1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 #include <linux/memblock.h> 22 23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 25 26 struct memblock memblock __initdata_memblock = { 27 .memory.regions = memblock_memory_init_regions, 28 .memory.cnt = 1, /* empty dummy entry */ 29 .memory.max = INIT_MEMBLOCK_REGIONS, 30 31 .reserved.regions = memblock_reserved_init_regions, 32 .reserved.cnt = 1, /* empty dummy entry */ 33 .reserved.max = INIT_MEMBLOCK_REGIONS, 34 35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 36 }; 37 38 int memblock_debug __initdata_memblock; 39 static int memblock_can_resize __initdata_memblock; 40 41 /* inline so we don't get a warning when pr_debug is compiled out */ 42 static inline const char *memblock_type_name(struct memblock_type *type) 43 { 44 if (type == &memblock.memory) 45 return "memory"; 46 else if (type == &memblock.reserved) 47 return "reserved"; 48 else 49 return "unknown"; 50 } 51 52 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 53 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 54 { 55 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); 56 } 57 58 /* 59 * Address comparison utilities 60 */ 61 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 62 phys_addr_t base2, phys_addr_t size2) 63 { 64 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 65 } 66 67 static long __init_memblock memblock_overlaps_region(struct memblock_type *type, 68 phys_addr_t base, phys_addr_t size) 69 { 70 unsigned long i; 71 72 for (i = 0; i < type->cnt; i++) { 73 phys_addr_t rgnbase = type->regions[i].base; 74 phys_addr_t rgnsize = type->regions[i].size; 75 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) 76 break; 77 } 78 79 return (i < type->cnt) ? i : -1; 80 } 81 82 /** 83 * memblock_find_in_range_node - find free area in given range and node 84 * @start: start of candidate range 85 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 86 * @size: size of free area to find 87 * @align: alignment of free area to find 88 * @nid: nid of the free area to find, %MAX_NUMNODES for any node 89 * 90 * Find @size free area aligned to @align in the specified range and node. 91 * 92 * RETURNS: 93 * Found address on success, %0 on failure. 94 */ 95 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start, 96 phys_addr_t end, phys_addr_t size, 97 phys_addr_t align, int nid) 98 { 99 phys_addr_t this_start, this_end, cand; 100 u64 i; 101 102 /* align @size to avoid excessive fragmentation on reserved array */ 103 size = round_up(size, align); 104 105 /* pump up @end */ 106 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 107 end = memblock.current_limit; 108 109 /* avoid allocating the first page */ 110 start = max_t(phys_addr_t, start, PAGE_SIZE); 111 end = max(start, end); 112 113 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) { 114 this_start = clamp(this_start, start, end); 115 this_end = clamp(this_end, start, end); 116 117 if (this_end < size) 118 continue; 119 120 cand = round_down(this_end - size, align); 121 if (cand >= this_start) 122 return cand; 123 } 124 return 0; 125 } 126 127 /** 128 * memblock_find_in_range - find free area in given range 129 * @start: start of candidate range 130 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 131 * @size: size of free area to find 132 * @align: alignment of free area to find 133 * 134 * Find @size free area aligned to @align in the specified range. 135 * 136 * RETURNS: 137 * Found address on success, %0 on failure. 138 */ 139 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 140 phys_addr_t end, phys_addr_t size, 141 phys_addr_t align) 142 { 143 return memblock_find_in_range_node(start, end, size, align, 144 MAX_NUMNODES); 145 } 146 147 /* 148 * Free memblock.reserved.regions 149 */ 150 int __init_memblock memblock_free_reserved_regions(void) 151 { 152 if (memblock.reserved.regions == memblock_reserved_init_regions) 153 return 0; 154 155 return memblock_free(__pa(memblock.reserved.regions), 156 sizeof(struct memblock_region) * memblock.reserved.max); 157 } 158 159 /* 160 * Reserve memblock.reserved.regions 161 */ 162 int __init_memblock memblock_reserve_reserved_regions(void) 163 { 164 if (memblock.reserved.regions == memblock_reserved_init_regions) 165 return 0; 166 167 return memblock_reserve(__pa(memblock.reserved.regions), 168 sizeof(struct memblock_region) * memblock.reserved.max); 169 } 170 171 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 172 { 173 type->total_size -= type->regions[r].size; 174 memmove(&type->regions[r], &type->regions[r + 1], 175 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 