1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 #include <linux/memcontrol.h> 4 #include <linux/swap.h> 5 #include <linux/mm_inline.h> 6 #include <linux/pagewalk.h> 7 #include <linux/backing-dev.h> 8 #include <linux/swap_cgroup.h> 9 #include <linux/eventfd.h> 10 #include <linux/poll.h> 11 #include <linux/sort.h> 12 #include <linux/file.h> 13 #include <linux/seq_buf.h> 14 15 #include "internal.h" 16 #include "swap.h" 17 #include "memcontrol-v1.h" 18 19 /* 20 * Cgroups above their limits are maintained in a RB-Tree, independent of 21 * their hierarchy representation 22 */ 23 24 struct mem_cgroup_tree_per_node { 25 struct rb_root rb_root; 26 struct rb_node *rb_rightmost; 27 spinlock_t lock; 28 }; 29 30 struct mem_cgroup_tree { 31 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 32 }; 33 34 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 35 36 /* 37 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft 38 * limit reclaim to prevent infinite loops, if they ever occur. 39 */ 40 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 41 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 42 43 /* Stuffs for move charges at task migration. */ 44 /* 45 * Types of charges to be moved. 46 */ 47 #define MOVE_ANON 0x1ULL 48 #define MOVE_FILE 0x2ULL 49 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 50 51 /* "mc" and its members are protected by cgroup_mutex */ 52 static struct move_charge_struct { 53 spinlock_t lock; /* for from, to */ 54 struct mm_struct *mm; 55 struct mem_cgroup *from; 56 struct mem_cgroup *to; 57 unsigned long flags; 58 unsigned long precharge; 59 unsigned long moved_charge; 60 unsigned long moved_swap; 61 struct task_struct *moving_task; /* a task moving charges */ 62 wait_queue_head_t waitq; /* a waitq for other context */ 63 } mc = { 64 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 65 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 66 }; 67 68 /* for OOM */ 69 struct mem_cgroup_eventfd_list { 70 struct list_head list; 71 struct eventfd_ctx *eventfd; 72 }; 73 74 /* 75 * cgroup_event represents events which userspace want to receive. 76 */ 77 struct mem_cgroup_event { 78 /* 79 * memcg which the event belongs to. 80 */ 81 struct mem_cgroup *memcg; 82 /* 83 * eventfd to signal userspace about the event. 84 */ 85 struct eventfd_ctx *eventfd; 86 /* 87 * Each of these stored in a list by the cgroup. 88 */ 89 struct list_head list; 90 /* 91 * register_event() callback will be used to add new userspace 92 * waiter for changes related to this event. Use eventfd_signal() 93 * on eventfd to send notification to userspace. 94 */ 95 int (*register_event)(struct mem_cgroup *memcg, 96 struct eventfd_ctx *eventfd, const char *args); 97 /* 98 * unregister_event() callback will be called when userspace closes 99 * the eventfd or on cgroup removing. This callback must be set, 100 * if you want provide notification functionality. 101 */ 102 void (*unregister_event)(struct mem_cgroup *memcg, 103 struct eventfd_ctx *eventfd); 104 /* 105 * All fields below needed to unregister event when 106 * userspace closes eventfd. 107 */ 108 poll_table pt; 109 wait_queue_head_t *wqh; 110 wait_queue_entry_t wait; 111 struct work_struct remove; 112 }; 113 114 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 115 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 116 #define MEMFILE_ATTR(val) ((val) & 0xffff) 117 118 enum { 119 RES_USAGE, 120 RES_LIMIT, 121 RES_MAX_USAGE, 122 RES_FAILCNT, 123 RES_SOFT_LIMIT, 124 }; 125 126 #ifdef CONFIG_LOCKDEP 127 static struct lockdep_map memcg_oom_lock_dep_map = { 128 .name = "memcg_oom_lock", 129 }; 130 #endif 131 132 DEFINE_SPINLOCK(memcg_oom_lock); 133 134 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 135 struct mem_cgroup_tree_per_node *mctz, 136 unsigned long new_usage_in_excess) 137 { 138 struct rb_node **p = &mctz->rb_root.rb_node; 139 struct rb_node *parent = NULL; 140 struct mem_cgroup_per_node *mz_node; 141 bool rightmost = true; 142 143 if (mz->on_tree) 144 return; 145 146 mz->usage_in_excess = new_usage_in_excess; 147 if (!mz->usage_in_excess) 148 return; 149 while (*p) { 150 parent = *p; 151 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 152 tree_node); 153 if (mz->usage_in_excess < mz_node->usage_in_excess) { 154 p = &(*p)->rb_left; 155 rightmost = false; 156 } else { 157 p = &(*p)->rb_right; 158 } 159 } 160 161 if (rightmost) 162 mctz->rb_rightmost = &mz->tree_node; 163 164 rb_link_node(&mz->tree_node, parent, p); 165 rb_insert_color(&mz->tree_node, &mctz->rb_root); 166 mz->on_tree = true; 167 } 168 169 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 170 struct mem_cgroup_tree_per_node *mctz) 171 { 172 if (!mz->on_tree) 173 return; 174 175 if (&mz->tree_node == mctz->rb_rightmost) 176 mctz->rb_rightmost = rb_prev(&mz->tree_node); 177 178 rb_erase(&mz->tree_node, &mctz->rb_root); 179 mz->on_tree = false; 180 } 181 182 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 183 struct mem_cgroup_tree_per_node *mctz) 184 { 185 unsigned long flags; 186 187 spin_lock_irqsave(&mctz->lock, flags); 188 __mem_cgroup_remove_exceeded(mz, mctz); 189 spin_unlock_irqrestore(&mctz->lock, flags); 190 } 191 192 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 193 { 194 unsigned long nr_pages = page_counter_read(&memcg->memory); 195 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 196 unsigned long excess = 0; 197 198 if (nr_pages > soft_limit) 199 excess = nr_pages - soft_limit; 200 201 return excess; 202 } 203 204 static void memcg1_update_tree(struct mem_cgroup *memcg, int nid) 205 { 206 unsigned long excess; 207 struct mem_cgroup_per_node *mz; 208 struct mem_cgroup_tree_per_node *mctz; 209 210 if (lru_gen_enabled()) { 211 if (soft_limit_excess(memcg)) 212 lru_gen_soft_reclaim(memcg, nid); 213 return; 214 } 215 216 mctz = soft_limit_tree.rb_tree_per_node[nid]; 217 if (!mctz) 218 return; 219 /* 220 * Necessary to update all ancestors when hierarchy is used. 221 * because their event counter is not touched. 222 */ 223 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 224 mz = memcg->nodeinfo[nid]; 225 excess = soft_limit_excess(memcg); 226 /* 227 * We have to update the tree if mz is on RB-tree or 228 * mem is over its softlimit. 229 */ 230 if (excess || mz->on_tree) { 231 unsigned long flags; 232 233 spin_lock_irqsave(&mctz->lock, flags); 234 /* if on-tree, remove it */ 235 if (mz->on_tree) 236 __mem_cgroup_remove_exceeded(mz, mctz); 237 /* 238 * Insert again. mz->usage_in_excess will be updated. 239 * If excess is 0, no tree ops. 240 */ 241 __mem_cgroup_insert_exceeded(mz, mctz, excess); 242 spin_unlock_irqrestore(&mctz->lock, flags); 243 } 244 } 245 } 246 247 void memcg1_remove_from_trees(struct mem_cgroup *memcg) 248 { 249 struct mem_cgroup_tree_per_node *mctz; 250 struct mem_cgroup_per_node *mz; 251 int nid; 252 253 for_each_node(nid) { 254 mz = memcg->nodeinfo[nid]; 255 mctz = soft_limit_tree.rb_tree_per_node[nid]; 256 if (mctz) 257 mem_cgroup_remove_exceeded(mz, mctz); 258 } 259 } 260 261 static struct mem_cgroup_per_node * 262 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 263 { 264 struct mem_cgroup_per_node *mz; 265 266 retry: 267 mz = NULL; 268 if (!mctz->rb_rightmost) 269 goto done; /* Nothing to reclaim from */ 270 271 mz = rb_entry(mctz->rb_rightmost, 272 struct mem_cgroup_per_node, tree_node); 273 /* 274 * Remove the node now but someone else can add it back, 275 * we will to add it back at the end of reclaim to its correct 276 * position in the tree. 277 */ 278 __mem_cgroup_remove_exceeded(mz, mctz); 279 if (!soft_limit_excess(mz->memcg) || 280 !css_tryget(&mz->memcg->css)) 281 goto retry; 282 done: 283 return mz; 284 } 285 286 static struct mem_cgroup_per_node * 287 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 288 { 289 struct mem_cgroup_per_node *mz; 290 291 spin_lock_irq(&mctz->lock); 292 mz = __mem_cgroup_largest_soft_limit_node(mctz); 293 spin_unlock_irq(&mctz->lock); 294 return mz; 295 } 296 297 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 298 pg_data_t *pgdat, 299 gfp_t gfp_mask, 300 unsigned long *total_scanned) 301 { 302 struct mem_cgroup *victim = NULL; 303 int total = 0; 304 int loop = 0; 305 unsigned long excess; 306 unsigned long nr_scanned; 307 struct mem_cgroup_reclaim_cookie reclaim = { 308 .pgdat = pgdat, 309 }; 310 311 excess = soft_limit_excess(root_memcg); 312 313 while (1) { 314 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 315 if (!victim) { 316 loop++; 317 if (loop >= 2) { 318 /* 319 * If we have not been able to reclaim 320 * anything, it might because there are 321 * no reclaimable pages under this hierarchy 322 */ 323 if (!total) 324 break; 325 /* 326 * We want to do more targeted reclaim. 327 * excess >> 2 is not to excessive so as to 328 * reclaim too much, nor too less that we keep 329 * coming back to reclaim from this cgroup 330 */ 331 if (total >= (excess >> 2) || 332 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 333 break; 334 } 335 continue; 336 } 337 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 338 pgdat, &nr_scanned); 339 *total_scanned += nr_scanned; 340 if (!soft_limit_excess(root_memcg)) 341 break; 342 } 343 mem_cgroup_iter_break(root_memcg, victim); 344 return total; 345 } 346 347 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 348 gfp_t gfp_mask, 349 unsigned long *total_scanned) 350 { 351 unsigned long nr_reclaimed = 0; 352 struct mem_cgroup_per_node *mz, *next_mz = NULL; 353 unsigned long reclaimed; 354 int loop = 0; 355 struct mem_cgroup_tree_per_node *mctz; 356 unsigned long excess; 357 358 if (lru_gen_enabled()) 359 return 0; 360 361 if (order > 0) 362 return 0; 363 364 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 365 366 /* 367 * Do not even bother to check the largest node if the root 368 * is empty. Do it lockless to prevent lock bouncing. Races 369 * are acceptable as soft limit is best effort anyway. 