1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 #include <linux/memcontrol.h> 4 #include <linux/swap.h> 5 #include <linux/mm_inline.h> 6 #include <linux/pagewalk.h> 7 #include <linux/backing-dev.h> 8 #include <linux/swap_cgroup.h> 9 #include <linux/eventfd.h> 10 #include <linux/poll.h> 11 #include <linux/sort.h> 12 #include <linux/file.h> 13 #include <linux/seq_buf.h> 14 15 #include "internal.h" 16 #include "swap.h" 17 #include "memcontrol-v1.h" 18 19 /* 20 * Cgroups above their limits are maintained in a RB-Tree, independent of 21 * their hierarchy representation 22 */ 23 24 struct mem_cgroup_tree_per_node { 25 struct rb_root rb_root; 26 struct rb_node *rb_rightmost; 27 spinlock_t lock; 28 }; 29 30 struct mem_cgroup_tree { 31 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 32 }; 33 34 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 35 36 /* 37 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft 38 * limit reclaim to prevent infinite loops, if they ever occur. 39 */ 40 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 41 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 42 43 /* Stuffs for move charges at task migration. */ 44 /* 45 * Types of charges to be moved. 46 */ 47 #define MOVE_ANON 0x1ULL 48 #define MOVE_FILE 0x2ULL 49 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 50 51 /* "mc" and its members are protected by cgroup_mutex */ 52 static struct move_charge_struct { 53 spinlock_t lock; /* for from, to */ 54 struct mm_struct *mm; 55 struct mem_cgroup *from; 56 struct mem_cgroup *to; 57 unsigned long flags; 58 unsigned long precharge; 59 unsigned long moved_charge; 60 unsigned long moved_swap; 61 struct task_struct *moving_task; /* a task moving charges */ 62 wait_queue_head_t waitq; /* a waitq for other context */ 63 } mc = { 64 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 65 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 66 }; 67 68 /* for OOM */ 69 struct mem_cgroup_eventfd_list { 70 struct list_head list; 71 struct eventfd_ctx *eventfd; 72 }; 73 74 /* 75 * cgroup_event represents events which userspace want to receive. 76 */ 77 struct mem_cgroup_event { 78 /* 79 * memcg which the event belongs to. 80 */ 81 struct mem_cgroup *memcg; 82 /* 83 * eventfd to signal userspace about the event. 84 */ 85 struct eventfd_ctx *eventfd; 86 /* 87 * Each of these stored in a list by the cgroup. 88 */ 89 struct list_head list; 90 /* 91 * register_event() callback will be used to add new userspace 92 * waiter for changes related to this event. Use eventfd_signal() 93 * on eventfd to send notification to userspace. 94 */ 95 int (*register_event)(struct mem_cgroup *memcg, 96 struct eventfd_ctx *eventfd, const char *args); 97 /* 98 * unregister_event() callback will be called when userspace closes 99 * the eventfd or on cgroup removing. This callback must be set, 100 * if you want provide notification functionality. 101 */ 102 void (*unregister_event)(struct mem_cgroup *memcg, 103 struct eventfd_ctx *eventfd); 104 /* 105 * All fields below needed to unregister event when 106 * userspace closes eventfd. 107 */ 108 poll_table pt; 109 wait_queue_head_t *wqh; 110 wait_queue_entry_t wait; 111 struct work_struct remove; 112 }; 113 114 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 115 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 116 #define MEMFILE_ATTR(val) ((val) & 0xffff) 117 118 enum { 119 RES_USAGE, 120 RES_LIMIT, 121 RES_MAX_USAGE, 122 RES_FAILCNT, 123 RES_SOFT_LIMIT, 124 }; 125 126 #ifdef CONFIG_LOCKDEP 127 static struct lockdep_map memcg_oom_lock_dep_map = { 128 .name = "memcg_oom_lock", 129 }; 130 #endif 131 132 DEFINE_SPINLOCK(memcg_oom_lock); 133 134 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 135 struct mem_cgroup_tree_per_node *mctz, 136 unsigned long new_usage_in_excess) 137 { 138 struct rb_node **p = &mctz->rb_root.rb_node; 139 struct rb_node *parent = NULL; 140 struct mem_cgroup_per_node *mz_node; 141 bool rightmost = true; 142 143 if (mz->on_tree) 144 return; 145 146 mz->usage_in_excess = new_usage_in_excess; 147 if (!mz->usage_in_excess) 148 return; 149 while (*p) { 150 parent = *p; 151 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 152 tree_node); 153 if (mz->usage_in_excess < mz_node->usage_in_excess) { 154 p = &(*p)->rb_left; 155 rightmost = false; 156 } else { 157 p = &(*p)->rb_right; 158 } 159 } 160 161 if (rightmost) 162 mctz->rb_rightmost = &mz->tree_node; 163 164 rb_link_node(&mz->tree_node, parent, p); 165 rb_insert_color(&mz->tree_node, &mctz->rb_root); 166 mz->on_tree = true; 167 } 168 169 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 170 struct mem_cgroup_tree_per_node *mctz) 171 { 172 if (!mz->on_tree) 173 return; 174 175 if (&mz->tree_node == mctz->rb_rightmost) 176 mctz->rb_rightmost = rb_prev(&mz->tree_node); 177 178 rb_erase(&mz->tree_node, &mctz->rb_root); 179 mz->on_tree = false; 180 } 181 182 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 183 struct mem_cgroup_tree_per_node *mctz) 184 { 185 unsigned long flags; 186 187 spin_lock_irqsave(&mctz->lock, flags); 188 __mem_cgroup_remove_exceeded(mz, mctz); 189 spin_unlock_irqrestore(&mctz->lock, flags); 190 } 191 192 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 193 { 194 unsigned long nr_pages = page_counter_read(&memcg->memory); 195 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 196 unsigned long excess = 0; 197 198 if (nr_pages > soft_limit) 199 excess = nr_pages - soft_limit; 200 201 return excess; 202 } 203 204 static void memcg1_update_tree(struct mem_cgroup *memcg, int nid) 205 { 206 unsigned long excess; 207 struct mem_cgroup_per_node *mz; 208 struct mem_cgroup_tree_per_node *mctz; 209 210 if (lru_gen_enabled()) { 211 if (soft_limit_excess(memcg)) 212 lru_gen_soft_reclaim(memcg, nid); 213 return; 214 } 215 216 mctz = soft_limit_tree.rb_tree_per_node[nid]; 217 if (!mctz) 218 return; 219 /* 220 * Necessary to update all ancestors when hierarchy is used. 221 * because their event counter is not touched. 222 */ 223 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 224 mz = memcg->nodeinfo[nid]; 225 excess = soft_limit_excess(memcg); 226 /* 227 * We have to update the tree if mz is on RB-tree or 228 * mem is over its softlimit. 229 */ 230 if (excess || mz->on_tree) { 231 unsigned long flags; 232 233 spin_lock_irqsave(&mctz->lock, flags); 234 /* if on-tree, remove it */ 235 if (mz->on_tree) 236 __mem_cgroup_remove_exceeded(mz, mctz); 237 /* 238 * Insert again. mz->usage_in_excess will be updated. 239 * If excess is 0, no tree ops. 240 */ 241 __mem_cgroup_insert_exceeded(mz, mctz, excess); 242 spin_unlock_irqrestore(&mctz->lock, flags); 243 } 244 } 245 } 246 247 void memcg1_remove_from_trees(struct mem_cgroup *memcg) 248 { 249 struct mem_cgroup_tree_per_node *mctz; 250 struct mem_cgroup_per_node *mz; 251 int nid; 252 253 for_each_node(nid) { 254 mz = memcg->nodeinfo[nid]; 255 mctz = soft_limit_tree.rb_tree_per_node[nid]; 256 if (mctz) 257 mem_cgroup_remove_exceeded(mz, mctz); 258 } 259 } 260 261 static struct mem_cgroup_per_node * 262 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 263 { 264 struct mem_cgroup_per_node *mz; 265 266 retry: 267 mz = NULL; 268 if (!mctz->rb_rightmost) 269 goto done; /* Nothing to reclaim from */ 270 271 mz = rb_entry(mctz->rb_rightmost, 272 struct mem_cgroup_per_node, tree_node); 273 /* 274 * Remove the node now but someone else can add it back, 275 * we will to add it back at the end of reclaim to its correct 276 * position in the tree. 277 */ 278 __mem_cgroup_remove_exceeded(mz, mctz); 279 if (!soft_limit_excess(mz->memcg) || 280 !css_tryget(&mz->memcg->css)) 281 goto retry; 282 done: 283 return mz; 284 } 285 286 static struct mem_cgroup_per_node * 287 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 288 { 289 struct mem_cgroup_per_node *mz; 290 291 spin_lock_irq(&mctz->lock); 292 mz = __mem_cgroup_largest_soft_limit_node(mctz); 293 spin_unlock_irq(&mctz->lock); 294 return mz; 295 } 296 297 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 298 pg_data_t *pgdat, 299 gfp_t gfp_mask, 300 unsigned long *total_scanned) 301 { 302 struct mem_cgroup *victim = NULL; 303 int total = 0; 304 int loop = 0; 305 unsigned long excess; 306 unsigned long nr_scanned; 307 struct mem_cgroup_reclaim_cookie reclaim = { 308 .pgdat = pgdat, 309 }; 310 311 excess = soft_limit_excess(root_memcg); 312 313 while (1) { 314 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 315 if (!victim) { 316 loop++; 317 if (loop >= 2) { 318 /* 319 * If we have not been able to reclaim 320 * anything, it might because there are 321 * no reclaimable pages under this hierarchy 322 */ 323 if (!total) 324 break; 325 /* 326 * We want to do more targeted reclaim. 327 * excess >> 2 is not to excessive so as to 328 * reclaim too much, nor too less that we keep 329 * coming back to reclaim from this cgroup 330 */ 331 if (total >= (excess >> 2) || 332 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 333 break; 334 } 335 continue; 336 } 337 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 338 pgdat, &nr_scanned); 339 *total_scanned += nr_scanned; 340 if (!soft_limit_excess(root_memcg)) 341 break; 342 } 343 mem_cgroup_iter_break(root_memcg, victim); 344 return total; 345 } 346 347 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 348 gfp_t gfp_mask, 349 unsigned long *total_scanned) 350 { 351 unsigned long nr_reclaimed = 0; 352 struct mem_cgroup_per_node *mz, *next_mz = NULL; 353 unsigned long reclaimed; 354 int loop = 0; 355 struct mem_cgroup_tree_per_node *mctz; 356 unsigned long excess; 357 358 if (lru_gen_enabled()) 359 return 0; 360 361 if (order > 0) 362 return 0; 363 364 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 365 366 /* 367 * Do not even bother to check the largest node if the root 368 * is empty. Do it lockless to prevent lock bouncing. Races 369 * are acceptable as soft limit is best effort anyway. 370 */ 371 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 372 return 0; 373 374 /* 375 * This loop can run a while, specially if mem_cgroup's continuously 376 * keep exceeding their soft limit and putting the system under 377 * pressure 378 */ 379 do { 380 if (next_mz) 381 mz = next_mz; 382 else 383 mz = mem_cgroup_largest_soft_limit_node(mctz); 384 if (!mz) 385 break; 386 387 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 388 gfp_mask, total_scanned); 389 nr_reclaimed += reclaimed; 390 spin_lock_irq(&mctz->lock); 391 392 /* 393 * If we failed to reclaim anything from this memory cgroup 394 * it is time to move on to the next cgroup 395 */ 396 next_mz = NULL; 397 if (!reclaimed) 398 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 399 400 excess = soft_limit_excess(mz->memcg); 401 /* 402 * One school of thought says that we should not add 403 * back the node to the tree if reclaim returns 0. 