1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 #include <linux/memcontrol.h> 4 #include <linux/swap.h> 5 #include <linux/mm_inline.h> 6 #include <linux/pagewalk.h> 7 #include <linux/backing-dev.h> 8 #include <linux/swap_cgroup.h> 9 #include <linux/eventfd.h> 10 #include <linux/poll.h> 11 #include <linux/sort.h> 12 #include <linux/file.h> 13 #include <linux/seq_buf.h> 14 15 #include "internal.h" 16 #include "swap.h" 17 #include "memcontrol-v1.h" 18 19 /* 20 * Cgroups above their limits are maintained in a RB-Tree, independent of 21 * their hierarchy representation 22 */ 23 24 struct mem_cgroup_tree_per_node { 25 struct rb_root rb_root; 26 struct rb_node *rb_rightmost; 27 spinlock_t lock; 28 }; 29 30 struct mem_cgroup_tree { 31 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 32 }; 33 34 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 35 36 /* 37 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft 38 * limit reclaim to prevent infinite loops, if they ever occur. 39 */ 40 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 41 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 42 43 /* Stuffs for move charges at task migration. */ 44 /* 45 * Types of charges to be moved. 46 */ 47 #define MOVE_ANON 0x1ULL 48 #define MOVE_FILE 0x2ULL 49 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 50 51 /* "mc" and its members are protected by cgroup_mutex */ 52 static struct move_charge_struct { 53 spinlock_t lock; /* for from, to */ 54 struct mm_struct *mm; 55 struct mem_cgroup *from; 56 struct mem_cgroup *to; 57 unsigned long flags; 58 unsigned long precharge; 59 unsigned long moved_charge; 60 unsigned long moved_swap; 61 struct task_struct *moving_task; /* a task moving charges */ 62 wait_queue_head_t waitq; /* a waitq for other context */ 63 } mc = { 64 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 65 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 66 }; 67 68 /* for OOM */ 69 struct mem_cgroup_eventfd_list { 70 struct list_head list; 71 struct eventfd_ctx *eventfd; 72 }; 73 74 /* 75 * cgroup_event represents events which userspace want to receive. 76 */ 77 struct mem_cgroup_event { 78 /* 79 * memcg which the event belongs to. 80 */ 81 struct mem_cgroup *memcg; 82 /* 83 * eventfd to signal userspace about the event. 84 */ 85 struct eventfd_ctx *eventfd; 86 /* 87 * Each of these stored in a list by the cgroup. 88 */ 89 struct list_head list; 90 /* 91 * register_event() callback will be used to add new userspace 92 * waiter for changes related to this event. Use eventfd_signal() 93 * on eventfd to send notification to userspace. 94 */ 95 int (*register_event)(struct mem_cgroup *memcg, 96 struct eventfd_ctx *eventfd, const char *args); 97 /* 98 * unregister_event() callback will be called when userspace closes 99 * the eventfd or on cgroup removing. This callback must be set, 100 * if you want provide notification functionality. 101 */ 102 void (*unregister_event)(struct mem_cgroup *memcg, 103 struct eventfd_ctx *eventfd); 104 /* 105 * All fields below needed to unregister event when 106 * userspace closes eventfd. 107 */ 108 poll_table pt; 109 wait_queue_head_t *wqh; 110 wait_queue_entry_t wait; 111 struct work_struct remove; 112 }; 113 114 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 115 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 116 #define MEMFILE_ATTR(val) ((val) & 0xffff) 117 118 enum { 119 RES_USAGE, 120 RES_LIMIT, 121 RES_MAX_USAGE, 122 RES_FAILCNT, 123 RES_SOFT_LIMIT, 124 }; 125 126 #ifdef CONFIG_LOCKDEP 127 static struct lockdep_map memcg_oom_lock_dep_map = { 128 .name = "memcg_oom_lock", 129 }; 130 #endif 131 132 DEFINE_SPINLOCK(memcg_oom_lock); 133 134 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 135 struct mem_cgroup_tree_per_node *mctz, 136 unsigned long new_usage_in_excess) 137 { 138 struct rb_node **p = &mctz->rb_root.rb_node; 139 struct rb_node *parent = NULL; 140 struct mem_cgroup_per_node *mz_node; 141 bool rightmost = true; 142 143 if (mz->on_tree) 144 return; 145 146 mz->usage_in_excess = new_usage_in_excess; 147 if (!mz->usage_in_excess) 148 return; 149 while (*p) { 150 parent = *p; 151 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 152 tree_node); 153 if (mz->usage_in_excess < mz_node->usage_in_excess) { 154 p = &(*p)->rb_left; 155 rightmost = false; 156 } else { 157 p = &(*p)->rb_right; 158 } 159 } 160 161 if (rightmost) 162 mctz->rb_rightmost = &mz->tree_node; 163 164 rb_link_node(&mz->tree_node, parent, p); 165 rb_insert_color(&mz->tree_node, &mctz->rb_root); 166 mz->on_tree = true; 167 } 168 169 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 170 struct mem_cgroup_tree_per_node *mctz) 171 { 172 if (!mz->on_tree) 173 return; 174 175 if (&mz->tree_node == mctz->rb_rightmost) 176 mctz->rb_rightmost = rb_prev(&mz->tree_node); 177 178 rb_erase(&mz->tree_node, &mctz->rb_root); 179 mz->on_tree = false; 180 } 181 182 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 183 struct mem_cgroup_tree_per_node *mctz) 184 { 185 unsigned long flags; 186 187 spin_lock_irqsave(&mctz->lock, flags); 188 __mem_cgroup_remove_exceeded(mz, mctz); 189 spin_unlock_irqrestore(&mctz->lock, flags); 190 } 191 192 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 193 { 194 unsigned long nr_pages = page_counter_read(&memcg->memory); 195 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 196 unsigned long excess = 0; 197 198 if (nr_pages > soft_limit) 199 excess = nr_pages - soft_limit; 200 201 return excess; 202 } 203 204 static void memcg1_update_tree(struct mem_cgroup *memcg, int nid) 205 { 206 unsigned long excess; 207 struct mem_cgroup_per_node *mz; 208 struct mem_cgroup_tree_per_node *mctz; 209 210 if (lru_gen_enabled()) { 211 if (soft_limit_excess(memcg)) 212 lru_gen_soft_reclaim(memcg, nid); 213 return; 214 } 215 216 mctz = soft_limit_tree.rb_tree_per_node[nid]; 217 if (!mctz) 218 return; 219 /* 220 * Necessary to update all ancestors when hierarchy is used. 221 * because their event counter is not touched. 222 */ 223 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 224 mz = memcg->nodeinfo[nid]; 225 excess = soft_limit_excess(memcg); 226 /* 227 * We have to update the tree if mz is on RB-tree or 228 * mem is over its softlimit. 229 */ 230 if (excess || mz->on_tree) { 231 unsigned long flags; 232 233 spin_lock_irqsave(&mctz->lock, flags); 234 /* if on-tree, remove it */ 235 if (mz->on_tree) 236 __mem_cgroup_remove_exceeded(mz, mctz); 237 /* 238 * Insert again. mz->usage_in_excess will be updated. 239 * If excess is 0, no tree ops. 240 */ 241 __mem_cgroup_insert_exceeded(mz, mctz, excess); 242 spin_unlock_irqrestore(&mctz->lock, flags); 243 } 244 } 245 } 246 247 void memcg1_remove_from_trees(struct mem_cgroup *memcg) 248 { 249 struct mem_cgroup_tree_per_node *mctz; 250 struct mem_cgroup_per_node *mz; 251 int nid; 252 253 for_each_node(nid) { 254 mz = memcg->nodeinfo[nid]; 255 mctz = soft_limit_tree.rb_tree_per_node[nid]; 256 if (mctz) 257 mem_cgroup_remove_exceeded(mz, mctz); 258 } 259 } 260 261 static struct mem_cgroup_per_node * 262 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 263 { 264 struct mem_cgroup_per_node *mz; 265 266 retry: 267 mz = NULL; 268 if (!mctz->rb_rightmost) 269 goto done; /* Nothing to reclaim from */ 270 271 mz = rb_entry(mctz->rb_rightmost, 272 struct mem_cgroup_per_node, tree_node); 273 /* 274 * Remove the node now but someone else can add it back, 275 * we will to add it back at the end of reclaim to its correct 276 * position in the tree. 277 */ 278 __mem_cgroup_remove_exceeded(mz, mctz); 279 if (!soft_limit_excess(mz->memcg) || 280 !css_tryget(&mz->memcg->css)) 281 goto retry; 282 done: 283 return mz; 284 } 285 286 static struct mem_cgroup_per_node * 287 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 288 { 289 struct mem_cgroup_per_node *mz; 290 291 spin_lock_irq(&mctz->lock); 292 mz = __mem_cgroup_largest_soft_limit_node(mctz); 293 spin_unlock_irq(&mctz->lock); 294 return mz; 295 } 296 297 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 298 pg_data_t *pgdat, 299 gfp_t gfp_mask, 300 unsigned long *total_scanned) 301 { 302 struct mem_cgroup *victim = NULL; 303 int total = 0; 304 int loop = 0; 305 unsigned long excess; 306 unsigned long nr_scanned; 307 struct mem_cgroup_reclaim_cookie reclaim = { 308 .pgdat = pgdat, 309 }; 310 311 excess = soft_limit_excess(root_memcg); 312 313 while (1) { 314 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 315 if (!victim) { 316 loop++; 317 if (loop >= 2) { 318 /* 319 * If we have not been able to reclaim 320 * anything, it might because there are 321 * no reclaimable pages under this hierarchy 322 */ 323 if (!total) 324 break; 325 /* 326 * We want to do more targeted reclaim. 327 * excess >> 2 is not to excessive so as to 328 * reclaim too much, nor too less that we keep 329 * coming back to reclaim from this cgroup 330 */ 331 if (total >= (excess >> 2) || 332 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 333 break; 334 } 335 continue; 336 } 337 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 338 pgdat, &nr_scanned); 339 *total_scanned += nr_scanned; 340 if (!soft_limit_excess(root_memcg)) 341 break; 342 } 343 mem_cgroup_iter_break(root_memcg, victim); 344 return total; 345 } 346 347 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 348 gfp_t gfp_mask, 349 unsigned long *total_scanned) 350 { 351 unsigned long nr_reclaimed = 0; 352 struct mem_cgroup_per_node *mz, *next_mz = NULL; 353 unsigned long reclaimed; 354 int loop = 0; 355 struct mem_cgroup_tree_per_node *mctz; 356 unsigned long excess; 357 358 if (lru_gen_enabled()) 359 return 0; 360 361 if (order > 0) 362 return 0; 363 364 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 365 366 /* 367 * Do not even bother to check the largest node if the root 368 * is empty. Do it lockless to prevent lock bouncing. Races 369 * are acceptable as soft limit is best effort anyway. 370 */ 371 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 372 return 0; 373 374 /* 375 * This loop can run a while, specially if mem_cgroup's continuously 376 * keep exceeding their soft limit and putting the system under 377 * pressure 378 */ 379 do { 380 if (next_mz) 381 mz = next_mz; 382 else 383 mz = mem_cgroup_largest_soft_limit_node(mctz); 384 if (!mz) 385 break; 386 387 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 388 gfp_mask, total_scanned); 389 nr_reclaimed += reclaimed; 390 spin_lock_irq(&mctz->lock); 391 392 /* 393 * If we failed to reclaim anything from this memory cgroup 394 * it is time to move on to the next cgroup 395 */ 396 next_mz = NULL; 397 if (!reclaimed) 398 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 399 400 excess = soft_limit_excess(mz->memcg); 401 /* 402 * One school of thought says that we should not add 403 * back the node to the tree if reclaim returns 0. 