370 */ 371 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 372 return 0; 373 374 /* 375 * This loop can run a while, specially if mem_cgroup's continuously 376 * keep exceeding their soft limit and putting the system under 377 * pressure 378 */ 379 do { 380 if (next_mz) 381 mz = next_mz; 382 else 383 mz = mem_cgroup_largest_soft_limit_node(mctz); 384 if (!mz) 385 break; 386 387 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 388 gfp_mask, total_scanned); 389 nr_reclaimed += reclaimed; 390 spin_lock_irq(&mctz->lock); 391 392 /* 393 * If we failed to reclaim anything from this memory cgroup 394 * it is time to move on to the next cgroup 395 */ 396 next_mz = NULL; 397 if (!reclaimed) 398 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 399 400 excess = soft_limit_excess(mz->memcg); 401 /* 402 * One school of thought says that we should not add 403 * back the node to the tree if reclaim returns 0. 404 * But our reclaim could return 0, simply because due 405 * to priority we are exposing a smaller subset of 406 * memory to reclaim from. Consider this as a longer 407 * term TODO. 408 */ 409 /* If excess == 0, no tree ops */ 410 __mem_cgroup_insert_exceeded(mz, mctz, excess); 411 spin_unlock_irq(&mctz->lock); 412 css_put(&mz->memcg->css); 413 loop++; 414 /* 415 * Could not reclaim anything and there are no more 416 * mem cgroups to try or we seem to be looping without 417 * reclaiming anything. 418 */ 419 if (!nr_reclaimed && 420 (next_mz == NULL || 421 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 422 break; 423 } while (!nr_reclaimed); 424 if (next_mz) 425 css_put(&next_mz->memcg->css); 426 return nr_reclaimed; 427 } 428 429 /* 430 * A routine for checking "mem" is under move_account() or not. 431 * 432 * Checking a cgroup is mc.from or mc.to or under hierarchy of 433 * moving cgroups. This is for waiting at high-memory pressure 434 * caused by "move". 435 */ 436 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 437 { 438 struct mem_cgroup *from; 439 struct mem_cgroup *to; 440 bool ret = false; 441 /* 442 * Unlike task_move routines, we access mc.to, mc.from not under 443 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 444 */ 445 spin_lock(&mc.lock); 446 from = mc.from; 447 to = mc.to; 448 if (!from) 449 goto unlock; 450 451 ret = mem_cgroup_is_descendant(from, memcg) || 452 mem_cgroup_is_descendant(to, memcg); 453 unlock: 454 spin_unlock(&mc.lock); 455 return ret; 456 } 457 458 bool memcg1_wait_acct_move(struct mem_cgroup *memcg) 459 { 460 if (mc.moving_task && current != mc.moving_task) { 461 if (mem_cgroup_under_move(memcg)) { 462 DEFINE_WAIT(wait); 463 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 464 /* moving charge context might have finished. */ 465 if (mc.moving_task) 466 schedule(); 467 finish_wait(&mc.waitq, &wait); 468 return true; 469 } 470 } 471 return false; 472 } 473 474 /** 475 * folio_memcg_lock - Bind a folio to its memcg. 476 * @folio: The folio. 477 * 478 * This function prevents unlocked LRU folios from being moved to 479 * another cgroup. 480 * 481 * It ensures lifetime of the bound memcg. The caller is responsible 482 * for the lifetime of the folio. 483 */ 484 void folio_memcg_lock(struct folio *folio) 485 { 486 struct mem_cgroup *memcg; 487 unsigned long flags; 488 489 /* 490 * The RCU lock is held throughout the transaction. The fast 491 * path can get away without acquiring the memcg->move_lock 492 * because page moving starts with an RCU grace period. 493 */ 494 rcu_read_lock(); 495 496 if (mem_cgroup_disabled()) 497 return; 498 again: 499 memcg = folio_memcg(folio); 500 if (unlikely(!memcg)) 501 return; 502 503 #ifdef CONFIG_PROVE_LOCKING 504 local_irq_save(flags); 505 might_lock(&memcg->move_lock); 506 local_irq_restore(flags); 507 #endif 508 509 if (atomic_read(&memcg->moving_account) <= 0) 510 return; 511 512 spin_lock_irqsave(&memcg->move_lock, flags); 513 if (memcg != folio_memcg(folio)) { 514 spin_unlock_irqrestore(&memcg->move_lock, flags); 515 goto again; 516 } 517 518 /* 519 * When charge migration first begins, we can have multiple 520 * critical sections holding the fast-path RCU lock and one 521 * holding the slowpath move_lock. Track the task who has the 522 * move_lock for folio_memcg_unlock(). 523 */ 524 memcg->move_lock_task = current; 525 memcg->move_lock_flags = flags; 526 } 527 528 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 529 { 530 if (memcg && memcg->move_lock_task == current) { 531 unsigned long flags = memcg->move_lock_flags; 532 533 memcg->move_lock_task = NULL; 534 memcg->move_lock_flags = 0; 535 536 spin_unlock_irqrestore(&memcg->move_lock, flags); 537 } 538 539 rcu_read_unlock(); 540 } 541 542 /** 543 * folio_memcg_unlock - Release the binding between a folio and its memcg. 544 * @folio: The folio. 545 * 546 * This releases the binding created by folio_memcg_lock(). This does 547 * not change the accounting of this folio to its memcg, but it does 548 * permit others to change it. 549 */ 550 void folio_memcg_unlock(struct folio *folio) 551 { 552 __folio_memcg_unlock(folio_memcg(folio)); 553 } 554 555 #ifdef CONFIG_SWAP 556 /** 557 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 558 * @entry: swap entry to be moved 559 * @from: mem_cgroup which the entry is moved from 560 * @to: mem_cgroup which the entry is moved to 561 * 562 * It succeeds only when the swap_cgroup's record for this entry is the same 563 * as the mem_cgroup's id of @from. 564 * 565 * Returns 0 on success, -EINVAL on failure. 566 * 567 * The caller must have charged to @to, IOW, called page_counter_charge() about 568 * both res and memsw, and called css_get(). 569 */ 570 static int mem_cgroup_move_swap_account(swp_entry_t entry, 571 struct mem_cgroup *from, struct mem_cgroup *to) 572 { 573 unsigned short old_id, new_id; 574 575 old_id = mem_cgroup_id(from); 576 new_id = mem_cgroup_id(to); 577 578 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 579 mod_memcg_state(from, MEMCG_SWAP, -1); 580 mod_memcg_state(to, MEMCG_SWAP, 1); 581 return 0; 582 } 583 return -EINVAL; 584 } 585 #else 586 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 587 struct mem_cgroup *from, struct mem_cgroup *to) 588 { 589 return -EINVAL; 590 } 591 #endif 592 593 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 594 struct cftype *cft) 595 { 596 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 597 } 598 599 #ifdef CONFIG_MMU 600 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 601 struct cftype *cft, u64 val) 602 { 603 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 604 605 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " 606 "Please report your usecase to linux-mm@kvack.org if you " 607 "depend on this functionality.\n"); 608 609 if (val & ~MOVE_MASK) 610 return -EINVAL; 611 612 /* 613 * No kind of locking is needed in here, because ->can_attach() will 614 * check this value once in the beginning of the process, and then carry 615 * on with stale data. This means that changes to this value will only 616 * affect task migrations starting after the change. 617 */ 618 memcg->move_charge_at_immigrate = val; 619 return 0; 620 } 621 #else 622 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 623 struct cftype *cft, u64 val) 624 { 625 return -ENOSYS; 626 } 627 #endif 628 629 #ifdef CONFIG_MMU 630 /* Handlers for move charge at task migration. */ 631 static int mem_cgroup_do_precharge(unsigned long count) 632 { 633 int ret; 634 635 /* Try a single bulk charge without reclaim first, kswapd may wake */ 636 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 637 if (!ret) { 638 mc.precharge += count; 639 return ret; 640 } 641 642 /* Try charges one by one with reclaim, but do not retry */ 643 while (count--) { 644 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 645 if (ret) 646 return ret; 647 mc.precharge++; 648 cond_resched(); 649 } 650 return 0; 651 } 652 653 union mc_target { 654 struct folio *folio; 655 swp_entry_t ent; 656 }; 657 658 enum mc_target_type { 659 MC_TARGET_NONE = 0, 660 MC_TARGET_PAGE, 661 MC_TARGET_SWAP, 662 MC_TARGET_DEVICE, 663 }; 664 665 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 666 unsigned long addr, pte_t ptent) 667 { 668 struct page *page = vm_normal_page(vma, addr, ptent); 669 670 if (!page) 671 return NULL; 672 if (PageAnon(page)) { 673 if (!(mc.flags & MOVE_ANON)) 674 return NULL; 675 } else { 676 if (!(mc.flags & MOVE_FILE)) 677 return NULL; 678 } 679 get_page(page); 680 681 return page; 682 } 683 684 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 685 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 686 pte_t ptent, swp_entry_t *entry) 687 { 688 struct page *page = NULL; 689 swp_entry_t ent = pte_to_swp_entry(ptent); 690 691 if (!(mc.flags & MOVE_ANON)) 692 return NULL; 693 694 /* 695 * Handle device private pages that are not accessible by the CPU, but 696 * stored as special swap entries in the page table. 697 */ 698 if (is_device_private_entry(ent)) { 699 page = pfn_swap_entry_to_page(ent); 700 if (!get_page_unless_zero(page)) 701 return NULL; 702 return page; 703 } 704 705 if (non_swap_entry(ent)) 706 return NULL; 707 708 /* 709 * Because swap_cache_get_folio() updates some statistics counter, 710 * we call find_get_page() with swapper_space directly. 711 */ 712 page = find_get_page(swap_address_space(ent), swap_cache_index(ent)); 713 entry->val = ent.val; 714 715 return page; 716 } 717 #else 718 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 719 pte_t ptent, swp_entry_t *entry) 720 { 721 return NULL; 722 } 723 #endif 724 725 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 726 unsigned long addr, pte_t ptent) 727 { 728 unsigned long index; 729 struct folio *folio; 730 731 if (!vma->vm_file) /* anonymous vma */ 732 return NULL; 733 if (!(mc.flags & MOVE_FILE)) 734 return NULL; 735 736 /* folio is moved even if it's not RSS of this task(page-faulted). */ 737 /* shmem/tmpfs may report page out on swap: account for that too. */ 738 index = linear_page_index(vma, addr); 739 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index); 740 if (IS_ERR(folio)) 741 return NULL; 742 return folio_file_page(folio, index); 743 } 744 745 /** 746 * mem_cgroup_move_account - move account of the folio 747 * @folio: The folio. 748 * @compound: charge the page as compound or small page 749 * @from: mem_cgroup which the folio is moved from. 750 * @to: mem_cgroup which the folio is moved to. @from != @to. 751 * 752 * The folio must be locked and not on the LRU. 753 * 754 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 755 * from old cgroup. 