404 * But our reclaim could return 0, simply because due 405 * to priority we are exposing a smaller subset of 406 * memory to reclaim from. Consider this as a longer 407 * term TODO. 408 */ 409 /* If excess == 0, no tree ops */ 410 __mem_cgroup_insert_exceeded(mz, mctz, excess); 411 spin_unlock_irq(&mctz->lock); 412 css_put(&mz->memcg->css); 413 loop++; 414 /* 415 * Could not reclaim anything and there are no more 416 * mem cgroups to try or we seem to be looping without 417 * reclaiming anything. 418 */ 419 if (!nr_reclaimed && 420 (next_mz == NULL || 421 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 422 break; 423 } while (!nr_reclaimed); 424 if (next_mz) 425 css_put(&next_mz->memcg->css); 426 return nr_reclaimed; 427 } 428 429 /* 430 * A routine for checking "mem" is under move_account() or not. 431 * 432 * Checking a cgroup is mc.from or mc.to or under hierarchy of 433 * moving cgroups. This is for waiting at high-memory pressure 434 * caused by "move". 435 */ 436 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 437 { 438 struct mem_cgroup *from; 439 struct mem_cgroup *to; 440 bool ret = false; 441 /* 442 * Unlike task_move routines, we access mc.to, mc.from not under 443 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 444 */ 445 spin_lock(&mc.lock); 446 from = mc.from; 447 to = mc.to; 448 if (!from) 449 goto unlock; 450 451 ret = mem_cgroup_is_descendant(from, memcg) || 452 mem_cgroup_is_descendant(to, memcg); 453 unlock: 454 spin_unlock(&mc.lock); 455 return ret; 456 } 457 458 bool memcg1_wait_acct_move(struct mem_cgroup *memcg) 459 { 460 if (mc.moving_task && current != mc.moving_task) { 461 if (mem_cgroup_under_move(memcg)) { 462 DEFINE_WAIT(wait); 463 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 464 /* moving charge context might have finished. */ 465 if (mc.moving_task) 466 schedule(); 467 finish_wait(&mc.waitq, &wait); 468 return true; 469 } 470 } 471 return false; 472 } 473 474 /** 475 * folio_memcg_lock - Bind a folio to its memcg. 476 * @folio: The folio. 477 * 478 * This function prevents unlocked LRU folios from being moved to 479 * another cgroup. 480 * 481 * It ensures lifetime of the bound memcg. The caller is responsible 482 * for the lifetime of the folio. 483 */ 484 void folio_memcg_lock(struct folio *folio) 485 { 486 struct mem_cgroup *memcg; 487 unsigned long flags; 488 489 /* 490 * The RCU lock is held throughout the transaction. The fast 491 * path can get away without acquiring the memcg->move_lock 492 * because page moving starts with an RCU grace period. 493 */ 494 rcu_read_lock(); 495 496 if (mem_cgroup_disabled()) 497 return; 498 again: 499 memcg = folio_memcg(folio); 500 if (unlikely(!memcg)) 501 return; 502 503 #ifdef CONFIG_PROVE_LOCKING 504 local_irq_save(flags); 505 might_lock(&memcg->move_lock); 506 local_irq_restore(flags); 507 #endif 508 509 if (atomic_read(&memcg->moving_account) <= 0) 510 return; 511 512 spin_lock_irqsave(&memcg->move_lock, flags); 513 if (memcg != folio_memcg(folio)) { 514 spin_unlock_irqrestore(&memcg->move_lock, flags); 515 goto again; 516 } 517 518 /* 519 * When charge migration first begins, we can have multiple 520 * critical sections holding the fast-path RCU lock and one 521 * holding the slowpath move_lock. Track the task who has the 522 * move_lock for folio_memcg_unlock(). 523 */ 524 memcg->move_lock_task = current; 525 memcg->move_lock_flags = flags; 526 } 527 528 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 529 { 530 if (memcg && memcg->move_lock_task == current) { 531 unsigned long flags = memcg->move_lock_flags; 532 533 memcg->move_lock_task = NULL; 534 memcg->move_lock_flags = 0; 535 536 spin_unlock_irqrestore(&memcg->move_lock, flags); 537 } 538 539 rcu_read_unlock(); 540 } 541 542 /** 543 * folio_memcg_unlock - Release the binding between a folio and its memcg. 544 * @folio: The folio. 545 * 546 * This releases the binding created by folio_memcg_lock(). This does 547 * not change the accounting of this folio to its memcg, but it does 548 * permit others to change it. 549 */ 550 void folio_memcg_unlock(struct folio *folio) 551 { 552 __folio_memcg_unlock(folio_memcg(folio)); 553 } 554 555 #ifdef CONFIG_SWAP 556 /** 557 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 558 * @entry: swap entry to be moved 559 * @from: mem_cgroup which the entry is moved from 560 * @to: mem_cgroup which the entry is moved to 561 * 562 * It succeeds only when the swap_cgroup's record for this entry is the same 563 * as the mem_cgroup's id of @from. 564 * 565 * Returns 0 on success, -EINVAL on failure. 566 * 567 * The caller must have charged to @to, IOW, called page_counter_charge() about 568 * both res and memsw, and called css_get(). 569 */ 570 static int mem_cgroup_move_swap_account(swp_entry_t entry, 571 struct mem_cgroup *from, struct mem_cgroup *to) 572 { 573 unsigned short old_id, new_id; 574 575 old_id = mem_cgroup_id(from); 576 new_id = mem_cgroup_id(to); 577 578 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 579 mod_memcg_state(from, MEMCG_SWAP, -1); 580 mod_memcg_state(to, MEMCG_SWAP, 1); 581 return 0; 582 } 583 return -EINVAL; 584 } 585 #else 586 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 587 struct mem_cgroup *from, struct mem_cgroup *to) 588 { 589 return -EINVAL; 590 } 591 #endif 592 593 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 594 struct cftype *cft) 595 { 596 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 597 } 598 599 #ifdef CONFIG_MMU 600 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 601 struct cftype *cft, u64 val) 602 { 603 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 604 605 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " 606 "Please report your usecase to linux-mm@kvack.org if you " 607 "depend on this functionality.\n"); 608 609 if (val & ~MOVE_MASK) 610 return -EINVAL; 611 612 /* 613 * No kind of locking is needed in here, because ->can_attach() will 614 * check this value once in the beginning of the process, and then carry 615 * on with stale data. This means that changes to this value will only 616 * affect task migrations starting after the change. 617 */ 618 memcg->move_charge_at_immigrate = val; 619 return 0; 620 } 621 #else 622 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 623 struct cftype *cft, u64 val) 624 { 625 return -ENOSYS; 626 } 627 #endif 628 629 #ifdef CONFIG_MMU 630 /* Handlers for move charge at task migration. */ 631 static int mem_cgroup_do_precharge(unsigned long count) 632 { 633 int ret; 634 635 /* Try a single bulk charge without reclaim first, kswapd may wake */ 636 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 637 if (!ret) { 638 mc.precharge += count; 639 return ret; 640 } 641 642 /* Try charges one by one with reclaim, but do not retry */ 643 while (count--) { 644 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 645 if (ret) 646 return ret; 647 mc.precharge++; 648 cond_resched(); 649 } 650 return 0; 651 } 652 653 union mc_target { 654 struct folio *folio; 655 swp_entry_t ent; 656 }; 657 658 enum mc_target_type { 659 MC_TARGET_NONE = 0, 660 MC_TARGET_PAGE, 661 MC_TARGET_SWAP, 662 MC_TARGET_DEVICE, 663 }; 664 665 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 666 unsigned long addr, pte_t ptent) 667 { 668 struct page *page = vm_normal_page(vma, addr, ptent); 669 670 if (!page) 671 return NULL; 672 if (PageAnon(page)) { 673 if (!(mc.flags & MOVE_ANON)) 674 return NULL; 675 } else { 676 if (!(mc.flags & MOVE_FILE)) 677 return NULL; 678 } 679 get_page(page); 680 681 return page; 682 } 683 684 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 685 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 686 pte_t ptent, swp_entry_t *entry) 687 { 688 struct page *page = NULL; 689 swp_entry_t ent = pte_to_swp_entry(ptent); 690 691 if (!(mc.flags & MOVE_ANON)) 692 return NULL; 693 694 /* 695 * Handle device private pages that are not accessible by the CPU, but 696 * stored as special swap entries in the page table. 697 */ 698 if (is_device_private_entry(ent)) { 699 page = pfn_swap_entry_to_page(ent); 700 if (!get_page_unless_zero(page)) 701 return NULL; 702 return page; 703 } 704 705 if (non_swap_entry(ent)) 706 return NULL; 707 708 /* 709 * Because swap_cache_get_folio() updates some statistics counter, 710 * we call find_get_page() with swapper_space directly. 711 */ 712 page = find_get_page(swap_address_space(ent), swap_cache_index(ent)); 713 entry->val = ent.val; 714 715 return page; 716 } 717 #else 718 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 719 pte_t ptent, swp_entry_t *entry) 720 { 721 return NULL; 722 } 723 #endif 724 725 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 726 unsigned long addr, pte_t ptent) 727 { 728 unsigned long index; 729 struct folio *folio; 730 731 if (!vma->vm_file) /* anonymous vma */ 732 return NULL; 733 if (!(mc.flags & MOVE_FILE)) 734 return NULL; 735 736 /* folio is moved even if it's not RSS of this task(page-faulted). */ 737 /* shmem/tmpfs may report page out on swap: account for that too. */ 738 index = linear_page_index(vma, addr); 739 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index); 740 if (IS_ERR(folio)) 741 return NULL; 742 return folio_file_page(folio, index); 743 } 744 745 static void memcg1_check_events(struct mem_cgroup *memcg, int nid); 746 static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages); 747 748 /** 749 * mem_cgroup_move_account - move account of the folio 750 * @folio: The folio. 751 * @compound: charge the page as compound or small page 752 * @from: mem_cgroup which the folio is moved from. 753 * @to: mem_cgroup which the folio is moved to. @from != @to. 754 * 755 * The folio must be locked and not on the LRU. 756 * 757 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 758 * from old cgroup. 