176 type->cnt--; 177 178 /* Special case for empty arrays */ 179 if (type->cnt == 0) { 180 WARN_ON(type->total_size != 0); 181 type->cnt = 1; 182 type->regions[0].base = 0; 183 type->regions[0].size = 0; 184 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 185 } 186 } 187 188 static int __init_memblock memblock_double_array(struct memblock_type *type) 189 { 190 struct memblock_region *new_array, *old_array; 191 phys_addr_t old_size, new_size, addr; 192 int use_slab = slab_is_available(); 193 194 /* We don't allow resizing until we know about the reserved regions 195 * of memory that aren't suitable for allocation 196 */ 197 if (!memblock_can_resize) 198 return -1; 199 200 /* Calculate new doubled size */ 201 old_size = type->max * sizeof(struct memblock_region); 202 new_size = old_size << 1; 203 204 /* Try to find some space for it. 205 * 206 * WARNING: We assume that either slab_is_available() and we use it or 207 * we use MEMBLOCK for allocations. That means that this is unsafe to use 208 * when bootmem is currently active (unless bootmem itself is implemented 209 * on top of MEMBLOCK which isn't the case yet) 210 * 211 * This should however not be an issue for now, as we currently only 212 * call into MEMBLOCK while it's still active, or much later when slab is 213 * active for memory hotplug operations 214 */ 215 if (use_slab) { 216 new_array = kmalloc(new_size, GFP_KERNEL); 217 addr = new_array ? __pa(new_array) : 0; 218 } else 219 addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t)); 220 if (!addr) { 221 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 222 memblock_type_name(type), type->max, type->max * 2); 223 return -1; 224 } 225 new_array = __va(addr); 226 227 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]", 228 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1); 229 230 /* Found space, we now need to move the array over before 231 * we add the reserved region since it may be our reserved 232 * array itself that is full. 233 */ 234 memcpy(new_array, type->regions, old_size); 235 memset(new_array + type->max, 0, old_size); 236 old_array = type->regions; 237 type->regions = new_array; 238 type->max <<= 1; 239 240 /* If we use SLAB that's it, we are done */ 241 if (use_slab) 242 return 0; 243 244 /* Add the new reserved region now. Should not fail ! */ 245 BUG_ON(memblock_reserve(addr, new_size)); 246 247 /* If the array wasn't our static init one, then free it. We only do 248 * that before SLAB is available as later on, we don't know whether 249 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal 250 * anyways 251 */ 252 if (old_array != memblock_memory_init_regions && 253 old_array != memblock_reserved_init_regions) 254 memblock_free(__pa(old_array), old_size); 255 256 return 0; 257 } 258 259 /** 260 * memblock_merge_regions - merge neighboring compatible regions 261 * @type: memblock type to scan 262 * 263 * Scan @type and merge neighboring compatible regions. 264 */ 265 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 266 { 267 int i = 0; 268 269 /* cnt never goes below 1 */ 270 while (i < type->cnt - 1) { 271 struct memblock_region *this = &type->regions[i]; 272 struct memblock_region *next = &type->regions[i + 1]; 273 274 if (this->base + this->size != next->base || 275 memblock_get_region_node(this) != 276 memblock_get_region_node(next)) { 277 BUG_ON(this->base + this->size > next->base); 278 i++; 279 continue; 280 } 281 282 this->size += next->size; 283 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next)); 284 type->cnt--; 285 } 286 } 287 288 /** 289 * memblock_insert_region - insert new memblock region 290 * @type: memblock type to insert into 291 * @idx: index for the insertion point 292 * @base: base address of the new region 293 * @size: size of the new region 294 * 295 * Insert new memblock region [@base,@base+@size) into @type at @idx. 296 * @type must already have extra room to accomodate the new region. 297 */ 298 static void __init_memblock memblock_insert_region(struct memblock_type *type, 299 int idx, phys_addr_t base, 300 phys_addr_t size, int nid) 301 { 302 struct memblock_region *rgn = &type->regions[idx]; 303 304 BUG_ON(type->cnt >= type->max); 305 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 306 rgn->base = base; 307 rgn->size = size; 308 memblock_set_region_node(rgn, nid); 309 type->cnt++; 310 type->total_size += size; 311 } 312 313 /** 314 * memblock_add_region - add new memblock region 315 * @type: memblock type to add new region into 316 * @base: base address of the new region 317 * @size: size of the new region 318 * @nid: nid of the new region 319 * 320 * Add new memblock region [@base,@base+@size) into @type. The new region 321 * is allowed to overlap with existing ones - overlaps don't affect already 322 * existing regions. @type is guaranteed to be minimal (all neighbouring 323 * compatible regions are merged) after the addition. 