756 */ 757 static int mem_cgroup_move_account(struct folio *folio, 758 bool compound, 759 struct mem_cgroup *from, 760 struct mem_cgroup *to) 761 { 762 struct lruvec *from_vec, *to_vec; 763 struct pglist_data *pgdat; 764 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 765 int nid, ret; 766 767 VM_BUG_ON(from == to); 768 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 769 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 770 VM_BUG_ON(compound && !folio_test_large(folio)); 771 772 ret = -EINVAL; 773 if (folio_memcg(folio) != from) 774 goto out; 775 776 pgdat = folio_pgdat(folio); 777 from_vec = mem_cgroup_lruvec(from, pgdat); 778 to_vec = mem_cgroup_lruvec(to, pgdat); 779 780 folio_memcg_lock(folio); 781 782 if (folio_test_anon(folio)) { 783 if (folio_mapped(folio)) { 784 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 785 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 786 if (folio_test_pmd_mappable(folio)) { 787 __mod_lruvec_state(from_vec, NR_ANON_THPS, 788 -nr_pages); 789 __mod_lruvec_state(to_vec, NR_ANON_THPS, 790 nr_pages); 791 } 792 } 793 } else { 794 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 795 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 796 797 if (folio_test_swapbacked(folio)) { 798 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 799 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 800 } 801 802 if (folio_mapped(folio)) { 803 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 804 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 805 } 806 807 if (folio_test_dirty(folio)) { 808 struct address_space *mapping = folio_mapping(folio); 809 810 if (mapping_can_writeback(mapping)) { 811 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 812 -nr_pages); 813 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 814 nr_pages); 815 } 816 } 817 } 818 819 #ifdef CONFIG_SWAP 820 if (folio_test_swapcache(folio)) { 821 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages); 822 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages); 823 } 824 #endif 825 if (folio_test_writeback(folio)) { 826 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 827 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 828 } 829 830 /* 831 * All state has been migrated, let's switch to the new memcg. 832 * 833 * It is safe to change page's memcg here because the page 834 * is referenced, charged, isolated, and locked: we can't race 835 * with (un)charging, migration, LRU putback, or anything else 836 * that would rely on a stable page's memory cgroup. 837 * 838 * Note that folio_memcg_lock is a memcg lock, not a page lock, 839 * to save space. As soon as we switch page's memory cgroup to a 840 * new memcg that isn't locked, the above state can change 841 * concurrently again. Make sure we're truly done with it. 842 */ 843 smp_mb(); 844 845 css_get(&to->css); 846 css_put(&from->css); 847 848 folio->memcg_data = (unsigned long)to; 849 850 __folio_memcg_unlock(from); 851 852 ret = 0; 853 nid = folio_nid(folio); 854 855 local_irq_disable(); 856 mem_cgroup_charge_statistics(to, nr_pages); 857 memcg1_check_events(to, nid); 858 mem_cgroup_charge_statistics(from, -nr_pages); 859 memcg1_check_events(from, nid); 860 local_irq_enable(); 861 out: 862 return ret; 863 } 864 865 /** 866 * get_mctgt_type - get target type of moving charge 867 * @vma: the vma the pte to be checked belongs 868 * @addr: the address corresponding to the pte to be checked 869 * @ptent: the pte to be checked 870 * @target: the pointer the target page or swap ent will be stored(can be NULL) 871 * 872 * Context: Called with pte lock held. 873 * Return: 874 * * MC_TARGET_NONE - If the pte is not a target for move charge. 875 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for 876 * move charge. If @target is not NULL, the folio is stored in target->folio 877 * with extra refcnt taken (Caller should release it). 878 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a 879 * target for charge migration. If @target is not NULL, the entry is 880 * stored in target->ent. 881 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and 882 * thus not on the lru. For now such page is charged like a regular page 883 * would be as it is just special memory taking the place of a regular page. 884 * See Documentations/vm/hmm.txt and include/linux/hmm.h 885 */ 886 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 887 unsigned long addr, pte_t ptent, union mc_target *target) 888 { 889 struct page *page = NULL; 890 struct folio *folio; 891 enum mc_target_type ret = MC_TARGET_NONE; 892 swp_entry_t ent = { .val = 0 }; 893 894 if (pte_present(ptent)) 895 page = mc_handle_present_pte(vma, addr, ptent); 896 else if (pte_none_mostly(ptent)) 897 /* 898 * PTE markers should be treated as a none pte here, separated 899 * from other swap handling below. 900 */ 901 page = mc_handle_file_pte(vma, addr, ptent); 902 else if (is_swap_pte(ptent)) 903 page = mc_handle_swap_pte(vma, ptent, &ent); 904 905 if (page) 906 folio = page_folio(page); 907 if (target && page) { 908 if (!folio_trylock(folio)) { 909 folio_put(folio); 910 return ret; 911 } 912 /* 913 * page_mapped() must be stable during the move. This 914 * pte is locked, so if it's present, the page cannot 915 * become unmapped. If it isn't, we have only partial 916 * control over the mapped state: the page lock will 917 * prevent new faults against pagecache and swapcache, 918 * so an unmapped page cannot become mapped. However, 919 * if the page is already mapped elsewhere, it can 920 * unmap, and there is nothing we can do about it. 921 * Alas, skip moving the page in this case. 922 */ 923 if (!pte_present(ptent) && page_mapped(page)) { 924 folio_unlock(folio); 925 folio_put(folio); 926 return ret; 927 } 928 } 929 930 if (!page && !ent.val) 931 return ret; 932 if (page) { 933 /* 934 * Do only loose check w/o serialization. 935 * mem_cgroup_move_account() checks the page is valid or 936 * not under LRU exclusion. 937 */ 938 if (folio_memcg(folio) == mc.from) { 939 ret = MC_TARGET_PAGE; 940 if (folio_is_device_private(folio) || 941 folio_is_device_coherent(folio)) 942 ret = MC_TARGET_DEVICE; 943 if (target) 944 target->folio = folio; 945 } 946 if (!ret || !target) { 947 if (target) 948 folio_unlock(folio); 949 folio_put(folio); 950 } 951 } 952 /* 953 * There is a swap entry and a page doesn't exist or isn't charged. 954 * But we cannot move a tail-page in a THP. 955 */ 956 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 957 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 958 ret = MC_TARGET_SWAP; 959 if (target) 960 target->ent = ent; 961 } 962 return ret; 963 } 964 965 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 966 /* 967 * We don't consider PMD mapped swapping or file mapped pages because THP does 968 * not support them for now. 969 * Caller should make sure that pmd_trans_huge(pmd) is true. 970 */ 971 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 972 unsigned long addr, pmd_t pmd, union mc_target *target) 973 { 974 struct page *page = NULL; 975 struct folio *folio; 976 enum mc_target_type ret = MC_TARGET_NONE; 977 978 if (unlikely(is_swap_pmd(pmd))) { 979 VM_BUG_ON(thp_migration_supported() && 980 !is_pmd_migration_entry(pmd)); 981 return ret; 982 } 983 page = pmd_page(pmd); 984 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 985 folio = page_folio(page); 986 if (!(mc.flags & MOVE_ANON)) 987 return ret; 988 if (folio_memcg(folio) == mc.from) { 989 ret = MC_TARGET_PAGE; 990 if (target) { 991 folio_get(folio); 992 if (!folio_trylock(folio)) { 993 folio_put(folio); 994 return MC_TARGET_NONE; 995 } 996 target->folio = folio; 997 } 998 } 999 return ret; 1000 } 1001 #else 1002 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 1003 unsigned long addr, pmd_t pmd, union mc_target *target) 1004 { 1005 return MC_TARGET_NONE; 1006 } 1007 #endif 1008 1009 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 1010 unsigned long addr, unsigned long end, 1011 struct mm_walk *walk) 1012 { 1013 struct vm_area_struct *vma = walk->vma; 1014 pte_t *pte; 1015 spinlock_t *ptl; 1016 1017 ptl = pmd_trans_huge_lock(pmd, vma); 1018 if (ptl) { 1019 /* 1020 * Note their can not be MC_TARGET_DEVICE for now as we do not 1021 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 1022 * this might change. 1023 */ 1024 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 1025 mc.precharge += HPAGE_PMD_NR; 1026 spin_unlock(ptl); 1027 return 0; 1028 } 1029 1030 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1031 if (!pte) 1032 return 0; 1033 for (; addr != end; pte++, addr += PAGE_SIZE) 1034 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL)) 1035 mc.precharge++; /* increment precharge temporarily */ 1036 pte_unmap_unlock(pte - 1, ptl); 1037 cond_resched(); 1038 1039 return 0; 1040 } 1041 1042 static const struct mm_walk_ops precharge_walk_ops = { 1043 .pmd_entry = mem_cgroup_count_precharge_pte_range, 1044 .walk_lock = PGWALK_RDLOCK, 1045 }; 1046 1047 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 1048 { 1049 unsigned long precharge; 1050 1051 mmap_read_lock(mm); 1052 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL); 1053 mmap_read_unlock(mm); 1054 1055 precharge = mc.precharge; 1056 mc.precharge = 0; 1057 1058 return precharge; 1059 } 1060 1061 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 1062 { 1063 unsigned long precharge = mem_cgroup_count_precharge(mm); 1064 1065 VM_BUG_ON(mc.moving_task); 1066 mc.moving_task = current; 1067 return mem_cgroup_do_precharge(precharge); 1068 } 1069 1070 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 1071 static void __mem_cgroup_clear_mc(void) 1072 { 1073 struct mem_cgroup *from = mc.from; 1074 struct mem_cgroup *to = mc.to; 1075 1076 /* we must uncharge all the leftover precharges from mc.to */ 1077 if (mc.precharge) { 1078 mem_cgroup_cancel_charge(mc.to, mc.precharge); 1079 mc.precharge = 0; 1080 } 1081 /* 1082 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 1083 * we must uncharge here. 1084 */ 1085 if (mc.moved_charge) { 1086 mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 1087 mc.moved_charge = 0; 1088 } 1089 /* we must fixup refcnts and charges */ 1090 if (mc.moved_swap) { 1091 /* uncharge swap account from the old cgroup */ 1092 if (!mem_cgroup_is_root(mc.from)) 1093 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 1094 1095 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 1096 1097 /* 1098 * we charged both to->memory and to->memsw, so we 1099 * should uncharge to->memory. 