregated) counters */ 3756 long *local; 3757 /* pointer to the pending child counters during tree propagation */ 3758 long *pending; 3759 /* pointer to the parent's pending counters, could be NULL */ 3760 long *ppending; 3761 /* pointer to the percpu counters to be aggregated */ 3762 long *cstat; 3763 /* pointer to the percpu counters of the last aggregation*/ 3764 long *cstat_prev; 3765 /* size of the above counters */ 3766 int size; 3767 }; 3768 3769 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) 3770 { 3771 int i; 3772 long delta, delta_cpu, v; 3773 3774 for (i = 0; i < ac->size; i++) { 3775 /* 3776 * Collect the aggregated propagation counts of groups 3777 * below us. We're in a per-cpu loop here and this is 3778 * a global counter, so the first cycle will get them. 3779 */ 3780 delta = ac->pending[i]; 3781 if (delta) 3782 ac->pending[i] = 0; 3783 3784 /* Add CPU changes on this level since the last flush */ 3785 delta_cpu = 0; 3786 v = READ_ONCE(ac->cstat[i]); 3787 if (v != ac->cstat_prev[i]) { 3788 delta_cpu = v - ac->cstat_prev[i]; 3789 delta += delta_cpu; 3790 ac->cstat_prev[i] = v; 3791 } 3792 3793 /* Aggregate counts on this level and propagate upwards */ 3794 if (delta_cpu) 3795 ac->local[i] += delta_cpu; 3796 3797 if (delta) { 3798 ac->aggregate[i] += delta; 3799 if (ac->ppending) 3800 ac->ppending[i] += delta; 3801 } 3802 } 3803 } 3804 3805 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 3806 { 3807 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3808 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3809 struct memcg_vmstats_percpu *statc; 3810 struct aggregate_control ac; 3811 int nid; 3812 3813 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3814 3815 ac = (struct aggregate_control) { 3816 .aggregate = memcg->vmstats->state, 3817 .local = memcg->vmstats->state_local, 3818 .pending = memcg->vmstats->state_pending, 3819 .ppending = parent ? parent->vmstats->state_pending : NULL, 3820 .cstat = statc->state, 3821 .cstat_prev = statc->state_prev, 3822 .size = MEMCG_VMSTAT_SIZE, 3823 }; 3824 mem_cgroup_stat_aggregate(&ac); 3825 3826 ac = (struct aggregate_control) { 3827 .aggregate = memcg->vmstats->events, 3828 .local = memcg->vmstats->events_local, 3829 .pending = memcg->vmstats->events_pending, 3830 .ppending = parent ? parent->vmstats->events_pending : NULL, 3831 .cstat = statc->events, 3832 .cstat_prev = statc->events_prev, 3833 .size = NR_MEMCG_EVENTS, 3834 }; 3835 mem_cgroup_stat_aggregate(&ac); 3836 3837 for_each_node_state(nid, N_MEMORY) { 3838 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 3839 struct lruvec_stats *lstats = pn->lruvec_stats; 3840 struct lruvec_stats *plstats = NULL; 3841 struct lruvec_stats_percpu *lstatc; 3842 3843 if (parent) 3844 plstats = parent->nodeinfo[nid]->lruvec_stats; 3845 3846 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 3847 3848 ac = (struct aggregate_control) { 3849 .aggregate = lstats->state, 3850 .local = lstats->state_local, 3851 .pending = lstats->state_pending, 3852 .ppending = plstats ? plstats->state_pending : NULL, 3853 .cstat = lstatc->state, 3854 .cstat_prev = lstatc->state_prev, 3855 .size = NR_MEMCG_NODE_STAT_ITEMS, 3856 }; 3857 mem_cgroup_stat_aggregate(&ac); 3858 3859 } 3860 WRITE_ONCE(statc->stats_updates, 0); 3861 /* We are in a per-cpu loop here, only do the atomic write once */ 3862 if (atomic64_read(&memcg->vmstats->stats_updates)) 3863 atomic64_set(&memcg->vmstats->stats_updates, 0); 3864 } 3865 3866 static void mem_cgroup_fork(struct task_struct *task) 3867 { 3868 /* 3869 * Set the update flag to cause task->objcg to be initialized lazily 3870 * on the first allocation. It can be done without any synchronization 3871 * because it's always performed on the current task, so does 3872 * current_objcg_update(). 3873 */ 3874 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 3875 } 3876 3877 static void mem_cgroup_exit(struct task_struct *task) 3878 { 3879 struct obj_cgroup *objcg = task->objcg; 3880 3881 objcg = (struct obj_cgroup *) 3882 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 3883 obj_cgroup_put(objcg); 3884 3885 /* 3886 * Some kernel allocations can happen after this point, 3887 * but let's ignore them. It can be done without any synchronization 3888 * because it's always performed on the current task, so does 3889 * current_objcg_update(). 3890 */ 3891 task->objcg = NULL; 3892 } 3893 3894 #ifdef CONFIG_LRU_GEN 3895 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 3896 { 3897 struct task_struct *task; 3898 struct cgroup_subsys_state *css; 3899 3900 /* find the first leader if there is any */ 3901 cgroup_taskset_for_each_leader(task, css, tset) 3902 break; 3903 3904 if (!task) 3905 return; 3906 3907 task_lock(task); 3908 if (task->mm && READ_ONCE(task->mm->owner) == task) 3909 lru_gen_migrate_mm(task->mm); 3910 task_unlock(task); 3911 } 3912 #else 3913 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 3914 #endif /* CONFIG_LRU_GEN */ 3915 3916 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 3917 { 3918 struct task_struct *task; 3919 struct cgroup_subsys_state *css; 3920 3921 cgroup_taskset_for_each(task, css, tset) { 3922 /* atomically set the update bit */ 3923 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 3924 } 3925 } 3926 3927 static void mem_cgroup_attach(struct cgroup_taskset *tset) 3928 { 3929 mem_cgroup_lru_gen_attach(tset); 3930 mem_cgroup_kmem_attach(tset); 3931 } 3932 3933 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 3934 { 3935 if (value == PAGE_COUNTER_MAX) 3936 seq_puts(m, "max\n"); 3937 else 3938 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 3939 3940 return 0; 3941 } 3942 3943 static u64 memory_current_read(struct cgroup_subsys_state *css, 3944 struct cftype *cft) 3945 { 3946 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3947 3948 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 3949 } 3950 3951 #define OFP_PEAK_UNSET (((-1UL))) 3952 3953 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 3954 { 3955 struct