xref: /linux/mm/memblock.c (revision dd220a00e8bd5ad7f98ecdc3eed699a7cfabdc27)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22 
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
25 
26 struct memblock memblock __initdata_memblock = {
27 	.memory.regions		= memblock_memory_init_regions,
28 	.memory.cnt		= 1,	/* empty dummy entry */
29 	.memory.max		= INIT_MEMBLOCK_REGIONS,
30 
31 	.reserved.regions	= memblock_reserved_init_regions,
32 	.reserved.cnt		= 1,	/* empty dummy entry */
33 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
34 
35 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
36 };
37 
38 int memblock_debug __initdata_memblock;
39 static int memblock_can_resize __initdata_memblock;
40 
41 /* inline so we don't get a warning when pr_debug is compiled out */
42 static inline const char *memblock_type_name(struct memblock_type *type)
43 {
44 	if (type == &memblock.memory)
45 		return "memory";
46 	else if (type == &memblock.reserved)
47 		return "reserved";
48 	else
49 		return "unknown";
50 }
51 
52 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
53 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
54 {
55 	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
56 }
57 
58 /*
59  * Address comparison utilities
60  */
61 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
62 				       phys_addr_t base2, phys_addr_t size2)
63 {
64 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
65 }
66 
67 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
68 					phys_addr_t base, phys_addr_t size)
69 {
70 	unsigned long i;
71 
72 	for (i = 0; i < type->cnt; i++) {
73 		phys_addr_t rgnbase = type->regions[i].base;
74 		phys_addr_t rgnsize = type->regions[i].size;
75 		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
76 			break;
77 	}
78 
79 	return (i < type->cnt) ? i : -1;
80 }
81 
82 /**
83  * memblock_find_in_range_node - find free area in given range and node
84  * @start: start of candidate range
85  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
86  * @size: size of free area to find
87  * @align: alignment of free area to find
88  * @nid: nid of the free area to find, %MAX_NUMNODES for any node
89  *
90  * Find @size free area aligned to @align in the specified range and node.
91  *
92  * RETURNS:
93  * Found address on success, %0 on failure.
94  */
95 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
96 					phys_addr_t end, phys_addr_t size,
97 					phys_addr_t align, int nid)
98 {
99 	phys_addr_t this_start, this_end, cand;
100 	u64 i;
101 
102 	/* align @size to avoid excessive fragmentation on reserved array */
103 	size = round_up(size, align);
104 
105 	/* pump up @end */
106 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
107 		end = memblock.current_limit;
108 
109 	/* avoid allocating the first page */
110 	start = max_t(phys_addr_t, start, PAGE_SIZE);
111 	end = max(start, end);
112 
113 	for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
114 		this_start = clamp(this_start, start, end);
115 		this_end = clamp(this_end, start, end);
116 
117 		if (this_end < size)
118 			continue;
119 
120 		cand = round_down(this_end - size, align);
121 		if (cand >= this_start)
122 			return cand;
123 	}
124 	return 0;
125 }
126 
127 /**
128  * memblock_find_in_range - find free area in given range
129  * @start: start of candidate range
130  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
131  * @size: size of free area to find
132  * @align: alignment of free area to find
133  *
134  * Find @size free area aligned to @align in the specified range.
135  *
136  * RETURNS:
137  * Found address on success, %0 on failure.