1100 */ 1101 if (!mem_cgroup_is_root(mc.to)) 1102 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 1103 1104 mc.moved_swap = 0; 1105 } 1106 memcg1_oom_recover(from); 1107 memcg1_oom_recover(to); 1108 wake_up_all(&mc.waitq); 1109 } 1110 1111 static void mem_cgroup_clear_mc(void) 1112 { 1113 struct mm_struct *mm = mc.mm; 1114 1115 /* 1116 * we must clear moving_task before waking up waiters at the end of 1117 * task migration. 1118 */ 1119 mc.moving_task = NULL; 1120 __mem_cgroup_clear_mc(); 1121 spin_lock(&mc.lock); 1122 mc.from = NULL; 1123 mc.to = NULL; 1124 mc.mm = NULL; 1125 spin_unlock(&mc.lock); 1126 1127 mmput(mm); 1128 } 1129 1130 int memcg1_can_attach(struct cgroup_taskset *tset) 1131 { 1132 struct cgroup_subsys_state *css; 1133 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 1134 struct mem_cgroup *from; 1135 struct task_struct *leader, *p; 1136 struct mm_struct *mm; 1137 unsigned long move_flags; 1138 int ret = 0; 1139 1140 /* charge immigration isn't supported on the default hierarchy */ 1141 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1142 return 0; 1143 1144 /* 1145 * Multi-process migrations only happen on the default hierarchy 1146 * where charge immigration is not used. Perform charge 1147 * immigration if @tset contains a leader and whine if there are 1148 * multiple. 1149 */ 1150 p = NULL; 1151 cgroup_taskset_for_each_leader(leader, css, tset) { 1152 WARN_ON_ONCE(p); 1153 p = leader; 1154 memcg = mem_cgroup_from_css(css); 1155 } 1156 if (!p) 1157 return 0; 1158 1159 /* 1160 * We are now committed to this value whatever it is. Changes in this 1161 * tunable will only affect upcoming migrations, not the current one. 1162 * So we need to save it, and keep it going. 1163 */ 1164 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 1165 if (!move_flags) 1166 return 0; 1167 1168 from = mem_cgroup_from_task(p); 1169 1170 VM_BUG_ON(from == memcg); 1171 1172 mm = get_task_mm(p); 1173 if (!mm) 1174 return 0; 1175 /* We move charges only when we move a owner of the mm */ 1176 if (mm->owner == p) { 1177 VM_BUG_ON(mc.from); 1178 VM_BUG_ON(mc.to); 1179 VM_BUG_ON(mc.precharge); 1180 VM_BUG_ON(mc.moved_charge); 1181 VM_BUG_ON(mc.moved_swap); 1182 1183 spin_lock(&mc.lock); 1184 mc.mm = mm; 1185 mc.from = from; 1186 mc.to = memcg; 1187 mc.flags = move_flags; 1188 spin_unlock(&mc.lock); 1189 /* We set mc.moving_task later */ 1190 1191 ret = mem_cgroup_precharge_mc(mm); 1192 if (ret) 1193 mem_cgroup_clear_mc(); 1194 } else { 1195 mmput(mm); 1196 } 1197 return ret; 1198 } 1199 1200 void memcg1_cancel_attach(struct cgroup_taskset *tset) 1201 { 1202 if (mc.to) 1203 mem_cgroup_clear_mc(); 1204 } 1205 1206 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 1207 unsigned long addr, unsigned long end, 1208 struct mm_walk *walk) 1209 { 1210 int ret = 0; 1211 struct vm_area_struct *vma = walk->vma; 1212 pte_t *pte; 1213 spinlock_t *ptl; 1214 enum mc_target_type target_type; 1215 union mc_target target; 1216 struct folio *folio; 1217 1218 ptl = pmd_trans_huge_lock(pmd, vma); 1219 if (ptl) { 1220 if (mc.precharge < HPAGE_PMD_NR) { 1221 spin_unlock(ptl); 1222 return 0; 1223 } 1224 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 1225 if (target_type == MC_TARGET_PAGE) { 1226 folio = target.folio; 1227 if (folio_isolate_lru(folio)) { 1228 if (!mem_cgroup_move_account(folio, true, 1229 mc.from, mc.to)) { 1230 mc.precharge -= HPAGE_PMD_NR; 1231 mc.moved_charge += HPAGE_PMD_NR; 1232 } 1233 folio_putback_lru(folio); 1234 } 1235 folio_unlock(folio); 1236 folio_put(folio); 1237 } else if (target_type == MC_TARGET_DEVICE) { 1238 folio = target.folio; 1239 if (!mem_cgroup_move_account(folio, true, 1240 mc.from, mc.to)) { 1241 mc.precharge -= HPAGE_PMD_NR; 1242 mc.moved_charge += HPAGE_PMD_NR; 1243 } 1244 folio_unlock(folio); 1245 folio_put(folio); 1246 } 1247 spin_unlock(ptl); 1248 return 0; 1249 } 1250 1251 retry: 1252 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1253 if (!pte) 1254 return 0; 1255 for (; addr != end; addr += PAGE_SIZE) { 1256 pte_t ptent = ptep_get(pte++); 1257 bool device = false; 1258 swp_entry_t ent; 1259 1260 if (!mc.precharge) 1261 break; 1262 1263 switch (get_mctgt_type(vma, addr, ptent, &target)) { 1264 case MC_TARGET_DEVICE: 1265 device = true; 1266 fallthrough; 1267 case MC_TARGET_PAGE: 1268 folio = target.folio; 1269 /* 1270 * We can have a part of the split pmd here. Moving it 1271 * can be done but it would be too convoluted so simply 1272 * ignore such a partial THP and keep it in original 1273 * memcg. There should be somebody mapping the head. 1274 */ 1275 if (folio_test_large(folio)) 1276 goto put; 1277 if (!device && !folio_isolate_lru(folio)) 1278 goto put; 1279 if (!mem_cgroup_move_account(folio, false, 1280 mc.from, mc.to)) { 1281 mc.precharge--; 1282 /* we uncharge from mc.from later. */ 1283 mc.moved_charge++; 1284 } 1285 if (!device) 1286 folio_putback_lru(folio); 1287 put: /* get_mctgt_type() gets & locks the page */ 1288 folio_unlock(folio); 1289 folio_put(folio); 1290 break; 1291 case MC_TARGET_SWAP: 1292 ent = target.ent; 1293 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 1294 mc.precharge--; 1295 mem_cgroup_id_get_many(mc.to, 1); 1296 /* we fixup other refcnts and charges later. */ 1297 mc.moved_swap++; 1298 } 1299 break; 1300 default: 1301 break; 1302 } 1303 } 1304 pte_unmap_unlock(pte - 1, ptl); 1305 cond_resched(); 1306 1307 if (addr != end) { 1308 /* 1309 * We have consumed all precharges we got in can_attach(). 1310 * We try charge one by one, but don't do any additional 1311 * charges to mc.to if we have failed in charge once in attach() 1312 * phase. 1313 */ 1314 ret = mem_cgroup_do_precharge(1); 1315 if (!ret) 1316 goto retry; 1317 } 1318 1319 return ret; 1320 } 1321 1322 static const struct mm_walk_ops charge_walk_ops = { 1323 .pmd_entry = mem_cgroup_move_charge_pte_range, 1324 .walk_lock = PGWALK_RDLOCK, 1325 }; 1326 1327 static void mem_cgroup_move_charge(void) 1328 { 1329 lru_add_drain_all(); 1330 /* 1331 * Signal folio_memcg_lock() to take the memcg's move_lock 1332 * while we're moving its pages to another memcg. Then wait 1333 * for already started RCU-only updates to finish. 1334 */ 1335 atomic_inc(&mc.from->moving_account); 1336 synchronize_rcu(); 1337 retry: 1338 if (unlikely(!mmap_read_trylock(mc.mm))) { 1339 /* 1340 * Someone who are holding the mmap_lock might be waiting in 1341 * waitq. So we cancel all extra charges, wake up all waiters, 1342 * and retry. Because we cancel precharges, we might not be able 1343 * to move enough charges, but moving charge is a best-effort 1344 * feature anyway, so it wouldn't be a big problem. 1345 */ 1346 __mem_cgroup_clear_mc(); 1347 cond_resched(); 1348 goto retry; 1349 } 1350 /* 1351 * When we have consumed all precharges and failed in doing 1352 * additional charge, the page walk just aborts. 1353 */ 1354 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL); 1355 mmap_read_unlock(mc.mm); 1356 atomic_dec(&mc.from->moving_account); 1357 } 1358 1359 void memcg1_move_task(void) 1360 { 1361 if (mc.to) { 1362 mem_cgroup_move_charge(); 1363 mem_cgroup_clear_mc(); 1364 } 1365 } 1366 1367 #else /* !CONFIG_MMU */ 1368 int memcg1_can_attach(struct cgroup_taskset *tset) 1369 { 1370 return 0; 1371 } 1372 void memcg1_cancel_attach(struct cgroup_taskset *tset) 1373 { 1374 } 1375 void memcg1_move_task(void) 1376 { 1377 } 1378 #endif 1379 1380 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 1381 { 1382 struct mem_cgroup_threshold_ary *t; 1383 unsigned long usage; 1384 int i; 1385 1386 rcu_read_lock(); 1387 if (!swap) 1388 t = rcu_dereference(memcg->thresholds.primary); 1389 else 1390 t = rcu_dereference(memcg->memsw_thresholds.primary); 1391 1392 if (!t) 1393 goto unlock; 1394 1395 usage = mem_cgroup_usage(memcg, swap); 1396 1397 /* 1398 * current_threshold points to threshold just below or equal to usage. 1399 * If it's not true, a threshold was crossed after last 1400 * call of __mem_cgroup_threshold(). 1401 */ 1402 i = t->current_threshold; 1403 1404 /* 1405 * Iterate backward over array of thresholds starting from 1406 * current_threshold and check if a threshold is crossed. 1407 * If none of thresholds below usage is crossed, we read 1408 * only one element of the array here. 1409 */ 1410 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 1411 eventfd_signal(t->entries[i].eventfd); 1412 1413 /* i = current_threshold + 1 */ 1414 i++; 1415 1416 /* 1417 * Iterate forward over array of thresholds starting from 1418 * current_threshold+1 and check if a threshold is crossed. 1419 * If none of thresholds above usage is crossed, we read 1420 * only one element of the array here. 1421 */ 1422 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 1423 eventfd_signal(t->entries[i].eventfd); 1424 1425 /* Update current_threshold */ 1426 t->current_threshold = i - 1; 1427 unlock: 1428 rcu_read_unlock(); 1429 } 1430 1431 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 1432 { 1433 while (memcg) { 1434 __mem_cgroup_threshold(memcg, false); 1435 if (do_memsw_account()) 1436 __mem_cgroup_threshold(memcg, true); 1437 1438 memcg = parent_mem_cgroup(memcg); 1439 } 1440 } 1441 1442 /* 1443 * Check events in order. 