cgroup_of_peak *ofp = of_peak(sf->private); 3956 u64 fd_peak = READ_ONCE(ofp->value), peak; 3957 3958 /* User wants global or local peak? */ 3959 if (fd_peak == OFP_PEAK_UNSET) 3960 peak = pc->watermark; 3961 else 3962 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 3963 3964 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 3965 return 0; 3966 } 3967 3968 static int memory_peak_show(struct seq_file *sf, void *v) 3969 { 3970 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3971 3972 return peak_show(sf, v, &memcg->memory); 3973 } 3974 3975 static int peak_open(struct kernfs_open_file *of) 3976 { 3977 struct cgroup_of_peak *ofp = of_peak(of); 3978 3979 ofp->value = OFP_PEAK_UNSET; 3980 return 0; 3981 } 3982 3983 static void peak_release(struct kernfs_open_file *of) 3984 { 3985 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3986 struct cgroup_of_peak *ofp = of_peak(of); 3987 3988 if (ofp->value == OFP_PEAK_UNSET) { 3989 /* fast path (no writes on this fd) */ 3990 return; 3991 } 3992 spin_lock(&memcg->peaks_lock); 3993 list_del(&ofp->list); 3994 spin_unlock(&memcg->peaks_lock); 3995 } 3996 3997 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 3998 loff_t off, struct page_counter *pc, 3999 struct list_head *watchers) 4000 { 4001 unsigned long usage; 4002 struct cgroup_of_peak *peer_ctx; 4003 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4004 struct cgroup_of_peak *ofp = of_peak(of); 4005 4006 spin_lock(&memcg->peaks_lock); 4007 4008 usage = page_counter_read(pc); 4009 WRITE_ONCE(pc->local_watermark, usage); 4010 4011 list_for_each_entry(peer_ctx, watchers, list) 4012 if (usage > peer_ctx->value) 4013 WRITE_ONCE(peer_ctx->value, usage); 4014 4015 /* initial write, register watcher */ 4016 if (ofp->value == -1) 4017 list_add(&ofp->list, watchers); 4018 4019 WRITE_ONCE(ofp->value, usage); 4020 spin_unlock(&memcg->peaks_lock); 4021 4022 return nbytes; 4023 } 4024 4025 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 4026 size_t nbytes, loff_t off) 4027 { 4028 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4029 4030 return peak_write(of, buf, nbytes, off, &memcg->memory, 4031 &memcg->memory_peaks); 4032 } 4033 4034 #undef OFP_PEAK_UNSET 4035 4036 static int memory_min_show(struct seq_file *m, void *v) 4037 { 4038 return seq_puts_memcg_tunable(m, 4039 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4040 } 4041 4042 static ssize_t memory_min_write(struct kernfs_open_file *of, 4043 char *buf, size_t nbytes, loff_t off) 4044 { 4045 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4046 unsigned long min; 4047 int err; 4048 4049 buf = strstrip(buf); 4050 err = page_counter_memparse(buf, "max", &min); 4051 if (err) 4052 return err; 4053 4054 page_counter_set_min(&memcg->memory, min); 4055 4056 return nbytes; 4057 } 4058 4059 static int memory_low_show(struct seq_file *m, void *v) 4060 { 4061 return seq_puts_memcg_tunable(m, 4062 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4063 } 4064 4065 static ssize_t memory_low_write(struct kernfs_open_file *of, 4066 char *buf, size_t nbytes, loff_t off) 4067 { 4068 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4069 unsigned long low; 4070 int err; 4071 4072 buf = strstrip(buf); 4073 err = page_counter_memparse(buf, "max", &low); 4074 if (err) 4075 return err; 4076 4077 page_counter_set_low(&memcg->memory, low); 4078 4079 return nbytes; 4080 } 4081 4082 static int memory_high_show(struct seq_file *m, void *v) 4083 { 4084 return seq_puts_memcg_tunable(m, 4085 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4086 } 4087 4088 static ssize_t memory_high_write(struct kernfs_open_file *of, 4089 char *buf, size_t nbytes, loff_t off) 4090 { 4091 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4092 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4093 bool drained = false; 4094 unsigned long high; 4095 int err; 4096 4097 buf = strstrip(buf); 4098 err = page_counter_memparse(buf, "max", &high); 4099 if (err) 4100 return err; 4101 4102 page_counter_set_high(&memcg->memory, high); 4103 4104 for (;;) { 4105 unsigned long nr_pages = page_counter_read(&memcg->memory); 4106 unsigned long reclaimed; 4107 4108 if (nr_pages <= high) 4109 break; 4110 4111 if (signal_pending(current)) 4112 break; 4113 4114 if (!drained) { 4115 drain_all_stock(memcg); 4116 drained = true; 4117 continue; 4118 } 4119 4120 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4121 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4122 4123 if (!reclaimed && !nr_retries--) 4124 break; 4125 } 4126 4127 memcg_wb_domain_size_changed(memcg); 4128 return nbytes; 4129 } 4130 4131 static int memory_max_show(struct seq_file *m, void *v) 4132 { 4133 return seq_puts_memcg_tunable(m, 4134 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4135 } 4136 4137 static ssize_t memory_max_write(struct kernfs_open_file *of, 4138 char *buf, size_t nbytes, loff_t off) 4139 { 4140 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4141 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4142 bool drained = false; 4143 unsigned long max; 4144 int err; 4145 4146 buf = strstrip(buf); 4147 err = page_counter_memparse(buf, "max", &max); 4148 if (err) 4149 return err; 4150 4151 xchg(&memcg->memory.max, max); 4152 4153 for (;;) { 4154 unsigned long nr_pages = page_counter_read(&memcg->memory); 4155 4156 if (nr_pages <= max) 4157 break; 4158 4159 if (signal_pending(current)) 4160 break; 4161 4162 if (!drained) { 4163 drain_all_stock(memcg); 4164 drained = true; 4165 continue; 4166 } 4167 4168 if (nr_reclaims) { 4169 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4170 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4171 nr_reclaims--; 4172 continue; 4173 } 4174 4175 memcg_memory_event(memcg, MEMCG_OOM); 4176 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4177 break; 4178 cond_resched(); 4179 } 4180 4181 memcg_wb_domain_size_changed(memcg); 4182 return nbytes; 4183 } 4184 4185 /* 4186 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4187 * if any new events become available. 