404 * But our reclaim could return 0, simply because due 405 * to priority we are exposing a smaller subset of 406 * memory to reclaim from. Consider this as a longer 407 * term TODO. 408 */ 409 /* If excess == 0, no tree ops */ 410 __mem_cgroup_insert_exceeded(mz, mctz, excess); 411 spin_unlock_irq(&mctz->lock); 412 css_put(&mz->memcg->css); 413 loop++; 414 /* 415 * Could not reclaim anything and there are no more 416 * mem cgroups to try or we seem to be looping without 417 * reclaiming anything. 418 */ 419 if (!nr_reclaimed && 420 (next_mz == NULL || 421 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 422 break; 423 } while (!nr_reclaimed); 424 if (next_mz) 425 css_put(&next_mz->memcg->css); 426 return nr_reclaimed; 427 } 428 429 /* 430 * A routine for checking "mem" is under move_account() or not. 431 * 432 * Checking a cgroup is mc.from or mc.to or under hierarchy of 433 * moving cgroups. This is for waiting at high-memory pressure 434 * caused by "move". 435 */ 436 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 437 { 438 struct mem_cgroup *from; 439 struct mem_cgroup *to; 440 bool ret = false; 441 /* 442 * Unlike task_move routines, we access mc.to, mc.from not under 443 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 444 */ 445 spin_lock(&mc.lock); 446 from = mc.from; 447 to = mc.to; 448 if (!from) 449 goto unlock; 450 451 ret = mem_cgroup_is_descendant(from, memcg) || 452 mem_cgroup_is_descendant(to, memcg); 453 unlock: 454 spin_unlock(&mc.lock); 455 return ret; 456 } 457 458 bool memcg1_wait_acct_move(struct mem_cgroup *memcg) 459 { 460 if (mc.moving_task && current != mc.moving_task) { 461 if (mem_cgroup_under_move(memcg)) { 462 DEFINE_WAIT(wait); 463 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 464 /* moving charge context might have finished. */ 465 if (mc.moving_task) 466 schedule(); 467 finish_wait(&mc.waitq, &wait); 468 return true; 469 } 470 } 471 return false; 472 } 473 474 /** 475 * folio_memcg_lock - Bind a folio to its memcg. 476 * @folio: The folio. 477 * 478 * This function prevents unlocked LRU folios from being moved to 479 * another cgroup. 480 * 481 * It ensures lifetime of the bound memcg. The caller is responsible 482 * for the lifetime of the folio. 483 */ 484 void folio_memcg_lock(struct folio *folio) 485 { 486 struct mem_cgroup *memcg; 487 unsigned long flags; 488 489 /* 490 * The RCU lock is held throughout the transaction. The fast 491 * path can get away without acquiring the memcg->move_lock 492 * because page moving starts with an RCU grace period. 493 */ 494 rcu_read_lock(); 495 496 if (mem_cgroup_disabled()) 497 return; 498 again: 499 memcg = folio_memcg(folio); 500 if (unlikely(!memcg)) 501 return; 502 503 #ifdef CONFIG_PROVE_LOCKING 504 local_irq_save(flags); 505 might_lock(&memcg->move_lock); 506 local_irq_restore(flags); 507 #endif 508 509 if (atomic_read(&memcg->moving_account) <= 0) 510 return; 511 512 spin_lock_irqsave(&memcg->move_lock, flags); 513 if (memcg != folio_memcg(folio)) { 514 spin_unlock_irqrestore(&memcg->move_lock, flags); 515 goto again; 516 } 517 518 /* 519 * When charge migration first begins, we can have multiple 520 * critical sections holding the fast-path RCU lock and one 521 * holding the slowpath move_lock. Track the task who has the 522 * move_lock for folio_memcg_unlock(). 523 */ 524 memcg->move_lock_task = current; 525 memcg->move_lock_flags = flags; 526 } 527 528 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 529 { 530 if (memcg && memcg->move_lock_task == current) { 531 unsigned long flags = memcg->move_lock_flags; 532 533 memcg->move_lock_task = NULL; 534 memcg->move_lock_flags = 0; 535 536 spin_unlock_irqrestore(&memcg->move_lock, flags); 537 } 538 539 rcu_read_unlock(); 540 } 541 542 /** 543 * folio_memcg_unlock - Release the binding between a folio and its memcg. 544 * @folio: The folio. 545 * 546 * This releases the binding created by folio_memcg_lock(). This does 547 * not change the accounting of this folio to its memcg, but it does 548 * permit others to change it. 549 */ 550 void folio_memcg_unlock(struct folio *folio) 551 { 552 __folio_memcg_unlock(folio_memcg(folio)); 553 } 554 555 #ifdef CONFIG_SWAP 556 /** 557 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 558 * @entry: swap entry to be moved 559 * @from: mem_cgroup which the entry is moved from 560 * @to: mem_cgroup which the entry is moved to 561 * 562 * It succeeds only when the swap_cgroup's record for this entry is the same 563 * as the mem_cgroup's id of @from. 564 * 565 * Returns 0 on success, -EINVAL on failure. 566 * 567 * The caller must have charged to @to, IOW, called page_counter_charge() about 568 * both res and memsw, and called css_get(). 569 */ 570 static int mem_cgroup_move_swap_account(swp_entry_t entry, 571 struct mem_cgroup *from, struct mem_cgroup *to) 572 { 573 unsigned short old_id, new_id; 574 575 old_id = mem_cgroup_id(from); 576 new_id = mem_cgroup_id(to); 577 578 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 579 mod_memcg_state(from, MEMCG_SWAP, -1); 580 mod_memcg_state(to, MEMCG_SWAP, 1); 581 return 0; 582 } 583 return -EINVAL; 584 } 585 #else 586 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 587 struct mem_cgroup *from, struct mem_cgroup *to) 588 { 589 return -EINVAL; 590 } 591 #endif 592 593 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 594 struct cftype *cft) 595 { 596 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 597 } 598 599 #ifdef CONFIG_MMU 600 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 601 struct cftype *cft, u64 val) 602 { 603 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 604 605 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " 606 "Please report your usecase to linux-mm@kvack.org if you " 607 "depend on this functionality.\n"); 608 609 if (val & ~MOVE_MASK) 610 return -EINVAL; 611 612 /* 613 * No kind of locking is needed in here, because ->can_attach() will 614 * check this value once in the beginning of the process, and then carry 615 * on with stale data. This means that changes to this value will only 616 * affect task migrations starting after the change. 617 */ 618 memcg->move_charge_at_immigrate = val; 619 return 0; 620 } 621 #else 622 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 623 struct cftype *cft, u64 val) 624 { 625 return -ENOSYS; 626 } 627 #endif 628 629 #ifdef CONFIG_MMU 630 /* Handlers for move charge at task migration. */ 631 static int mem_cgroup_do_precharge(unsigned long count) 632 { 633 int ret; 634 635 /* Try a single bulk charge without reclaim first, kswapd may wake */ 636 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 637 if (!ret) { 638 mc.precharge += count; 639 return ret; 640 } 641 642 /* Try charges one by one with reclaim, but do not retry */ 643 while (count--) { 644 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 645 if (ret) 646 return ret; 647 mc.precharge++; 648 cond_resched(); 649 } 650 return 0; 651 } 652 653 union mc_target { 654 struct folio *folio; 655 swp_entry_t ent; 656 }; 657 658 enum mc_target_type { 659 MC_TARGET_NONE = 0, 660 MC_TARGET_PAGE, 661 MC_TARGET_SWAP, 662 MC_TARGET_DEVICE, 663 }; 664 665 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 666 unsigned long addr, pte_t ptent) 667 { 668 struct page *page = vm_normal_page(vma, addr, ptent); 669 670 if (!page) 671 return NULL; 672 if (PageAnon(page)) { 673 if (!(mc.flags & MOVE_ANON)) 674 return NULL; 675 } else { 676 if (!(mc.flags & MOVE_FILE)) 677 return NULL; 678 } 679 get_page(page); 680 681 return page; 682 } 683 684 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 685 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 686 pte_t ptent, swp_entry_t *entry) 687 { 688 struct page *page = NULL; 689 swp_entry_t ent = pte_to_swp_entry(ptent); 690 691 if (!(mc.flags & MOVE_ANON)) 692 return NULL; 693 694 /* 695 * Handle device private pages that are not accessible by the CPU, but 696 * stored as special swap entries in the page table. 697 */ 698 if (is_device_private_entry(ent)) { 699 page = pfn_swap_entry_to_page(ent); 700 if (!get_page_unless_zero(page)) 701 return NULL; 702 return page; 703 } 704 705 if (non_swap_entry(ent)) 706 return NULL; 707 708 /* 709 * Because swap_cache_get_folio() updates some statistics counter, 710 * we call find_get_page() with swapper_space directly. 711 */ 712 page = find_get_page(swap_address_space(ent), swap_cache_index(ent)); 713 entry->val = ent.val; 714 715 return page; 716 } 717 #else 718 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 719 pte_t ptent, swp_entry_t *entry) 720 { 721 return NULL; 722 } 723 #endif 724 725 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 726 unsigned long addr, pte_t ptent) 727 { 728 unsigned long index; 729 struct folio *folio; 730 731 if (!vma->vm_file) /* anonymous vma */ 732 return NULL; 733 if (!(mc.flags & MOVE_FILE)) 734 return NULL; 735 736 /* folio is moved even if it's not RSS of this task(page-faulted). */ 737 /* shmem/tmpfs may report page out on swap: account for that too. */ 738 index = linear_page_index(vma, addr); 739 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index); 740 if (IS_ERR(folio)) 741 return NULL; 742 return folio_file_page(folio, index); 743 } 744 745 static void memcg1_check_events(struct mem_cgroup *memcg, int nid); 746 static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages); 747 748 /** 749 * mem_cgroup_move_account - move account of the folio 750 * @folio: The folio. 751 * @compound: charge the page as compound or small page 752 * @from: mem_cgroup which the folio is moved from. 753 * @to: mem_cgroup which the folio is moved to. @from != @to. 754 * 755 * The folio must be locked and not on the LRU. 756 * 757 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 758 * from old cgroup. 759 */ 760 static int mem_cgroup_move_account(struct folio *folio, 761 bool compound, 762 struct mem_cgroup *from, 763 struct mem_cgroup *to) 764 { 765 struct lruvec *from_vec, *to_vec; 766 struct pglist_data *pgdat; 767 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 768 int nid, ret; 769 770 VM_BUG_ON(from == to); 771 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 772 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 773 VM_BUG_ON(compound && !folio_test_large(folio)); 774 775 ret = -EINVAL; 776 if (folio_memcg(folio) != from) 777 goto out; 778 779 pgdat = folio_pgdat(folio); 780 from_vec = mem_cgroup_lruvec(from, pgdat); 781 to_vec = mem_cgroup_lruvec(to, pgdat); 782 783 folio_memcg_lock(folio); 784 785 if (folio_test_anon(folio)) { 786 if (folio_mapped(folio)) { 787 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 788 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 789 if (folio_test_pmd_mappable(folio)) { 790 __mod_lruvec_state(from_vec, NR_ANON_THPS, 791 -nr_pages); 792 __mod_lruvec_state(to_vec, NR_ANON_THPS, 793 nr_pages); 794 } 795 } 796 } else { 797 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 798 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 799 800 if (folio_test_swapbacked(folio)) { 801 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 802 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 803 } 804 805 if (folio_mapped(folio)) { 806 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 807 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 808 } 809 810 if (folio_test_dirty(folio)) { 811 struct address_space *mapping = folio_mapping(folio); 812 813 if (mapping_can_writeback(mapping)) { 814 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 815 -nr_pages); 816 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 817 nr_pages); 818 } 819 } 820 } 821 822 #ifdef CONFIG_SWAP 823 if (folio_test_swapcache(folio)) { 824 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages); 825 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages); 826 } 827 #endif 828 if (folio_test_writeback(folio)) { 829 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 830 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 831 } 832 833 /* 834 * All state has been migrated, let's switch to the new memcg. 