759 */ 760 static int mem_cgroup_move_account(struct folio *folio, 761 bool compound, 762 struct mem_cgroup *from, 763 struct mem_cgroup *to) 764 { 765 struct lruvec *from_vec, *to_vec; 766 struct pglist_data *pgdat; 767 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 768 int nid, ret; 769 770 VM_BUG_ON(from == to); 771 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 772 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 773 VM_BUG_ON(compound && !folio_test_large(folio)); 774 775 ret = -EINVAL; 776 if (folio_memcg(folio) != from) 777 goto out; 778 779 pgdat = folio_pgdat(folio); 780 from_vec = mem_cgroup_lruvec(from, pgdat); 781 to_vec = mem_cgroup_lruvec(to, pgdat); 782 783 folio_memcg_lock(folio); 784 785 if (folio_test_anon(folio)) { 786 if (folio_mapped(folio)) { 787 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 788 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 789 if (folio_test_pmd_mappable(folio)) { 790 __mod_lruvec_state(from_vec, NR_ANON_THPS, 791 -nr_pages); 792 __mod_lruvec_state(to_vec, NR_ANON_THPS, 793 nr_pages); 794 } 795 } 796 } else { 797 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 798 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 799 800 if (folio_test_swapbacked(folio)) { 801 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 802 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 803 } 804 805 if (folio_mapped(folio)) { 806 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 807 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 808 } 809 810 if (folio_test_dirty(folio)) { 811 struct address_space *mapping = folio_mapping(folio); 812 813 if (mapping_can_writeback(mapping)) { 814 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 815 -nr_pages); 816 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 817 nr_pages); 818 } 819 } 820 } 821 822 #ifdef CONFIG_SWAP 823 if (folio_test_swapcache(folio)) { 824 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages); 825 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages); 826 } 827 #endif 828 if (folio_test_writeback(folio)) { 829 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 830 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 831 } 832 833 /* 834 * All state has been migrated, let's switch to the new memcg. 835 * 836 * It is safe to change page's memcg here because the page 837 * is referenced, charged, isolated, and locked: we can't race 838 * with (un)charging, migration, LRU putback, or anything else 839 * that would rely on a stable page's memory cgroup. 840 * 841 * Note that folio_memcg_lock is a memcg lock, not a page lock, 842 * to save space. As soon as we switch page's memory cgroup to a 843 * new memcg that isn't locked, the above state can change 844 * concurrently again. Make sure we're truly done with it. 845 */ 846 smp_mb(); 847 848 css_get(&to->css); 849 css_put(&from->css); 850 851 folio->memcg_data = (unsigned long)to; 852 853 __folio_memcg_unlock(from); 854 855 ret = 0; 856 nid = folio_nid(folio); 857 858 local_irq_disable(); 859 memcg1_charge_statistics(to, nr_pages); 860 memcg1_check_events(to, nid); 861 memcg1_charge_statistics(from, -nr_pages); 862 memcg1_check_events(from, nid); 863 local_irq_enable(); 864 out: 865 return ret; 866 } 867 868 /** 869 * get_mctgt_type - get target type of moving charge 870 * @vma: the vma the pte to be checked belongs 871 * @addr: the address corresponding to the pte to be checked 872 * @ptent: the pte to be checked 873 * @target: the pointer the target page or swap ent will be stored(can be NULL) 874 * 875 * Context: Called with pte lock held. 876 * Return: 877 * * MC_TARGET_NONE - If the pte is not a target for move charge. 878 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for 879 * move charge. If @target is not NULL, the folio is stored in target->folio 880 * with extra refcnt taken (Caller should release it). 881 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a 882 * target for charge migration. If @target is not NULL, the entry is 883 * stored in target->ent. 884 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and 885 * thus not on the lru. For now such page is charged like a regular page 886 * would be as it is just special memory taking the place of a regular page. 887 * See Documentations/vm/hmm.txt and include/linux/hmm.h 888 */ 889 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 890 unsigned long addr, pte_t ptent, union mc_target *target) 891 { 892 struct page *page = NULL; 893 struct folio *folio; 894 enum mc_target_type ret = MC_TARGET_NONE; 895 swp_entry_t ent = { .val = 0 }; 896 897 if (pte_present(ptent)) 898 page = mc_handle_present_pte(vma, addr, ptent); 899 else if (pte_none_mostly(ptent)) 900 /* 901 * PTE markers should be treated as a none pte here, separated 902 * from other swap handling below. 903 */ 904 page = mc_handle_file_pte(vma, addr, ptent); 905 else if (is_swap_pte(ptent)) 906 page = mc_handle_swap_pte(vma, ptent, &ent); 907 908 if (page) 909 folio = page_folio(page); 910 if (target && page) { 911 if (!folio_trylock(folio)) { 912 folio_put(folio); 913 return ret; 914 } 915 /* 916 * page_mapped() must be stable during the move. This 917 * pte is locked, so if it's present, the page cannot 918 * become unmapped. If it isn't, we have only partial 919 * control over the mapped state: the page lock will 920 * prevent new faults against pagecache and swapcache, 921 * so an unmapped page cannot become mapped. However, 922 * if the page is already mapped elsewhere, it can 923 * unmap, and there is nothing we can do about it. 924 * Alas, skip moving the page in this case. 925 */ 926 if (!pte_present(ptent) && page_mapped(page)) { 927 folio_unlock(folio); 928 folio_put(folio); 929 return ret; 930 } 931 } 932 933 if (!page && !ent.val) 934 return ret; 935 if (page) { 936 /* 937 * Do only loose check w/o serialization. 938 * mem_cgroup_move_account() checks the page is valid or 939 * not under LRU exclusion. 940 */ 941 if (folio_memcg(folio) == mc.from) { 942 ret = MC_TARGET_PAGE; 943 if (folio_is_device_private(folio) || 944 folio_is_device_coherent(folio)) 945 ret = MC_TARGET_DEVICE; 946 if (target) 947 target->folio = folio; 948 } 949 if (!ret || !target) { 950 if (target) 951 folio_unlock(folio); 952 folio_put(folio); 953 } 954 } 955 /* 956 * There is a swap entry and a page doesn't exist or isn't charged. 957 * But we cannot move a tail-page in a THP. 958 */ 959 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 960 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 961 ret = MC_TARGET_SWAP; 962 if (target) 963 target->ent = ent; 964 } 965 return ret; 966 } 967 968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 969 /* 970 * We don't consider PMD mapped swapping or file mapped pages because THP does 971 * not support them for now. 972 * Caller should make sure that pmd_trans_huge(pmd) is true. 973 */ 974 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 975 unsigned long addr, pmd_t pmd, union mc_target *target) 976 { 977 struct page *page = NULL; 978 struct folio *folio; 979 enum mc_target_type ret = MC_TARGET_NONE; 980 981 if (unlikely(is_swap_pmd(pmd))) { 982 VM_BUG_ON(thp_migration_supported() && 983 !is_pmd_migration_entry(pmd)); 984 return ret; 985 } 986 page = pmd_page(pmd); 987 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 988 folio = page_folio(page); 989 if (!(mc.flags & MOVE_ANON)) 990 return ret; 991 if (folio_memcg(folio) == mc.from) { 992 ret = MC_TARGET_PAGE; 993 if (target) { 994 folio_get(folio); 995 if (!folio_trylock(folio)) { 996 folio_put(folio); 997 return MC_TARGET_NONE; 998 } 999 target->folio = folio; 1000 } 1001 } 1002 return ret; 1003 } 1004 #else 1005 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 1006 unsigned long addr, pmd_t pmd, union mc_target *target) 1007 { 1008 return MC_TARGET_NONE; 1009 } 1010 #endif 1011 1012 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 1013 unsigned long addr, unsigned long end, 1014 struct mm_walk *walk) 1015 { 1016 struct vm_area_struct *vma = walk->vma; 1017 pte_t *pte; 1018 spinlock_t *ptl; 1019 1020 ptl = pmd_trans_huge_lock(pmd, vma); 1021 if (ptl) { 1022 /* 1023 * Note their can not be MC_TARGET_DEVICE for now as we do not 1024 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 1025 * this might change. 1026 */ 1027 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 1028 mc.precharge += HPAGE_PMD_NR; 1029 spin_unlock(ptl); 1030 return 0; 1031 } 1032 1033 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1034 if (!pte) 1035 return 0; 1036 for (; addr != end; pte++, addr += PAGE_SIZE) 1037 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL)) 1038 mc.precharge++; /* increment precharge temporarily */ 1039 pte_unmap_unlock(pte - 1, ptl); 1040 cond_resched(); 1041 1042 return 0; 1043 } 1044 1045 static const struct mm_walk_ops precharge_walk_ops = { 1046 .pmd_entry = mem_cgroup_count_precharge_pte_range, 1047 .walk_lock = PGWALK_RDLOCK, 1048 }; 1049 1050 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 1051 { 1052 unsigned long precharge; 1053 1054 mmap_read_lock(mm); 1055 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL); 1056 mmap_read_unlock(mm); 1057 1058 precharge = mc.precharge; 1059 mc.precharge = 0; 1060 1061 return precharge; 1062 } 1063 1064 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 1065 { 1066 unsigned long precharge = mem_cgroup_count_precharge(mm); 1067 1068 VM_BUG_ON(mc.moving_task); 1069 mc.moving_task = current; 1070 return mem_cgroup_do_precharge(precharge); 1071 } 1072 1073 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 1074 static void __mem_cgroup_clear_mc(void) 1075 { 1076 struct mem_cgroup *from = mc.from; 1077 struct mem_cgroup *to = mc.to; 1078 1079 /* we must uncharge all the leftover precharges from mc.to */ 1080 if (mc.precharge) { 1081 mem_cgroup_cancel_charge(mc.to, mc.precharge); 1082 mc.precharge = 0; 1083 } 1084 /* 1085 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 1086 * we must uncharge here. 1087 */ 1088 if (mc.moved_charge) { 1089 mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 1090 mc.moved_charge = 0; 1091 } 1092 /* we must fixup refcnts and charges */ 1093 if (mc.moved_swap) { 1094 /* uncharge swap account from the old cgroup */ 1095 if (!mem_cgroup_is_root(mc.from)) 1096 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 1097 1098 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 1099 1100 /* 1101 * we charged both to->memory and to->memsw, so we 1102 * should uncharge to->memory. 1103 */ 1104 if (!mem_cgroup_is_root(mc.to)) 1105 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 1106 1107 mc.moved_swap = 0; 1108 } 1109 memcg1_oom_recover(from); 1110 memcg1_oom_recover(to); 1111 wake_up_all(&mc.waitq); 1112 } 1113 1114 static void mem_cgroup_clear_mc(void) 1115 { 1116 struct mm_struct *mm = mc.mm; 1117 1118 /* 1119 * we must clear moving_task before waking up waiters at the end of 1120 * task migration. 1121 */ 1122 mc.moving_task = NULL; 1123 __mem_cgroup_clear_mc(); 1124 spin_lock(&mc.lock); 1125 mc.from = NULL; 1126 mc.to = NULL; 1127 mc.mm = NULL; 1128 spin_unlock(&mc.lock); 1129 1130 mmput(mm); 1131 } 1132 1133 int memcg1_can_attach(struct cgroup_taskset *tset) 1134 { 1135 struct cgroup_subsys_state *css; 1136 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 1137 struct mem_cgroup *from; 1138 struct task_struct *leader, *p; 1139 struct mm_struct *mm; 1140 unsigned long move_flags; 1141 int ret = 0; 1142 1143 /* charge immigration isn't supported on the default hierarchy */ 1144 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1145 return 0; 1146 1147 /* 1148 * Multi-process migrations only happen on the default hierarchy 1149 * where charge immigration is not used. Perform charge 1150 * immigration if @tset contains a leader and whine if there are 1151 * multiple. 