324 * 325 * RETURNS: 326 * 0 on success, -errno on failure. 327 */ 328 static int __init_memblock memblock_add_region(struct memblock_type *type, 329 phys_addr_t base, phys_addr_t size, int nid) 330 { 331 bool insert = false; 332 phys_addr_t obase = base; 333 phys_addr_t end = base + memblock_cap_size(base, &size); 334 int i, nr_new; 335 336 /* special case for empty array */ 337 if (type->regions[0].size == 0) { 338 WARN_ON(type->cnt != 1 || type->total_size); 339 type->regions[0].base = base; 340 type->regions[0].size = size; 341 memblock_set_region_node(&type->regions[0], nid); 342 type->total_size = size; 343 return 0; 344 } 345 repeat: 346 /* 347 * The following is executed twice. Once with %false @insert and 348 * then with %true. The first counts the number of regions needed 349 * to accomodate the new area. The second actually inserts them. 350 */ 351 base = obase; 352 nr_new = 0; 353 354 for (i = 0; i < type->cnt; i++) { 355 struct memblock_region *rgn = &type->regions[i]; 356 phys_addr_t rbase = rgn->base; 357 phys_addr_t rend = rbase + rgn->size; 358 359 if (rbase >= end) 360 break; 361 if (rend <= base) 362 continue; 363 /* 364 * @rgn overlaps. If it separates the lower part of new 365 * area, insert that portion. 366 */ 367 if (rbase > base) { 368 nr_new++; 369 if (insert) 370 memblock_insert_region(type, i++, base, 371 rbase - base, nid); 372 } 373 /* area below @rend is dealt with, forget about it */ 374 base = min(rend, end); 375 } 376 377 /* insert the remaining portion */ 378 if (base < end) { 379 nr_new++; 380 if (insert) 381 memblock_insert_region(type, i, base, end - base, nid); 382 } 383 384 /* 385 * If this was the first round, resize array and repeat for actual 386 * insertions; otherwise, merge and return. 387 */ 388 if (!insert) { 389 while (type->cnt + nr_new > type->max) 390 if (memblock_double_array(type) < 0) 391 return -ENOMEM; 392 insert = true; 393 goto repeat; 394 } else { 395 memblock_merge_regions(type); 396 return 0; 397 } 398 } 399 400 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 401 int nid) 402 { 403 return memblock_add_region(&memblock.memory, base, size, nid); 404 } 405 406 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 407 { 408 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES); 409 } 410 411 /** 412 * memblock_isolate_range - isolate given range into disjoint memblocks 413 * @type: memblock type to isolate range for 414 * @base: base of range to isolate 415 * @size: size of range to isolate 416 * @start_rgn: out parameter for the start of isolated region 417 * @end_rgn: out parameter for the end of isolated region 418 * 419 * Walk @type and ensure that regions don't cross the boundaries defined by 420 * [@base,@base+@size). Crossing regions are split at the boundaries, 421 * which may create at most two more regions. The index of the first 422 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 423 * 424 * RETURNS: 425 * 0 on success, -errno on failure. 426 */ 427 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 428 phys_addr_t base, phys_addr_t size, 429 int *start_rgn, int *end_rgn) 430 { 431 phys_addr_t end = base + memblock_cap_size(base, &size); 432 int i; 433 434 *start_rgn = *end_rgn = 0; 435 436 /* we'll create at most two more regions */ 437 while (type->cnt + 2 > type->max) 438 if (memblock_double_array(type) < 0) 439 return -ENOMEM; 440 441 for (i = 0; i < type->cnt; i++) { 442 struct memblock_region *rgn = &type->regions[i]; 443 phys_addr_t rbase = rgn->base; 444 phys_addr_t rend = rbase + rgn->size; 445 446 if (rbase >= end) 447 break; 448 if (rend <= base) 449 continue; 450 451 if (rbase < base) { 452 /* 453 * @rgn intersects from below. Split and continue 454 * to process the next region - the new top half. 455 */ 456 rgn->base = base; 457 rgn->size -= base - rbase; 458 type->total_size -= base - rbase; 459 memblock_insert_region(type, i, rbase, base - rbase, 460 memblock_get_region_node(rgn)); 461 } else if (rend > end) { 462 /* 463 * @rgn intersects from above. Split and redo the 464 * current region - the new bottom half. 465 */ 466 rgn->base = end; 467 rgn->size -= end - rbase; 468 type->total_size -= end - rbase; 469 memblock_insert_region(type, i--, rbase, end - rbase, 470 memblock_get_region_node(rgn)); 471 } else { 472 /* @rgn is fully contained, record it */ 473 if (!