835 * 836 * It is safe to change page's memcg here because the page 837 * is referenced, charged, isolated, and locked: we can't race 838 * with (un)charging, migration, LRU putback, or anything else 839 * that would rely on a stable page's memory cgroup. 840 * 841 * Note that folio_memcg_lock is a memcg lock, not a page lock, 842 * to save space. As soon as we switch page's memory cgroup to a 843 * new memcg that isn't locked, the above state can change 844 * concurrently again. Make sure we're truly done with it. 845 */ 846 smp_mb(); 847 848 css_get(&to->css); 849 css_put(&from->css); 850 851 /* Warning should never happen, so don't worry about refcount non-0 */ 852 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 853 folio->memcg_data = (unsigned long)to; 854 855 __folio_memcg_unlock(from); 856 857 ret = 0; 858 nid = folio_nid(folio); 859 860 local_irq_disable(); 861 memcg1_charge_statistics(to, nr_pages); 862 memcg1_check_events(to, nid); 863 memcg1_charge_statistics(from, -nr_pages); 864 memcg1_check_events(from, nid); 865 local_irq_enable(); 866 out: 867 return ret; 868 } 869 870 /** 871 * get_mctgt_type - get target type of moving charge 872 * @vma: the vma the pte to be checked belongs 873 * @addr: the address corresponding to the pte to be checked 874 * @ptent: the pte to be checked 875 * @target: the pointer the target page or swap ent will be stored(can be NULL) 876 * 877 * Context: Called with pte lock held. 878 * Return: 879 * * MC_TARGET_NONE - If the pte is not a target for move charge. 880 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for 881 * move charge. If @target is not NULL, the folio is stored in target->folio 882 * with extra refcnt taken (Caller should release it). 883 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a 884 * target for charge migration. If @target is not NULL, the entry is 885 * stored in target->ent. 886 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and 887 * thus not on the lru. For now such page is charged like a regular page 888 * would be as it is just special memory taking the place of a regular page. 889 * See Documentations/vm/hmm.txt and include/linux/hmm.h 890 */ 891 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 892 unsigned long addr, pte_t ptent, union mc_target *target) 893 { 894 struct page *page = NULL; 895 struct folio *folio; 896 enum mc_target_type ret = MC_TARGET_NONE; 897 swp_entry_t ent = { .val = 0 }; 898 899 if (pte_present(ptent)) 900 page = mc_handle_present_pte(vma, addr, ptent); 901 else if (pte_none_mostly(ptent)) 902 /* 903 * PTE markers should be treated as a none pte here, separated 904 * from other swap handling below. 905 */ 906 page = mc_handle_file_pte(vma, addr, ptent); 907 else if (is_swap_pte(ptent)) 908 page = mc_handle_swap_pte(vma, ptent, &ent); 909 910 if (page) 911 folio = page_folio(page); 912 if (target && page) { 913 if (!folio_trylock(folio)) { 914 folio_put(folio); 915 return ret; 916 } 917 /* 918 * page_mapped() must be stable during the move. This 919 * pte is locked, so if it's present, the page cannot 920 * become unmapped. If it isn't, we have only partial 921 * control over the mapped state: the page lock will 922 * prevent new faults against pagecache and swapcache, 923 * so an unmapped page cannot become mapped. However, 924 * if the page is already mapped elsewhere, it can 925 * unmap, and there is nothing we can do about it. 926 * Alas, skip moving the page in this case. 927 */ 928 if (!pte_present(ptent) && page_mapped(page)) { 929 folio_unlock(folio); 930 folio_put(folio); 931 return ret; 932 } 933 } 934 935 if (!page && !ent.val) 936 return ret; 937 if (page) { 938 /* 939 * Do only loose check w/o serialization. 940 * mem_cgroup_move_account() checks the page is valid or 941 * not under LRU exclusion. 942 */ 943 if (folio_memcg(folio) == mc.from) { 944 ret = MC_TARGET_PAGE; 945 if (folio_is_device_private(folio) || 946 folio_is_device_coherent(folio)) 947 ret = MC_TARGET_DEVICE; 948 if (target) 949 target->folio = folio; 950 } 951 if (!ret || !target) { 952 if (target) 953 folio_unlock(folio); 954 folio_put(folio); 955 } 956 } 957 /* 958 * There is a swap entry and a page doesn't exist or isn't charged. 959 * But we cannot move a tail-page in a THP. 960 */ 961 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 962 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 963 ret = MC_TARGET_SWAP; 964 if (target) 965 target->ent = ent; 966 } 967 return ret; 968 } 969 970 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 971 /* 972 * We don't consider PMD mapped swapping or file mapped pages because THP does 973 * not support them for now. 974 * Caller should make sure that pmd_trans_huge(pmd) is true. 975 */ 976 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 977 unsigned long addr, pmd_t pmd, union mc_target *target) 978 { 979 struct page *page = NULL; 980 struct folio *folio; 981 enum mc_target_type ret = MC_TARGET_NONE; 982 983 if (unlikely(is_swap_pmd(pmd))) { 984 VM_BUG_ON(thp_migration_supported() && 985 !is_pmd_migration_entry(pmd)); 986 return ret; 987 } 988 page = pmd_page(pmd); 989 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 990 folio = page_folio(page); 991 if (!(mc.flags & MOVE_ANON)) 992 return ret; 993 if (folio_memcg(folio) == mc.from) { 994 ret = MC_TARGET_PAGE; 995 if (target) { 996 folio_get(folio); 997 if (!folio_trylock(folio)) { 998 folio_put(folio); 999 return MC_TARGET_NONE; 1000 } 1001 target->folio = folio; 1002 } 1003 } 1004 return ret; 1005 } 1006 #else 1007 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 1008 unsigned long addr, pmd_t pmd, union mc_target *target) 1009 { 1010 return MC_TARGET_NONE; 1011 } 1012 #endif 1013 1014 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 1015 unsigned long addr, unsigned long end, 1016 struct mm_walk *walk) 1017 { 1018 struct vm_area_struct *vma = walk->vma; 1019 pte_t *pte; 1020 spinlock_t *ptl; 1021 1022 ptl = pmd_trans_huge_lock(pmd, vma); 1023 if (ptl) { 1024 /* 1025 * Note their can not be MC_TARGET_DEVICE for now as we do not 1026 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 1027 * this might change. 1028 */ 1029 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 1030 mc.precharge += HPAGE_PMD_NR; 1031 spin_unlock(ptl); 1032 return 0; 1033 } 1034 1035 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1036 if (!pte) 1037 return 0; 1038 for (; addr != end; pte++, addr += PAGE_SIZE) 1039 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL)) 1040 mc.precharge++; /* increment precharge temporarily */ 1041 pte_unmap_unlock(pte - 1, ptl); 1042 cond_resched(); 1043 1044 return 0; 1045 } 1046 1047 static const struct mm_walk_ops precharge_walk_ops = { 1048 .pmd_entry = mem_cgroup_count_precharge_pte_range, 1049 .walk_lock = PGWALK_RDLOCK, 1050 }; 1051 1052 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 1053 { 1054 unsigned long precharge; 1055 1056 mmap_read_lock(mm); 1057 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL); 1058 mmap_read_unlock(mm); 1059 1060 precharge = mc.precharge; 1061 mc.precharge = 0; 1062 1063 return precharge; 1064 } 1065 1066 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 1067 { 1068 unsigned long precharge = mem_cgroup_count_precharge(mm); 1069 1070 VM_BUG_ON(mc.moving_task); 1071 mc.moving_task = current; 1072 return mem_cgroup_do_precharge(precharge); 1073 } 1074 1075 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 1076 static void __mem_cgroup_clear_mc(void) 1077 { 1078 struct mem_cgroup *from = mc.from; 1079 struct mem_cgroup *to = mc.to; 1080 1081 /* we must uncharge all the leftover precharges from mc.to */ 1082 if (mc.precharge) { 1083 mem_cgroup_cancel_charge(mc.to, mc.precharge); 1084 mc.precharge = 0; 1085 } 1086 /* 1087 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 1088 * we must uncharge here. 1089 */ 1090 if (mc.moved_charge) { 1091 mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 1092 mc.moved_charge = 0; 1093 } 1094 /* we must fixup refcnts and charges */ 1095 if (mc.moved_swap) { 1096 /* uncharge swap account from the old cgroup */ 1097 if (!mem_cgroup_is_root(mc.from)) 1098 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 1099 1100 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 1101 1102 /* 1103 * we charged both to->memory and to->memsw, so we 1104 * should uncharge to->memory. 1105 */ 1106 if (!mem_cgroup_is_root(mc.to)) 1107 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 1108 1109 mc.moved_swap = 0; 1110 } 1111 memcg1_oom_recover(from); 1112 memcg1_oom_recover(to); 1113 wake_up_all(&mc.waitq); 1114 } 1115 1116 static void mem_cgroup_clear_mc(void) 1117 { 1118 struct mm_struct *mm = mc.mm; 1119 1120 /* 1121 * we must clear moving_task before waking up waiters at the end of 1122 * task migration. 1123 */ 1124 mc.moving_task = NULL; 1125 __mem_cgroup_clear_mc(); 1126 spin_lock(&mc.lock); 1127 mc.from = NULL; 1128 mc.to = NULL; 1129 mc.mm = NULL; 1130 spin_unlock(&mc.lock); 1131 1132 mmput(mm); 1133 } 1134 1135 int memcg1_can_attach(struct cgroup_taskset *tset) 1136 { 1137 struct cgroup_subsys_state *css; 1138 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 1139 struct mem_cgroup *from; 1140 struct task_struct *leader, *p; 1141 struct mm_struct *mm; 1142 unsigned long move_flags; 1143 int ret = 0; 1144 1145 /* charge immigration isn't supported on the default hierarchy */ 1146 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1147 return 0; 1148 1149 /* 1150 * Multi-process migrations only happen on the default hierarchy 1151 * where charge immigration is not used. Perform charge 1152 * immigration if @tset contains a leader and whine if there are 1153 * multiple. 1154 */ 1155 p = NULL; 1156 cgroup_taskset_for_each_leader(leader, css, tset) { 1157 WARN_ON_ONCE(p); 1158 p = leader; 1159 memcg = mem_cgroup_from_css(css); 1160 } 1161 if (!p) 1162 return 0; 1163 1164 /* 1165 * We are now committed to this value whatever it is. Changes in this 1166 * tunable will only affect upcoming migrations, not the current one. 1167 * So we need to save it, and keep it going. 