1152 */ 1153 p = NULL; 1154 cgroup_taskset_for_each_leader(leader, css, tset) { 1155 WARN_ON_ONCE(p); 1156 p = leader; 1157 memcg = mem_cgroup_from_css(css); 1158 } 1159 if (!p) 1160 return 0; 1161 1162 /* 1163 * We are now committed to this value whatever it is. Changes in this 1164 * tunable will only affect upcoming migrations, not the current one. 1165 * So we need to save it, and keep it going. 1166 */ 1167 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 1168 if (!move_flags) 1169 return 0; 1170 1171 from = mem_cgroup_from_task(p); 1172 1173 VM_BUG_ON(from == memcg); 1174 1175 mm = get_task_mm(p); 1176 if (!mm) 1177 return 0; 1178 /* We move charges only when we move a owner of the mm */ 1179 if (mm->owner == p) { 1180 VM_BUG_ON(mc.from); 1181 VM_BUG_ON(mc.to); 1182 VM_BUG_ON(mc.precharge); 1183 VM_BUG_ON(mc.moved_charge); 1184 VM_BUG_ON(mc.moved_swap); 1185 1186 spin_lock(&mc.lock); 1187 mc.mm = mm; 1188 mc.from = from; 1189 mc.to = memcg; 1190 mc.flags = move_flags; 1191 spin_unlock(&mc.lock); 1192 /* We set mc.moving_task later */ 1193 1194 ret = mem_cgroup_precharge_mc(mm); 1195 if (ret) 1196 mem_cgroup_clear_mc(); 1197 } else { 1198 mmput(mm); 1199 } 1200 return ret; 1201 } 1202 1203 void memcg1_cancel_attach(struct cgroup_taskset *tset) 1204 { 1205 if (mc.to) 1206 mem_cgroup_clear_mc(); 1207 } 1208 1209 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 1210 unsigned long addr, unsigned long end, 1211 struct mm_walk *walk) 1212 { 1213 int ret = 0; 1214 struct vm_area_struct *vma = walk->vma; 1215 pte_t *pte; 1216 spinlock_t *ptl; 1217 enum mc_target_type target_type; 1218 union mc_target target; 1219 struct folio *folio; 1220 1221 ptl = pmd_trans_huge_lock(pmd, vma); 1222 if (ptl) { 1223 if (mc.precharge < HPAGE_PMD_NR) { 1224 spin_unlock(ptl); 1225 return 0; 1226 } 1227 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 1228 if (target_type == MC_TARGET_PAGE) { 1229 folio = target.folio; 1230 if (folio_isolate_lru(folio)) { 1231 if (!mem_cgroup_move_account(folio, true, 1232 mc.from, mc.to)) { 1233 mc.precharge -= HPAGE_PMD_NR; 1234 mc.moved_charge += HPAGE_PMD_NR; 1235 } 1236 folio_putback_lru(folio); 1237 } 1238 folio_unlock(folio); 1239 folio_put(folio); 1240 } else if (target_type == MC_TARGET_DEVICE) { 1241 folio = target.folio; 1242 if (!mem_cgroup_move_account(folio, true, 1243 mc.from, mc.to)) { 1244 mc.precharge -= HPAGE_PMD_NR; 1245 mc.moved_charge += HPAGE_PMD_NR; 1246 } 1247 folio_unlock(folio); 1248 folio_put(folio); 1249 } 1250 spin_unlock(ptl); 1251 return 0; 1252 } 1253 1254 retry: 1255 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1256 if (!pte) 1257 return 0; 1258 for (; addr != end; addr += PAGE_SIZE) { 1259 pte_t ptent = ptep_get(pte++); 1260 bool device = false; 1261 swp_entry_t ent; 1262 1263 if (!mc.precharge) 1264 break; 1265 1266 switch (get_mctgt_type(vma, addr, ptent, &target)) { 1267 case MC_TARGET_DEVICE: 1268 device = true; 1269 fallthrough; 1270 case MC_TARGET_PAGE: 1271 folio = target.folio; 1272 /* 1273 * We can have a part of the split pmd here. Moving it 1274 * can be done but it would be too convoluted so simply 1275 * ignore such a partial THP and keep it in original 1276 * memcg. There should be somebody mapping the head. 1277 */ 1278 if (folio_test_large(folio)) 1279 goto put; 1280 if (!device && !folio_isolate_lru(folio)) 1281 goto put; 1282 if (!mem_cgroup_move_account(folio, false, 1283 mc.from, mc.to)) { 1284 mc.precharge--; 1285 /* we uncharge from mc.from later. */ 1286 mc.moved_charge++; 1287 } 1288 if (!device) 1289 folio_putback_lru(folio); 1290 put: /* get_mctgt_type() gets & locks the page */ 1291 folio_unlock(folio); 1292 folio_put(folio); 1293 break; 1294 case MC_TARGET_SWAP: 1295 ent = target.ent; 1296 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 1297 mc.precharge--; 1298 mem_cgroup_id_get_many(mc.to, 1); 1299 /* we fixup other refcnts and charges later. */ 1300 mc.moved_swap++; 1301 } 1302 break; 1303 default: 1304 break; 1305 } 1306 } 1307 pte_unmap_unlock(pte - 1, ptl); 1308 cond_resched(); 1309 1310 if (addr != end) { 1311 /* 1312 * We have consumed all precharges we got in can_attach(). 1313 * We try charge one by one, but don't do any additional 1314 * charges to mc.to if we have failed in charge once in attach() 1315 * phase. 1316 */ 1317 ret = mem_cgroup_do_precharge(1); 1318 if (!ret) 1319 goto retry; 1320 } 1321 1322 return ret; 1323 } 1324 1325 static const struct mm_walk_ops charge_walk_ops = { 1326 .pmd_entry = mem_cgroup_move_charge_pte_range, 1327 .walk_lock = PGWALK_RDLOCK, 1328 }; 1329 1330 static void mem_cgroup_move_charge(void) 1331 { 1332 lru_add_drain_all(); 1333 /* 1334 * Signal folio_memcg_lock() to take the memcg's move_lock 1335 * while we're moving its pages to another memcg. Then wait 1336 * for already started RCU-only updates to finish. 1337 */ 1338 atomic_inc(&mc.from->moving_account); 1339 synchronize_rcu(); 1340 retry: 1341 if (unlikely(!mmap_read_trylock(mc.mm))) { 1342 /* 1343 * Someone who are holding the mmap_lock might be waiting in 1344 * waitq. So we cancel all extra charges, wake up all waiters, 1345 * and retry. Because we cancel precharges, we might not be able 1346 * to move enough charges, but moving charge is a best-effort 1347 * feature anyway, so it wouldn't be a big problem. 1348 */ 1349 __mem_cgroup_clear_mc(); 1350 cond_resched(); 1351 goto retry; 1352 } 1353 /* 1354 * When we have consumed all precharges and failed in doing 1355 * additional charge, the page walk just aborts. 1356 */ 1357 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL); 1358 mmap_read_unlock(mc.mm); 1359 atomic_dec(&mc.from->moving_account); 1360 } 1361 1362 void memcg1_move_task(void) 1363 { 1364 if (mc.to) { 1365 mem_cgroup_move_charge(); 1366 mem_cgroup_clear_mc(); 1367 } 1368 } 1369 1370 #else /* !CONFIG_MMU */ 1371 int memcg1_can_attach(struct cgroup_taskset *tset) 1372 { 1373 return 0; 1374 } 1375 void memcg1_cancel_attach(struct cgroup_taskset *tset) 1376 { 1377 } 1378 void memcg1_move_task(void) 1379 { 1380 } 1381 #endif 1382 1383 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 1384 { 1385 struct mem_cgroup_threshold_ary *t; 1386 unsigned long usage; 1387 int i; 1388 1389 rcu_read_lock(); 1390 if (!swap) 1391 t = rcu_dereference(memcg->thresholds.primary); 1392 else 1393 t = rcu_dereference(memcg->memsw_thresholds.primary); 1394 1395 if (!t) 1396 goto unlock; 1397 1398 usage = mem_cgroup_usage(memcg, swap); 1399 1400 /* 1401 * current_threshold points to threshold just below or equal to usage. 1402 * If it's not true, a threshold was crossed after last 1403 * call of __mem_cgroup_threshold(). 1404 */ 1405 i = t->current_threshold; 1406 1407 /* 1408 * Iterate backward over array of thresholds starting from 1409 * current_threshold and check if a threshold is crossed. 1410 * If none of thresholds below usage is crossed, we read 1411 * only one element of the array here. 1412 */ 1413 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 1414 eventfd_signal(t->entries[i].eventfd); 1415 1416 /* i = current_threshold + 1 */ 1417 i++; 1418 1419 /* 1420 * Iterate forward over array of thresholds starting from 1421 * current_threshold+1 and check if a threshold is crossed. 1422 * If none of thresholds above usage is crossed, we read 1423 * only one element of the array here. 1424 */ 1425 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 1426 eventfd_signal(t->entries[i].eventfd); 1427 1428 /* Update current_threshold */ 1429 t->current_threshold = i - 1; 1430 unlock: 1431 rcu_read_unlock(); 1432 } 1433 1434 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 1435 { 1436 while (memcg) { 1437 __mem_cgroup_threshold(memcg, false); 1438 if (do_memsw_account()) 1439 __mem_cgroup_threshold(memcg, true); 1440 1441 memcg = parent_mem_cgroup(memcg); 1442 } 1443 } 1444 1445 /* Cgroup1: threshold notifications & softlimit tree updates */ 1446 struct memcg1_events_percpu { 1447 unsigned long nr_page_events; 1448 unsigned long targets[MEM_CGROUP_NTARGETS]; 1449 }; 1450 1451 static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages) 1452 { 1453 /* pagein of a big page is an event. So, ignore page size */ 1454 if (nr_pages > 0) 1455 __count_memcg_events(memcg, PGPGIN, 1); 1456 else { 1457 __count_memcg_events(memcg, PGPGOUT, 1); 1458 nr_pages = -nr_pages; /* for event */ 1459 } 1460 1461 __this_cpu_add(memcg->events_percpu->nr_page_events, nr_pages); 1462 } 1463 1464 #define THRESHOLDS_EVENTS_TARGET 128 1465 #define SOFTLIMIT_EVENTS_TARGET 1024 1466 1467 static bool memcg1_event_ratelimit(struct mem_cgroup *memcg, 1468 enum mem_cgroup_events_target target) 1469 { 1470 unsigned long val, next; 1471 1472 val = __this_cpu_read(memcg->events_percpu->nr_page_events); 1473 next = __this_cpu_read(memcg->events_percpu->targets[target]); 1474 /* from time_after() in jiffies.h */ 1475 if ((long)(next - val) < 0) { 1476 switch (target) { 1477 case MEM_CGROUP_TARGET_THRESH: 1478 next = val + THRESHOLDS_EVENTS_TARGET; 1479 break; 1480 case MEM_CGROUP_TARGET_SOFTLIMIT: 1481 next = val + SOFTLIMIT_EVENTS_TARGET; 1482 break; 1483 default: 1484 break; 1485 } 1486 __this_cpu_write(memcg->events_percpu->targets[target], next); 1487 return true; 1488 } 1489 return false; 1490 } 1491 1492 /* 1493 * Check events in order. 1494 * 1495 */ 1496 static void memcg1_check_events(struct mem_cgroup *memcg, int nid) 1497 { 1498 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1499 return; 1500 1501 /* threshold event is triggered in finer grain than soft limit */ 1502 if (unlikely(memcg1_event_ratelimit(memcg, 1503 MEM_CGROUP_TARGET_THRESH))) { 1504 bool do_softlimit; 1505 1506 do_softlimit = memcg1_event_ratelimit(memcg, 1507 MEM_CGROUP_TARGET_SOFTLIMIT); 1508 mem_cgroup_threshold(memcg); 1509 if (unlikely(do_softlimit)) 1510 memcg1_update_tree(memcg, nid); 1511 } 1512 } 1513 1514 void memcg1_commit_charge(struct folio *folio, struct mem_cgroup *memcg) 1515 { 1516 unsigned long flags; 1517 1518 local_irq_save(flags); 1519 memcg1_charge_statistics(memcg, folio_nr_pages(folio)); 1520 memcg1_check_events(memcg, folio_nid(folio)); 1521 local_irq_restore(flags); 1522 } 1523 1524 void memcg1_swapout(struct folio *folio, struct mem_cgroup *memcg) 1525 { 1526 /* 1527 * Interrupts should be disabled here because the caller holds the 1528 * i_pages lock which is taken with interrupts-off. It is 1529 * important here to have the interrupts disabled because it is the 1530 * only synchronisation we have for updating the per-CPU variables. 