138  */
139 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
140 					phys_addr_t end, phys_addr_t size,
141 					phys_addr_t align)
142 {
143 	return memblock_find_in_range_node(start, end, size, align,
144 					   MAX_NUMNODES);
145 }
146 
147 /*
148  * Free memblock.reserved.regions
149  */
150 int __init_memblock memblock_free_reserved_regions(void)
151 {
152 	if (memblock.reserved.regions == memblock_reserved_init_regions)
153 		return 0;
154 
155 	return memblock_free(__pa(memblock.reserved.regions),
156 		 sizeof(struct memblock_region) * memblock.reserved.max);
157 }
158 
159 /*
160  * Reserve memblock.reserved.regions
161  */
162 int __init_memblock memblock_reserve_reserved_regions(void)
163 {
164 	if (memblock.reserved.regions == memblock_reserved_init_regions)
165 		return 0;
166 
167 	return memblock_reserve(__pa(memblock.reserved.regions),
168 		 sizeof(struct memblock_region) * memblock.reserved.max);
169 }
170 
171 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
172 {
173 	type->total_size -= type->regions[r].size;
174 	memmove(&type->regions[r], &type->regions[r + 1],
175 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
176 	type->cnt--;
177 
178 	/* Special case for empty arrays */
179 	if (type->cnt == 0) {
180 		WARN_ON(type->total_size != 0);
181 		type->cnt = 1;
182 		type->regions[0].base = 0;
183 		type->regions[0].size = 0;
184 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
185 	}
186 }
187 
188 static int __init_memblock memblock_double_array(struct memblock_type *type)
189 {
190 	struct memblock_region *new_array, *old_array;
191 	phys_addr_t old_size, new_size, addr;
192 	int use_slab = slab_is_available();
193 
194 	/* We don't allow resizing until we know about the reserved regions
195 	 * of memory that aren't suitable for allocation
196 	 */
197 	if (!memblock_can_resize)
198 		return -1;
199 
200 	/* Calculate new doubled size */
201 	old_size = type->max * sizeof(struct memblock_region);
202 	new_size = old_size << 1;
203 
204 	/* Try to find some space for it.
205 	 *
206 	 * WARNING: We assume that either slab_is_available() and we use it or
207 	 * we use MEMBLOCK for allocations. That means that this is unsafe to use
208 	 * when bootmem is currently active (unless bootmem itself is implemented
209 	 * on top of MEMBLOCK which isn't the case yet)
210 	 *
211 	 * This should however not be an issue for now, as we currently only
212 	 * call into MEMBLOCK while it's still active, or much later when slab is
213 	 * active for memory hotplug operations
214 	 */
215 	if (use_slab) {
216 		new_array = kmalloc(new_size, GFP_KERNEL);
217 		addr = new_array ? __pa(new_array) : 0;
218 	} else
219 		addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
220 	if (!addr) {
221 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
222 		       memblock_type_name(type), type->max, type->max * 2);
223 		return -1;
224 	}
225 	new_array = __va(addr);
226 
227 	memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
228 		 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
229 
230 	/* Found space, we now need to move the array over before
231 	 * we add the reserved region since it may be our reserved
232 	 * array itself that is full.
233 	 */
234 	memcpy(new_array, type->regions, old_size);
235 	memset(new_array + type->max, 0, old_size);
236 	old_array = type->regions;
237 	type->regions = new_array;
238 	type->max <<= 1;
239 
240 	/* If we use SLAB that's it, we are done */
241 	if (use_slab)
242 		return 0;
243 
244 	/* Add the new reserved region now. Should not fail ! */
245 	BUG_ON(memblock_reserve(addr, new_size));
246 
247 	/* If the array wasn't our static init one, then free it. We only do
248 	 * that before SLAB is available as later on, we don't know whether
249 	 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
250 	 * anyways
251 	 */
252 	if (old_array != memblock_memory_init_regions &&
253 	    old_array != memblock_reserved_init_regions)
254 		memblock_free(__pa(old_array), old_size);
255 
256 	return 0;
257 }
258 
259 /**
260  * memblock_merge_regions - merge neighboring compatible regions
261  * @type: memblock type to scan
262  *
263  * Scan @type and merge neighboring compatible regions.
264  */
265 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
266 {
267 	int i = 0;
268 
269 	/* cnt never goes below 1 */
270 	while (i < type->cnt - 1) {
271 		struct memblock_region *this = &type->regions[i];
272 		struct memblock_region *next = &type->regions[i + 1];
273 
274 		if (this->base + this->size != next->base ||
275 		    memblock_get_region_node(this) !=
276 		    memblock_get_region_node(next)) {
277 			BUG_ON(this->base + this->size > next->base);
278 			i++;
279 			continue;
280 		}
281 
282 		this->size += next->size;
283 		memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
284 		type->cnt--;
285 	}
286 }
287 
288 /**
289  * memblock_insert_region - insert new memblock region
290  * @type: memblock type to insert into
291  * @idx: index for the insertion point
292  * @base: base address of the new region
293  * @size: size of the new region
294  *
295  * Insert new memblock region [@base,@base+@size) into @type at @idx.