1168 */ 1169 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 1170 if (!move_flags) 1171 return 0; 1172 1173 from = mem_cgroup_from_task(p); 1174 1175 VM_BUG_ON(from == memcg); 1176 1177 mm = get_task_mm(p); 1178 if (!mm) 1179 return 0; 1180 /* We move charges only when we move a owner of the mm */ 1181 if (mm->owner == p) { 1182 VM_BUG_ON(mc.from); 1183 VM_BUG_ON(mc.to); 1184 VM_BUG_ON(mc.precharge); 1185 VM_BUG_ON(mc.moved_charge); 1186 VM_BUG_ON(mc.moved_swap); 1187 1188 spin_lock(&mc.lock); 1189 mc.mm = mm; 1190 mc.from = from; 1191 mc.to = memcg; 1192 mc.flags = move_flags; 1193 spin_unlock(&mc.lock); 1194 /* We set mc.moving_task later */ 1195 1196 ret = mem_cgroup_precharge_mc(mm); 1197 if (ret) 1198 mem_cgroup_clear_mc(); 1199 } else { 1200 mmput(mm); 1201 } 1202 return ret; 1203 } 1204 1205 void memcg1_cancel_attach(struct cgroup_taskset *tset) 1206 { 1207 if (mc.to) 1208 mem_cgroup_clear_mc(); 1209 } 1210 1211 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 1212 unsigned long addr, unsigned long end, 1213 struct mm_walk *walk) 1214 { 1215 int ret = 0; 1216 struct vm_area_struct *vma = walk->vma; 1217 pte_t *pte; 1218 spinlock_t *ptl; 1219 enum mc_target_type target_type; 1220 union mc_target target; 1221 struct folio *folio; 1222 bool tried_split_before = false; 1223 1224 retry_pmd: 1225 ptl = pmd_trans_huge_lock(pmd, vma); 1226 if (ptl) { 1227 if (mc.precharge < HPAGE_PMD_NR) { 1228 spin_unlock(ptl); 1229 return 0; 1230 } 1231 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 1232 if (target_type == MC_TARGET_PAGE) { 1233 folio = target.folio; 1234 /* 1235 * Deferred split queue locking depends on memcg, 1236 * and unqueue is unsafe unless folio refcount is 0: 1237 * split or skip if on the queue? first try to split. 1238 */ 1239 if (!list_empty(&folio->_deferred_list)) { 1240 spin_unlock(ptl); 1241 if (!tried_split_before) 1242 split_folio(folio); 1243 folio_unlock(folio); 1244 folio_put(folio); 1245 if (tried_split_before) 1246 return 0; 1247 tried_split_before = true; 1248 goto retry_pmd; 1249 } 1250 /* 1251 * So long as that pmd lock is held, the folio cannot 1252 * be racily added to the _deferred_list, because 1253 * __folio_remove_rmap() will find !partially_mapped. 1254 */ 1255 if (folio_isolate_lru(folio)) { 1256 if (!mem_cgroup_move_account(folio, true, 1257 mc.from, mc.to)) { 1258 mc.precharge -= HPAGE_PMD_NR; 1259 mc.moved_charge += HPAGE_PMD_NR; 1260 } 1261 folio_putback_lru(folio); 1262 } 1263 folio_unlock(folio); 1264 folio_put(folio); 1265 } else if (target_type == MC_TARGET_DEVICE) { 1266 folio = target.folio; 1267 if (!mem_cgroup_move_account(folio, true, 1268 mc.from, mc.to)) { 1269 mc.precharge -= HPAGE_PMD_NR; 1270 mc.moved_charge += HPAGE_PMD_NR; 1271 } 1272 folio_unlock(folio); 1273 folio_put(folio); 1274 } 1275 spin_unlock(ptl); 1276 return 0; 1277 } 1278 1279 retry: 1280 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1281 if (!pte) 1282 return 0; 1283 for (; addr != end; addr += PAGE_SIZE) { 1284 pte_t ptent = ptep_get(pte++); 1285 bool device = false; 1286 swp_entry_t ent; 1287 1288 if (!mc.precharge) 1289 break; 1290 1291 switch (get_mctgt_type(vma, addr, ptent, &target)) { 1292 case MC_TARGET_DEVICE: 1293 device = true; 1294 fallthrough; 1295 case MC_TARGET_PAGE: 1296 folio = target.folio; 1297 /* 1298 * We can have a part of the split pmd here. Moving it 1299 * can be done but it would be too convoluted so simply 1300 * ignore such a partial THP and keep it in original 1301 * memcg. There should be somebody mapping the head. 1302 */ 1303 if (folio_test_large(folio)) 1304 goto put; 1305 if (!device && !folio_isolate_lru(folio)) 1306 goto put; 1307 if (!mem_cgroup_move_account(folio, false, 1308 mc.from, mc.to)) { 1309 mc.precharge--; 1310 /* we uncharge from mc.from later. */ 1311 mc.moved_charge++; 1312 } 1313 if (!device) 1314 folio_putback_lru(folio); 1315 put: /* get_mctgt_type() gets & locks the page */ 1316 folio_unlock(folio); 1317 folio_put(folio); 1318 break; 1319 case MC_TARGET_SWAP: 1320 ent = target.ent; 1321 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 1322 mc.precharge--; 1323 mem_cgroup_id_get_many(mc.to, 1); 1324 /* we fixup other refcnts and charges later. */ 1325 mc.moved_swap++; 1326 } 1327 break; 1328 default: 1329 break; 1330 } 1331 } 1332 pte_unmap_unlock(pte - 1, ptl); 1333 cond_resched(); 1334 1335 if (addr != end) { 1336 /* 1337 * We have consumed all precharges we got in can_attach(). 1338 * We try charge one by one, but don't do any additional 1339 * charges to mc.to if we have failed in charge once in attach() 1340 * phase. 1341 */ 1342 ret = mem_cgroup_do_precharge(1); 1343 if (!ret) 1344 goto retry; 1345 } 1346 1347 return ret; 1348 } 1349 1350 static const struct mm_walk_ops charge_walk_ops = { 1351 .pmd_entry = mem_cgroup_move_charge_pte_range, 1352 .walk_lock = PGWALK_RDLOCK, 1353 }; 1354 1355 static void mem_cgroup_move_charge(void) 1356 { 1357 lru_add_drain_all(); 1358 /* 1359 * Signal folio_memcg_lock() to take the memcg's move_lock 1360 * while we're moving its pages to another memcg. Then wait 1361 * for already started RCU-only updates to finish. 1362 */ 1363 atomic_inc(&mc.from->moving_account); 1364 synchronize_rcu(); 1365 retry: 1366 if (unlikely(!mmap_read_trylock(mc.mm))) { 1367 /* 1368 * Someone who are holding the mmap_lock might be waiting in 1369 * waitq. So we cancel all extra charges, wake up all waiters, 1370 * and retry. Because we cancel precharges, we might not be able 1371 * to move enough charges, but moving charge is a best-effort 1372 * feature anyway, so it wouldn't be a big problem. 1373 */ 1374 __mem_cgroup_clear_mc(); 1375 cond_resched(); 1376 goto retry; 1377 } 1378 /* 1379 * When we have consumed all precharges and failed in doing 1380 * additional charge, the page walk just aborts. 1381 */ 1382 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL); 1383 mmap_read_unlock(mc.mm); 1384 atomic_dec(&mc.from->moving_account); 1385 } 1386 1387 void memcg1_move_task(void) 1388 { 1389 if (mc.to) { 1390 mem_cgroup_move_charge(); 1391 mem_cgroup_clear_mc(); 1392 } 1393 } 1394 1395 #else /* !CONFIG_MMU */ 1396 int memcg1_can_attach(struct cgroup_taskset *tset) 1397 { 1398 return 0; 1399 } 1400 void memcg1_cancel_attach(struct cgroup_taskset *tset) 1401 { 1402 } 1403 void memcg1_move_task(void) 1404 { 1405 } 1406 #endif 1407 1408 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 1409 { 1410 struct mem_cgroup_threshold_ary *t; 1411 unsigned long usage; 1412 int i; 1413 1414 rcu_read_lock(); 1415 if (!swap) 1416 t = rcu_dereference(memcg->thresholds.primary); 1417 else 1418 t = rcu_dereference(memcg->memsw_thresholds.primary); 1419 1420 if (!t) 1421 goto unlock; 1422 1423 usage = mem_cgroup_usage(memcg, swap); 1424 1425 /* 1426 * current_threshold points to threshold just below or equal to usage. 1427 * If it's not true, a threshold was crossed after last 1428 * call of __mem_cgroup_threshold(). 1429 */ 1430 i = t->current_threshold; 1431 1432 /* 1433 * Iterate backward over array of thresholds starting from 1434 * current_threshold and check if a threshold is crossed. 1435 * If none of thresholds below usage is crossed, we read 1436 * only one element of the array here. 1437 */ 1438 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 1439 eventfd_signal(t->entries[i].eventfd); 1440 1441 /* i = current_threshold + 1 */ 1442 i++; 1443 1444 /* 1445 * Iterate forward over array of thresholds starting from 1446 * current_threshold+1 and check if a threshold is crossed. 1447 * If none of thresholds above usage is crossed, we read 1448 * only one element of the array here. 1449 */ 1450 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 1451 eventfd_signal(t->entries[i].eventfd); 1452 1453 /* Update current_threshold */ 1454 t->current_threshold = i - 1; 1455 unlock: 1456 rcu_read_unlock(); 1457 } 1458 1459 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 1460 { 1461 while (memcg) { 1462 __mem_cgroup_threshold(memcg, false); 1463 if (do_memsw_account()) 1464 __mem_cgroup_threshold(memcg, true); 1465 1466 memcg = parent_mem_cgroup(memcg); 1467 } 1468 } 1469 1470 /* Cgroup1: threshold notifications & softlimit tree updates */ 1471 struct memcg1_events_percpu { 1472 unsigned long nr_page_events; 1473 unsigned long targets[MEM_CGROUP_NTARGETS]; 1474 }; 1475 1476 static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages) 1477 { 1478 /* pagein of a big page is an event. So, ignore page size */ 1479 if (nr_pages > 0) 1480 __count_memcg_events(memcg, PGPGIN, 1); 1481 else { 1482 __count_memcg_events(memcg, PGPGOUT, 1); 1483 nr_pages = -nr_pages; /* for event */ 1484 } 1485 1486 __this_cpu_add(memcg->events_percpu->nr_page_events, nr_pages); 1487 } 1488 1489 #define THRESHOLDS_EVENTS_TARGET 128 1490 #define SOFTLIMIT_EVENTS_TARGET 1024 1491 1492 static bool memcg1_event_ratelimit(struct mem_cgroup *memcg, 1493 enum mem_cgroup_events_target target) 1494 { 1495 unsigned long val, next; 1496 1497 val = __this_cpu_read(memcg->events_percpu->nr_page_events); 1498 next = __this_cpu_read(memcg->events_percpu->targets[target]); 1499 /* from time_after() in jiffies.h */ 1500 if ((long)(next - val) < 0) { 1501 switch (target) { 1502 case MEM_CGROUP_TARGET_THRESH: 1503 next = val + THRESHOLDS_EVENTS_TARGET; 1504 break; 1505 case MEM_CGROUP_TARGET_SOFTLIMIT: 1506 next = val + SOFTLIMIT_EVENTS_TARGET; 1507 break; 1508 default: 1509 break; 1510 } 1511 __this_cpu_write(memcg->events_percpu->targets[target], next); 1512 return true; 1513 } 1514 return false; 1515 } 1516 1517 /* 1518 * Check events in order. 1519 * 1520 */ 1521 static void memcg1_check_events(struct mem_cgroup *memcg, int nid) 1522 { 1523 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1524 return; 1525 1526 /* threshold event is triggered in finer grain than soft limit */ 1527 if (unlikely(memcg1_event_ratelimit(memcg, 1528 MEM_CGROUP_TARGET_THRESH))) { 1529 bool do_softlimit; 1530 1531 do_softlimit = memcg1_event_ratelimit(memcg, 1532 MEM_CGROUP_TARGET_SOFTLIMIT); 1533 mem_cgroup_threshold(memcg); 1534 if (unlikely(do_softlimit)) 1535 memcg1_update_tree(memcg, nid); 1536 } 1537 } 1538 1539 void memcg1_commit_charge(struct folio *folio, struct mem_cgroup *memcg) 1540 { 1541 unsigned long flags; 1542 1543 local_irq_save(flags); 1544 memcg1_charge_statistics(memcg, folio_nr_pages(folio)); 1545 memcg1_check_events(memcg, folio_nid(folio)); 1546 local_irq_restore(flags); 1547 } 1548 1549 void memcg1_swapout(struct folio *folio, struct mem_cgroup *memcg) 1550 { 1551 /* 1552 * Interrupts should be disabled here because the caller holds the 1553 * i_pages lock which is taken with interrupts-off. It is 1554 * important here to have the interrupts disabled because it is the 1555 * only synchronisation we have for updating the per-CPU variables. 