1531 */ 1532 preempt_disable_nested(); 1533 VM_WARN_ON_IRQS_ENABLED(); 1534 memcg1_charge_statistics(memcg, -folio_nr_pages(folio)); 1535 preempt_enable_nested(); 1536 memcg1_check_events(memcg, folio_nid(folio)); 1537 } 1538 1539 void memcg1_uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 1540 unsigned long nr_memory, int nid) 1541 { 1542 unsigned long flags; 1543 1544 local_irq_save(flags); 1545 __count_memcg_events(memcg, PGPGOUT, pgpgout); 1546 __this_cpu_add(memcg->events_percpu->nr_page_events, nr_memory); 1547 memcg1_check_events(memcg, nid); 1548 local_irq_restore(flags); 1549 } 1550 1551 static int compare_thresholds(const void *a, const void *b) 1552 { 1553 const struct mem_cgroup_threshold *_a = a; 1554 const struct mem_cgroup_threshold *_b = b; 1555 1556 if (_a->threshold > _b->threshold) 1557 return 1; 1558 1559 if (_a->threshold < _b->threshold) 1560 return -1; 1561 1562 return 0; 1563 } 1564 1565 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 1566 { 1567 struct mem_cgroup_eventfd_list *ev; 1568 1569 spin_lock(&memcg_oom_lock); 1570 1571 list_for_each_entry(ev, &memcg->oom_notify, list) 1572 eventfd_signal(ev->eventfd); 1573 1574 spin_unlock(&memcg_oom_lock); 1575 return 0; 1576 } 1577 1578 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 1579 { 1580 struct mem_cgroup *iter; 1581 1582 for_each_mem_cgroup_tree(iter, memcg) 1583 mem_cgroup_oom_notify_cb(iter); 1584 } 1585 1586 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 1587 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 1588 { 1589 struct mem_cgroup_thresholds *thresholds; 1590 struct mem_cgroup_threshold_ary *new; 1591 unsigned long threshold; 1592 unsigned long usage; 1593 int i, size, ret; 1594 1595 ret = page_counter_memparse(args, "-1", &threshold); 1596 if (ret) 1597 return ret; 1598 1599 mutex_lock(&memcg->thresholds_lock); 1600 1601 if (type == _MEM) { 1602 thresholds = &memcg->thresholds; 1603 usage = mem_cgroup_usage(memcg, false); 1604 } else if (type == _MEMSWAP) { 1605 thresholds = &memcg->memsw_thresholds; 1606 usage = mem_cgroup_usage(memcg, true); 1607 } else 1608 BUG(); 1609 1610 /* Check if a threshold crossed before adding a new one */ 1611 if (thresholds->primary) 1612 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 1613 1614 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 1615 1616 /* Allocate memory for new array of thresholds */ 1617 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 1618 if (!new) { 1619 ret = -ENOMEM; 1620 goto unlock; 1621 } 1622 new->size = size; 1623 1624 /* Copy thresholds (if any) to new array */ 1625 if (thresholds->primary) 1626 memcpy(new->entries, thresholds->primary->entries, 1627 flex_array_size(new, entries, size - 1)); 1628 1629 /* Add new threshold */ 1630 new->entries[size - 1].eventfd = eventfd; 1631 new->entries[size - 1].threshold = threshold; 1632 1633 /* Sort thresholds. Registering of new threshold isn't time-critical */ 1634 sort(new->entries, size, sizeof(*new->entries), 1635 compare_thresholds, NULL); 1636 1637 /* Find current threshold */ 1638 new->current_threshold = -1; 1639 for (i = 0; i < size; i++) { 1640 if (new->entries[i].threshold <= usage) { 1641 /* 1642 * new->current_threshold will not be used until 1643 * rcu_assign_pointer(), so it's safe to increment 1644 * it here. 1645 */ 1646 ++new->current_threshold; 1647 } else 1648 break; 1649 } 1650 1651 /* Free old spare buffer and save old primary buffer as spare */ 1652 kfree(thresholds->spare); 1653 thresholds->spare = thresholds->primary; 1654 1655 rcu_assign_pointer(thresholds->primary, new); 1656 1657 /* To be sure that nobody uses thresholds */ 1658 synchronize_rcu(); 1659 1660 unlock: 1661 mutex_unlock(&memcg->thresholds_lock); 1662 1663 return ret; 1664 } 1665 1666 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 1667 struct eventfd_ctx *eventfd, const char *args) 1668 { 1669 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 1670 } 1671 1672 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 1673 struct eventfd_ctx *eventfd, const char *args) 1674 { 1675 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 1676 } 1677 1678 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 1679 struct eventfd_ctx *eventfd, enum res_type type) 1680 { 1681 struct mem_cgroup_thresholds *thresholds; 1682 struct mem_cgroup_threshold_ary *new; 1683 unsigned long usage; 1684 int i, j, size, entries; 1685 1686 mutex_lock(&memcg->thresholds_lock); 1687 1688 if (type == _MEM) { 1689 thresholds = &memcg->thresholds; 1690 usage = mem_cgroup_usage(memcg, false); 1691 } else if (type == _MEMSWAP) { 1692 thresholds = &memcg->memsw_thresholds; 1693 usage = mem_cgroup_usage(memcg, true); 1694 } else 1695 BUG(); 1696 1697 if (!thresholds->primary) 1698 goto unlock; 1699 1700 /* Check if a threshold crossed before removing */ 1701 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 1702 1703 /* Calculate new number of threshold */ 1704 size = entries = 0; 1705 for (i = 0; i < thresholds->primary->size; i++) { 1706 if (thresholds->primary->entries[i].eventfd != eventfd) 1707 size++; 1708 else 1709 entries++; 1710 } 1711 1712 new = thresholds->spare; 1713 1714 /* If no items related to eventfd have been cleared, nothing to do */ 1715 if (!entries) 1716 goto unlock; 1717 1718 /* Set thresholds array to NULL if we don't have thresholds */ 1719 if (!size) { 1720 kfree(new); 1721 new = NULL; 1722 goto swap_buffers; 1723 } 1724 1725 new->size = size; 1726 1727 /* Copy thresholds and find current threshold */ 1728 new->current_threshold = -1; 1729 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 1730 if (thresholds->primary->entries[i].eventfd == eventfd) 1731 continue; 1732 1733 new->entries[j] = thresholds->primary->entries[i]; 1734 if (new->entries[j].threshold <= usage) { 1735 /* 1736 * new->current_threshold will not be used 1737 * until rcu_assign_pointer(), so it's safe to increment 1738 * it here. 1739 */ 1740 ++new->current_threshold; 1741 } 1742 j++; 1743 } 1744 1745 swap_buffers: 1746 /* Swap primary and spare array */ 1747 thresholds->spare = thresholds->primary; 1748 1749 rcu_assign_pointer(thresholds->primary, new); 1750 1751 /* To be sure that nobody uses thresholds */ 1752 synchronize_rcu(); 1753 1754 /* If all events are unregistered, free the spare array */ 1755 if (!new) { 1756 kfree(thresholds->spare); 1757 thresholds->spare = NULL; 1758 } 1759 unlock: 1760 mutex_unlock(&memcg->thresholds_lock); 1761 } 1762 1763 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 1764 struct eventfd_ctx *eventfd) 1765 { 1766 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 1767 } 1768 1769 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 1770 struct eventfd_ctx *eventfd) 1771 { 1772 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 1773 } 1774 1775 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 1776 struct eventfd_ctx *eventfd, const char *args) 1777 { 1778 struct mem_cgroup_eventfd_list *event; 1779 1780 event = kmalloc(sizeof(*event), GFP_KERNEL); 1781 if (!event) 1782 return -ENOMEM; 1783 1784 spin_lock(&memcg_oom_lock); 1785 1786 event->eventfd = eventfd; 1787 list_add(&event->list, &memcg->oom_notify); 1788 1789 /* already in OOM ? */ 1790 if (memcg->under_oom) 1791 eventfd_signal(eventfd); 1792 spin_unlock(&memcg_oom_lock); 1793 1794 return 0; 1795 } 1796 1797 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 1798 struct eventfd_ctx *eventfd) 1799 { 1800 struct mem_cgroup_eventfd_list *ev, *tmp; 1801 1802 spin_lock(&memcg_oom_lock); 1803 1804 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 1805 if (ev->eventfd == eventfd) { 1806 list_del(&ev->list); 1807 kfree(ev); 1808 } 1809 } 1810 1811 spin_unlock(&memcg_oom_lock); 1812 } 1813 1814 /* 1815 * DO NOT USE IN NEW FILES. 1816 * 1817 * "cgroup.event_control" implementation. 1818 * 1819 * This is way over-engineered. It tries to support fully configurable 1820 * events for each user. Such level of flexibility is completely 1821 * unnecessary especially in the light of the planned unified hierarchy. 1822 * 1823 * Please deprecate this and replace with something simpler if at all 1824 * possible. 1825 */ 1826 1827 /* 1828 * Unregister event and free resources. 1829 * 1830 * Gets called from workqueue. 1831 */ 1832 static void memcg_event_remove(struct work_struct *work) 1833 { 1834 struct mem_cgroup_event *event = 1835 container_of(work, struct mem_cgroup_event, remove); 1836 struct mem_cgroup *memcg = event->memcg; 1837 1838 remove_wait_queue(event->wqh, &event->wait); 1839 1840 event->unregister_event(memcg, event->eventfd); 1841 1842 /* Notify userspace the event is going away. */ 1843 eventfd_signal(event->eventfd); 1844 1845 eventfd_ctx_put(event->eventfd); 1846 kfree(event); 1847 css_put(&memcg->css); 1848 } 1849 1850 /* 1851 * Gets called on EPOLLHUP on eventfd when user closes it. 1852 * 1853 * Called with wqh->lock held and interrupts disabled. 1854 */ 1855 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 1856 int sync, void *key) 1857 { 1858 struct mem_cgroup_event *event = 1859 container_of(wait, struct mem_cgroup_event, wait); 1860 struct mem_cgroup *memcg = event->memcg; 1861 __poll_t flags = key_to_poll(key); 1862 1863 if (flags & EPOLLHUP) { 1864 /* 1865 * If the event has been detached at cgroup removal, we 1866 * can simply return knowing the other side will cleanup 1867 * for us. 1868 * 1869 * We can't race against event freeing since the other 1870 * side will require wqh->lock via remove_wait_queue(), 1871 * which we hold. 1872 */ 1873 spin_lock(&memcg->event_list_lock); 1874 if (!list_empty(&event->list)) { 1875 list_del_init(&event->list); 1876 /* 1877 * We are in atomic context, but cgroup_event_remove() 1878 * may sleep, so we have to call it in workqueue. 1879 */ 1880 schedule_work(&event->remove); 1881 } 1882 spin_unlock(&memcg->event_list_lock); 1883 } 1884 1885 return 0; 1886 } 1887 1888 static void memcg_event_ptable_queue_proc(struct file *file, 1889 wait_queue_head_t *wqh, poll_table *pt) 1890 { 1891 struct mem_cgroup_event *event = 1892 container_of(pt, struct mem_cgroup_event, pt); 1893 1894 event->wqh = wqh; 1895 add_wait_queue(wqh, &event->wait); 1896 } 1897 1898 /* 1899 * DO NOT USE IN NEW FILES. 1900 * 1901 * Parse input and register new cgroup event handler. 1902 * 1903 * Input must be in format '<event_fd> <control_fd> <args>'. 1904 * Interpretation of args is defined by control file implementation. 