296  * @type must already have extra room to accomodate the new region.
297  */
298 static void __init_memblock memblock_insert_region(struct memblock_type *type,
299 						   int idx, phys_addr_t base,
300 						   phys_addr_t size, int nid)
301 {
302 	struct memblock_region *rgn = &type->regions[idx];
303 
304 	BUG_ON(type->cnt >= type->max);
305 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
306 	rgn->base = base;
307 	rgn->size = size;
308 	memblock_set_region_node(rgn, nid);
309 	type->cnt++;
310 	type->total_size += size;
311 }
312 
313 /**
314  * memblock_add_region - add new memblock region
315  * @type: memblock type to add new region into
316  * @base: base address of the new region
317  * @size: size of the new region
318  * @nid: nid of the new region
319  *
320  * Add new memblock region [@base,@base+@size) into @type.  The new region
321  * is allowed to overlap with existing ones - overlaps don't affect already
322  * existing regions.  @type is guaranteed to be minimal (all neighbouring
323  * compatible regions are merged) after the addition.
324  *
325  * RETURNS:
326  * 0 on success, -errno on failure.
327  */
328 static int __init_memblock memblock_add_region(struct memblock_type *type,
329 				phys_addr_t base, phys_addr_t size, int nid)
330 {
331 	bool insert = false;
332 	phys_addr_t obase = base;
333 	phys_addr_t end = base + memblock_cap_size(base, &size);
334 	int i, nr_new;
335 
336 	/* special case for empty array */
337 	if (type->regions[0].size == 0) {
338 		WARN_ON(type->cnt != 1 || type->total_size);
339 		type->regions[0].base = base;
340 		type->regions[0].size = size;
341 		memblock_set_region_node(&type->regions[0], nid);
342 		type->total_size = size;
343 		return 0;
344 	}
345 repeat:
346 	/*
347 	 * The following is executed twice.  Once with %false @insert and
348 	 * then with %true.  The first counts the number of regions needed
349 	 * to accomodate the new area.  The second actually inserts them.
350 	 */
351 	base = obase;
352 	nr_new = 0;
353 
354 	for (i = 0; i < type->cnt; i++) {
355 		struct memblock_region *rgn = &type->regions[i];
356 		phys_addr_t rbase = rgn->base;
357 		phys_addr_t rend = rbase + rgn->size;
358 
359 		if (rbase >= end)
360 			break;
361 		if (rend <= base)
362 			continue;
363 		/*
364 		 * @rgn overlaps.  If it separates the lower part of new
365 		 * area, insert that portion.
366 		 */
367 		if (rbase > base) {
368 			nr_new++;
369 			if (insert)
370 				memblock_insert_region(type, i++, base,
371 						       rbase - base, nid);
372 		}
373 		/* area below @rend is dealt with, forget about it */
374 		base = min(rend, end);
375 	}
376 
377 	/* insert the remaining portion */
378 	if (base < end) {
379 		nr_new++;
380 		if (insert)
381 			memblock_insert_region(type, i, base, end - base, nid);
382 	}
383 
384 	/*
385 	 * If this was the first round, resize array and repeat for actual
386 	 * insertions; otherwise, merge and return.
387 	 */
388 	if (!insert) {
389 		while (type->cnt + nr_new > type->max)
390 			if (memblock_double_array(type) < 0)
391 				return -ENOMEM;
392 		insert = true;
393 		goto repeat;
394 	} else {
395 		memblock_merge_regions(type);
396 		return 0;
397 	}
398 }
399 
400 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
401 				       int nid)
402 {
403 	return memblock_add_region(&memblock.memory, base, size, nid);
404 }
405 
406 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
407 {
408 	return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
409 }
410 
411 /**
412  * memblock_isolate_range - isolate given range into disjoint memblocks
413  * @type: memblock type to isolate range for
414  * @base: base of range to isolate
415  * @size: size of range to isolate
416  * @start_rgn: out parameter for the start of isolated region
417  * @end_rgn: out parameter for the end of isolated region
418  *
419  * Walk @type and ensure that regions don't cross the boundaries defined by
420  * [@base,@base+@size).  Crossing regions are split at the boundaries,
421  * which may create at most two more regions.  The index of the first
422  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
423  *
424  * RETURNS:
425  * 0 on success, -errno on failure.