*end_rgn) 474 *start_rgn = i; 475 *end_rgn = i + 1; 476 } 477 } 478 479 return 0; 480 } 481 482 static int __init_memblock __memblock_remove(struct memblock_type *type, 483 phys_addr_t base, phys_addr_t size) 484 { 485 int start_rgn, end_rgn; 486 int i, ret; 487 488 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 489 if (ret) 490 return ret; 491 492 for (i = end_rgn - 1; i >= start_rgn; i--) 493 memblock_remove_region(type, i); 494 return 0; 495 } 496 497 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 498 { 499 return __memblock_remove(&memblock.memory, base, size); 500 } 501 502 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 503 { 504 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", 505 (unsigned long long)base, 506 (unsigned long long)base + size, 507 (void *)_RET_IP_); 508 509 return __memblock_remove(&memblock.reserved, base, size); 510 } 511 512 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 513 { 514 struct memblock_type *_rgn = &memblock.reserved; 515 516 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n", 517 (unsigned long long)base, 518 (unsigned long long)base + size, 519 (void *)_RET_IP_); 520 BUG_ON(0 == size); 521 522 return memblock_add_region(_rgn, base, size, MAX_NUMNODES); 523 } 524 525 /** 526 * __next_free_mem_range - next function for for_each_free_mem_range() 527 * @idx: pointer to u64 loop variable 528 * @nid: nid: node selector, %MAX_NUMNODES for all nodes 529 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 530 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 531 * @p_nid: ptr to int for nid of the range, can be %NULL 532 * 533 * Find the first free area from *@idx which matches @nid, fill the out 534 * parameters, and update *@idx for the next iteration. The lower 32bit of 535 * *@idx contains index into memory region and the upper 32bit indexes the 536 * areas before each reserved region. For example, if reserved regions 537 * look like the following, 538 * 539 * 0:[0-16), 1:[32-48), 2:[128-130) 540 * 541 * The upper 32bit indexes the following regions. 542 * 543 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 544 * 545 * As both region arrays are sorted, the function advances the two indices 546 * in lockstep and returns each intersection. 547 */ 548 void __init_memblock __next_free_mem_range(u64 *idx, int nid, 549 phys_addr_t *out_start, 550 phys_addr_t *out_end, int *out_nid) 551 { 552 struct memblock_type *mem = &memblock.memory; 553 struct memblock_type *rsv = &memblock.reserved; 554 int mi = *idx & 0xffffffff; 555 int ri = *idx >> 32; 556 557 for ( ; mi < mem->cnt; mi++) { 558 struct memblock_region *m = &mem->regions[mi]; 559 phys_addr_t m_start = m->base; 560 phys_addr_t m_end = m->base + m->size; 561 562 /* only memory regions are associated with nodes, check it */ 563 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) 564 continue; 565 566 /* scan areas before each reservation for intersection */ 567 for ( ; ri < rsv->cnt + 1; ri++) { 568 struct memblock_region *r = &rsv->regions[ri]; 569 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; 570 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; 571 572 /* if ri advanced past mi, break out to advance mi */ 573 if (r_start >= m_end) 574 break; 575 /* if the two regions intersect, we're done */ 576 if (m_start < r_end) { 577 if (out_start) 578 *out_start = max(m_start, r_start); 579 if (out_end) 580 *out_end = min(m_end, r_end); 581 if (out_nid) 582 *out_nid = memblock_get_region_node(m); 583 /* 584 * The region which ends first is advanced 585 * for the next iteration. 586 */ 587 if (m_end <= r_end) 588 mi++; 589 else 590 ri++; 591 *idx = (u32)mi | (u64)ri << 32; 592 return; 593 } 594 } 595 } 596 597 /* signal end of iteration */ 598 *idx = ULLONG_MAX; 599 } 600 601 /** 602 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse() 603 * @idx: pointer to u64 loop variable 604 * @nid: nid: node selector, %MAX_NUMNODES for all nodes 605 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 606 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 607 * @p_nid: ptr to int for nid of the range, can be %NULL 608 * 609 * Reverse of __next_free_mem_range(). 