4188 */ 4189 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4190 { 4191 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4192 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4193 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4194 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4195 seq_printf(m, "oom_kill %lu\n", 4196 atomic_long_read(&events[MEMCG_OOM_KILL])); 4197 seq_printf(m, "oom_group_kill %lu\n", 4198 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4199 } 4200 4201 static int memory_events_show(struct seq_file *m, void *v) 4202 { 4203 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4204 4205 __memory_events_show(m, memcg->memory_events); 4206 return 0; 4207 } 4208 4209 static int memory_events_local_show(struct seq_file *m, void *v) 4210 { 4211 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4212 4213 __memory_events_show(m, memcg->memory_events_local); 4214 return 0; 4215 } 4216 4217 int memory_stat_show(struct seq_file *m, void *v) 4218 { 4219 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4220 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); 4221 struct seq_buf s; 4222 4223 if (!buf) 4224 return -ENOMEM; 4225 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 4226 memory_stat_format(memcg, &s); 4227 seq_puts(m, buf); 4228 kfree(buf); 4229 return 0; 4230 } 4231 4232 #ifdef CONFIG_NUMA 4233 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4234 int item) 4235 { 4236 return lruvec_page_state(lruvec, item) * 4237 memcg_page_state_output_unit(item); 4238 } 4239 4240 static int memory_numa_stat_show(struct seq_file *m, void *v) 4241 { 4242 int i; 4243 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4244 4245 mem_cgroup_flush_stats(memcg); 4246 4247 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4248 int nid; 4249 4250 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4251 continue; 4252 4253 seq_printf(m, "%s", memory_stats[i].name); 4254 for_each_node_state(nid, N_MEMORY) { 4255 u64 size; 4256 struct lruvec *lruvec; 4257 4258 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4259 size = lruvec_page_state_output(lruvec, 4260 memory_stats[i].idx); 4261 seq_printf(m, " N%d=%llu", nid, size); 4262 } 4263 seq_putc(m, '\n'); 4264 } 4265 4266 return 0; 4267 } 4268 #endif 4269 4270 static int memory_oom_group_show(struct seq_file *m, void *v) 4271 { 4272 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4273 4274 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4275 4276 return 0; 4277 } 4278 4279 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4280 char *buf, size_t nbytes, loff_t off) 4281 { 4282 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4283 int ret, oom_group; 4284 4285 buf = strstrip(buf); 4286 if (!buf) 4287 return -EINVAL; 4288 4289 ret = kstrtoint(buf, 0, &oom_group); 4290 if (ret) 4291 return ret; 4292 4293 if (oom_group != 0 && oom_group != 1) 4294 return -EINVAL; 4295 4296 WRITE_ONCE(memcg->oom_group, oom_group); 4297 4298 return nbytes; 4299 } 4300 4301 enum { 4302 MEMORY_RECLAIM_SWAPPINESS = 0, 4303 MEMORY_RECLAIM_NULL, 4304 }; 4305 4306 static const match_table_t tokens = { 4307 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4308 { MEMORY_RECLAIM_NULL, NULL }, 4309 }; 4310 4311 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4312 size_t nbytes, loff_t off) 4313 { 4314 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4315 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4316 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4317 int swappiness = -1; 4318 unsigned int reclaim_options; 4319 char *old_buf, *start; 4320 substring_t args[MAX_OPT_ARGS]; 4321 4322 buf = strstrip(buf); 4323 4324 old_buf = buf; 4325 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4326 if (buf == old_buf) 4327 return -EINVAL; 4328 4329 buf = strstrip(buf); 4330 4331 while ((start = strsep(&buf, " ")) != NULL) { 4332 if (!strlen(start)) 4333 continue; 4334 switch (match_token(start, tokens, args)) { 4335 case MEMORY_RECLAIM_SWAPPINESS: 4336 if (match_int(&args[0], &swappiness)) 4337 return -EINVAL; 4338 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4339 return -EINVAL; 4340 break; 4341 default: 4342 return -EINVAL; 4343 } 4344 } 4345 4346 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4347 while (nr_reclaimed < nr_to_reclaim) { 4348 /* Will converge on zero, but reclaim enforces a minimum */ 4349 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4350 unsigned long reclaimed; 4351 4352 if (signal_pending(current)) 4353 return -EINTR; 4354 4355 /* 4356 * This is the final attempt, drain percpu lru caches in the 4357 * hope of introducing more evictable pages for 4358 * try_to_free_mem_cgroup_pages(). 4359 */ 4360 if (!nr_retries) 4361 lru_add_drain_all(); 4362 4363 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4364 batch_size, GFP_KERNEL, 4365 reclaim_options, 4366 swappiness == -1 ? NULL : &swappiness); 4367 4368 if (!reclaimed && !nr_retries--) 4369 return -EAGAIN; 4370 4371 nr_reclaimed += reclaimed; 4372 } 4373 4374 return nbytes; 4375 } 4376 4377 static struct cftype memory_files[] = { 4378 { 4379 .name = "current", 4380 .flags = CFTYPE_NOT_ON_ROOT, 4381 .read_u64 = memory_current_read, 4382 }, 4383 { 4384 .name = "peak", 4385 .flags = CFTYPE_NOT_ON_ROOT, 4386 .open = peak_open, 4387 .release = peak_release, 4388 .seq_show = memory_peak_show, 4389 .write = memory_peak_write, 4390 }, 4391 { 4392 .name = "min", 4393 .flags = CFTYPE_NOT_ON_ROOT, 4394 .seq_show = memory_min_show, 4395 .write = memory_min_write, 4396 }, 4397 { 4398 .name = "low", 4399 .flags = CFTYPE_NOT_ON_ROOT, 4400 .seq_show = memory_low_show, 4401 .write = memory_low_write, 4402 }, 4403 { 4404 .name = "high", 4405 .flags = CFTYPE_NOT_ON_ROOT, 4406 .seq_show = memory_high_show, 4407 .write = memory_high_write, 4408 }, 4409 { 4410 .name = "max", 4411 .flags = CFTYPE_NOT_ON_ROOT, 4412 .seq_show = memory_max_show, 4413 .write = memory_max_write, 4414 }, 4415 { 4416 .name = "events", 4417 .flags = CFTYPE_NOT_ON_ROOT, 4418 .file_offset = offsetof(struct mem_cgroup, events_file), 4419 .seq_show = memory_events_show, 4420 }, 4421 { 4422 .name = "events.local", 4423 .flags = CFTYPE_NOT_ON_ROOT, 4424 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4425 .seq_show = memory_events_local_show, 4426 }, 4427 { 4428 .name = "stat", 4429 .seq_show = memory_stat_show, 4430 }, 4431 #ifdef CONFIG_NUMA 4432 { 4433 .name = "numa_stat", 4434 .seq_show = memory_numa_stat_show, 4435 }, 4436 #endif 4437 { 4438 .name = "oom.group", 4439 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4440 .seq_show = memory_oom_group_show, 4441 .write = memory_oom_group_write, 4442 }, 4443 { 4444 .name = "reclaim", 4445 .flags = CFTYPE_NS_DELEGATABLE, 4446 .write = memory_reclaim, 4447 }, 4448 { } /* terminate */ 4449 }; 4450 4451 struct cgroup_subsys memory_cgrp_subsys = { 4452 .css_alloc = mem_cgroup_css_alloc, 4453 .css_online = mem_cgroup_css_online, 4454 .css_offline = mem_cgroup_css_offline, 4455 .css_released = mem_cgroup_css_released, 4456 .css_free = mem_cgroup_css_free, 4457 .css_reset = mem_cgroup_css_reset, 4458 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4459 .attach = mem_cgroup_attach, 4460 .fork = mem_cgroup_fork, 4461 .exit = mem_cgroup_exit, 4462 .dfl_cftypes = memory_files, 4463 #ifdef CONFIG_MEMCG_V1 4464 .legacy_cftypes = mem_cgroup_legacy_files, 4465 #endif 4466 .early_init = 0, 4467 }; 4468 4469 /** 4470 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4471 * @root: the top ancestor of the sub-tree being checked 4472 * @memcg: the memory cgroup to check 4473 * 4474 * WARNING: This function is not stateless! It can only be used as part 4475 * of a top-down tree iteration, not for isolated queries. 4476 */ 4477 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4478 struct mem_cgroup *memcg) 4479 { 4480 bool recursive_protection = 4481 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4482 4483 if (mem_cgroup_disabled()) 4484 return; 4485 4486 if (!root) 4487 root = root_mem_cgroup; 4488 4489 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4490 } 4491 4492 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4493 gfp_t gfp) 4494 { 4495 int ret; 4496 4497 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4498 if (ret) 4499 goto out; 4500 4501 css_get(&memcg->css); 4502 commit_charge(folio, memcg); 4503 memcg1_commit_charge(folio, memcg); 4504 out: 4505 return ret; 4506 } 4507 4508 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4509 { 4510 struct mem_cgroup *memcg; 4511 int ret; 4512 4513 memcg = get_mem_cgroup_from_mm(mm); 4514 ret = charge_memcg(folio, memcg, gfp); 4515 css_put(&memcg->css); 4516 4517 return ret; 4518 } 4519 4520 /** 4521 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio 4522 * @folio: folio being charged 4523 * @gfp: reclaim mode 4524 * 4525 * This function is called when allocating a huge page folio, after the page has 4526 * already been obtained and charged to the appropriate hugetlb cgroup 4527 * controller (if it is enabled). 4528 * 4529 * Returns ENOMEM if the memcg is already full. 4530 * Returns 0 if either the charge was successful, or if we skip the charging. 4531 */ 4532 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) 4533 { 4534 struct mem_cgroup *memcg = get_mem_cgroup_from_current(); 4535 int ret = 0; 4536 4537 /* 4538 * Even memcg does not account for hugetlb, we still want to update 4539 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip 4540 * charging the memcg. 4541 */ 4542 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || 4543 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4544 goto out; 4545 4546 if (charge_memcg(folio, memcg, gfp)) 4547 ret = -ENOMEM; 4548 4549 out: 4550 mem_cgroup_put(memcg); 4551 return ret; 4552 } 4553 4554 /** 4555 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4556 * @folio: folio to charge. 4557 * @mm: mm context of the victim 4558 * @gfp: reclaim mode 4559 * @entry: swap entry for which the folio is allocated 4560 * 4561 * This function charges a folio allocated for swapin. Please call this before 4562 * adding the folio to the swapcache. 4563 * 4564 * Returns 0 on success. Otherwise, an error code is returned. 4565 */ 4566 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4567 gfp_t gfp, swp_entry_t entry) 4568 { 4569 struct mem_cgroup *memcg; 4570 unsigned short id; 4571 int ret; 4572 4573 if (mem_cgroup_disabled()) 4574 return 0; 4575 4576 id = lookup_swap_cgroup_id(entry); 4577 rcu_read_lock(); 4578 memcg = mem_cgroup_from_id(id); 4579 if (!memcg || !css_tryget_online(&memcg->css)) 4580 memcg = get_mem_cgroup_from_mm(mm); 4581 rcu_read_unlock(); 4582 4583 ret = charge_memcg(folio, memcg, gfp); 4584 4585 css_put(&memcg->css); 4586 return ret; 4587 } 4588 4589 /* 4590 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 4591 * @entry: the first swap entry for which the pages are charged 4592 * @nr_pages: number of pages which will be uncharged 4593 * 4594 * Call this function after successfully adding the charged page to swapcache. 4595 * 4596 * Note: This function assumes the page for which swap slot is being uncharged 4597 * is order 0 page. 4598 */ 4599 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 4600 { 4601 /* 4602 * Cgroup1's unified memory+swap counter has been charged with the 4603 * new swapcache page, finish the transfer by uncharging the swap 4604 * slot. The swap slot would also get uncharged when it dies, but 4605 * it can stick around indefinitely and we'd count the page twice 4606 * the entire time. 4607 * 4608 * Cgroup2 has separate resource counters for memory and swap, 4609 * so this is a non-issue here. Memory and swap charge lifetimes 4610 * correspond 1:1 to page and swap slot lifetimes: we charge the 4611 * page to memory here, and uncharge swap when the slot is freed. 4612 */ 4613 if (do_memsw_account()) { 4614 /* 4615 * The swap entry might not get freed for a long time, 4616 * let's not wait for it. The page already received a 4617 * memory+swap charge, drop the swap entry duplicate. 