1556 */ 1557 preempt_disable_nested(); 1558 VM_WARN_ON_IRQS_ENABLED(); 1559 memcg1_charge_statistics(memcg, -folio_nr_pages(folio)); 1560 preempt_enable_nested(); 1561 memcg1_check_events(memcg, folio_nid(folio)); 1562 } 1563 1564 void memcg1_uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 1565 unsigned long nr_memory, int nid) 1566 { 1567 unsigned long flags; 1568 1569 local_irq_save(flags); 1570 __count_memcg_events(memcg, PGPGOUT, pgpgout); 1571 __this_cpu_add(memcg->events_percpu->nr_page_events, nr_memory); 1572 memcg1_check_events(memcg, nid); 1573 local_irq_restore(flags); 1574 } 1575 1576 static int compare_thresholds(const void *a, const void *b) 1577 { 1578 const struct mem_cgroup_threshold *_a = a; 1579 const struct mem_cgroup_threshold *_b = b; 1580 1581 if (_a->threshold > _b->threshold) 1582 return 1; 1583 1584 if (_a->threshold < _b->threshold) 1585 return -1; 1586 1587 return 0; 1588 } 1589 1590 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 1591 { 1592 struct mem_cgroup_eventfd_list *ev; 1593 1594 spin_lock(&memcg_oom_lock); 1595 1596 list_for_each_entry(ev, &memcg->oom_notify, list) 1597 eventfd_signal(ev->eventfd); 1598 1599 spin_unlock(&memcg_oom_lock); 1600 return 0; 1601 } 1602 1603 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 1604 { 1605 struct mem_cgroup *iter; 1606 1607 for_each_mem_cgroup_tree(iter, memcg) 1608 mem_cgroup_oom_notify_cb(iter); 1609 } 1610 1611 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 1612 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 1613 { 1614 struct mem_cgroup_thresholds *thresholds; 1615 struct mem_cgroup_threshold_ary *new; 1616 unsigned long threshold; 1617 unsigned long usage; 1618 int i, size, ret; 1619 1620 ret = page_counter_memparse(args, "-1", &threshold); 1621 if (ret) 1622 return ret; 1623 1624 mutex_lock(&memcg->thresholds_lock); 1625 1626 if (type == _MEM) { 1627 thresholds = &memcg->thresholds; 1628 usage = mem_cgroup_usage(memcg, false); 1629 } else if (type == _MEMSWAP) { 1630 thresholds = &memcg->memsw_thresholds; 1631 usage = mem_cgroup_usage(memcg, true); 1632 } else 1633 BUG(); 1634 1635 /* Check if a threshold crossed before adding a new one */ 1636 if (thresholds->primary) 1637 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 1638 1639 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 1640 1641 /* Allocate memory for new array of thresholds */ 1642 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 1643 if (!new) { 1644 ret = -ENOMEM; 1645 goto unlock; 1646 } 1647 new->size = size; 1648 1649 /* Copy thresholds (if any) to new array */ 1650 if (thresholds->primary) 1651 memcpy(new->entries, thresholds->primary->entries, 1652 flex_array_size(new, entries, size - 1)); 1653 1654 /* Add new threshold */ 1655 new->entries[size - 1].eventfd = eventfd; 1656 new->entries[size - 1].threshold = threshold; 1657 1658 /* Sort thresholds. Registering of new threshold isn't time-critical */ 1659 sort(new->entries, size, sizeof(*new->entries), 1660 compare_thresholds, NULL); 1661 1662 /* Find current threshold */ 1663 new->current_threshold = -1; 1664 for (i = 0; i < size; i++) { 1665 if (new->entries[i].threshold <= usage) { 1666 /* 1667 * new->current_threshold will not be used until 1668 * rcu_assign_pointer(), so it's safe to increment 1669 * it here. 1670 */ 1671 ++new->current_threshold; 1672 } else 1673 break; 1674 } 1675 1676 /* Free old spare buffer and save old primary buffer as spare */ 1677 kfree(thresholds->spare); 1678 thresholds->spare = thresholds->primary; 1679 1680 rcu_assign_pointer(thresholds->primary, new); 1681 1682 /* To be sure that nobody uses thresholds */ 1683 synchronize_rcu(); 1684 1685 unlock: 1686 mutex_unlock(&memcg->thresholds_lock); 1687 1688 return ret; 1689 } 1690 1691 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 1692 struct eventfd_ctx *eventfd, const char *args) 1693 { 1694 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 1695 } 1696 1697 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 1698 struct eventfd_ctx *eventfd, const char *args) 1699 { 1700 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 1701 } 1702 1703 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 1704 struct eventfd_ctx *eventfd, enum res_type type) 1705 { 1706 struct mem_cgroup_thresholds *thresholds; 1707 struct mem_cgroup_threshold_ary *new; 1708 unsigned long usage; 1709 int i, j, size, entries; 1710 1711 mutex_lock(&memcg->thresholds_lock); 1712 1713 if (type == _MEM) { 1714 thresholds = &memcg->thresholds; 1715 usage = mem_cgroup_usage(memcg, false); 1716 } else if (type == _MEMSWAP) { 1717 thresholds = &memcg->memsw_thresholds; 1718 usage = mem_cgroup_usage(memcg, true); 1719 } else 1720 BUG(); 1721 1722 if (!thresholds->primary) 1723 goto unlock; 1724 1725 /* Check if a threshold crossed before removing */ 1726 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 1727 1728 /* Calculate new number of threshold */ 1729 size = entries = 0; 1730 for (i = 0; i < thresholds->primary->size; i++) { 1731 if (thresholds->primary->entries[i].eventfd != eventfd) 1732 size++; 1733 else 1734 entries++; 1735 } 1736 1737 new = thresholds->spare; 1738 1739 /* If no items related to eventfd have been cleared, nothing to do */ 1740 if (!entries) 1741 goto unlock; 1742 1743 /* Set thresholds array to NULL if we don't have thresholds */ 1744 if (!size) { 1745 kfree(new); 1746 new = NULL; 1747 goto swap_buffers; 1748 } 1749 1750 new->size = size; 1751 1752 /* Copy thresholds and find current threshold */ 1753 new->current_threshold = -1; 1754 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 1755 if (thresholds->primary->entries[i].eventfd == eventfd) 1756 continue; 1757 1758 new->entries[j] = thresholds->primary->entries[i]; 1759 if (new->entries[j].threshold <= usage) { 1760 /* 1761 * new->current_threshold will not be used 1762 * until rcu_assign_pointer(), so it's safe to increment 1763 * it here. 1764 */ 1765 ++new->current_threshold; 1766 } 1767 j++; 1768 } 1769 1770 swap_buffers: 1771 /* Swap primary and spare array */ 1772 thresholds->spare = thresholds->primary; 1773 1774 rcu_assign_pointer(thresholds->primary, new); 1775 1776 /* To be sure that nobody uses thresholds */ 1777 synchronize_rcu(); 1778 1779 /* If all events are unregistered, free the spare array */ 1780 if (!new) { 1781 kfree(thresholds->spare); 1782 thresholds->spare = NULL; 1783 } 1784 unlock: 1785 mutex_unlock(&memcg->thresholds_lock); 1786 } 1787 1788 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 1789 struct eventfd_ctx *eventfd) 1790 { 1791 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 1792 } 1793 1794 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 1795 struct eventfd_ctx *eventfd) 1796 { 1797 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 1798 } 1799 1800 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 1801 struct eventfd_ctx *eventfd, const char *args) 1802 { 1803 struct mem_cgroup_eventfd_list *event; 1804 1805 event = kmalloc(sizeof(*event), GFP_KERNEL); 1806 if (!event) 1807 return -ENOMEM; 1808 1809 spin_lock(&memcg_oom_lock); 1810 1811 event->eventfd = eventfd; 1812 list_add(&event->list, &memcg->oom_notify); 1813 1814 /* already in OOM ? */ 1815 if (memcg->under_oom) 1816 eventfd_signal(eventfd); 1817 spin_unlock(&memcg_oom_lock); 1818 1819 return 0; 1820 } 1821 1822 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 1823 struct eventfd_ctx *eventfd) 1824 { 1825 struct mem_cgroup_eventfd_list *ev, *tmp; 1826 1827 spin_lock(&memcg_oom_lock); 1828 1829 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 1830 if (ev->eventfd == eventfd) { 1831 list_del(&ev->list); 1832 kfree(ev); 1833 } 1834 } 1835 1836 spin_unlock(&memcg_oom_lock); 1837 } 1838 1839 /* 1840 * DO NOT USE IN NEW FILES. 1841 * 1842 * "cgroup.event_control" implementation. 1843 * 1844 * This is way over-engineered. It tries to support fully configurable 1845 * events for each user. Such level of flexibility is completely 1846 * unnecessary especially in the light of the planned unified hierarchy. 1847 * 1848 * Please deprecate this and replace with something simpler if at all 1849 * possible. 1850 */ 1851 1852 /* 1853 * Unregister event and free resources. 1854 * 1855 * Gets called from workqueue. 1856 */ 1857 static void memcg_event_remove(struct work_struct *work) 1858 { 1859 struct mem_cgroup_event *event = 1860 container_of(work, struct mem_cgroup_event, remove); 1861 struct mem_cgroup *memcg = event->memcg; 1862 1863 remove_wait_queue(event->wqh, &event->wait); 1864 1865 event->unregister_event(memcg, event->eventfd); 1866 1867 /* Notify userspace the event is going away. */ 1868 eventfd_signal(event->eventfd); 1869 1870 eventfd_ctx_put(event->eventfd); 1871 kfree(event); 1872 css_put(&memcg->css); 1873 } 1874 1875 /* 1876 * Gets called on EPOLLHUP on eventfd when user closes it. 1877 * 1878 * Called with wqh->lock held and interrupts disabled. 1879 */ 1880 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 1881 int sync, void *key) 1882 { 1883 struct mem_cgroup_event *event = 1884 container_of(wait, struct mem_cgroup_event, wait); 1885 struct mem_cgroup *memcg = event->memcg; 1886 __poll_t flags = key_to_poll(key); 1887 1888 if (flags & EPOLLHUP) { 1889 /* 1890 * If the event has been detached at cgroup removal, we 1891 * can simply return knowing the other side will cleanup 1892 * for us. 1893 * 1894 * We can't race against event freeing since the other 1895 * side will require wqh->lock via remove_wait_queue(), 1896 * which we hold. 1897 */ 1898 spin_lock(&memcg->event_list_lock); 1899 if (!list_empty(&event->list)) { 1900 list_del_init(&event->list); 1901 /* 1902 * We are in atomic context, but cgroup_event_remove() 1903 * may sleep, so we have to call it in workqueue. 1904 */ 1905 schedule_work(&event->remove); 1906 } 1907 spin_unlock(&memcg->event_list_lock); 1908 } 1909 1910 return 0; 1911 } 1912 1913 static void memcg_event_ptable_queue_proc(struct file *file, 1914 wait_queue_head_t *wqh, poll_table *pt) 1915 { 1916 struct mem_cgroup_event *event = 1917 container_of(pt, struct mem_cgroup_event, pt); 1918 1919 event->wqh = wqh; 1920 add_wait_queue(wqh, &event->wait); 1921 } 1922 1923 /* 1924 * DO NOT USE IN NEW FILES. 1925 * 1926 * Parse input and register new cgroup event handler. 1927 * 1928 * Input must be in format '<event_fd> <control_fd> <args>'. 1929 * Interpretation of args is defined by control file implementation. 