426  */
427 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
428 					phys_addr_t base, phys_addr_t size,
429 					int *start_rgn, int *end_rgn)
430 {
431 	phys_addr_t end = base + memblock_cap_size(base, &size);
432 	int i;
433 
434 	*start_rgn = *end_rgn = 0;
435 
436 	/* we'll create at most two more regions */
437 	while (type->cnt + 2 > type->max)
438 		if (memblock_double_array(type) < 0)
439 			return -ENOMEM;
440 
441 	for (i = 0; i < type->cnt; i++) {
442 		struct memblock_region *rgn = &type->regions[i];
443 		phys_addr_t rbase = rgn->base;
444 		phys_addr_t rend = rbase + rgn->size;
445 
446 		if (rbase >= end)
447 			break;
448 		if (rend <= base)
449 			continue;
450 
451 		if (rbase < base) {
452 			/*
453 			 * @rgn intersects from below.  Split and continue
454 			 * to process the next region - the new top half.
455 			 */
456 			rgn->base = base;
457 			rgn->size -= base - rbase;
458 			type->total_size -= base - rbase;
459 			memblock_insert_region(type, i, rbase, base - rbase,
460 					       memblock_get_region_node(rgn));
461 		} else if (rend > end) {
462 			/*
463 			 * @rgn intersects from above.  Split and redo the
464 			 * current region - the new bottom half.
465 			 */
466 			rgn->base = end;
467 			rgn->size -= end - rbase;
468 			type->total_size -= end - rbase;
469 			memblock_insert_region(type, i--, rbase, end - rbase,
470 					       memblock_get_region_node(rgn));
471 		} else {
472 			/* @rgn is fully contained, record it */
473 			if (!*end_rgn)
474 				*start_rgn = i;
475 			*end_rgn = i + 1;
476 		}
477 	}
478 
479 	return 0;
480 }
481 
482 static int __init_memblock __memblock_remove(struct memblock_type *type,
483 					     phys_addr_t base, phys_addr_t size)
484 {
485 	int start_rgn, end_rgn;
486 	int i, ret;
487 
488 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
489 	if (ret)
490 		return ret;
491 
492 	for (i = end_rgn - 1; i >= start_rgn; i--)
493 		memblock_remove_region(type, i);
494 	return 0;
495 }
496 
497 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
498 {
499 	return __memblock_remove(&memblock.memory, base, size);
500 }
501 
502 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
503 {
504 	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
505 		     (unsigned long long)base,
506 		     (unsigned long long)base + size,
507 		     (void *)_RET_IP_);
508 
509 	return __memblock_remove(&memblock.reserved, base, size);
510 }
511 
512 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
513 {
514 	struct memblock_type *_rgn = &memblock.reserved;
515 
516 	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
517 		     (unsigned long long)base,
518 		     (unsigned long long)base + size,
519 		     (void *)_RET_IP_);
520 	BUG_ON(0 == size);
521 
522 	return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
523 }
524 
525 /**
526  * __next_free_mem_range - next function for for_each_free_mem_range()
527  * @idx: pointer to u64 loop variable
528  * @nid: nid: node selector, %MAX_NUMNODES for all nodes
529  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
530  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
531  * @p_nid: ptr to int for nid of the range, can be %NULL
532  *
533  * Find the first free area from *@idx which matches @nid, fill the out
534  * parameters, and update *@idx for the next iteration.  The lower 32bit of
535  * *@idx contains index into memory region and the upper 32bit indexes the
536  * areas before each reserved region.  For example, if reserved regions
537  * look like the following,
538  *
539  *	0:[0-16), 1:[32-48), 2:[128-130)
540  *
541  * The upper 32bit indexes the following regions.