4618 */ 4619 mem_cgroup_uncharge_swap(entry, nr_pages); 4620 } 4621 } 4622 4623 struct uncharge_gather { 4624 struct mem_cgroup *memcg; 4625 unsigned long nr_memory; 4626 unsigned long pgpgout; 4627 unsigned long nr_kmem; 4628 int nid; 4629 }; 4630 4631 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4632 { 4633 memset(ug, 0, sizeof(*ug)); 4634 } 4635 4636 static void uncharge_batch(const struct uncharge_gather *ug) 4637 { 4638 if (ug->nr_memory) { 4639 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 4640 if (do_memsw_account()) 4641 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 4642 if (ug->nr_kmem) { 4643 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4644 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4645 } 4646 memcg1_oom_recover(ug->memcg); 4647 } 4648 4649 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4650 4651 /* drop reference from uncharge_folio */ 4652 css_put(&ug->memcg->css); 4653 } 4654 4655 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4656 { 4657 long nr_pages; 4658 struct mem_cgroup *memcg; 4659 struct obj_cgroup *objcg; 4660 4661 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4662 4663 /* 4664 * Nobody should be changing or seriously looking at 4665 * folio memcg or objcg at this point, we have fully 4666 * exclusive access to the folio. 4667 */ 4668 if (folio_memcg_kmem(folio)) { 4669 objcg = __folio_objcg(folio); 4670 /* 4671 * This get matches the put at the end of the function and 4672 * kmem pages do not hold memcg references anymore. 4673 */ 4674 memcg = get_mem_cgroup_from_objcg(objcg); 4675 } else { 4676 memcg = __folio_memcg(folio); 4677 } 4678 4679 if (!memcg) 4680 return; 4681 4682 if (ug->memcg != memcg) { 4683 if (ug->memcg) { 4684 uncharge_batch(ug); 4685 uncharge_gather_clear(ug); 4686 } 4687 ug->memcg = memcg; 4688 ug->nid = folio_nid(folio); 4689 4690 /* pairs with css_put in uncharge_batch */ 4691 css_get(&memcg->css); 4692 } 4693 4694 nr_pages = folio_nr_pages(folio); 4695 4696 if (folio_memcg_kmem(folio)) { 4697 ug->nr_memory += nr_pages; 4698 ug->nr_kmem += nr_pages; 4699 4700 folio->memcg_data = 0; 4701 obj_cgroup_put(objcg); 4702 } else { 4703 /* LRU pages aren't accounted at the root level */ 4704 if (!mem_cgroup_is_root(memcg)) 4705 ug->nr_memory += nr_pages; 4706 ug->pgpgout++; 4707 4708 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 4709 folio->memcg_data = 0; 4710 } 4711 4712 css_put(&memcg->css); 4713 } 4714 4715 void __mem_cgroup_uncharge(struct folio *folio) 4716 { 4717 struct uncharge_gather ug; 4718 4719 /* Don't touch folio->lru of any random page, pre-check: */ 4720 if (!folio_memcg_charged(folio)) 4721 return; 4722 4723 uncharge_gather_clear(&ug); 4724 uncharge_folio(folio, &ug); 4725 uncharge_batch(&ug); 4726 } 4727 4728 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4729 { 4730 struct uncharge_gather ug; 4731 unsigned int i; 4732 4733 uncharge_gather_clear(&ug); 4734 for (i = 0; i < folios->nr; i++) 4735 uncharge_folio(folios->folios[i], &ug); 4736 if (ug.memcg) 4737 uncharge_batch(&ug); 4738 } 4739 4740 /** 4741 * mem_cgroup_replace_folio - Charge a folio's replacement. 4742 * @old: Currently circulating folio. 4743 * @new: Replacement folio. 4744 * 4745 * Charge @new as a replacement folio for @old. @old will 4746 * be uncharged upon free. 4747 * 4748 * Both folios must be locked, @new->mapping must be set up. 4749 */ 4750 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4751 { 4752 struct mem_cgroup *memcg; 4753 long nr_pages = folio_nr_pages(new); 4754 4755 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4756 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4757 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4758 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4759 4760 if (mem_cgroup_disabled()) 4761 return; 4762 4763 /* Page cache replacement: new folio already charged? */ 4764 if (folio_memcg_charged(new)) 4765 return; 4766 4767 memcg = folio_memcg(old); 4768 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4769 if (!memcg) 4770 return; 4771 4772 /* Force-charge the new page. The old one will be freed soon */ 4773 if (!mem_cgroup_is_root(memcg)) { 4774 page_counter_charge(&memcg->memory, nr_pages); 4775 if (do_memsw_account()) 4776 page_counter_charge(&memcg->memsw, nr_pages); 4777 } 4778 4779 css_get(&memcg->css); 4780 commit_charge(new, memcg); 4781 memcg1_commit_charge(new, memcg); 4782 } 4783 4784 /** 4785 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4786 * @old: Currently circulating folio. 4787 * @new: Replacement folio. 4788 * 4789 * Transfer the memcg data from the old folio to the new folio for migration. 4790 * The old folio's data info will be cleared. Note that the memory counters 4791 * will remain unchanged throughout the process. 4792 * 4793 * Both folios must be locked, @new->mapping must be set up. 4794 */ 4795 void mem_cgroup_migrate(struct folio *old, struct folio *new) 4796 { 4797 struct mem_cgroup *memcg; 4798 4799 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4800 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4801 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4802 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 4803 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 4804 4805 if (mem_cgroup_disabled()) 4806 return; 4807 4808 memcg = folio_memcg(old); 4809 /* 4810 * Note that it is normal to see !memcg for a hugetlb folio. 4811 * For e.g, itt could have been allocated when memory_hugetlb_accounting 4812 * was not selected. 