1930 */ 1931 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 1932 char *buf, size_t nbytes, loff_t off) 1933 { 1934 struct cgroup_subsys_state *css = of_css(of); 1935 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 1936 struct mem_cgroup_event *event; 1937 struct cgroup_subsys_state *cfile_css; 1938 unsigned int efd, cfd; 1939 struct fd efile; 1940 struct fd cfile; 1941 struct dentry *cdentry; 1942 const char *name; 1943 char *endp; 1944 int ret; 1945 1946 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1947 return -EOPNOTSUPP; 1948 1949 buf = strstrip(buf); 1950 1951 efd = simple_strtoul(buf, &endp, 10); 1952 if (*endp != ' ') 1953 return -EINVAL; 1954 buf = endp + 1; 1955 1956 cfd = simple_strtoul(buf, &endp, 10); 1957 if (*endp == '\0') 1958 buf = endp; 1959 else if (*endp == ' ') 1960 buf = endp + 1; 1961 else 1962 return -EINVAL; 1963 1964 event = kzalloc(sizeof(*event), GFP_KERNEL); 1965 if (!event) 1966 return -ENOMEM; 1967 1968 event->memcg = memcg; 1969 INIT_LIST_HEAD(&event->list); 1970 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 1971 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 1972 INIT_WORK(&event->remove, memcg_event_remove); 1973 1974 efile = fdget(efd); 1975 if (!fd_file(efile)) { 1976 ret = -EBADF; 1977 goto out_kfree; 1978 } 1979 1980 event->eventfd = eventfd_ctx_fileget(fd_file(efile)); 1981 if (IS_ERR(event->eventfd)) { 1982 ret = PTR_ERR(event->eventfd); 1983 goto out_put_efile; 1984 } 1985 1986 cfile = fdget(cfd); 1987 if (!fd_file(cfile)) { 1988 ret = -EBADF; 1989 goto out_put_eventfd; 1990 } 1991 1992 /* the process need read permission on control file */ 1993 /* AV: shouldn't we check that it's been opened for read instead? */ 1994 ret = file_permission(fd_file(cfile), MAY_READ); 1995 if (ret < 0) 1996 goto out_put_cfile; 1997 1998 /* 1999 * The control file must be a regular cgroup1 file. As a regular cgroup 2000 * file can't be renamed, it's safe to access its name afterwards. 2001 */ 2002 cdentry = fd_file(cfile)->f_path.dentry; 2003 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { 2004 ret = -EINVAL; 2005 goto out_put_cfile; 2006 } 2007 2008 /* 2009 * Determine the event callbacks and set them in @event. This used 2010 * to be done via struct cftype but cgroup core no longer knows 2011 * about these events. The following is crude but the whole thing 2012 * is for compatibility anyway. 2013 * 2014 * DO NOT ADD NEW FILES. 2015 */ 2016 name = cdentry->d_name.name; 2017 2018 if (!strcmp(name, "memory.usage_in_bytes")) { 2019 event->register_event = mem_cgroup_usage_register_event; 2020 event->unregister_event = mem_cgroup_usage_unregister_event; 2021 } else if (!strcmp(name, "memory.oom_control")) { 2022 pr_warn_once("oom_control is deprecated and will be removed. " 2023 "Please report your usecase to linux-mm-@kvack.org" 2024 " if you depend on this functionality. \n"); 2025 event->register_event = mem_cgroup_oom_register_event; 2026 event->unregister_event = mem_cgroup_oom_unregister_event; 2027 } else if (!strcmp(name, "memory.pressure_level")) { 2028 pr_warn_once("pressure_level is deprecated and will be removed. " 2029 "Please report your usecase to linux-mm-@kvack.org " 2030 "if you depend on this functionality. \n"); 2031 event->register_event = vmpressure_register_event; 2032 event->unregister_event = vmpressure_unregister_event; 2033 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 2034 event->register_event = memsw_cgroup_usage_register_event; 2035 event->unregister_event = memsw_cgroup_usage_unregister_event; 2036 } else { 2037 ret = -EINVAL; 2038 goto out_put_cfile; 2039 } 2040 2041 /* 2042 * Verify @cfile should belong to @css. Also, remaining events are 2043 * automatically removed on cgroup destruction but the removal is 2044 * asynchronous, so take an extra ref on @css. 2045 */ 2046 cfile_css = css_tryget_online_from_dir(cdentry->d_parent, 2047 &memory_cgrp_subsys); 2048 ret = -EINVAL; 2049 if (IS_ERR(cfile_css)) 2050 goto out_put_cfile; 2051 if (cfile_css != css) { 2052 css_put(cfile_css); 2053 goto out_put_cfile; 2054 } 2055 2056 ret = event->register_event(memcg, event->eventfd, buf); 2057 if (ret) 2058 goto out_put_css; 2059 2060 vfs_poll(fd_file(efile), &event->pt); 2061 2062 spin_lock_irq(&memcg->event_list_lock); 2063 list_add(&event->list, &memcg->event_list); 2064 spin_unlock_irq(&memcg->event_list_lock); 2065 2066 fdput(cfile); 2067 fdput(efile); 2068 2069 return nbytes; 2070 2071 out_put_css: 2072 css_put(css); 2073 out_put_cfile: 2074 fdput(cfile); 2075 out_put_eventfd: 2076 eventfd_ctx_put(event->eventfd); 2077 out_put_efile: 2078 fdput(efile); 2079 out_kfree: 2080 kfree(event); 2081 2082 return ret; 2083 } 2084 2085 void memcg1_memcg_init(struct mem_cgroup *memcg) 2086 { 2087 INIT_LIST_HEAD(&memcg->oom_notify); 2088 mutex_init(&memcg->thresholds_lock); 2089 spin_lock_init(&memcg->move_lock); 2090 INIT_LIST_HEAD(&memcg->event_list); 2091 spin_lock_init(&memcg->event_list_lock); 2092 } 2093 2094 void memcg1_css_offline(struct mem_cgroup *memcg) 2095 { 2096 struct mem_cgroup_event *event, *tmp; 2097 2098 /* 2099 * Unregister events and notify userspace. 2100 * Notify userspace about cgroup removing only after rmdir of cgroup 2101 * directory to avoid race between userspace and kernelspace. 2102 */ 2103 spin_lock_irq(&memcg->event_list_lock); 2104 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 2105 list_del_init(&event->list); 2106 schedule_work(&event->remove); 2107 } 2108 spin_unlock_irq(&memcg->event_list_lock); 2109 } 2110 2111 /* 2112 * Check OOM-Killer is already running under our hierarchy. 2113 * If someone is running, return false. 2114 */ 2115 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 2116 { 2117 struct mem_cgroup *iter, *failed = NULL; 2118 2119 spin_lock(&memcg_oom_lock); 2120 2121 for_each_mem_cgroup_tree(iter, memcg) { 2122 if (iter->oom_lock) { 2123 /* 2124 * this subtree of our hierarchy is already locked 2125 * so we cannot give a lock. 2126 */ 2127 failed = iter; 2128 mem_cgroup_iter_break(memcg, iter); 2129 break; 2130 } else 2131 iter->oom_lock = true; 2132 } 2133 2134 if (failed) { 2135 /* 2136 * OK, we failed to lock the whole subtree so we have 2137 * to clean up what we set up to the failing subtree 2138 */ 2139 for_each_mem_cgroup_tree(iter, memcg) { 2140 if (iter == failed) { 2141 mem_cgroup_iter_break(memcg, iter); 2142 break; 2143 } 2144 iter->oom_lock = false; 2145 } 2146 } else 2147 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 2148 2149 spin_unlock(&memcg_oom_lock); 2150 2151 return !failed; 2152 } 2153 2154 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 2155 { 2156 struct mem_cgroup *iter; 2157 2158 spin_lock(&memcg_oom_lock); 2159 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 2160 for_each_mem_cgroup_tree(iter, memcg) 2161 iter->oom_lock = false; 2162 spin_unlock(&memcg_oom_lock); 2163 } 2164 2165 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 2166 { 2167 struct mem_cgroup *iter; 2168 2169 spin_lock(&memcg_oom_lock); 2170 for_each_mem_cgroup_tree(iter, memcg) 2171 iter->under_oom++; 2172 spin_unlock(&memcg_oom_lock); 2173 } 2174 2175 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 2176 { 2177 struct mem_cgroup *iter; 2178 2179 /* 2180 * Be careful about under_oom underflows because a child memcg 2181 * could have been added after mem_cgroup_mark_under_oom. 2182 */ 2183 spin_lock(&memcg_oom_lock); 2184 for_each_mem_cgroup_tree(iter, memcg) 2185 if (iter->under_oom > 0) 2186 iter->under_oom--; 2187 spin_unlock(&memcg_oom_lock); 2188 } 2189 2190 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2191 2192 struct oom_wait_info { 2193 struct mem_cgroup *memcg; 2194 wait_queue_entry_t wait; 2195 }; 2196 2197 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 2198 unsigned mode, int sync, void *arg) 2199 { 2200 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2201 struct mem_cgroup *oom_wait_memcg; 2202 struct oom_wait_info *oom_wait_info; 2203 2204 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2205 oom_wait_memcg = oom_wait_info->memcg; 2206 2207 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 2208 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 2209 return 0; 2210 return autoremove_wake_function(wait, mode, sync, arg); 2211 } 2212 2213 void memcg1_oom_recover(struct mem_cgroup *memcg) 2214 { 2215 /* 2216 * For the following lockless ->under_oom test, the only required 2217 * guarantee is that it must see the state asserted by an OOM when 2218 * this function is called as a result of userland actions 2219 * triggered by the notification of the OOM. This is trivially 2220 * achieved by invoking mem_cgroup_mark_under_oom() before 2221 * triggering notification. 2222 */ 2223 if (memcg && memcg->under_oom) 2224 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2225 } 2226 2227 /** 2228 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2229 * @handle: actually kill/wait or just clean up the OOM state 2230 * 2231 * This has to be called at the end of a page fault if the memcg OOM 2232 * handler was enabled. 2233 * 2234 * Memcg supports userspace OOM handling where failed allocations must 2235 * sleep on a waitqueue until the userspace task resolves the 2236 * situation. Sleeping directly in the charge context with all kinds 2237 * of locks held is not a good idea, instead we remember an OOM state 2238 * in the task and mem_cgroup_oom_synchronize() has to be called at 2239 * the end of the page fault to complete the OOM handling. 2240 * 2241 * Returns %true if an ongoing memcg OOM situation was detected and 2242 * completed, %false otherwise. 2243 */ 2244 bool mem_cgroup_oom_synchronize(bool handle) 2245 { 2246 struct mem_cgroup *memcg = current->memcg_in_oom; 2247 struct oom_wait_info owait; 2248 bool locked; 2249 2250 /* OOM is global, do not handle */ 2251 if (!memcg) 2252 return false; 2253 2254 if (!handle) 2255 goto cleanup; 2256 2257 owait.memcg = memcg; 2258 owait.wait.flags = 0; 2259 owait.wait.func = memcg_oom_wake_function; 2260 owait.wait.private = current; 2261 INIT_LIST_HEAD(&owait.wait.entry); 2262 2263 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2264 mem_cgroup_mark_under_oom(memcg); 2265 2266 locked = mem_cgroup_oom_trylock(memcg); 2267 2268 if (locked) 2269 mem_cgroup_oom_notify(memcg); 2270 2271 schedule(); 2272 mem_cgroup_unmark_under_oom(memcg); 2273 finish_wait(&memcg_oom_waitq, &owait.wait); 2274 2275 if (locked) 2276 mem_cgroup_oom_unlock(memcg); 2277 cleanup: 2278 current->memcg_in_oom = NULL; 2279 css_put(&memcg->css); 2280 return true; 2281 } 2282 2283 2284 bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked) 2285 { 2286 /* 2287 * We are in the middle of the charge context here, so we 2288 * don't want to block when potentially sitting on a callstack 2289 * that holds all kinds of filesystem and mm locks. 2290 * 2291 * cgroup1 allows disabling the OOM killer and waiting for outside 2292 * handling until the charge can succeed; remember the context and put 2293 * the task to sleep at the end of the page fault when all locks are 2294 * released. 