542  *
543  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
544  *
545  * As both region arrays are sorted, the function advances the two indices
546  * in lockstep and returns each intersection.
547  */
548 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
549 					   phys_addr_t *out_start,
550 					   phys_addr_t *out_end, int *out_nid)
551 {
552 	struct memblock_type *mem = &memblock.memory;
553 	struct memblock_type *rsv = &memblock.reserved;
554 	int mi = *idx & 0xffffffff;
555 	int ri = *idx >> 32;
556 
557 	for ( ; mi < mem->cnt; mi++) {
558 		struct memblock_region *m = &mem->regions[mi];
559 		phys_addr_t m_start = m->base;
560 		phys_addr_t m_end = m->base + m->size;
561 
562 		/* only memory regions are associated with nodes, check it */
563 		if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
564 			continue;
565 
566 		/* scan areas before each reservation for intersection */
567 		for ( ; ri < rsv->cnt + 1; ri++) {
568 			struct memblock_region *r = &rsv->regions[ri];
569 			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
570 			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
571 
572 			/* if ri advanced past mi, break out to advance mi */
573 			if (r_start >= m_end)
574 				break;
575 			/* if the two regions intersect, we're done */
576 			if (m_start < r_end) {
577 				if (out_start)
578 					*out_start = max(m_start, r_start);
579 				if (out_end)
580 					*out_end = min(m_end, r_end);
581 				if (out_nid)
582 					*out_nid = memblock_get_region_node(m);
583 				/*
584 				 * The region which ends first is advanced
585 				 * for the next iteration.
586 				 */
587 				if (m_end <= r_end)
588 					mi++;
589 				else
590 					ri++;
591 				*idx = (u32)mi | (u64)ri << 32;
592 				return;
593 			}
594 		}
595 	}
596 
597 	/* signal end of iteration */
598 	*idx = ULLONG_MAX;
599 }
600 
601 /**
602  * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
603  * @idx: pointer to u64 loop variable
604  * @nid: nid: node selector, %MAX_NUMNODES for all nodes
605  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
606  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
607  * @p_nid: ptr to int for nid of the range, can be %NULL
608  *
609  * Reverse of __next_free_mem_range().
610  */
611 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
612 					   phys_addr_t *out_start,
613 					   phys_addr_t *out_end, int *out_nid)
614 {
615 	struct memblock_type *mem = &memblock.memory;
616 	struct memblock_type *rsv = &memblock.reserved;
617 	int mi = *idx & 0xffffffff;
618 	int ri = *idx >> 32;
619 
620 	if (*idx == (u64)ULLONG_MAX) {
621 		mi = mem->cnt - 1;
622 		ri = rsv->cnt;
623 	}
624 
625 	for ( ; mi >= 0; mi--) {
626 		struct memblock_region *m = &mem->regions[mi];
627 		phys_addr_t m_start = m->base;
628 		phys_addr_t m_end = m->base + m->size;
629 
630 		/* only memory regions are associated with nodes, check it */
631 		if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
632 			continue;
633 
634 		/* scan areas before each reservation for intersection */
635 		for ( ; ri >= 0; ri--) {
636 			struct memblock_region *r = &rsv->regions[ri];
637 			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
638 			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
639 
640 			/* if ri advanced past mi, break out to advance mi */
641 			if (r_end <= m_start)
642 				break;
643 			/* if the two regions intersect, we're done */
644 			if (m_end > r_start) {
645 				if (out_start)
646 					*out_start = max(m_start, r_start);
647 				if (out_end)
648 					*out_end = min(m_end, r_end);
649 				if (out_nid)
650 					*out_nid = memblock_get_region_node(m);
651 
652 				if (m_start >= r_start)
653 					mi--;
654 				else
655 					ri--;
656 				*idx = (u32)mi | (u64)ri << 32;
657 				return;
658 			}
659 		}
660 	}
661 
662 	*idx = ULLONG_MAX;
663 }
664 
665 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
666 /*
667  * Common iterator interface used to define for_each_mem_range().