4813 */ 4814 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 4815 if (!memcg) 4816 return; 4817 4818 /* Transfer the charge and the css ref */ 4819 commit_charge(new, memcg); 4820 4821 /* Warning should never happen, so don't worry about refcount non-0 */ 4822 WARN_ON_ONCE(folio_unqueue_deferred_split(old)); 4823 old->memcg_data = 0; 4824 } 4825 4826 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 4827 EXPORT_SYMBOL(memcg_sockets_enabled_key); 4828 4829 void mem_cgroup_sk_alloc(struct sock *sk) 4830 { 4831 struct mem_cgroup *memcg; 4832 4833 if (!mem_cgroup_sockets_enabled) 4834 return; 4835 4836 /* Do not associate the sock with unrelated interrupted task's memcg. */ 4837 if (!in_task()) 4838 return; 4839 4840 rcu_read_lock(); 4841 memcg = mem_cgroup_from_task(current); 4842 if (mem_cgroup_is_root(memcg)) 4843 goto out; 4844 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 4845 goto out; 4846 if (css_tryget(&memcg->css)) 4847 sk->sk_memcg = memcg; 4848 out: 4849 rcu_read_unlock(); 4850 } 4851 4852 void mem_cgroup_sk_free(struct sock *sk) 4853 { 4854 if (sk->sk_memcg) 4855 css_put(&sk->sk_memcg->css); 4856 } 4857 4858 /** 4859 * mem_cgroup_charge_skmem - charge socket memory 4860 * @memcg: memcg to charge 4861 * @nr_pages: number of pages to charge 4862 * @gfp_mask: reclaim mode 4863 * 4864 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 4865 * @memcg's configured limit, %false if it doesn't. 4866 */ 4867 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 4868 gfp_t gfp_mask) 4869 { 4870 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4871 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 4872 4873 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 4874 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 4875 return true; 4876 } 4877 4878 return false; 4879 } 4880 4881 /** 4882 * mem_cgroup_uncharge_skmem - uncharge socket memory 4883 * @memcg: memcg to uncharge 4884 * @nr_pages: number of pages to uncharge 4885 */ 4886 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 4887 { 4888 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 4889 memcg1_uncharge_skmem(memcg, nr_pages); 4890 return; 4891 } 4892 4893 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 4894 4895 refill_stock(memcg, nr_pages); 4896 } 4897 4898 static int __init cgroup_memory(char *s) 4899 { 4900 char *token; 4901 4902 while ((token = strsep(&s, ",")) != NULL) { 4903 if (!*token) 4904 continue; 4905 if (!strcmp(token, "nosocket")) 4906 cgroup_memory_nosocket = true; 4907 if (!strcmp(token, "nokmem")) 4908 cgroup_memory_nokmem = true; 4909 if (!strcmp(token, "nobpf")) 4910 cgroup_memory_nobpf = true; 4911 } 4912 return 1; 4913 } 4914 __setup("cgroup.memory=", cgroup_memory); 4915 4916 /* 4917 * subsys_initcall() for memory controller. 4918 * 4919 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 4920 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 4921 * basically everything that doesn't depend on a specific mem_cgroup structure 4922 * should be initialized from here. 4923 */ 4924 static int __init mem_cgroup_init(void) 4925 { 4926 int cpu; 4927 4928 /* 4929 * Currently s32 type (can refer to struct batched_lruvec_stat) is 4930 * used for per-memcg-per-cpu caching of per-node statistics. In order 4931 * to work fine, we should make sure that the overfill threshold can't 4932 * exceed S32_MAX / PAGE_SIZE. 4933 */ 4934 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 4935 4936 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 4937 memcg_hotplug_cpu_dead); 4938 4939 for_each_possible_cpu(cpu) 4940 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 4941 drain_local_stock); 4942 4943 return 0; 4944 } 4945 subsys_initcall(mem_cgroup_init); 4946 4947 #ifdef CONFIG_SWAP 4948 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 4949 { 4950 while (!refcount_inc_not_zero(&memcg->id.ref)) { 4951 /* 4952 * The root cgroup cannot be destroyed, so it's refcount must 4953 * always be >= 1. 4954 */ 4955 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 4956 VM_BUG_ON(1); 4957 break; 4958 } 4959 memcg = parent_mem_cgroup(memcg); 4960 if (!memcg) 4961 memcg = root_mem_cgroup; 4962 } 4963 return memcg; 4964 } 4965 4966 /** 4967 * mem_cgroup_swapout - transfer a memsw charge to swap 4968 * @folio: folio whose memsw charge to transfer 4969 * @entry: swap entry to move the charge to 4970 * 4971 * Transfer the memsw charge of @folio to @entry. 4972 */ 4973 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 4974 { 4975 struct mem_cgroup *memcg, *swap_memcg; 4976 unsigned int nr_entries; 4977 4978 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4979 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 4980 4981 if (mem_cgroup_disabled()) 4982 return; 4983 4984 if (!do_memsw_account()) 4985 return; 4986 4987 memcg = folio_memcg(folio); 4988 4989 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 4990 if (!memcg) 4991 return; 4992 4993 /* 4994 * In case the memcg owning these pages has been offlined and doesn't 4995 * have an ID allocated to it anymore, charge the closest online 4996 * ancestor for the swap instead and transfer the memory+swap charge. 4997 */ 4998 swap_memcg = mem_cgroup_id_get_online(memcg); 4999 nr_entries = folio_nr_pages(folio); 5000 /* Get references for the tail pages, too */ 5001 if (nr_entries > 1) 5002 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 5003 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 5004 5005 swap_cgroup_record(folio, mem_cgroup_id(swap_memcg), entry); 5006 5007 folio_unqueue_deferred_split(folio); 5008 folio->memcg_data = 0; 5009 5010 if (!mem_cgroup_is_root(memcg)) 5011 page_counter_uncharge(&memcg->memory, nr_entries); 5012 5013 if (memcg != swap_memcg) { 5014 if (!mem_cgroup_is_root(swap_memcg)) 5015 page_counter_charge(&swap_memcg->memsw, nr_entries); 5016 page_counter_uncharge(&memcg->memsw, nr_entries); 5017 } 5018 5019 memcg1_swapout(folio, memcg); 5020 css_put(&memcg->css); 5021 } 5022 5023 /** 5024 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 5025 * @folio: folio being added to swap 5026 * @entry: swap entry to charge 5027 * 5028 * Try to charge @folio's memcg for the swap space at @entry. 5029 * 5030 * Returns 0 on success, -ENOMEM on failure. 