610 */ 611 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid, 612 phys_addr_t *out_start, 613 phys_addr_t *out_end, int *out_nid) 614 { 615 struct memblock_type *mem = &memblock.memory; 616 struct memblock_type *rsv = &memblock.reserved; 617 int mi = *idx & 0xffffffff; 618 int ri = *idx >> 32; 619 620 if (*idx == (u64)ULLONG_MAX) { 621 mi = mem->cnt - 1; 622 ri = rsv->cnt; 623 } 624 625 for ( ; mi >= 0; mi--) { 626 struct memblock_region *m = &mem->regions[mi]; 627 phys_addr_t m_start = m->base; 628 phys_addr_t m_end = m->base + m->size; 629 630 /* only memory regions are associated with nodes, check it */ 631 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) 632 continue; 633 634 /* scan areas before each reservation for intersection */ 635 for ( ; ri >= 0; ri--) { 636 struct memblock_region *r = &rsv->regions[ri]; 637 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; 638 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; 639 640 /* if ri advanced past mi, break out to advance mi */ 641 if (r_end <= m_start) 642 break; 643 /* if the two regions intersect, we're done */ 644 if (m_end > r_start) { 645 if (out_start) 646 *out_start = max(m_start, r_start); 647 if (out_end) 648 *out_end = min(m_end, r_end); 649 if (out_nid) 650 *out_nid = memblock_get_region_node(m); 651 652 if (m_start >= r_start) 653 mi--; 654 else 655 ri--; 656 *idx = (u32)mi | (u64)ri << 32; 657 return; 658 } 659 } 660 } 661 662 *idx = ULLONG_MAX; 663 } 664 665 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 666 /* 667 * Common iterator interface used to define for_each_mem_range(). 668 */ 669 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 670 unsigned long *out_start_pfn, 671 unsigned long *out_end_pfn, int *out_nid) 672 { 673 struct memblock_type *type = &memblock.memory; 674 struct memblock_region *r; 675 676 while (++*idx < type->cnt) { 677 r = &type->regions[*idx]; 678 679 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 680 continue; 681 if (nid == MAX_NUMNODES || nid == r->nid) 682 break; 683 } 684 if (*idx >= type->cnt) { 685 *idx = -1; 686 return; 687 } 688 689 if (out_start_pfn) 690 *out_start_pfn = PFN_UP(r->base); 691 if (out_end_pfn) 692 *out_end_pfn = PFN_DOWN(r->base + r->size); 693 if (out_nid) 694 *out_nid = r->nid; 695 } 696 697 /** 698 * memblock_set_node - set node ID on memblock regions 699 * @base: base of area to set node ID for 700 * @size: size of area to set node ID for 701 * @nid: node ID to set 702 * 703 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid. 704 * Regions which cross the area boundaries are split as necessary. 705 * 706 * RETURNS: 707 * 0 on success, -errno on failure. 708 */ 709 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 710 int nid) 711 { 712 struct memblock_type *type = &memblock.memory; 713 int start_rgn, end_rgn; 714 int i, ret; 715 716 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 717 if (ret) 718 return ret; 719 720 for (i = start_rgn; i < end_rgn; i++) 721 type->regions[i].nid = nid; 722 723 memblock_merge_regions(type); 724 return 0; 725 } 726 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 727 728 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 729 phys_addr_t align, phys_addr_t max_addr, 730 int nid) 731 { 732 phys_addr_t found; 733 734 found = memblock_find_in_range_node(0, max_addr, size, align, nid); 735 if (found && !memblock_reserve(found, size)) 736 return found; 737 738 return 0; 739 } 740 741 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 742 { 743 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 744 } 745 746 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 747 { 748 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES); 749 } 750 751 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 752 { 753 phys_addr_t alloc; 754 755 alloc = __memblock_alloc_base(size, align, max_addr); 756 757 if (alloc == 0) 758 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", 759 (unsigned long long) size, (unsigned long long) max_addr); 760 761 return alloc; 762 } 763 764 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 765 { 766 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 767 } 768 769 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 770 { 771 phys_addr_t res = memblock_alloc_nid(size, align, nid); 772 773 if (res) 774 return res; 775 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 776 } 777 778 779 /* 780 * Remaining API functions 781 */ 782 783 phys_addr_t __init memblock_phys_mem_size(void) 784 { 785 return memblock.memory.total_size; 786 } 787 788 /* lowest address */ 789 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 790 { 791 return memblock.memory.regions[0].base; 792 } 793 794 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 795 { 796 int idx = memblock.memory.cnt - 1; 797 798 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 799 } 800 801 void __init memblock_enforce_memory_limit(phys_addr_t limit) 802 { 803 unsigned