2295 * 2296 * On the other hand, in-kernel OOM killer allows for an async victim 2297 * memory reclaim (oom_reaper) and that means that we are not solely 2298 * relying on the oom victim to make a forward progress and we can 2299 * invoke the oom killer here. 2300 * 2301 * Please note that mem_cgroup_out_of_memory might fail to find a 2302 * victim and then we have to bail out from the charge path. 2303 */ 2304 if (READ_ONCE(memcg->oom_kill_disable)) { 2305 if (current->in_user_fault) { 2306 css_get(&memcg->css); 2307 current->memcg_in_oom = memcg; 2308 } 2309 return false; 2310 } 2311 2312 mem_cgroup_mark_under_oom(memcg); 2313 2314 *locked = mem_cgroup_oom_trylock(memcg); 2315 2316 if (*locked) 2317 mem_cgroup_oom_notify(memcg); 2318 2319 mem_cgroup_unmark_under_oom(memcg); 2320 2321 return true; 2322 } 2323 2324 void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked) 2325 { 2326 if (locked) 2327 mem_cgroup_oom_unlock(memcg); 2328 } 2329 2330 static DEFINE_MUTEX(memcg_max_mutex); 2331 2332 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 2333 unsigned long max, bool memsw) 2334 { 2335 bool enlarge = false; 2336 bool drained = false; 2337 int ret; 2338 bool limits_invariant; 2339 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2340 2341 do { 2342 if (signal_pending(current)) { 2343 ret = -EINTR; 2344 break; 2345 } 2346 2347 mutex_lock(&memcg_max_mutex); 2348 /* 2349 * Make sure that the new limit (memsw or memory limit) doesn't 2350 * break our basic invariant rule memory.max <= memsw.max. 2351 */ 2352 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 2353 max <= memcg->memsw.max; 2354 if (!limits_invariant) { 2355 mutex_unlock(&memcg_max_mutex); 2356 ret = -EINVAL; 2357 break; 2358 } 2359 if (max > counter->max) 2360 enlarge = true; 2361 ret = page_counter_set_max(counter, max); 2362 mutex_unlock(&memcg_max_mutex); 2363 2364 if (!ret) 2365 break; 2366 2367 if (!drained) { 2368 drain_all_stock(memcg); 2369 drained = true; 2370 continue; 2371 } 2372 2373 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 2374 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) { 2375 ret = -EBUSY; 2376 break; 2377 } 2378 } while (true); 2379 2380 if (!ret && enlarge) 2381 memcg1_oom_recover(memcg); 2382 2383 return ret; 2384 } 2385 2386 /* 2387 * Reclaims as many pages from the given memcg as possible. 2388 * 2389 * Caller is responsible for holding css reference for memcg. 2390 */ 2391 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2392 { 2393 int nr_retries = MAX_RECLAIM_RETRIES; 2394 2395 /* we call try-to-free pages for make this cgroup empty */ 2396 lru_add_drain_all(); 2397 2398 drain_all_stock(memcg); 2399 2400 /* try to free all pages in this cgroup */ 2401 while (nr_retries && page_counter_read(&memcg->memory)) { 2402 if (signal_pending(current)) 2403 return -EINTR; 2404 2405 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 2406 MEMCG_RECLAIM_MAY_SWAP, NULL)) 2407 nr_retries--; 2408 } 2409 2410 return 0; 2411 } 2412 2413 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2414 char *buf, size_t nbytes, 2415 loff_t off) 2416 { 2417 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2418 2419 if (mem_cgroup_is_root(memcg)) 2420 return -EINVAL; 2421 return mem_cgroup_force_empty(memcg) ?: nbytes; 2422 } 2423 2424 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2425 struct cftype *cft) 2426 { 2427 return 1; 2428 } 2429 2430 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2431 struct cftype *cft, u64 val) 2432 { 2433 if (val == 1) 2434 return 0; 2435 2436 pr_warn_once("Non-hierarchical mode is deprecated. " 2437 "Please report your usecase to linux-mm@kvack.org if you " 2438 "depend on this functionality.\n"); 2439 2440 return -EINVAL; 2441 } 2442 2443 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2444 struct cftype *cft) 2445 { 2446 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2447 struct page_counter *counter; 2448 2449 switch (MEMFILE_TYPE(cft->private)) { 2450 case _MEM: 2451 counter = &memcg->memory; 2452 break; 2453 case _MEMSWAP: 2454 counter = &memcg->memsw; 2455 break; 2456 case _KMEM: 2457 counter = &memcg->kmem; 2458 break; 2459 case _TCP: 2460 counter = &memcg->tcpmem; 2461 break; 2462 default: 2463 BUG(); 2464 } 2465 2466 switch (MEMFILE_ATTR(cft->private)) { 2467 case RES_USAGE: 2468 if (counter == &memcg->memory) 2469 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2470 if (counter == &memcg->memsw) 2471 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2472 return (u64)page_counter_read(counter) * PAGE_SIZE; 2473 case RES_LIMIT: 2474 return (u64)counter->max * PAGE_SIZE; 2475 case RES_MAX_USAGE: 2476 return (u64)counter->watermark * PAGE_SIZE; 2477 case RES_FAILCNT: 2478 return counter->failcnt; 2479 case RES_SOFT_LIMIT: 2480 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE; 2481 default: 2482 BUG(); 2483 } 2484 } 2485 2486 /* 2487 * This function doesn't do anything useful. Its only job is to provide a read 2488 * handler for a file so that cgroup_file_mode() will add read permissions. 2489 */ 2490 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m, 2491 __always_unused void *v) 2492 { 2493 return -EINVAL; 2494 } 2495 2496 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 2497 { 2498 int ret; 2499 2500 mutex_lock(&memcg_max_mutex); 2501 2502 ret = page_counter_set_max(&memcg->tcpmem, max); 2503 if (ret) 2504 goto out; 2505 2506 if (!memcg->tcpmem_active) { 2507 /* 2508 * The active flag needs to be written after the static_key 2509 * update. This is what guarantees that the socket activation 2510 * function is the last one to run. See mem_cgroup_sk_alloc() 2511 * for details, and note that we don't mark any socket as 2512 * belonging to this memcg until that flag is up. 2513 * 2514 * We need to do this, because static_keys will span multiple 2515 * sites, but we can't control their order. If we mark a socket 2516 * as accounted, but the accounting functions are not patched in 2517 * yet, we'll lose accounting. 2518 * 2519 * We never race with the readers in mem_cgroup_sk_alloc(), 2520 * because when this value change, the code to process it is not 2521 * patched in yet. 2522 */ 2523 static_branch_inc(&memcg_sockets_enabled_key); 2524 memcg->tcpmem_active = true; 2525 } 2526 out: 2527 mutex_unlock(&memcg_max_mutex); 2528 return ret; 2529 } 2530 2531 /* 2532 * The user of this function is... 2533 * RES_LIMIT. 2534 */ 2535 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 2536 char *buf, size_t nbytes, loff_t off) 2537 { 2538 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2539 unsigned long nr_pages; 2540 int ret; 2541 2542 buf = strstrip(buf); 2543 ret = page_counter_memparse(buf, "-1", &nr_pages); 2544 if (ret) 2545 return ret; 2546 2547 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2548 case RES_LIMIT: 2549 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 2550 ret = -EINVAL; 2551 break; 2552 } 2553 switch (MEMFILE_TYPE(of_cft(of)->private)) { 2554 case _MEM: 2555 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 2556 break; 2557 case _MEMSWAP: 2558 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 2559 break; 2560 case _KMEM: 2561 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 2562 "Writing any value to this file has no effect. " 2563 "Please report your usecase to linux-mm@kvack.org if you " 2564 "depend on this functionality.\n"); 2565 ret = 0; 2566 break; 2567 case _TCP: 2568 pr_warn_once("kmem.tcp.limit_in_bytes is deprecated and will be removed. " 2569 "Please report your usecase to linux-mm@kvack.org if you " 2570 "depend on this functionality.\n"); 2571 ret = memcg_update_tcp_max(memcg, nr_pages); 2572 break; 2573 } 2574 break; 2575 case RES_SOFT_LIMIT: 2576 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 2577 ret = -EOPNOTSUPP; 2578 } else { 2579 pr_warn_once("soft_limit_in_bytes is deprecated and will be removed. " 2580 "Please report your usecase to linux-mm@kvack.org if you " 2581 "depend on this functionality.\n"); 2582 WRITE_ONCE(memcg->soft_limit, nr_pages); 2583 ret = 0; 2584 } 2585 break; 2586 } 2587 return ret ?: nbytes; 2588 } 2589 2590 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 2591 size_t nbytes, loff_t off) 2592 { 2593 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2594 struct page_counter *counter; 2595 2596 switch (MEMFILE_TYPE(of_cft(of)->private)) { 2597 case _MEM: 2598 counter = &memcg->memory; 2599 break; 2600 case _MEMSWAP: 2601 counter = &memcg->memsw; 2602 break; 2603 case _KMEM: 2604 counter = &memcg->kmem; 2605 break; 2606 case _TCP: 2607 counter = &memcg->tcpmem; 2608 break; 2609 default: 2610 BUG(); 2611 } 2612 2613 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2614 case RES_MAX_USAGE: 2615 page_counter_reset_watermark(counter); 2616 break; 2617 case RES_FAILCNT: 2618 counter->failcnt = 0; 2619 break; 2620 default: 2621 BUG(); 2622 } 2623 2624 return nbytes; 2625 } 2626 2627 #ifdef CONFIG_NUMA 2628 2629 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 2630 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 2631 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 2632 2633 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 2634 int nid, unsigned int lru_mask, bool tree) 2635 { 2636 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 2637 unsigned long nr = 0; 2638 enum lru_list lru; 2639 2640 VM_BUG_ON((unsigned)nid >= nr_node_ids); 2641 2642 for_each_lru(lru) { 2643 if (!(BIT(lru) & lru_mask)) 2644 continue; 2645 if (tree) 2646 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 2647 else 2648 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 2649 } 2650 return nr; 2651 } 2652 2653 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 2654 unsigned int lru_mask, 2655 bool tree) 2656 { 2657 unsigned long nr = 0; 2658 enum lru_list lru; 2659 2660 for_each_lru(lru) { 2661 if (!