1444 * 1445 */ 1446 void memcg1_check_events(struct mem_cgroup *memcg, int nid) 1447 { 1448 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1449 return; 1450 1451 /* threshold event is triggered in finer grain than soft limit */ 1452 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1453 MEM_CGROUP_TARGET_THRESH))) { 1454 bool do_softlimit; 1455 1456 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1457 MEM_CGROUP_TARGET_SOFTLIMIT); 1458 mem_cgroup_threshold(memcg); 1459 if (unlikely(do_softlimit)) 1460 memcg1_update_tree(memcg, nid); 1461 } 1462 } 1463 1464 static int compare_thresholds(const void *a, const void *b) 1465 { 1466 const struct mem_cgroup_threshold *_a = a; 1467 const struct mem_cgroup_threshold *_b = b; 1468 1469 if (_a->threshold > _b->threshold) 1470 return 1; 1471 1472 if (_a->threshold < _b->threshold) 1473 return -1; 1474 1475 return 0; 1476 } 1477 1478 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 1479 { 1480 struct mem_cgroup_eventfd_list *ev; 1481 1482 spin_lock(&memcg_oom_lock); 1483 1484 list_for_each_entry(ev, &memcg->oom_notify, list) 1485 eventfd_signal(ev->eventfd); 1486 1487 spin_unlock(&memcg_oom_lock); 1488 return 0; 1489 } 1490 1491 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 1492 { 1493 struct mem_cgroup *iter; 1494 1495 for_each_mem_cgroup_tree(iter, memcg) 1496 mem_cgroup_oom_notify_cb(iter); 1497 } 1498 1499 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 1500 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 1501 { 1502 struct mem_cgroup_thresholds *thresholds; 1503 struct mem_cgroup_threshold_ary *new; 1504 unsigned long threshold; 1505 unsigned long usage; 1506 int i, size, ret; 1507 1508 ret = page_counter_memparse(args, "-1", &threshold); 1509 if (ret) 1510 return ret; 1511 1512 mutex_lock(&memcg->thresholds_lock); 1513 1514 if (type == _MEM) { 1515 thresholds = &memcg->thresholds; 1516 usage = mem_cgroup_usage(memcg, false); 1517 } else if (type == _MEMSWAP) { 1518 thresholds = &memcg->memsw_thresholds; 1519 usage = mem_cgroup_usage(memcg, true); 1520 } else 1521 BUG(); 1522 1523 /* Check if a threshold crossed before adding a new one */ 1524 if (thresholds->primary) 1525 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 1526 1527 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 1528 1529 /* Allocate memory for new array of thresholds */ 1530 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 1531 if (!new) { 1532 ret = -ENOMEM; 1533 goto unlock; 1534 } 1535 new->size = size; 1536 1537 /* Copy thresholds (if any) to new array */ 1538 if (thresholds->primary) 1539 memcpy(new->entries, thresholds->primary->entries, 1540 flex_array_size(new, entries, size - 1)); 1541 1542 /* Add new threshold */ 1543 new->entries[size - 1].eventfd = eventfd; 1544 new->entries[size - 1].threshold = threshold; 1545 1546 /* Sort thresholds. Registering of new threshold isn't time-critical */ 1547 sort(new->entries, size, sizeof(*new->entries), 1548 compare_thresholds, NULL); 1549 1550 /* Find current threshold */ 1551 new->current_threshold = -1; 1552 for (i = 0; i < size; i++) { 1553 if (new->entries[i].threshold <= usage) { 1554 /* 1555 * new->current_threshold will not be used until 1556 * rcu_assign_pointer(), so it's safe to increment 1557 * it here. 1558 */ 1559 ++new->current_threshold; 1560 } else 1561 break; 1562 } 1563 1564 /* Free old spare buffer and save old primary buffer as spare */ 1565 kfree(thresholds->spare); 1566 thresholds->spare = thresholds->primary; 1567 1568 rcu_assign_pointer(thresholds->primary, new); 1569 1570 /* To be sure that nobody uses thresholds */ 1571 synchronize_rcu(); 1572 1573 unlock: 1574 mutex_unlock(&memcg->thresholds_lock); 1575 1576 return ret; 1577 } 1578 1579 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 1580 struct eventfd_ctx *eventfd, const char *args) 1581 { 1582 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 1583 } 1584 1585 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 1586 struct eventfd_ctx *eventfd, const char *args) 1587 { 1588 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 1589 } 1590 1591 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 1592 struct eventfd_ctx *eventfd, enum res_type type) 1593 { 1594 struct mem_cgroup_thresholds *thresholds; 1595 struct mem_cgroup_threshold_ary *new; 1596 unsigned long usage; 1597 int i, j, size, entries; 1598 1599 mutex_lock(&memcg->thresholds_lock); 1600 1601 if (type == _MEM) { 1602 thresholds = &memcg->thresholds; 1603 usage = mem_cgroup_usage(memcg, false); 1604 } else if (type == _MEMSWAP) { 1605 thresholds = &memcg->memsw_thresholds; 1606 usage = mem_cgroup_usage(memcg, true); 1607 } else 1608 BUG(); 1609 1610 if (!thresholds->primary) 1611 goto unlock; 1612 1613 /* Check if a threshold crossed before removing */ 1614 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 1615 1616 /* Calculate new number of threshold */ 1617 size = entries = 0; 1618 for (i = 0; i < thresholds->primary->size; i++) { 1619 if (thresholds->primary->entries[i].eventfd != eventfd) 1620 size++; 1621 else 1622 entries++; 1623 } 1624 1625 new = thresholds->spare; 1626 1627 /* If no items related to eventfd have been cleared, nothing to do */ 1628 if (!entries) 1629 goto unlock; 1630 1631 /* Set thresholds array to NULL if we don't have thresholds */ 1632 if (!size) { 1633 kfree(new); 1634 new = NULL; 1635 goto swap_buffers; 1636 } 1637 1638 new->size = size; 1639 1640 /* Copy thresholds and find current threshold */ 1641 new->current_threshold = -1; 1642 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 1643 if (thresholds->primary->entries[i].eventfd == eventfd) 1644 continue; 1645 1646 new->entries[j] = thresholds->primary->entries[i]; 1647 if (new->entries[j].threshold <= usage) { 1648 /* 1649 * new->current_threshold will not be used 1650 * until rcu_assign_pointer(), so it's safe to increment 1651 * it here. 1652 */ 1653 ++new->current_threshold; 1654 } 1655 j++; 1656 } 1657 1658 swap_buffers: 1659 /* Swap primary and spare array */ 1660 thresholds->spare = thresholds->primary; 1661 1662 rcu_assign_pointer(thresholds->primary, new); 1663 1664 /* To be sure that nobody uses thresholds */ 1665 synchronize_rcu(); 1666 1667 /* If all events are unregistered, free the spare array */ 1668 if (!new) { 1669 kfree(thresholds->spare); 1670 thresholds->spare = NULL; 1671 } 1672 unlock: 1673 mutex_unlock(&memcg->thresholds_lock); 1674 } 1675 1676 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 1677 struct eventfd_ctx *eventfd) 1678 { 1679 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 1680 } 1681 1682 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 1683 struct eventfd_ctx *eventfd) 1684 { 1685 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 1686 } 1687 1688 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 1689 struct eventfd_ctx *eventfd, const char *args) 1690 { 1691 struct mem_cgroup_eventfd_list *event; 1692 1693 event = kmalloc(sizeof(*event), GFP_KERNEL); 1694 if (!event) 1695 return -ENOMEM; 1696 1697 spin_lock(&memcg_oom_lock); 1698 1699 event->eventfd = eventfd; 1700 list_add(&event->list, &memcg->oom_notify); 1701 1702 /* already in OOM ? */ 1703 if (memcg->under_oom) 1704 eventfd_signal(eventfd); 1705 spin_unlock(&memcg_oom_lock); 1706 1707 return 0; 1708 } 1709 1710 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 1711 struct eventfd_ctx *eventfd) 1712 { 1713 struct mem_cgroup_eventfd_list *ev, *tmp; 1714 1715 spin_lock(&memcg_oom_lock); 1716 1717 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 1718 if (ev->eventfd == eventfd) { 1719 list_del(&ev->list); 1720 kfree(ev); 1721 } 1722 } 1723 1724 spin_unlock(&memcg_oom_lock); 1725 } 1726 1727 /* 1728 * DO NOT USE IN NEW FILES. 1729 * 1730 * "cgroup.event_control" implementation. 1731 * 1732 * This is way over-engineered. It tries to support fully configurable 1733 * events for each user. Such level of flexibility is completely 1734 * unnecessary especially in the light of the planned unified hierarchy. 1735 * 1736 * Please deprecate this and replace with something simpler if at all 1737 * possible. 1738 */ 1739 1740 /* 1741 * Unregister event and free resources. 1742 * 1743 * Gets called from workqueue. 1744 */ 1745 static void memcg_event_remove(struct work_struct *work) 1746 { 1747 struct mem_cgroup_event *event = 1748 container_of(work, struct mem_cgroup_event, remove); 1749 struct mem_cgroup *memcg = event->memcg; 1750 1751 remove_wait_queue(event->wqh, &event->wait); 1752 1753 event->unregister_event(memcg, event->eventfd); 1754 1755 /* Notify userspace the event is going away. */ 1756 eventfd_signal(event->eventfd); 1757 1758 eventfd_ctx_put(event->eventfd); 1759 kfree(event); 1760 css_put(&memcg->css); 1761 } 1762 1763 /* 1764 * Gets called on EPOLLHUP on eventfd when user closes it. 1765 * 1766 * Called with wqh->lock held and interrupts disabled. 1767 */ 1768 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 1769 int sync, void *key) 1770 { 1771 struct mem_cgroup_event *event = 1772 container_of(wait, struct mem_cgroup_event, wait); 1773 struct mem_cgroup *memcg = event->memcg; 1774 __poll_t flags = key_to_poll(key); 1775 1776 if (flags & EPOLLHUP) { 1777 /* 1778 * If the event has been detached at cgroup removal, we 1779 * can simply return knowing the other side will cleanup 1780 * for us. 1781 * 1782 * We can't race against event freeing since the other 1783 * side will require wqh->lock via remove_wait_queue(), 1784 * which we hold. 1785 */ 1786 spin_lock(&memcg->event_list_lock); 1787 if (!list_empty(&event->list)) { 1788 list_del_init(&event->list); 1789 /* 1790 * We are in atomic context, but cgroup_event_remove() 1791 * may sleep, so we have to call it in workqueue. 1792 */ 1793 schedule_work(&event->remove); 1794 } 1795 spin_unlock(&memcg->event_list_lock); 1796 } 1797 1798 return 0; 1799 } 1800 1801 static void memcg_event_ptable_queue_proc(struct file *file, 1802 wait_queue_head_t *wqh, poll_table *pt) 1803 { 1804 struct mem_cgroup_event *event = 1805 container_of(pt, struct mem_cgroup_event, pt); 1806 1807 event->wqh = wqh; 1808 add_wait_queue(wqh, &event->wait); 1809 } 1810 1811 /* 1812 * DO NOT USE IN NEW FILES. 1813 * 1814 * Parse input and register new cgroup event handler. 1815 * 1816 * Input must be in format '<event_fd> <control_fd> <args>'. 1817 * Interpretation of args is defined by control file implementation. 1818 */ 1819 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 1820 char *buf, size_t nbytes, loff_t off) 1821 { 1822 struct cgroup_subsys_state *css = of_css(of); 1823 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 1824 struct mem_cgroup_event *event; 1825 struct cgroup_subsys_state *cfile_css; 1826 unsigned int efd, cfd; 1827 struct fd efile; 1828 struct fd cfile; 1829 struct dentry *cdentry; 1830 const char *name; 1831 char *endp; 1832 int ret; 1833 1834 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1835 return -EOPNOTSUPP; 1836 1837 buf = strstrip(buf); 1838 1839 efd = simple_strtoul(buf, &endp, 10); 1840 if (*endp != ' ') 1841 return -EINVAL; 1842 buf = endp + 1; 1843 1844 cfd = simple_strtoul(buf, &endp, 10); 1845 if (*endp == '\0') 1846 buf = endp; 1847 else if (*endp == ' ') 1848 buf = endp + 1; 1849 else 1850 return -EINVAL; 1851 1852 event = kzalloc(sizeof(*event), GFP_KERNEL); 1853 if (!event) 1854 return -ENOMEM; 1855 1856 event->memcg = memcg; 1857 INIT_LIST_HEAD(&event->list); 1858 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 1859 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 1860 INIT_WORK(&event->remove, memcg_event_remove); 1861 1862 efile = fdget(efd); 1863 if (!efile.file) { 1864 ret = -EBADF; 1865 goto out_kfree; 1866 } 1867 1868 event->eventfd = eventfd_ctx_fileget(efile.file); 1869 if (IS_ERR(event->eventfd)) { 1870 ret = PTR_ERR(event->eventfd); 1871 goto out_put_efile; 1872 } 1873 1874 cfile = fdget(cfd); 1875 if (!cfile.file) { 1876 ret = -EBADF; 1877 goto out_put_eventfd; 1878 } 1879 1880 /* the process need read permission on control file */ 1881 /* AV: shouldn't we check that it's been opened for read instead? */ 1882 ret = file_permission(cfile.file, MAY_READ); 1883 if (ret < 0) 1884 goto out_put_cfile; 1885 1886 /* 1887 * The control file must be a regular cgroup1 file. As a regular cgroup 1888 * file can't be renamed, it's safe to access its name afterwards. 