1905 */ 1906 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 1907 char *buf, size_t nbytes, loff_t off) 1908 { 1909 struct cgroup_subsys_state *css = of_css(of); 1910 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 1911 struct mem_cgroup_event *event; 1912 struct cgroup_subsys_state *cfile_css; 1913 unsigned int efd, cfd; 1914 struct fd efile; 1915 struct fd cfile; 1916 struct dentry *cdentry; 1917 const char *name; 1918 char *endp; 1919 int ret; 1920 1921 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1922 return -EOPNOTSUPP; 1923 1924 buf = strstrip(buf); 1925 1926 efd = simple_strtoul(buf, &endp, 10); 1927 if (*endp != ' ') 1928 return -EINVAL; 1929 buf = endp + 1; 1930 1931 cfd = simple_strtoul(buf, &endp, 10); 1932 if (*endp == '\0') 1933 buf = endp; 1934 else if (*endp == ' ') 1935 buf = endp + 1; 1936 else 1937 return -EINVAL; 1938 1939 event = kzalloc(sizeof(*event), GFP_KERNEL); 1940 if (!event) 1941 return -ENOMEM; 1942 1943 event->memcg = memcg; 1944 INIT_LIST_HEAD(&event->list); 1945 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 1946 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 1947 INIT_WORK(&event->remove, memcg_event_remove); 1948 1949 efile = fdget(efd); 1950 if (!fd_file(efile)) { 1951 ret = -EBADF; 1952 goto out_kfree; 1953 } 1954 1955 event->eventfd = eventfd_ctx_fileget(fd_file(efile)); 1956 if (IS_ERR(event->eventfd)) { 1957 ret = PTR_ERR(event->eventfd); 1958 goto out_put_efile; 1959 } 1960 1961 cfile = fdget(cfd); 1962 if (!fd_file(cfile)) { 1963 ret = -EBADF; 1964 goto out_put_eventfd; 1965 } 1966 1967 /* the process need read permission on control file */ 1968 /* AV: shouldn't we check that it's been opened for read instead? */ 1969 ret = file_permission(fd_file(cfile), MAY_READ); 1970 if (ret < 0) 1971 goto out_put_cfile; 1972 1973 /* 1974 * The control file must be a regular cgroup1 file. As a regular cgroup 1975 * file can't be renamed, it's safe to access its name afterwards. 1976 */ 1977 cdentry = fd_file(cfile)->f_path.dentry; 1978 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { 1979 ret = -EINVAL; 1980 goto out_put_cfile; 1981 } 1982 1983 /* 1984 * Determine the event callbacks and set them in @event. This used 1985 * to be done via struct cftype but cgroup core no longer knows 1986 * about these events. The following is crude but the whole thing 1987 * is for compatibility anyway. 1988 * 1989 * DO NOT ADD NEW FILES. 1990 */ 1991 name = cdentry->d_name.name; 1992 1993 if (!strcmp(name, "memory.usage_in_bytes")) { 1994 event->register_event = mem_cgroup_usage_register_event; 1995 event->unregister_event = mem_cgroup_usage_unregister_event; 1996 } else if (!strcmp(name, "memory.oom_control")) { 1997 pr_warn_once("oom_control is deprecated and will be removed. " 1998 "Please report your usecase to linux-mm-@kvack.org" 1999 " if you depend on this functionality. \n"); 2000 event->register_event = mem_cgroup_oom_register_event; 2001 event->unregister_event = mem_cgroup_oom_unregister_event; 2002 } else if (!strcmp(name, "memory.pressure_level")) { 2003 pr_warn_once("pressure_level is deprecated and will be removed. " 2004 "Please report your usecase to linux-mm-@kvack.org " 2005 "if you depend on this functionality. \n"); 2006 event->register_event = vmpressure_register_event; 2007 event->unregister_event = vmpressure_unregister_event; 2008 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 2009 event->register_event = memsw_cgroup_usage_register_event; 2010 event->unregister_event = memsw_cgroup_usage_unregister_event; 2011 } else { 2012 ret = -EINVAL; 2013 goto out_put_cfile; 2014 } 2015 2016 /* 2017 * Verify @cfile should belong to @css. Also, remaining events are 2018 * automatically removed on cgroup destruction but the removal is 2019 * asynchronous, so take an extra ref on @css. 2020 */ 2021 cfile_css = css_tryget_online_from_dir(cdentry->d_parent, 2022 &memory_cgrp_subsys); 2023 ret = -EINVAL; 2024 if (IS_ERR(cfile_css)) 2025 goto out_put_cfile; 2026 if (cfile_css != css) { 2027 css_put(cfile_css); 2028 goto out_put_cfile; 2029 } 2030 2031 ret = event->register_event(memcg, event->eventfd, buf); 2032 if (ret) 2033 goto out_put_css; 2034 2035 vfs_poll(fd_file(efile), &event->pt); 2036 2037 spin_lock_irq(&memcg->event_list_lock); 2038 list_add(&event->list, &memcg->event_list); 2039 spin_unlock_irq(&memcg->event_list_lock); 2040 2041 fdput(cfile); 2042 fdput(efile); 2043 2044 return nbytes; 2045 2046 out_put_css: 2047 css_put(css); 2048 out_put_cfile: 2049 fdput(cfile); 2050 out_put_eventfd: 2051 eventfd_ctx_put(event->eventfd); 2052 out_put_efile: 2053 fdput(efile); 2054 out_kfree: 2055 kfree(event); 2056 2057 return ret; 2058 } 2059 2060 void memcg1_memcg_init(struct mem_cgroup *memcg) 2061 { 2062 INIT_LIST_HEAD(&memcg->oom_notify); 2063 mutex_init(&memcg->thresholds_lock); 2064 spin_lock_init(&memcg->move_lock); 2065 INIT_LIST_HEAD(&memcg->event_list); 2066 spin_lock_init(&memcg->event_list_lock); 2067 } 2068 2069 void memcg1_css_offline(struct mem_cgroup *memcg) 2070 { 2071 struct mem_cgroup_event *event, *tmp; 2072 2073 /* 2074 * Unregister events and notify userspace. 2075 * Notify userspace about cgroup removing only after rmdir of cgroup 2076 * directory to avoid race between userspace and kernelspace. 2077 */ 2078 spin_lock_irq(&memcg->event_list_lock); 2079 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 2080 list_del_init(&event->list); 2081 schedule_work(&event->remove); 2082 } 2083 spin_unlock_irq(&memcg->event_list_lock); 2084 } 2085 2086 /* 2087 * Check OOM-Killer is already running under our hierarchy. 2088 * If someone is running, return false. 2089 */ 2090 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 2091 { 2092 struct mem_cgroup *iter, *failed = NULL; 2093 2094 spin_lock(&memcg_oom_lock); 2095 2096 for_each_mem_cgroup_tree(iter, memcg) { 2097 if (iter->oom_lock) { 2098 /* 2099 * this subtree of our hierarchy is already locked 2100 * so we cannot give a lock. 2101 */ 2102 failed = iter; 2103 mem_cgroup_iter_break(memcg, iter); 2104 break; 2105 } else 2106 iter->oom_lock = true; 2107 } 2108 2109 if (failed) { 2110 /* 2111 * OK, we failed to lock the whole subtree so we have 2112 * to clean up what we set up to the failing subtree 2113 */ 2114 for_each_mem_cgroup_tree(iter, memcg) { 2115 if (iter == failed) { 2116 mem_cgroup_iter_break(memcg, iter); 2117 break; 2118 } 2119 iter->oom_lock = false; 2120 } 2121 } else 2122 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 2123 2124 spin_unlock(&memcg_oom_lock); 2125 2126 return !failed; 2127 } 2128 2129 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 2130 { 2131 struct mem_cgroup *iter; 2132 2133 spin_lock(&memcg_oom_lock); 2134 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 2135 for_each_mem_cgroup_tree(iter, memcg) 2136 iter->oom_lock = false; 2137 spin_unlock(&memcg_oom_lock); 2138 } 2139 2140 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 2141 { 2142 struct mem_cgroup *iter; 2143 2144 spin_lock(&memcg_oom_lock); 2145 for_each_mem_cgroup_tree(iter, memcg) 2146 iter->under_oom++; 2147 spin_unlock(&memcg_oom_lock); 2148 } 2149 2150 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 2151 { 2152 struct mem_cgroup *iter; 2153 2154 /* 2155 * Be careful about under_oom underflows because a child memcg 2156 * could have been added after mem_cgroup_mark_under_oom. 2157 */ 2158 spin_lock(&memcg_oom_lock); 2159 for_each_mem_cgroup_tree(iter, memcg) 2160 if (iter->under_oom > 0) 2161 iter->under_oom--; 2162 spin_unlock(&memcg_oom_lock); 2163 } 2164 2165 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2166 2167 struct oom_wait_info { 2168 struct mem_cgroup *memcg; 2169 wait_queue_entry_t wait; 2170 }; 2171 2172 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 2173 unsigned mode, int sync, void *arg) 2174 { 2175 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2176 struct mem_cgroup *oom_wait_memcg; 2177 struct oom_wait_info *oom_wait_info; 2178 2179 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2180 oom_wait_memcg = oom_wait_info->memcg; 2181 2182 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 2183 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 2184 return 0; 2185 return autoremove_wake_function(wait, mode, sync, arg); 2186 } 2187 2188 void memcg1_oom_recover(struct mem_cgroup *memcg) 2189 { 2190 /* 2191 * For the following lockless ->under_oom test, the only required 2192 * guarantee is that it must see the state asserted by an OOM when 2193 * this function is called as a result of userland actions 2194 * triggered by the notification of the OOM. This is trivially 2195 * achieved by invoking mem_cgroup_mark_under_oom() before 2196 * triggering notification. 2197 */ 2198 if (memcg && memcg->under_oom) 2199 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2200 } 2201 2202 /** 2203 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2204 * @handle: actually kill/wait or just clean up the OOM state 2205 * 2206 * This has to be called at the end of a page fault if the memcg OOM 2207 * handler was enabled. 2208 * 2209 * Memcg supports userspace OOM handling where failed allocations must 2210 * sleep on a waitqueue until the userspace task resolves the 2211 * situation. Sleeping directly in the charge context with all kinds 2212 * of locks held is not a good idea, instead we remember an OOM state 2213 * in the task and mem_cgroup_oom_synchronize() has to be called at 2214 * the end of the page fault to complete the OOM handling. 2215 * 2216 * Returns %true if an ongoing memcg OOM situation was detected and 2217 * completed, %false otherwise. 2218 */ 2219 bool mem_cgroup_oom_synchronize(bool handle) 2220 { 2221 struct mem_cgroup *memcg = current->memcg_in_oom; 2222 struct oom_wait_info owait; 2223 bool locked; 2224 2225 /* OOM is global, do not handle */ 2226 if (!memcg) 2227 return false; 2228 2229 if (!handle) 2230 goto cleanup; 2231 2232 owait.memcg = memcg; 2233 owait.wait.flags = 0; 2234 owait.wait.func = memcg_oom_wake_function; 2235 owait.wait.private = current; 2236 INIT_LIST_HEAD(&owait.wait.entry); 2237 2238 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2239 mem_cgroup_mark_under_oom(memcg); 2240 2241 locked = mem_cgroup_oom_trylock(memcg); 2242 2243 if (locked) 2244 mem_cgroup_oom_notify(memcg); 2245 2246 schedule(); 2247 mem_cgroup_unmark_under_oom(memcg); 2248 finish_wait(&memcg_oom_waitq, &owait.wait); 2249 2250 if (locked) 2251 mem_cgroup_oom_unlock(memcg); 2252 cleanup: 2253 current->memcg_in_oom = NULL; 2254 css_put(&memcg->css); 2255 return true; 2256 } 2257 2258 2259 bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked) 2260 { 2261 /* 2262 * We are in the middle of the charge context here, so we 2263 * don't want to block when potentially sitting on a callstack 2264 * that holds all kinds of filesystem and mm locks. 2265 * 2266 * cgroup1 allows disabling the OOM killer and waiting for outside 2267 * handling until the charge can succeed; remember the context and put 2268 * the task to sleep at the end of the page fault when all locks are 2269 * released. 