(BIT(lru) & lru_mask)) 2662 continue; 2663 if (tree) 2664 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 2665 else 2666 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 2667 } 2668 return nr; 2669 } 2670 2671 static int memcg_numa_stat_show(struct seq_file *m, void *v) 2672 { 2673 struct numa_stat { 2674 const char *name; 2675 unsigned int lru_mask; 2676 }; 2677 2678 static const struct numa_stat stats[] = { 2679 { "total", LRU_ALL }, 2680 { "file", LRU_ALL_FILE }, 2681 { "anon", LRU_ALL_ANON }, 2682 { "unevictable", BIT(LRU_UNEVICTABLE) }, 2683 }; 2684 const struct numa_stat *stat; 2685 int nid; 2686 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 2687 2688 mem_cgroup_flush_stats(memcg); 2689 2690 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 2691 seq_printf(m, "%s=%lu", stat->name, 2692 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 2693 false)); 2694 for_each_node_state(nid, N_MEMORY) 2695 seq_printf(m, " N%d=%lu", nid, 2696 mem_cgroup_node_nr_lru_pages(memcg, nid, 2697 stat->lru_mask, false)); 2698 seq_putc(m, '\n'); 2699 } 2700 2701 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 2702 2703 seq_printf(m, "hierarchical_%s=%lu", stat->name, 2704 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 2705 true)); 2706 for_each_node_state(nid, N_MEMORY) 2707 seq_printf(m, " N%d=%lu", nid, 2708 mem_cgroup_node_nr_lru_pages(memcg, nid, 2709 stat->lru_mask, true)); 2710 seq_putc(m, '\n'); 2711 } 2712 2713 return 0; 2714 } 2715 #endif /* CONFIG_NUMA */ 2716 2717 static const unsigned int memcg1_stats[] = { 2718 NR_FILE_PAGES, 2719 NR_ANON_MAPPED, 2720 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2721 NR_ANON_THPS, 2722 #endif 2723 NR_SHMEM, 2724 NR_FILE_MAPPED, 2725 NR_FILE_DIRTY, 2726 NR_WRITEBACK, 2727 WORKINGSET_REFAULT_ANON, 2728 WORKINGSET_REFAULT_FILE, 2729 #ifdef CONFIG_SWAP 2730 MEMCG_SWAP, 2731 NR_SWAPCACHE, 2732 #endif 2733 }; 2734 2735 static const char *const memcg1_stat_names[] = { 2736 "cache", 2737 "rss", 2738 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2739 "rss_huge", 2740 #endif 2741 "shmem", 2742 "mapped_file", 2743 "dirty", 2744 "writeback", 2745 "workingset_refault_anon", 2746 "workingset_refault_file", 2747 #ifdef CONFIG_SWAP 2748 "swap", 2749 "swapcached", 2750 #endif 2751 }; 2752 2753 /* Universal VM events cgroup1 shows, original sort order */ 2754 static const unsigned int memcg1_events[] = { 2755 PGPGIN, 2756 PGPGOUT, 2757 PGFAULT, 2758 PGMAJFAULT, 2759 }; 2760 2761 void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 2762 { 2763 unsigned long memory, memsw; 2764 struct mem_cgroup *mi; 2765 unsigned int i; 2766 2767 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 2768 2769 mem_cgroup_flush_stats(memcg); 2770 2771 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 2772 unsigned long nr; 2773 2774 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]); 2775 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr); 2776 } 2777 2778 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 2779 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]), 2780 memcg_events_local(memcg, memcg1_events[i])); 2781 2782 for (i = 0; i < NR_LRU_LISTS; i++) 2783 seq_buf_printf(s, "%s %lu\n", lru_list_name(i), 2784 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 2785 PAGE_SIZE); 2786 2787 /* Hierarchical information */ 2788 memory = memsw = PAGE_COUNTER_MAX; 2789 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 2790 memory = min(memory, READ_ONCE(mi->memory.max)); 2791 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 2792 } 2793 seq_buf_printf(s, "hierarchical_memory_limit %llu\n", 2794 (u64)memory * PAGE_SIZE); 2795 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n", 2796 (u64)memsw * PAGE_SIZE); 2797 2798 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 2799 unsigned long nr; 2800 2801 nr = memcg_page_state_output(memcg, memcg1_stats[i]); 2802 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i], 2803 (u64)nr); 2804 } 2805 2806 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 2807 seq_buf_printf(s, "total_%s %llu\n", 2808 vm_event_name(memcg1_events[i]), 2809 (u64)memcg_events(memcg, memcg1_events[i])); 2810 2811 for (i = 0; i < NR_LRU_LISTS; i++) 2812 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i), 2813 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 2814 PAGE_SIZE); 2815 2816 #ifdef CONFIG_DEBUG_VM 2817 { 2818 pg_data_t *pgdat; 2819 struct mem_cgroup_per_node *mz; 2820 unsigned long anon_cost = 0; 2821 unsigned long file_cost = 0; 2822 2823 for_each_online_pgdat(pgdat) { 2824 mz = memcg->nodeinfo[pgdat->node_id]; 2825 2826 anon_cost += mz->lruvec.anon_cost; 2827 file_cost += mz->lruvec.file_cost; 2828 } 2829 seq_buf_printf(s, "anon_cost %lu\n", anon_cost); 2830 seq_buf_printf(s, "file_cost %lu\n", file_cost); 2831 } 2832 #endif 2833 } 2834 2835 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 2836 struct cftype *cft) 2837 { 2838 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2839 2840 return mem_cgroup_swappiness(memcg); 2841 } 2842 2843 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 2844 struct cftype *cft, u64 val) 2845 { 2846 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2847 2848 if (val > MAX_SWAPPINESS) 2849 return -EINVAL; 2850 2851 if (!mem_cgroup_is_root(memcg)) 2852 WRITE_ONCE(memcg->swappiness, val); 2853 else 2854 WRITE_ONCE(vm_swappiness, val); 2855 2856 return 0; 2857 } 2858 2859 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 2860 { 2861 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 2862 2863 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable)); 2864 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 2865 seq_printf(sf, "oom_kill %lu\n", 2866 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 2867 return 0; 2868 } 2869 2870 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 2871 struct cftype *cft, u64 val) 2872 { 2873 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2874 2875 pr_warn_once("oom_control is deprecated and will be removed. " 2876 "Please report your usecase to linux-mm-@kvack.org if you " 2877 "depend on this functionality. \n"); 2878 2879 /* cannot set to root cgroup and only 0 and 1 are allowed */ 2880 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 2881 return -EINVAL; 2882 2883 WRITE_ONCE(memcg->oom_kill_disable, val); 2884 if (!val) 2885 memcg1_oom_recover(memcg); 2886 2887 return 0; 2888 } 2889 2890 #ifdef CONFIG_SLUB_DEBUG 2891 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 2892 { 2893 /* 2894 * Deprecated. 2895 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 2896 */ 2897 return 0; 2898 } 2899 #endif 2900 2901 struct cftype mem_cgroup_legacy_files[] = { 2902 { 2903 .name = "usage_in_bytes", 2904 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 2905 .read_u64 = mem_cgroup_read_u64, 2906 }, 2907 { 2908 .name = "max_usage_in_bytes", 2909 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 2910 .write = mem_cgroup_reset, 2911 .read_u64 = mem_cgroup_read_u64, 2912 }, 2913 { 2914 .name = "limit_in_bytes", 2915 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 2916 .write = mem_cgroup_write, 2917 .read_u64 = mem_cgroup_read_u64, 2918 }, 2919 { 2920 .name = "soft_limit_in_bytes", 2921 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 2922 .write = mem_cgroup_write, 2923 .read_u64 = mem_cgroup_read_u64, 2924 }, 2925 { 2926 .name = "failcnt", 2927 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 2928 .write = mem_cgroup_reset, 2929 .read_u64 = mem_cgroup_read_u64, 2930 }, 2931 { 2932 .name = "stat", 2933 .seq_show = memory_stat_show, 2934 }, 2935 { 2936 .name = "force_empty", 2937 .write = mem_cgroup_force_empty_write, 2938 }, 2939 { 2940 .name = "use_hierarchy", 2941 .write_u64 = mem_cgroup_hierarchy_write, 2942 .read_u64 = mem_cgroup_hierarchy_read, 2943 }, 2944 { 2945 .name = "cgroup.event_control", /* XXX: for compat */ 2946 .write = memcg_write_event_control, 2947 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 2948 }, 2949 { 2950 .name = "swappiness", 2951 .read_u64 = mem_cgroup_swappiness_read, 2952 .write_u64 = mem_cgroup_swappiness_write, 2953 }, 2954 { 2955 .name = "move_charge_at_immigrate", 2956 .read_u64 = mem_cgroup_move_charge_read, 2957 .write_u64 = mem_cgroup_move_charge_write, 2958 }, 2959 { 2960 .name = "oom_control", 2961 .seq_show = mem_cgroup_oom_control_read, 2962 .write_u64 = mem_cgroup_oom_control_write, 2963 }, 2964 { 2965 .name = "pressure_level", 2966 .seq_show = mem_cgroup_dummy_seq_show, 2967 }, 2968 #ifdef CONFIG_NUMA 2969 { 2970 .name = "numa_stat", 2971 .seq_show = memcg_numa_stat_show, 2972 }, 2973 #endif 2974 { 2975 .name = "kmem.limit_in_bytes", 2976 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 2977 .write = mem_cgroup_write, 2978 .read_u64 = mem_cgroup_read_u64, 2979 }, 2980 { 2981 .name = "kmem.usage_in_bytes", 2982 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 2983 .read_u64 = mem_cgroup_read_u64, 2984 }, 2985 { 2986 .name = "kmem.failcnt", 2987 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 2988 .write = mem_cgroup_reset, 2989 .read_u64 = mem_cgroup_read_u64, 2990 }, 2991 { 2992 .name = "kmem.max_usage_in_bytes", 2993 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 2994 .write = mem_cgroup_reset, 2995 .read_u64 = mem_cgroup_read_u64, 2996 }, 2997 #ifdef CONFIG_SLUB_DEBUG 2998 { 2999 .name = "kmem.slabinfo", 3000 .seq_show = mem_cgroup_slab_show, 3001 }, 3002 #endif 3003 { 3004 .name = "kmem.tcp.limit_in_bytes", 3005 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 3006 .write = mem_cgroup_write, 3007 .read_u64 = mem_cgroup_read_u64, 3008 }, 3009 { 3010 .name = "kmem.tcp.usage_in_bytes", 3011 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 3012 .read_u64 = mem_cgroup_read_u64, 3013 }, 3014 { 3015 .name = "kmem.tcp.failcnt", 3016 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 3017 .write = mem_cgroup_reset, 3018 .read_u64 = mem_cgroup_read_u64, 3019 }, 3020 { 3021 .name = "kmem.tcp.max_usage_in_bytes", 3022 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 3023 .write = mem_cgroup_reset, 3024 .read_u64 = mem_cgroup_read_u64, 3025 }, 3026 { }, /* terminate */ 3027 }; 3028 3029 struct cftype memsw_files[] = { 3030 { 3031 .name = "memsw.usage_in_bytes", 3032 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 3033 .read_u64 = mem_cgroup_read_u64, 3034 }, 3035 { 3036 .name = "memsw.max_usage_in_bytes", 3037 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 3038 .write = mem_cgroup_reset, 3039 .read_u64 = mem_cgroup_read_u64, 3040 }, 3041 { 3042 .name = "memsw.limit_in_bytes", 3043 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 3044 .write = mem_cgroup_write, 3045 .read_u64 = mem_cgroup_read_u64, 3046 }, 3047 { 3048 .name = "memsw.failcnt", 3049 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 3050 .write = mem_cgroup_reset, 3051 .read_u64 = mem_cgroup_read_u64, 3052 }, 3053 { }, /* terminate */ 3054 }; 3055 3056 void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages) 3057 { 3058 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 3059 if (nr_pages > 0) 3060 page_counter_charge(&memcg->kmem, nr_pages); 3061 else 3062 page_counter_uncharge(&memcg->kmem, -nr_pages); 3063 } 3064 } 3065 3066 bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 3067 gfp_t gfp_mask) 3068 { 3069 struct page_counter *fail; 3070 3071 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 3072 memcg->tcpmem_pressure = 0; 3073 return true; 3074 } 3075 memcg->tcpmem_pressure = 1; 3076 if (gfp_mask & __GFP_NOFAIL) { 3077 page_counter_charge(&memcg->tcpmem, nr_pages); 3078 return true; 3079 } 3080 return false; 3081 } 3082 3083 bool memcg1_alloc_events(struct mem_cgroup *memcg) 3084 { 3085 memcg->events_percpu = alloc_percpu_gfp(struct memcg1_events_percpu, 3086 GFP_KERNEL_ACCOUNT); 3087 return !!memcg->events_percpu; 3088 } 3089 3090 void memcg1_free_events(struct mem_cgroup *memcg) 3091 { 3092 if (memcg->events_percpu) 3093 free_percpu(memcg->events_percpu); 3094 } 3095 3096 static int __init memcg1_init(void) 3097 { 3098 int node; 3099 3100 for_each_node(node) { 3101 struct mem_cgroup_tree_per_node *rtpn; 3102 3103 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node); 3104 3105 rtpn->rb_root = RB_ROOT; 3106 rtpn->rb_rightmost = NULL; 3107 spin_lock_init(&rtpn->lock); 3108 soft_limit_tree.rb_tree_per_node[node] = rtpn; 3109 } 3110 3111 return 0; 3112 } 3113 subsys_initcall(memcg1_init); 3114