5031 */ 5032 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5033 { 5034 unsigned int nr_pages = folio_nr_pages(folio); 5035 struct page_counter *counter; 5036 struct mem_cgroup *memcg; 5037 5038 if (do_memsw_account()) 5039 return 0; 5040 5041 memcg = folio_memcg(folio); 5042 5043 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5044 if (!memcg) 5045 return 0; 5046 5047 if (!entry.val) { 5048 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5049 return 0; 5050 } 5051 5052 memcg = mem_cgroup_id_get_online(memcg); 5053 5054 if (!mem_cgroup_is_root(memcg) && 5055 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5056 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5057 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5058 mem_cgroup_id_put(memcg); 5059 return -ENOMEM; 5060 } 5061 5062 /* Get references for the tail pages, too */ 5063 if (nr_pages > 1) 5064 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5065 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5066 5067 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry); 5068 5069 return 0; 5070 } 5071 5072 /** 5073 * __mem_cgroup_uncharge_swap - uncharge swap space 5074 * @entry: swap entry to uncharge 5075 * @nr_pages: the amount of swap space to uncharge 5076 */ 5077 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5078 { 5079 struct mem_cgroup *memcg; 5080 unsigned short id; 5081 5082 id = swap_cgroup_clear(entry, nr_pages); 5083 rcu_read_lock(); 5084 memcg = mem_cgroup_from_id(id); 5085 if (memcg) { 5086 if (!mem_cgroup_is_root(memcg)) { 5087 if (do_memsw_account()) 5088 page_counter_uncharge(&memcg->memsw, nr_pages); 5089 else 5090 page_counter_uncharge(&memcg->swap, nr_pages); 5091 } 5092 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5093 mem_cgroup_id_put_many(memcg, nr_pages); 5094 } 5095 rcu_read_unlock(); 5096 } 5097 5098 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5099 { 5100 long nr_swap_pages = get_nr_swap_pages(); 5101 5102 if (mem_cgroup_disabled() || do_memsw_account()) 5103 return nr_swap_pages; 5104 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5105 nr_swap_pages = min_t(long, nr_swap_pages, 5106 READ_ONCE(memcg->swap.max) - 5107 page_counter_read(&memcg->swap)); 5108 return nr_swap_pages; 5109 } 5110 5111 bool mem_cgroup_swap_full(struct folio *folio) 5112 { 5113 struct mem_cgroup *memcg; 5114 5115 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5116 5117 if (vm_swap_full()) 5118 return true; 5119 if (do_memsw_account()) 5120 return false; 5121 5122 memcg = folio_memcg(folio); 5123 if (!memcg) 5124 return false; 5125 5126 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5127 unsigned long usage = page_counter_read(&memcg->swap); 5128 5129 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5130 usage * 2 >= READ_ONCE(memcg->swap.max)) 5131 return true; 5132 } 5133 5134 return false; 5135 } 5136 5137 static int __init setup_swap_account(char *s) 5138 { 5139 bool res; 5140 5141 if (!kstrtobool(s, &res) && !res) 5142 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5143 "in favor of configuring swap control via cgroupfs. " 5144 "Please report your usecase to linux-mm@kvack.org if you " 5145 "depend on this functionality.\n"); 5146 return 1; 5147 } 5148 __setup("swapaccount=", setup_swap_account); 5149 5150 static u64 swap_current_read(struct cgroup_subsys_state *css, 5151 struct cftype *cft) 5152 { 5153 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5154 5155 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5156 } 5157 5158 static int swap_peak_show(struct seq_file *sf, void *v) 5159 { 5160 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5161 5162 return peak_show(sf, v, &memcg->swap); 5163 } 5164 5165 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5166 size_t nbytes, loff_t off) 5167 { 5168 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5169 5170 return peak_write(of, buf, nbytes, off, &memcg->swap, 5171 &memcg->swap_peaks); 5172 } 5173 5174 static int swap_high_show(struct seq_file *m, void *v) 5175 { 5176 return seq_puts_memcg_tunable(m, 5177 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5178 } 5179 5180 static ssize_t swap_high_write(struct kernfs_open_file *of, 5181 char *buf, size_t nbytes, loff_t off) 5182 { 5183 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5184 unsigned long high; 5185 int err; 5186 5187 buf = strstrip(buf); 5188 err = page_counter_memparse(buf, "max", &high); 5189 if (err) 5190 return err; 5191 5192 page_counter_set_high(&memcg->swap, high); 5193 5194 return nbytes; 5195 } 5196 5197 static int swap_max_show(struct seq_file *m, void *v) 5198 { 5199 return seq_puts_memcg_tunable(m, 5200 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5201 } 5202 5203 static ssize_t swap_max_write(struct kernfs_open_file *of, 5204 char *buf, size_t nbytes, loff_t off) 5205 { 5206 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5207 unsigned long max; 5208 int err; 5209 5210 buf = strstrip(buf); 5211 err = page_counter_memparse(buf, "max", &max); 5212 if (err) 5213 return err; 5214 5215 xchg(&memcg->swap.max, max); 5216 5217 return nbytes; 5218 } 5219 5220 static int swap_events_show(struct seq_file *m, void *v) 5221 { 5222 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5223 5224 seq_printf(m, "high %lu\n", 5225 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5226 seq_printf(m, "max %lu\n", 5227 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5228 seq_printf(m, "fail %lu\n", 5229 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5230 5231 return 0; 5232 } 5233 5234 static struct cftype swap_files[] = { 5235 { 5236 .name = "swap.current", 5237 .flags = CFTYPE_NOT_ON_ROOT, 5238 .read_u64 = swap_current_read, 5239 }, 5240 { 5241 .name = "swap.high", 5242 .flags = CFTYPE_NOT_ON_ROOT, 5243 .seq_show = swap_high_show, 5244 .write = swap_high_write, 5245 }, 5246 { 5247 .name = "swap.max", 5248 .flags = CFTYPE_NOT_ON_ROOT, 5249 .seq_show = swap_max_show, 5250 .write = swap_max_write, 5251 }, 5252 { 5253 .name = "swap.peak", 5254 .flags = CFTYPE_NOT_ON_ROOT, 5255 .open = peak_open, 5256 .release = peak_release, 5257 .seq_show = swap_peak_show, 5258 .write = swap_peak_write, 5259 }, 5260 { 5261 .name = "swap.events", 5262 .flags = CFTYPE_NOT_ON_ROOT, 5263 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5264 .seq_show = swap_events_show, 5265 }, 5266 { } /* terminate */ 5267 }; 5268 5269 #ifdef CONFIG_ZSWAP 5270 /** 5271 * obj_cgroup_may_zswap - check if this cgroup can zswap 5272 * @objcg: the object cgroup 5273 * 5274 * Check if the hierarchical zswap limit has been reached. 