1889 */ 1890 cdentry = cfile.file->f_path.dentry; 1891 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { 1892 ret = -EINVAL; 1893 goto out_put_cfile; 1894 } 1895 1896 /* 1897 * Determine the event callbacks and set them in @event. This used 1898 * to be done via struct cftype but cgroup core no longer knows 1899 * about these events. The following is crude but the whole thing 1900 * is for compatibility anyway. 1901 * 1902 * DO NOT ADD NEW FILES. 1903 */ 1904 name = cdentry->d_name.name; 1905 1906 if (!strcmp(name, "memory.usage_in_bytes")) { 1907 event->register_event = mem_cgroup_usage_register_event; 1908 event->unregister_event = mem_cgroup_usage_unregister_event; 1909 } else if (!strcmp(name, "memory.oom_control")) { 1910 event->register_event = mem_cgroup_oom_register_event; 1911 event->unregister_event = mem_cgroup_oom_unregister_event; 1912 } else if (!strcmp(name, "memory.pressure_level")) { 1913 event->register_event = vmpressure_register_event; 1914 event->unregister_event = vmpressure_unregister_event; 1915 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 1916 event->register_event = memsw_cgroup_usage_register_event; 1917 event->unregister_event = memsw_cgroup_usage_unregister_event; 1918 } else { 1919 ret = -EINVAL; 1920 goto out_put_cfile; 1921 } 1922 1923 /* 1924 * Verify @cfile should belong to @css. Also, remaining events are 1925 * automatically removed on cgroup destruction but the removal is 1926 * asynchronous, so take an extra ref on @css. 1927 */ 1928 cfile_css = css_tryget_online_from_dir(cdentry->d_parent, 1929 &memory_cgrp_subsys); 1930 ret = -EINVAL; 1931 if (IS_ERR(cfile_css)) 1932 goto out_put_cfile; 1933 if (cfile_css != css) { 1934 css_put(cfile_css); 1935 goto out_put_cfile; 1936 } 1937 1938 ret = event->register_event(memcg, event->eventfd, buf); 1939 if (ret) 1940 goto out_put_css; 1941 1942 vfs_poll(efile.file, &event->pt); 1943 1944 spin_lock_irq(&memcg->event_list_lock); 1945 list_add(&event->list, &memcg->event_list); 1946 spin_unlock_irq(&memcg->event_list_lock); 1947 1948 fdput(cfile); 1949 fdput(efile); 1950 1951 return nbytes; 1952 1953 out_put_css: 1954 css_put(css); 1955 out_put_cfile: 1956 fdput(cfile); 1957 out_put_eventfd: 1958 eventfd_ctx_put(event->eventfd); 1959 out_put_efile: 1960 fdput(efile); 1961 out_kfree: 1962 kfree(event); 1963 1964 return ret; 1965 } 1966 1967 void memcg1_memcg_init(struct mem_cgroup *memcg) 1968 { 1969 INIT_LIST_HEAD(&memcg->oom_notify); 1970 mutex_init(&memcg->thresholds_lock); 1971 spin_lock_init(&memcg->move_lock); 1972 INIT_LIST_HEAD(&memcg->event_list); 1973 spin_lock_init(&memcg->event_list_lock); 1974 } 1975 1976 void memcg1_css_offline(struct mem_cgroup *memcg) 1977 { 1978 struct mem_cgroup_event *event, *tmp; 1979 1980 /* 1981 * Unregister events and notify userspace. 1982 * Notify userspace about cgroup removing only after rmdir of cgroup 1983 * directory to avoid race between userspace and kernelspace. 1984 */ 1985 spin_lock_irq(&memcg->event_list_lock); 1986 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 1987 list_del_init(&event->list); 1988 schedule_work(&event->remove); 1989 } 1990 spin_unlock_irq(&memcg->event_list_lock); 1991 } 1992 1993 /* 1994 * Check OOM-Killer is already running under our hierarchy. 1995 * If someone is running, return false. 1996 */ 1997 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1998 { 1999 struct mem_cgroup *iter, *failed = NULL; 2000 2001 spin_lock(&memcg_oom_lock); 2002 2003 for_each_mem_cgroup_tree(iter, memcg) { 2004 if (iter->oom_lock) { 2005 /* 2006 * this subtree of our hierarchy is already locked 2007 * so we cannot give a lock. 2008 */ 2009 failed = iter; 2010 mem_cgroup_iter_break(memcg, iter); 2011 break; 2012 } else 2013 iter->oom_lock = true; 2014 } 2015 2016 if (failed) { 2017 /* 2018 * OK, we failed to lock the whole subtree so we have 2019 * to clean up what we set up to the failing subtree 2020 */ 2021 for_each_mem_cgroup_tree(iter, memcg) { 2022 if (iter == failed) { 2023 mem_cgroup_iter_break(memcg, iter); 2024 break; 2025 } 2026 iter->oom_lock = false; 2027 } 2028 } else 2029 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 2030 2031 spin_unlock(&memcg_oom_lock); 2032 2033 return !failed; 2034 } 2035 2036 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 2037 { 2038 struct mem_cgroup *iter; 2039 2040 spin_lock(&memcg_oom_lock); 2041 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 2042 for_each_mem_cgroup_tree(iter, memcg) 2043 iter->oom_lock = false; 2044 spin_unlock(&memcg_oom_lock); 2045 } 2046 2047 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 2048 { 2049 struct mem_cgroup *iter; 2050 2051 spin_lock(&memcg_oom_lock); 2052 for_each_mem_cgroup_tree(iter, memcg) 2053 iter->under_oom++; 2054 spin_unlock(&memcg_oom_lock); 2055 } 2056 2057 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 2058 { 2059 struct mem_cgroup *iter; 2060 2061 /* 2062 * Be careful about under_oom underflows because a child memcg 2063 * could have been added after mem_cgroup_mark_under_oom. 2064 */ 2065 spin_lock(&memcg_oom_lock); 2066 for_each_mem_cgroup_tree(iter, memcg) 2067 if (iter->under_oom > 0) 2068 iter->under_oom--; 2069 spin_unlock(&memcg_oom_lock); 2070 } 2071 2072 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2073 2074 struct oom_wait_info { 2075 struct mem_cgroup *memcg; 2076 wait_queue_entry_t wait; 2077 }; 2078 2079 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 2080 unsigned mode, int sync, void *arg) 2081 { 2082 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2083 struct mem_cgroup *oom_wait_memcg; 2084 struct oom_wait_info *oom_wait_info; 2085 2086 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2087 oom_wait_memcg = oom_wait_info->memcg; 2088 2089 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 2090 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 2091 return 0; 2092 return autoremove_wake_function(wait, mode, sync, arg); 2093 } 2094 2095 void memcg1_oom_recover(struct mem_cgroup *memcg) 2096 { 2097 /* 2098 * For the following lockless ->under_oom test, the only required 2099 * guarantee is that it must see the state asserted by an OOM when 2100 * this function is called as a result of userland actions 2101 * triggered by the notification of the OOM. This is trivially 2102 * achieved by invoking mem_cgroup_mark_under_oom() before 2103 * triggering notification. 2104 */ 2105 if (memcg && memcg->under_oom) 2106 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2107 } 2108 2109 /** 2110 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2111 * @handle: actually kill/wait or just clean up the OOM state 2112 * 2113 * This has to be called at the end of a page fault if the memcg OOM 2114 * handler was enabled. 2115 * 2116 * Memcg supports userspace OOM handling where failed allocations must 2117 * sleep on a waitqueue until the userspace task resolves the 2118 * situation. Sleeping directly in the charge context with all kinds 2119 * of locks held is not a good idea, instead we remember an OOM state 2120 * in the task and mem_cgroup_oom_synchronize() has to be called at 2121 * the end of the page fault to complete the OOM handling. 2122 * 2123 * Returns %true if an ongoing memcg OOM situation was detected and 2124 * completed, %false otherwise. 2125 */ 2126 bool mem_cgroup_oom_synchronize(bool handle) 2127 { 2128 struct mem_cgroup *memcg = current->memcg_in_oom; 2129 struct oom_wait_info owait; 2130 bool locked; 2131 2132 /* OOM is global, do not handle */ 2133 if (!memcg) 2134 return false; 2135 2136 if (!handle) 2137 goto cleanup; 2138 2139 owait.memcg = memcg; 2140 owait.wait.flags = 0; 2141 owait.wait.func = memcg_oom_wake_function; 2142 owait.wait.private = current; 2143 INIT_LIST_HEAD(&owait.wait.entry); 2144 2145 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2146 mem_cgroup_mark_under_oom(memcg); 2147 2148 locked = mem_cgroup_oom_trylock(memcg); 2149 2150 if (locked) 2151 mem_cgroup_oom_notify(memcg); 2152 2153 schedule(); 2154 mem_cgroup_unmark_under_oom(memcg); 2155 finish_wait(&memcg_oom_waitq, &owait.wait); 2156 2157 if (locked) 2158 mem_cgroup_oom_unlock(memcg); 2159 cleanup: 2160 current->memcg_in_oom = NULL; 2161 css_put(&memcg->css); 2162 return true; 2163 } 2164 2165 2166 bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked) 2167 { 2168 /* 2169 * We are in the middle of the charge context here, so we 2170 * don't want to block when potentially sitting on a callstack 2171 * that holds all kinds of filesystem and mm locks. 2172 * 2173 * cgroup1 allows disabling the OOM killer and waiting for outside 2174 * handling until the charge can succeed; remember the context and put 2175 * the task to sleep at the end of the page fault when all locks are 2176 * released. 