2270 * 2271 * On the other hand, in-kernel OOM killer allows for an async victim 2272 * memory reclaim (oom_reaper) and that means that we are not solely 2273 * relying on the oom victim to make a forward progress and we can 2274 * invoke the oom killer here. 2275 * 2276 * Please note that mem_cgroup_out_of_memory might fail to find a 2277 * victim and then we have to bail out from the charge path. 2278 */ 2279 if (READ_ONCE(memcg->oom_kill_disable)) { 2280 if (current->in_user_fault) { 2281 css_get(&memcg->css); 2282 current->memcg_in_oom = memcg; 2283 } 2284 return false; 2285 } 2286 2287 mem_cgroup_mark_under_oom(memcg); 2288 2289 *locked = mem_cgroup_oom_trylock(memcg); 2290 2291 if (*locked) 2292 mem_cgroup_oom_notify(memcg); 2293 2294 mem_cgroup_unmark_under_oom(memcg); 2295 2296 return true; 2297 } 2298 2299 void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked) 2300 { 2301 if (locked) 2302 mem_cgroup_oom_unlock(memcg); 2303 } 2304 2305 static DEFINE_MUTEX(memcg_max_mutex); 2306 2307 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 2308 unsigned long max, bool memsw) 2309 { 2310 bool enlarge = false; 2311 bool drained = false; 2312 int ret; 2313 bool limits_invariant; 2314 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2315 2316 do { 2317 if (signal_pending(current)) { 2318 ret = -EINTR; 2319 break; 2320 } 2321 2322 mutex_lock(&memcg_max_mutex); 2323 /* 2324 * Make sure that the new limit (memsw or memory limit) doesn't 2325 * break our basic invariant rule memory.max <= memsw.max. 2326 */ 2327 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 2328 max <= memcg->memsw.max; 2329 if (!limits_invariant) { 2330 mutex_unlock(&memcg_max_mutex); 2331 ret = -EINVAL; 2332 break; 2333 } 2334 if (max > counter->max) 2335 enlarge = true; 2336 ret = page_counter_set_max(counter, max); 2337 mutex_unlock(&memcg_max_mutex); 2338 2339 if (!ret) 2340 break; 2341 2342 if (!drained) { 2343 drain_all_stock(memcg); 2344 drained = true; 2345 continue; 2346 } 2347 2348 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 2349 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) { 2350 ret = -EBUSY; 2351 break; 2352 } 2353 } while (true); 2354 2355 if (!ret && enlarge) 2356 memcg1_oom_recover(memcg); 2357 2358 return ret; 2359 } 2360 2361 /* 2362 * Reclaims as many pages from the given memcg as possible. 2363 * 2364 * Caller is responsible for holding css reference for memcg. 2365 */ 2366 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2367 { 2368 int nr_retries = MAX_RECLAIM_RETRIES; 2369 2370 /* we call try-to-free pages for make this cgroup empty */ 2371 lru_add_drain_all(); 2372 2373 drain_all_stock(memcg); 2374 2375 /* try to free all pages in this cgroup */ 2376 while (nr_retries && page_counter_read(&memcg->memory)) { 2377 if (signal_pending(current)) 2378 return -EINTR; 2379 2380 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 2381 MEMCG_RECLAIM_MAY_SWAP, NULL)) 2382 nr_retries--; 2383 } 2384 2385 return 0; 2386 } 2387 2388 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2389 char *buf, size_t nbytes, 2390 loff_t off) 2391 { 2392 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2393 2394 if (mem_cgroup_is_root(memcg)) 2395 return -EINVAL; 2396 return mem_cgroup_force_empty(memcg) ?: nbytes; 2397 } 2398 2399 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2400 struct cftype *cft) 2401 { 2402 return 1; 2403 } 2404 2405 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2406 struct cftype *cft, u64 val) 2407 { 2408 if (val == 1) 2409 return 0; 2410 2411 pr_warn_once("Non-hierarchical mode is deprecated. " 2412 "Please report your usecase to linux-mm@kvack.org if you " 2413 "depend on this functionality.\n"); 2414 2415 return -EINVAL; 2416 } 2417 2418 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2419 struct cftype *cft) 2420 { 2421 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2422 struct page_counter *counter; 2423 2424 switch (MEMFILE_TYPE(cft->private)) { 2425 case _MEM: 2426 counter = &memcg->memory; 2427 break; 2428 case _MEMSWAP: 2429 counter = &memcg->memsw; 2430 break; 2431 case _KMEM: 2432 counter = &memcg->kmem; 2433 break; 2434 case _TCP: 2435 counter = &memcg->tcpmem; 2436 break; 2437 default: 2438 BUG(); 2439 } 2440 2441 switch (MEMFILE_ATTR(cft->private)) { 2442 case RES_USAGE: 2443 if (counter == &memcg->memory) 2444 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2445 if (counter == &memcg->memsw) 2446 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2447 return (u64)page_counter_read(counter) * PAGE_SIZE; 2448 case RES_LIMIT: 2449 return (u64)counter->max * PAGE_SIZE; 2450 case RES_MAX_USAGE: 2451 return (u64)counter->watermark * PAGE_SIZE; 2452 case RES_FAILCNT: 2453 return counter->failcnt; 2454 case RES_SOFT_LIMIT: 2455 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE; 2456 default: 2457 BUG(); 2458 } 2459 } 2460 2461 /* 2462 * This function doesn't do anything useful. Its only job is to provide a read 2463 * handler for a file so that cgroup_file_mode() will add read permissions. 2464 */ 2465 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m, 2466 __always_unused void *v) 2467 { 2468 return -EINVAL; 2469 } 2470 2471 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 2472 { 2473 int ret; 2474 2475 mutex_lock(&memcg_max_mutex); 2476 2477 ret = page_counter_set_max(&memcg->tcpmem, max); 2478 if (ret) 2479 goto out; 2480 2481 if (!memcg->tcpmem_active) { 2482 /* 2483 * The active flag needs to be written after the static_key 2484 * update. This is what guarantees that the socket activation 2485 * function is the last one to run. See mem_cgroup_sk_alloc() 2486 * for details, and note that we don't mark any socket as 2487 * belonging to this memcg until that flag is up. 2488 * 2489 * We need to do this, because static_keys will span multiple 2490 * sites, but we can't control their order. If we mark a socket 2491 * as accounted, but the accounting functions are not patched in 2492 * yet, we'll lose accounting. 2493 * 2494 * We never race with the readers in mem_cgroup_sk_alloc(), 2495 * because when this value change, the code to process it is not 2496 * patched in yet. 2497 */ 2498 static_branch_inc(&memcg_sockets_enabled_key); 2499 memcg->tcpmem_active = true; 2500 } 2501 out: 2502 mutex_unlock(&memcg_max_mutex); 2503 return ret; 2504 } 2505 2506 /* 2507 * The user of this function is... 2508 * RES_LIMIT. 2509 */ 2510 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 2511 char *buf, size_t nbytes, loff_t off) 2512 { 2513 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2514 unsigned long nr_pages; 2515 int ret; 2516 2517 buf = strstrip(buf); 2518 ret = page_counter_memparse(buf, "-1", &nr_pages); 2519 if (ret) 2520 return ret; 2521 2522 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2523 case RES_LIMIT: 2524 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 2525 ret = -EINVAL; 2526 break; 2527 } 2528 switch (MEMFILE_TYPE(of_cft(of)->private)) { 2529 case _MEM: 2530 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 2531 break; 2532 case _MEMSWAP: 2533 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 2534 break; 2535 case _KMEM: 2536 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 2537 "Writing any value to this file has no effect. " 2538 "Please report your usecase to linux-mm@kvack.org if you " 2539 "depend on this functionality.\n"); 2540 ret = 0; 2541 break; 2542 case _TCP: 2543 pr_warn_once("kmem.tcp.limit_in_bytes is deprecated and will be removed. " 2544 "Please report your usecase to linux-mm@kvack.org if you " 2545 "depend on this functionality.\n"); 2546 ret = memcg_update_tcp_max(memcg, nr_pages); 2547 break; 2548 } 2549 break; 2550 case RES_SOFT_LIMIT: 2551 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 2552 ret = -EOPNOTSUPP; 2553 } else { 2554 pr_warn_once("soft_limit_in_bytes is deprecated and will be removed. " 2555 "Please report your usecase to linux-mm@kvack.org if you " 2556 "depend on this functionality.\n"); 2557 WRITE_ONCE(memcg->soft_limit, nr_pages); 2558 ret = 0; 2559 } 2560 break; 2561 } 2562 return ret ?: nbytes; 2563 } 2564 2565 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 2566 size_t nbytes, loff_t off) 2567 { 2568 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2569 struct page_counter *counter; 2570 2571 switch (MEMFILE_TYPE(of_cft(of)->private)) { 2572 case _MEM: 2573 counter = &memcg->memory; 2574 break; 2575 case _MEMSWAP: 2576 counter = &memcg->memsw; 2577 break; 2578 case _KMEM: 2579 counter = &memcg->kmem; 2580 break; 2581 case _TCP: 2582 counter = &memcg->tcpmem; 2583 break; 2584 default: 2585 BUG(); 2586 } 2587 2588 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2589 case RES_MAX_USAGE: 2590 page_counter_reset_watermark(counter); 2591 break; 2592 case RES_FAILCNT: 2593 counter->failcnt = 0; 2594 break; 2595 default: 2596 BUG(); 2597 } 2598 2599 return nbytes; 2600 } 2601 2602 #ifdef CONFIG_NUMA 2603 2604 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 2605 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 2606 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 2607 2608 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 2609 int nid, unsigned int lru_mask, bool tree) 2610 { 2611 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 2612 unsigned long nr = 0; 2613 enum lru_list lru; 2614 2615 VM_BUG_ON((unsigned)nid >= nr_node_ids); 2616 2617 for_each_lru(lru) { 2618 if (!(BIT(lru) & lru_mask)) 2619 continue; 2620 if (tree) 2621 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 2622 else 2623 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 2624 } 2625 return nr; 2626 } 2627 2628 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 2629 unsigned int lru_mask, 2630 bool tree) 2631 { 2632 unsigned long nr = 0; 2633 enum lru_list lru; 2634 2635 for_each_lru(lru) { 2636 if (!