5275 * 5276 * This doesn't check for specific headroom, and it is not atomic 5277 * either. But with zswap, the size of the allocation is only known 5278 * once compression has occurred, and this optimistic pre-check avoids 5279 * spending cycles on compression when there is already no room left 5280 * or zswap is disabled altogether somewhere in the hierarchy. 5281 */ 5282 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5283 { 5284 struct mem_cgroup *memcg, *original_memcg; 5285 bool ret = true; 5286 5287 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5288 return true; 5289 5290 original_memcg = get_mem_cgroup_from_objcg(objcg); 5291 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5292 memcg = parent_mem_cgroup(memcg)) { 5293 unsigned long max = READ_ONCE(memcg->zswap_max); 5294 unsigned long pages; 5295 5296 if (max == PAGE_COUNTER_MAX) 5297 continue; 5298 if (max == 0) { 5299 ret = false; 5300 break; 5301 } 5302 5303 /* Force flush to get accurate stats for charging */ 5304 __mem_cgroup_flush_stats(memcg, true); 5305 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5306 if (pages < max) 5307 continue; 5308 ret = false; 5309 break; 5310 } 5311 mem_cgroup_put(original_memcg); 5312 return ret; 5313 } 5314 5315 /** 5316 * obj_cgroup_charge_zswap - charge compression backend memory 5317 * @objcg: the object cgroup 5318 * @size: size of compressed object 5319 * 5320 * This forces the charge after obj_cgroup_may_zswap() allowed 5321 * compression and storage in zwap for this cgroup to go ahead. 5322 */ 5323 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5324 { 5325 struct mem_cgroup *memcg; 5326 5327 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5328 return; 5329 5330 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5331 5332 /* PF_MEMALLOC context, charging must succeed */ 5333 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5334 VM_WARN_ON_ONCE(1); 5335 5336 rcu_read_lock(); 5337 memcg = obj_cgroup_memcg(objcg); 5338 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5339 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5340 rcu_read_unlock(); 5341 } 5342 5343 /** 5344 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5345 * @objcg: the object cgroup 5346 * @size: size of compressed object 5347 * 5348 * Uncharges zswap memory on page in. 5349 */ 5350 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5351 { 5352 struct mem_cgroup *memcg; 5353 5354 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5355 return; 5356 5357 obj_cgroup_uncharge(objcg, size); 5358 5359 rcu_read_lock(); 5360 memcg = obj_cgroup_memcg(objcg); 5361 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5362 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5363 rcu_read_unlock(); 5364 } 5365 5366 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5367 { 5368 /* if zswap is disabled, do not block pages going to the swapping device */ 5369 if (!zswap_is_enabled()) 5370 return true; 5371 5372 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5373 if (!READ_ONCE(memcg->zswap_writeback)) 5374 return false; 5375 5376 return true; 5377 } 5378 5379 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5380 struct cftype *cft) 5381 { 5382 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5383 5384 mem_cgroup_flush_stats(memcg); 5385 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5386 } 5387 5388 static int zswap_max_show(struct seq_file *m, void *v) 5389 { 5390 return seq_puts_memcg_tunable(m, 5391 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5392 } 5393 5394 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5395 char *buf, size_t nbytes, loff_t off) 5396 { 5397 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5398 unsigned long max; 5399 int err; 5400 5401 buf = strstrip(buf); 5402 err = page_counter_memparse(buf, "max", &max); 5403 if (err) 5404 return err; 5405 5406 xchg(&memcg->zswap_max, max); 5407 5408 return nbytes; 5409 } 5410 5411 static int zswap_writeback_show(struct seq_file *m, void *v) 5412 { 5413 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5414 5415 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5416 return 0; 5417 } 5418 5419 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5420 char *buf, size_t nbytes, loff_t off) 5421 { 5422 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5423 int zswap_writeback; 5424 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5425 5426 if (parse_ret) 5427 return parse_ret; 5428 5429 if (zswap_writeback != 0 && zswap_writeback != 1) 5430 return -EINVAL; 5431 5432 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5433 return nbytes; 5434 } 5435 5436 static struct cftype zswap_files[] = { 5437 { 5438 .name = "zswap.current", 5439 .flags = CFTYPE_NOT_ON_ROOT, 5440 .read_u64 = zswap_current_read, 5441 }, 5442 { 5443 .name = "zswap.max", 5444 .flags = CFTYPE_NOT_ON_ROOT, 5445 .seq_show = zswap_max_show, 5446 .write = zswap_max_write, 5447 }, 5448 { 5449 .name = "zswap.writeback", 5450 .seq_show = zswap_writeback_show, 5451 .write = zswap_writeback_write, 5452 }, 5453 { } /* terminate */ 5454 }; 5455 #endif /* CONFIG_ZSWAP */ 5456 5457 static int __init mem_cgroup_swap_init(void) 5458 { 5459 if (mem_cgroup_disabled()) 5460 return 0; 5461 5462 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5463 #ifdef CONFIG_MEMCG_V1 5464 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5465 #endif 5466 #ifdef CONFIG_ZSWAP 5467 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5468 #endif 5469 return 0; 5470 } 5471 subsys_initcall(mem_cgroup_swap_init); 5472 5473 #endif /* CONFIG_SWAP */ 5474