2177 * 2178 * On the other hand, in-kernel OOM killer allows for an async victim 2179 * memory reclaim (oom_reaper) and that means that we are not solely 2180 * relying on the oom victim to make a forward progress and we can 2181 * invoke the oom killer here. 2182 * 2183 * Please note that mem_cgroup_out_of_memory might fail to find a 2184 * victim and then we have to bail out from the charge path. 2185 */ 2186 if (READ_ONCE(memcg->oom_kill_disable)) { 2187 if (current->in_user_fault) { 2188 css_get(&memcg->css); 2189 current->memcg_in_oom = memcg; 2190 } 2191 return false; 2192 } 2193 2194 mem_cgroup_mark_under_oom(memcg); 2195 2196 *locked = mem_cgroup_oom_trylock(memcg); 2197 2198 if (*locked) 2199 mem_cgroup_oom_notify(memcg); 2200 2201 mem_cgroup_unmark_under_oom(memcg); 2202 2203 return true; 2204 } 2205 2206 void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked) 2207 { 2208 if (locked) 2209 mem_cgroup_oom_unlock(memcg); 2210 } 2211 2212 static DEFINE_MUTEX(memcg_max_mutex); 2213 2214 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 2215 unsigned long max, bool memsw) 2216 { 2217 bool enlarge = false; 2218 bool drained = false; 2219 int ret; 2220 bool limits_invariant; 2221 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2222 2223 do { 2224 if (signal_pending(current)) { 2225 ret = -EINTR; 2226 break; 2227 } 2228 2229 mutex_lock(&memcg_max_mutex); 2230 /* 2231 * Make sure that the new limit (memsw or memory limit) doesn't 2232 * break our basic invariant rule memory.max <= memsw.max. 2233 */ 2234 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 2235 max <= memcg->memsw.max; 2236 if (!limits_invariant) { 2237 mutex_unlock(&memcg_max_mutex); 2238 ret = -EINVAL; 2239 break; 2240 } 2241 if (max > counter->max) 2242 enlarge = true; 2243 ret = page_counter_set_max(counter, max); 2244 mutex_unlock(&memcg_max_mutex); 2245 2246 if (!ret) 2247 break; 2248 2249 if (!drained) { 2250 drain_all_stock(memcg); 2251 drained = true; 2252 continue; 2253 } 2254 2255 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 2256 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) { 2257 ret = -EBUSY; 2258 break; 2259 } 2260 } while (true); 2261 2262 if (!ret && enlarge) 2263 memcg1_oom_recover(memcg); 2264 2265 return ret; 2266 } 2267 2268 /* 2269 * Reclaims as many pages from the given memcg as possible. 2270 * 2271 * Caller is responsible for holding css reference for memcg. 2272 */ 2273 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2274 { 2275 int nr_retries = MAX_RECLAIM_RETRIES; 2276 2277 /* we call try-to-free pages for make this cgroup empty */ 2278 lru_add_drain_all(); 2279 2280 drain_all_stock(memcg); 2281 2282 /* try to free all pages in this cgroup */ 2283 while (nr_retries && page_counter_read(&memcg->memory)) { 2284 if (signal_pending(current)) 2285 return -EINTR; 2286 2287 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 2288 MEMCG_RECLAIM_MAY_SWAP, NULL)) 2289 nr_retries--; 2290 } 2291 2292 return 0; 2293 } 2294 2295 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2296 char *buf, size_t nbytes, 2297 loff_t off) 2298 { 2299 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2300 2301 if (mem_cgroup_is_root(memcg)) 2302 return -EINVAL; 2303 return mem_cgroup_force_empty(memcg) ?: nbytes; 2304 } 2305 2306 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2307 struct cftype *cft) 2308 { 2309 return 1; 2310 } 2311 2312 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2313 struct cftype *cft, u64 val) 2314 { 2315 if (val == 1) 2316 return 0; 2317 2318 pr_warn_once("Non-hierarchical mode is deprecated. " 2319 "Please report your usecase to linux-mm@kvack.org if you " 2320 "depend on this functionality.\n"); 2321 2322 return -EINVAL; 2323 } 2324 2325 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2326 struct cftype *cft) 2327 { 2328 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2329 struct page_counter *counter; 2330 2331 switch (MEMFILE_TYPE(cft->private)) { 2332 case _MEM: 2333 counter = &memcg->memory; 2334 break; 2335 case _MEMSWAP: 2336 counter = &memcg->memsw; 2337 break; 2338 case _KMEM: 2339 counter = &memcg->kmem; 2340 break; 2341 case _TCP: 2342 counter = &memcg->tcpmem; 2343 break; 2344 default: 2345 BUG(); 2346 } 2347 2348 switch (MEMFILE_ATTR(cft->private)) { 2349 case RES_USAGE: 2350 if (counter == &memcg->memory) 2351 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2352 if (counter == &memcg->memsw) 2353 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2354 return (u64)page_counter_read(counter) * PAGE_SIZE; 2355 case RES_LIMIT: 2356 return (u64)counter->max * PAGE_SIZE; 2357 case RES_MAX_USAGE: 2358 return (u64)counter->watermark * PAGE_SIZE; 2359 case RES_FAILCNT: 2360 return counter->failcnt; 2361 case RES_SOFT_LIMIT: 2362 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE; 2363 default: 2364 BUG(); 2365 } 2366 } 2367 2368 /* 2369 * This function doesn't do anything useful. Its only job is to provide a read 2370 * handler for a file so that cgroup_file_mode() will add read permissions. 2371 */ 2372 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m, 2373 __always_unused void *v) 2374 { 2375 return -EINVAL; 2376 } 2377 2378 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 2379 { 2380 int ret; 2381 2382 mutex_lock(&memcg_max_mutex); 2383 2384 ret = page_counter_set_max(&memcg->tcpmem, max); 2385 if (ret) 2386 goto out; 2387 2388 if (!memcg->tcpmem_active) { 2389 /* 2390 * The active flag needs to be written after the static_key 2391 * update. This is what guarantees that the socket activation 2392 * function is the last one to run. See mem_cgroup_sk_alloc() 2393 * for details, and note that we don't mark any socket as 2394 * belonging to this memcg until that flag is up. 2395 * 2396 * We need to do this, because static_keys will span multiple 2397 * sites, but we can't control their order. If we mark a socket 2398 * as accounted, but the accounting functions are not patched in 2399 * yet, we'll lose accounting. 2400 * 2401 * We never race with the readers in mem_cgroup_sk_alloc(), 2402 * because when this value change, the code to process it is not 2403 * patched in yet. 2404 */ 2405 static_branch_inc(&memcg_sockets_enabled_key); 2406 memcg->tcpmem_active = true; 2407 } 2408 out: 2409 mutex_unlock(&memcg_max_mutex); 2410 return ret; 2411 } 2412 2413 /* 2414 * The user of this function is... 2415 * RES_LIMIT. 2416 */ 2417 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 2418 char *buf, size_t nbytes, loff_t off) 2419 { 2420 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2421 unsigned long nr_pages; 2422 int ret; 2423 2424 buf = strstrip(buf); 2425 ret = page_counter_memparse(buf, "-1", &nr_pages); 2426 if (ret) 2427 return ret; 2428 2429 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2430 case RES_LIMIT: 2431 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 2432 ret = -EINVAL; 2433 break; 2434 } 2435 switch (MEMFILE_TYPE(of_cft(of)->private)) { 2436 case _MEM: 2437 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 2438 break; 2439 case _MEMSWAP: 2440 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 2441 break; 2442 case _KMEM: 2443 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 2444 "Writing any value to this file has no effect. " 2445 "Please report your usecase to linux-mm@kvack.org if you " 2446 "depend on this functionality.\n"); 2447 ret = 0; 2448 break; 2449 case _TCP: 2450 ret = memcg_update_tcp_max(memcg, nr_pages); 2451 break; 2452 } 2453 break; 2454 case RES_SOFT_LIMIT: 2455 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 2456 ret = -EOPNOTSUPP; 2457 } else { 2458 WRITE_ONCE(memcg->soft_limit, nr_pages); 2459 ret = 0; 2460 } 2461 break; 2462 } 2463 return ret ?: nbytes; 2464 } 2465 2466 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 2467 size_t nbytes, loff_t off) 2468 { 2469 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2470 struct page_counter *counter; 2471 2472 switch (MEMFILE_TYPE(of_cft(of)->private)) { 2473 case _MEM: 2474 counter = &memcg->memory; 2475 break; 2476 case _MEMSWAP: 2477 counter = &memcg->memsw; 2478 break; 2479 case _KMEM: 2480 counter = &memcg->kmem; 2481 break; 2482 case _TCP: 2483 counter = &memcg->tcpmem; 2484 break; 2485 default: 2486 BUG(); 2487 } 2488 2489 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2490 case RES_MAX_USAGE: 2491 page_counter_reset_watermark(counter); 2492 break; 2493 case RES_FAILCNT: 2494 counter->failcnt = 0; 2495 break; 2496 default: 2497 BUG(); 2498 } 2499 2500 return nbytes; 2501 } 2502 2503 #ifdef CONFIG_NUMA 2504 2505 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 2506 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 2507 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 2508 2509 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 2510 int nid, unsigned int lru_mask, bool tree) 2511 { 2512 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 2513 unsigned long nr = 0; 2514 enum lru_list lru; 2515 2516 VM_BUG_ON((unsigned)nid >= nr_node_ids); 2517 2518 for_each_lru(lru) { 2519 if (!(BIT(lru) & lru_mask)) 2520 continue; 2521 if (tree) 2522 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 2523 else 2524 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 2525 } 2526 return nr; 2527 } 2528 2529 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 2530 unsigned int lru_mask, 2531 bool tree) 2532 { 2533 unsigned long nr = 0; 2534 enum lru_list lru; 2535 2536 for_each_lru(lru) { 2537 if (!(BIT(lru) & lru_mask)) 2538 continue; 2539 if (tree) 2540 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 2541 else 2542 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 2543 } 2544 return nr; 2545 } 2546 2547 static int memcg_numa_stat_show(struct seq_file *m, void *v) 2548 { 2549 struct numa_stat { 2550 const char *name; 2551 unsigned int lru_mask; 2552 }; 2553 2554 static const struct numa_stat stats[] = { 2555 { "total", LRU_ALL }, 2556 { "file", LRU_ALL_FILE }, 2557 { "anon", LRU_ALL_ANON }, 2558 { "unevictable", BIT(LRU_UNEVICTABLE) }, 2559 }; 2560 const struct numa_stat *stat; 2561 int nid; 2562 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 2563 2564 mem_cgroup_flush_stats(memcg); 2565 2566 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 2567 seq_printf(m, "%s=%lu", stat->name, 2568 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 2569 false)); 2570 for_each_node_state(nid, N_MEMORY) 2571 seq_printf(m, " N%d=%lu", nid, 2572 mem_cgroup_node_nr_lru_pages(memcg, nid, 2573 stat->lru_mask, false)); 2574 seq_putc(m, '\n'); 2575 } 2576 2577 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 2578 2579 seq_printf(m, "hierarchical_%s=%lu", stat->name, 2580 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 2581 true)); 2582 for_each_node_state(nid, N_MEMORY) 2583 seq_printf(m, " N%d=%lu", nid, 2584 mem_cgroup_node_nr_lru_pages(memcg, nid, 2585 stat->lru_mask, true)); 2586 seq_putc(m, '\n'); 2587 } 2588 2589 return 0; 2590 } 2591 #endif /* CONFIG_NUMA */ 2592 2593 static const unsigned int memcg1_stats[] = { 2594 