(BIT(lru) & lru_mask)) 2637 continue; 2638 if (tree) 2639 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 2640 else 2641 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 2642 } 2643 return nr; 2644 } 2645 2646 static int memcg_numa_stat_show(struct seq_file *m, void *v) 2647 { 2648 struct numa_stat { 2649 const char *name; 2650 unsigned int lru_mask; 2651 }; 2652 2653 static const struct numa_stat stats[] = { 2654 { "total", LRU_ALL }, 2655 { "file", LRU_ALL_FILE }, 2656 { "anon", LRU_ALL_ANON }, 2657 { "unevictable", BIT(LRU_UNEVICTABLE) }, 2658 }; 2659 const struct numa_stat *stat; 2660 int nid; 2661 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 2662 2663 mem_cgroup_flush_stats(memcg); 2664 2665 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 2666 seq_printf(m, "%s=%lu", stat->name, 2667 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 2668 false)); 2669 for_each_node_state(nid, N_MEMORY) 2670 seq_printf(m, " N%d=%lu", nid, 2671 mem_cgroup_node_nr_lru_pages(memcg, nid, 2672 stat->lru_mask, false)); 2673 seq_putc(m, '\n'); 2674 } 2675 2676 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 2677 2678 seq_printf(m, "hierarchical_%s=%lu", stat->name, 2679 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 2680 true)); 2681 for_each_node_state(nid, N_MEMORY) 2682 seq_printf(m, " N%d=%lu", nid, 2683 mem_cgroup_node_nr_lru_pages(memcg, nid, 2684 stat->lru_mask, true)); 2685 seq_putc(m, '\n'); 2686 } 2687 2688 return 0; 2689 } 2690 #endif /* CONFIG_NUMA */ 2691 2692 static const unsigned int memcg1_stats[] = { 2693 NR_FILE_PAGES, 2694 NR_ANON_MAPPED, 2695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2696 NR_ANON_THPS, 2697 #endif 2698 NR_SHMEM, 2699 NR_FILE_MAPPED, 2700 NR_FILE_DIRTY, 2701 NR_WRITEBACK, 2702 WORKINGSET_REFAULT_ANON, 2703 WORKINGSET_REFAULT_FILE, 2704 #ifdef CONFIG_SWAP 2705 MEMCG_SWAP, 2706 NR_SWAPCACHE, 2707 #endif 2708 }; 2709 2710 static const char *const memcg1_stat_names[] = { 2711 "cache", 2712 "rss", 2713 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2714 "rss_huge", 2715 #endif 2716 "shmem", 2717 "mapped_file", 2718 "dirty", 2719 "writeback", 2720 "workingset_refault_anon", 2721 "workingset_refault_file", 2722 #ifdef CONFIG_SWAP 2723 "swap", 2724 "swapcached", 2725 #endif 2726 }; 2727 2728 /* Universal VM events cgroup1 shows, original sort order */ 2729 static const unsigned int memcg1_events[] = { 2730 PGPGIN, 2731 PGPGOUT, 2732 PGFAULT, 2733 PGMAJFAULT, 2734 }; 2735 2736 void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 2737 { 2738 unsigned long memory, memsw; 2739 struct mem_cgroup *mi; 2740 unsigned int i; 2741 2742 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 2743 2744 mem_cgroup_flush_stats(memcg); 2745 2746 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 2747 unsigned long nr; 2748 2749 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]); 2750 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr); 2751 } 2752 2753 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 2754 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]), 2755 memcg_events_local(memcg, memcg1_events[i])); 2756 2757 for (i = 0; i < NR_LRU_LISTS; i++) 2758 seq_buf_printf(s, "%s %lu\n", lru_list_name(i), 2759 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 2760 PAGE_SIZE); 2761 2762 /* Hierarchical information */ 2763 memory = memsw = PAGE_COUNTER_MAX; 2764 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 2765 memory = min(memory, READ_ONCE(mi->memory.max)); 2766 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 2767 } 2768 seq_buf_printf(s, "hierarchical_memory_limit %llu\n", 2769 (u64)memory * PAGE_SIZE); 2770 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n", 2771 (u64)memsw * PAGE_SIZE); 2772 2773 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 2774 unsigned long nr; 2775 2776 nr = memcg_page_state_output(memcg, memcg1_stats[i]); 2777 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i], 2778 (u64)nr); 2779 } 2780 2781 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 2782 seq_buf_printf(s, "total_%s %llu\n", 2783 vm_event_name(memcg1_events[i]), 2784 (u64)memcg_events(memcg, memcg1_events[i])); 2785 2786 for (i = 0; i < NR_LRU_LISTS; i++) 2787 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i), 2788 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 2789 PAGE_SIZE); 2790 2791 #ifdef CONFIG_DEBUG_VM 2792 { 2793 pg_data_t *pgdat; 2794 struct mem_cgroup_per_node *mz; 2795 unsigned long anon_cost = 0; 2796 unsigned long file_cost = 0; 2797 2798 for_each_online_pgdat(pgdat) { 2799 mz = memcg->nodeinfo[pgdat->node_id]; 2800 2801 anon_cost += mz->lruvec.anon_cost; 2802 file_cost += mz->lruvec.file_cost; 2803 } 2804 seq_buf_printf(s, "anon_cost %lu\n", anon_cost); 2805 seq_buf_printf(s, "file_cost %lu\n", file_cost); 2806 } 2807 #endif 2808 } 2809 2810 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 2811 struct cftype *cft) 2812 { 2813 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2814 2815 return mem_cgroup_swappiness(memcg); 2816 } 2817 2818 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 2819 struct cftype *cft, u64 val) 2820 { 2821 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2822 2823 if (val > MAX_SWAPPINESS) 2824 return -EINVAL; 2825 2826 if (!mem_cgroup_is_root(memcg)) 2827 WRITE_ONCE(memcg->swappiness, val); 2828 else 2829 WRITE_ONCE(vm_swappiness, val); 2830 2831 return 0; 2832 } 2833 2834 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 2835 { 2836 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 2837 2838 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable)); 2839 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 2840 seq_printf(sf, "oom_kill %lu\n", 2841 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 2842 return 0; 2843 } 2844 2845 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 2846 struct cftype *cft, u64 val) 2847 { 2848 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2849 2850 pr_warn_once("oom_control is deprecated and will be removed. " 2851 "Please report your usecase to linux-mm-@kvack.org if you " 2852 "depend on this functionality. \n"); 2853 2854 /* cannot set to root cgroup and only 0 and 1 are allowed */ 2855 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 2856 return -EINVAL; 2857 2858 WRITE_ONCE(memcg->oom_kill_disable, val); 2859 if (!val) 2860 memcg1_oom_recover(memcg); 2861 2862 return 0; 2863 } 2864 2865 #ifdef CONFIG_SLUB_DEBUG 2866 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 2867 { 2868 /* 2869 * Deprecated. 2870 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 2871 */ 2872 return 0; 2873 } 2874 #endif 2875 2876 struct cftype mem_cgroup_legacy_files[] = { 2877 { 2878 .name = "usage_in_bytes", 2879 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 2880 .read_u64 = mem_cgroup_read_u64, 2881 }, 2882 { 2883 .name = "max_usage_in_bytes", 2884 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 2885 .write = mem_cgroup_reset, 2886 .read_u64 = mem_cgroup_read_u64, 2887 }, 2888 { 2889 .name = "limit_in_bytes", 2890 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 2891 .write = mem_cgroup_write, 2892 .read_u64 = mem_cgroup_read_u64, 2893 }, 2894 { 2895 .name = "soft_limit_in_bytes", 2896 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 2897 .write = mem_cgroup_write, 2898 .read_u64 = mem_cgroup_read_u64, 2899 }, 2900 { 2901 .name = "failcnt", 2902 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 2903 .write = mem_cgroup_reset, 2904 .read_u64 = mem_cgroup_read_u64, 2905 }, 2906 { 2907 .name = "stat", 2908 .seq_show = memory_stat_show, 2909 }, 2910 { 2911 .name = "force_empty", 2912 .write = mem_cgroup_force_empty_write, 2913 }, 2914 { 2915 .name = "use_hierarchy", 2916 .write_u64 = mem_cgroup_hierarchy_write, 2917 .read_u64 = mem_cgroup_hierarchy_read, 2918 }, 2919 { 2920 .name = "cgroup.event_control", /* XXX: for compat */ 2921 .write = memcg_write_event_control, 2922 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 2923 }, 2924 { 2925 .name = "swappiness", 2926 .read_u64 = mem_cgroup_swappiness_read, 2927 .write_u64 = mem_cgroup_swappiness_write, 2928 }, 2929 { 2930 .name = "move_charge_at_immigrate", 2931 .read_u64 = mem_cgroup_move_charge_read, 2932 .write_u64 = mem_cgroup_move_charge_write, 2933 }, 2934 { 2935 .name = "oom_control", 2936 .seq_show = mem_cgroup_oom_control_read, 2937 .write_u64 = mem_cgroup_oom_control_write, 2938 }, 2939 { 2940 .name = "pressure_level", 2941 .seq_show = mem_cgroup_dummy_seq_show, 2942 }, 2943 #ifdef CONFIG_NUMA 2944 { 2945 .name = "numa_stat", 2946 .seq_show = memcg_numa_stat_show, 2947 }, 2948 #endif 2949 { 2950 .name = "kmem.limit_in_bytes", 2951 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 2952 .write = mem_cgroup_write, 2953 .read_u64 = mem_cgroup_read_u64, 2954 }, 2955 { 2956 .name = "kmem.usage_in_bytes", 2957 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 2958 .read_u64 = mem_cgroup_read_u64, 2959 }, 2960 { 2961 .name = "kmem.failcnt", 2962 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 2963 .write = mem_cgroup_reset, 2964 .read_u64 = mem_cgroup_read_u64, 2965 }, 2966 { 2967 .name = "kmem.max_usage_in_bytes", 2968 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 2969 .write = mem_cgroup_reset, 2970 .read_u64 = mem_cgroup_read_u64, 2971 }, 2972 #ifdef CONFIG_SLUB_DEBUG 2973 { 2974 .name = "kmem.slabinfo", 2975 .seq_show = mem_cgroup_slab_show, 2976 }, 2977 #endif 2978 { 2979 .name = "kmem.tcp.limit_in_bytes", 2980 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 2981 .write = mem_cgroup_write, 2982 .read_u64 = mem_cgroup_read_u64, 2983 }, 2984 { 2985 .name = "kmem.tcp.usage_in_bytes", 2986 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 2987 .read_u64 = mem_cgroup_read_u64, 2988 }, 2989 { 2990 .name = "kmem.tcp.failcnt", 2991 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 2992 .write = mem_cgroup_reset, 2993 .read_u64 = mem_cgroup_read_u64, 2994 }, 2995 { 2996 .name = "kmem.tcp.max_usage_in_bytes", 2997 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 2998 .write = mem_cgroup_reset, 2999 .read_u64 = mem_cgroup_read_u64, 3000 }, 3001 { }, /* terminate */ 3002 }; 3003 3004 struct cftype memsw_files[] = { 3005 { 3006 .name = "memsw.usage_in_bytes", 3007 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 3008 .read_u64 = mem_cgroup_read_u64, 3009 }, 3010 { 3011 .name = "memsw.max_usage_in_bytes", 3012 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 3013 .write = mem_cgroup_reset, 3014 .read_u64 = mem_cgroup_read_u64, 3015 }, 3016 { 3017 .name = "memsw.limit_in_bytes", 3018 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 3019 .write = mem_cgroup_write, 3020 .read_u64 = mem_cgroup_read_u64, 3021 }, 3022 { 3023 .name = "memsw.failcnt", 3024 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 3025 .write = mem_cgroup_reset, 3026 .read_u64 = mem_cgroup_read_u64, 3027 }, 3028 { }, /* terminate */ 3029 }; 3030 3031 void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages) 3032 { 3033 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 3034 if (nr_pages > 0) 3035 page_counter_charge(&memcg->kmem, nr_pages); 3036 else 3037 page_counter_uncharge(&memcg->kmem, -nr_pages); 3038 } 3039 } 3040 3041 bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 3042 gfp_t gfp_mask) 3043 { 3044 struct page_counter *fail; 3045 3046 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 3047 memcg->tcpmem_pressure = 0; 3048 return true; 3049 } 3050 memcg->tcpmem_pressure = 1; 3051 if (gfp_mask & __GFP_NOFAIL) { 3052 page_counter_charge(&memcg->tcpmem, nr_pages); 3053 return true; 3054 } 3055 return false; 3056 } 3057 3058 bool memcg1_alloc_events(struct mem_cgroup *memcg) 3059 { 3060 memcg->events_percpu = alloc_percpu_gfp(struct memcg1_events_percpu, 3061 GFP_KERNEL_ACCOUNT); 3062 return !!memcg->events_percpu; 3063 } 3064 3065 void memcg1_free_events(struct mem_cgroup *memcg) 3066 { 3067 if (memcg->events_percpu) 3068 free_percpu(memcg->events_percpu); 3069 } 3070 3071 static int __init memcg1_init(void) 3072 { 3073 int node; 3074 3075 for_each_node(node) { 3076 struct mem_cgroup_tree_per_node *rtpn; 3077 3078 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node); 3079 3080 rtpn->rb_root = RB_ROOT; 3081 rtpn->rb_rightmost = NULL; 3082 spin_lock_init(&rtpn->lock); 3083 soft_limit_tree.rb_tree_per_node[node] = rtpn; 3084 } 3085 3086 return 0; 3087 } 3088 subsys_initcall(memcg1_init); 3089