long i; 804 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 805 806 if (!limit) 807 return; 808 809 /* find out max address */ 810 for (i = 0; i < memblock.memory.cnt; i++) { 811 struct memblock_region *r = &memblock.memory.regions[i]; 812 813 if (limit <= r->size) { 814 max_addr = r->base + limit; 815 break; 816 } 817 limit -= r->size; 818 } 819 820 /* truncate both memory and reserved regions */ 821 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX); 822 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX); 823 } 824 825 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 826 { 827 unsigned int left = 0, right = type->cnt; 828 829 do { 830 unsigned int mid = (right + left) / 2; 831 832 if (addr < type->regions[mid].base) 833 right = mid; 834 else if (addr >= (type->regions[mid].base + 835 type->regions[mid].size)) 836 left = mid + 1; 837 else 838 return mid; 839 } while (left < right); 840 return -1; 841 } 842 843 int __init memblock_is_reserved(phys_addr_t addr) 844 { 845 return memblock_search(&memblock.reserved, addr) != -1; 846 } 847 848 int __init_memblock memblock_is_memory(phys_addr_t addr) 849 { 850 return memblock_search(&memblock.memory, addr) != -1; 851 } 852 853 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 854 { 855 int idx = memblock_search(&memblock.memory, base); 856 phys_addr_t end = base + memblock_cap_size(base, &size); 857 858 if (idx == -1) 859 return 0; 860 return memblock.memory.regions[idx].base <= base && 861 (memblock.memory.regions[idx].base + 862 memblock.memory.regions[idx].size) >= end; 863 } 864 865 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 866 { 867 memblock_cap_size(base, &size); 868 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; 869 } 870 871 872 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 873 { 874 memblock.current_limit = limit; 875 } 876 877 static void __init_memblock memblock_dump(struct memblock_type *type, char *name) 878 { 879 unsigned long long base, size; 880 int i; 881 882 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); 883 884 for (i = 0; i < type->cnt; i++) { 885 struct memblock_region *rgn = &type->regions[i]; 886 char nid_buf[32] = ""; 887 888 base = rgn->base; 889 size = rgn->size; 890 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 891 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 892 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 893 memblock_get_region_node(rgn)); 894 #endif 895 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n", 896 name, i, base, base + size - 1, size, nid_buf); 897 } 898 } 899 900 void __init_memblock __memblock_dump_all(void) 901 { 902 pr_info("MEMBLOCK configuration:\n"); 903 pr_info(" memory size = %#llx reserved size = %#llx\n", 904 (unsigned long long)memblock.memory.total_size, 905 (unsigned long long)memblock.reserved.total_size); 906 907 memblock_dump(&memblock.memory, "memory"); 908 memblock_dump(&memblock.reserved, "reserved"); 909 } 910 911 void __init memblock_allow_resize(void) 912 { 913 memblock_can_resize = 1; 914 } 915 916 static int __init early_memblock(char *p) 917 { 918 if (p && strstr(p, "debug")) 919 memblock_debug = 1; 920 return 0; 921 } 922 early_param("memblock", early_memblock); 923 924 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 925 926 static int memblock_debug_show(struct seq_file *m, void *private) 927 { 928 struct memblock_type *type = m->private; 929 struct memblock_region *reg; 930 int i; 931 932 for (i = 0; i < type->cnt; i++) { 933 reg = &type->regions[i]; 934 seq_printf(m, "%4d: ", i); 935 if (sizeof(phys_addr_t) == 4) 936 seq_printf(m, "0x%08lx..0x%08lx\n", 937 (unsigned long)reg->base, 938 (unsigned long)(reg->base + reg->size - 1)); 939 else 940 seq_printf(m, "0x%016llx..0x%016llx\n", 941 (unsigned long long)reg->base, 942 (unsigned long long)(reg->base + reg->size - 1)); 943 944 } 945 return 0; 946 } 947 948 static int memblock_debug_open(struct inode *inode, struct file *file) 949 { 950 return single_open(file, memblock_debug_show, inode->i_private); 951 } 952 953 static const struct file_operations memblock_debug_fops = { 954 .open = memblock_debug_open, 955 .read = seq_read, 956 .llseek = seq_lseek, 957 .release = single_release, 958 }; 959 960 static int __init memblock_init_debugfs(void) 961 { 962 struct dentry *root = debugfs_create_dir("memblock", NULL); 963 if (!root) 964 return -ENXIO; 965 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 966 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 967 968 return 0; 969 } 970 __initcall(memblock_init_debugfs); 971 972 #endif /* CONFIG_DEBUG_FS */ 973