NR_FILE_PAGES, 2595 NR_ANON_MAPPED, 2596 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2597 NR_ANON_THPS, 2598 #endif 2599 NR_SHMEM, 2600 NR_FILE_MAPPED, 2601 NR_FILE_DIRTY, 2602 NR_WRITEBACK, 2603 WORKINGSET_REFAULT_ANON, 2604 WORKINGSET_REFAULT_FILE, 2605 #ifdef CONFIG_SWAP 2606 MEMCG_SWAP, 2607 NR_SWAPCACHE, 2608 #endif 2609 }; 2610 2611 static const char *const memcg1_stat_names[] = { 2612 "cache", 2613 "rss", 2614 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2615 "rss_huge", 2616 #endif 2617 "shmem", 2618 "mapped_file", 2619 "dirty", 2620 "writeback", 2621 "workingset_refault_anon", 2622 "workingset_refault_file", 2623 #ifdef CONFIG_SWAP 2624 "swap", 2625 "swapcached", 2626 #endif 2627 }; 2628 2629 /* Universal VM events cgroup1 shows, original sort order */ 2630 static const unsigned int memcg1_events[] = { 2631 PGPGIN, 2632 PGPGOUT, 2633 PGFAULT, 2634 PGMAJFAULT, 2635 }; 2636 2637 void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 2638 { 2639 unsigned long memory, memsw; 2640 struct mem_cgroup *mi; 2641 unsigned int i; 2642 2643 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 2644 2645 mem_cgroup_flush_stats(memcg); 2646 2647 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 2648 unsigned long nr; 2649 2650 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]); 2651 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr); 2652 } 2653 2654 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 2655 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]), 2656 memcg_events_local(memcg, memcg1_events[i])); 2657 2658 for (i = 0; i < NR_LRU_LISTS; i++) 2659 seq_buf_printf(s, "%s %lu\n", lru_list_name(i), 2660 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 2661 PAGE_SIZE); 2662 2663 /* Hierarchical information */ 2664 memory = memsw = PAGE_COUNTER_MAX; 2665 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 2666 memory = min(memory, READ_ONCE(mi->memory.max)); 2667 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 2668 } 2669 seq_buf_printf(s, "hierarchical_memory_limit %llu\n", 2670 (u64)memory * PAGE_SIZE); 2671 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n", 2672 (u64)memsw * PAGE_SIZE); 2673 2674 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 2675 unsigned long nr; 2676 2677 nr = memcg_page_state_output(memcg, memcg1_stats[i]); 2678 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i], 2679 (u64)nr); 2680 } 2681 2682 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 2683 seq_buf_printf(s, "total_%s %llu\n", 2684 vm_event_name(memcg1_events[i]), 2685 (u64)memcg_events(memcg, memcg1_events[i])); 2686 2687 for (i = 0; i < NR_LRU_LISTS; i++) 2688 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i), 2689 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 2690 PAGE_SIZE); 2691 2692 #ifdef CONFIG_DEBUG_VM 2693 { 2694 pg_data_t *pgdat; 2695 struct mem_cgroup_per_node *mz; 2696 unsigned long anon_cost = 0; 2697 unsigned long file_cost = 0; 2698 2699 for_each_online_pgdat(pgdat) { 2700 mz = memcg->nodeinfo[pgdat->node_id]; 2701 2702 anon_cost += mz->lruvec.anon_cost; 2703 file_cost += mz->lruvec.file_cost; 2704 } 2705 seq_buf_printf(s, "anon_cost %lu\n", anon_cost); 2706 seq_buf_printf(s, "file_cost %lu\n", file_cost); 2707 } 2708 #endif 2709 } 2710 2711 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 2712 struct cftype *cft) 2713 { 2714 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2715 2716 return mem_cgroup_swappiness(memcg); 2717 } 2718 2719 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 2720 struct cftype *cft, u64 val) 2721 { 2722 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2723 2724 if (val > MAX_SWAPPINESS) 2725 return -EINVAL; 2726 2727 if (!mem_cgroup_is_root(memcg)) 2728 WRITE_ONCE(memcg->swappiness, val); 2729 else 2730 WRITE_ONCE(vm_swappiness, val); 2731 2732 return 0; 2733 } 2734 2735 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 2736 { 2737 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 2738 2739 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable)); 2740 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 2741 seq_printf(sf, "oom_kill %lu\n", 2742 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 2743 return 0; 2744 } 2745 2746 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 2747 struct cftype *cft, u64 val) 2748 { 2749 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2750 2751 /* cannot set to root cgroup and only 0 and 1 are allowed */ 2752 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 2753 return -EINVAL; 2754 2755 WRITE_ONCE(memcg->oom_kill_disable, val); 2756 if (!val) 2757 memcg1_oom_recover(memcg); 2758 2759 return 0; 2760 } 2761 2762 #ifdef CONFIG_SLUB_DEBUG 2763 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 2764 { 2765 /* 2766 * Deprecated. 2767 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 2768 */ 2769 return 0; 2770 } 2771 #endif 2772 2773 struct cftype mem_cgroup_legacy_files[] = { 2774 { 2775 .name = "usage_in_bytes", 2776 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 2777 .read_u64 = mem_cgroup_read_u64, 2778 }, 2779 { 2780 .name = "max_usage_in_bytes", 2781 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 2782 .write = mem_cgroup_reset, 2783 .read_u64 = mem_cgroup_read_u64, 2784 }, 2785 { 2786 .name = "limit_in_bytes", 2787 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 2788 .write = mem_cgroup_write, 2789 .read_u64 = mem_cgroup_read_u64, 2790 }, 2791 { 2792 .name = "soft_limit_in_bytes", 2793 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 2794 .write = mem_cgroup_write, 2795 .read_u64 = mem_cgroup_read_u64, 2796 }, 2797 { 2798 .name = "failcnt", 2799 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 2800 .write = mem_cgroup_reset, 2801 .read_u64 = mem_cgroup_read_u64, 2802 }, 2803 { 2804 .name = "stat", 2805 .seq_show = memory_stat_show, 2806 }, 2807 { 2808 .name = "force_empty", 2809 .write = mem_cgroup_force_empty_write, 2810 }, 2811 { 2812 .name = "use_hierarchy", 2813 .write_u64 = mem_cgroup_hierarchy_write, 2814 .read_u64 = mem_cgroup_hierarchy_read, 2815 }, 2816 { 2817 .name = "cgroup.event_control", /* XXX: for compat */ 2818 .write = memcg_write_event_control, 2819 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 2820 }, 2821 { 2822 .name = "swappiness", 2823 .read_u64 = mem_cgroup_swappiness_read, 2824 .write_u64 = mem_cgroup_swappiness_write, 2825 }, 2826 { 2827 .name = "move_charge_at_immigrate", 2828 .read_u64 = mem_cgroup_move_charge_read, 2829 .write_u64 = mem_cgroup_move_charge_write, 2830 }, 2831 { 2832 .name = "oom_control", 2833 .seq_show = mem_cgroup_oom_control_read, 2834 .write_u64 = mem_cgroup_oom_control_write, 2835 }, 2836 { 2837 .name = "pressure_level", 2838 .seq_show = mem_cgroup_dummy_seq_show, 2839 }, 2840 #ifdef CONFIG_NUMA 2841 { 2842 .name = "numa_stat", 2843 .seq_show = memcg_numa_stat_show, 2844 }, 2845 #endif 2846 { 2847 .name = "kmem.limit_in_bytes", 2848 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 2849 .write = mem_cgroup_write, 2850 .read_u64 = mem_cgroup_read_u64, 2851 }, 2852 { 2853 .name = "kmem.usage_in_bytes", 2854 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 2855 .read_u64 = mem_cgroup_read_u64, 2856 }, 2857 { 2858 .name = "kmem.failcnt", 2859 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 2860 .write = mem_cgroup_reset, 2861 .read_u64 = mem_cgroup_read_u64, 2862 }, 2863 { 2864 .name = "kmem.max_usage_in_bytes", 2865 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 2866 .write = mem_cgroup_reset, 2867 .read_u64 = mem_cgroup_read_u64, 2868 }, 2869 #ifdef CONFIG_SLUB_DEBUG 2870 { 2871 .name = "kmem.slabinfo", 2872 .seq_show = mem_cgroup_slab_show, 2873 }, 2874 #endif 2875 { 2876 .name = "kmem.tcp.limit_in_bytes", 2877 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 2878 .write = mem_cgroup_write, 2879 .read_u64 = mem_cgroup_read_u64, 2880 }, 2881 { 2882 .name = "kmem.tcp.usage_in_bytes", 2883 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 2884 .read_u64 = mem_cgroup_read_u64, 2885 }, 2886 { 2887 .name = "kmem.tcp.failcnt", 2888 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 2889 .write = mem_cgroup_reset, 2890 .read_u64 = mem_cgroup_read_u64, 2891 }, 2892 { 2893 .name = "kmem.tcp.max_usage_in_bytes", 2894 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 2895 .write = mem_cgroup_reset, 2896 .read_u64 = mem_cgroup_read_u64, 2897 }, 2898 { }, /* terminate */ 2899 }; 2900 2901 struct cftype memsw_files[] = { 2902 { 2903 .name = "memsw.usage_in_bytes", 2904 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 2905 .read_u64 = mem_cgroup_read_u64, 2906 }, 2907 { 2908 .name = "memsw.max_usage_in_bytes", 2909 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 2910 .write = mem_cgroup_reset, 2911 .read_u64 = mem_cgroup_read_u64, 2912 }, 2913 { 2914 .name = "memsw.limit_in_bytes", 2915 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 2916 .write = mem_cgroup_write, 2917 .read_u64 = mem_cgroup_read_u64, 2918 }, 2919 { 2920 .name = "memsw.failcnt", 2921 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 2922 .write = mem_cgroup_reset, 2923 .read_u64 = mem_cgroup_read_u64, 2924 }, 2925 { }, /* terminate */ 2926 }; 2927 2928 void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2929 { 2930 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 2931 if (nr_pages > 0) 2932 page_counter_charge(&memcg->kmem, nr_pages); 2933 else 2934 page_counter_uncharge(&memcg->kmem, -nr_pages); 2935 } 2936 } 2937 2938 bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 2939 gfp_t gfp_mask) 2940 { 2941 struct page_counter *fail; 2942 2943 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 2944 memcg->tcpmem_pressure = 0; 2945 return true; 2946 } 2947 memcg->tcpmem_pressure = 1; 2948 if (gfp_mask & __GFP_NOFAIL) { 2949 page_counter_charge(&memcg->tcpmem, nr_pages); 2950 return true; 2951 } 2952 return false; 2953 } 2954 2955 static int __init memcg1_init(void) 2956 { 2957 int node; 2958 2959 for_each_node(node) { 2960 struct mem_cgroup_tree_per_node *rtpn; 2961 2962 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node); 2963 2964 rtpn->rb_root = RB_ROOT; 2965 rtpn->rb_rightmost = NULL; 2966 spin_lock_init(&rtpn->lock); 2967 soft_limit_tree.rb_tree_per_node[node] = rtpn; 2968 } 2969 2970 return 0; 2971 } 2972 subsys_initcall(memcg1_init); 2973