668  */
669 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
670 				unsigned long *out_start_pfn,
671 				unsigned long *out_end_pfn, int *out_nid)
672 {
673 	struct memblock_type *type = &memblock.memory;
674 	struct memblock_region *r;
675 
676 	while (++*idx < type->cnt) {
677 		r = &type->regions[*idx];
678 
679 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
680 			continue;
681 		if (nid == MAX_NUMNODES || nid == r->nid)
682 			break;
683 	}
684 	if (*idx >= type->cnt) {
685 		*idx = -1;
686 		return;
687 	}
688 
689 	if (out_start_pfn)
690 		*out_start_pfn = PFN_UP(r->base);
691 	if (out_end_pfn)
692 		*out_end_pfn = PFN_DOWN(r->base + r->size);
693 	if (out_nid)
694 		*out_nid = r->nid;
695 }
696 
697 /**
698  * memblock_set_node - set node ID on memblock regions
699  * @base: base of area to set node ID for
700  * @size: size of area to set node ID for
701  * @nid: node ID to set
702  *
703  * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
704  * Regions which cross the area boundaries are split as necessary.
705  *
706  * RETURNS:
707  * 0 on success, -errno on failure.
708  */
709 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
710 				      int nid)
711 {
712 	struct memblock_type *type = &memblock.memory;
713 	int start_rgn, end_rgn;
714 	int i, ret;
715 
716 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
717 	if (ret)
718 		return ret;
719 
720 	for (i = start_rgn; i < end_rgn; i++)
721 		type->regions[i].nid = nid;
722 
723 	memblock_merge_regions(type);
724 	return 0;
725 }
726 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
727 
728 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
729 					phys_addr_t align, phys_addr_t max_addr,
730 					int nid)
731 {
732 	phys_addr_t found;
733 
734 	found = memblock_find_in_range_node(0, max_addr, size, align, nid);
735 	if (found && !memblock_reserve(found, size))
736 		return found;
737 
738 	return 0;
739 }
740 
741 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
742 {
743 	return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
744 }
745 
746 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
747 {
748 	return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
749 }
750 
751 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
752 {
753 	phys_addr_t alloc;
754 
755 	alloc = __memblock_alloc_base(size, align, max_addr);
756 
757 	if (alloc == 0)
758 		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
759 		      (unsigned long long) size, (unsigned long long) max_addr);
760 
761 	return alloc;
762 }
763 
764 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
765 {
766 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
767 }
768 
769 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
770 {
771 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
772 
773 	if (res)
774 		return res;
775 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
776 }
777 
778 
779 /*
780  * Remaining API functions
781  */
782 
783 phys_addr_t __init memblock_phys_mem_size(void)
784 {
785 	return memblock.memory.total_size;
786 }
787 
788 /* lowest address */
789 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
790 {
791 	return memblock.memory.regions[0].base;
792 }
793 
794 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
795 {
796 	int idx = memblock.memory.cnt - 1;
797 
798 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
799 }
800 
801 void __init memblock_enforce_memory_limit(phys_addr_t limit)
802 {
803 	unsigned long i;
804 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
805 
806 	if (!limit)
807 		return;
808 
809 	/* find out max address */
810 	for (i = 0; i < memblock.memory.cnt; i++) {
811 		struct memblock_region *r = &memblock.memory.regions[i];
812 
813 		if (limit <= r->size) {
814 			max_addr = r->base + limit;
815 			break;
816 		}
817 		limit -= r->size;
818 	}
819 
820 	/* truncate both memory and reserved regions */
821 	__memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
822 	__memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
823 }
824 
825 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
826 {
827 	unsigned int left = 0, right = type->cnt;
828 
829 	do {
830 		unsigned int mid = (right + left) / 2;
831 
832 		if (addr < type->regions[mid].base)
833 			right = mid;
834 		else if (addr >= (type->regions[mid].base +
835 				  type->regions[mid].size))
836 			left = mid + 1;
837 		else
838 			return mid;
839 	} while (left < right);
840 	return -1;
841 }
842 
843 int __init memblock_is_reserved(phys_addr_t addr)
844 {
845 	return memblock_search(&memblock.reserved, addr) != -1;
846 }
847 
848 int __init_memblock memblock_is_memory(phys_addr_t addr)
849 {
850 	return memblock_search(&memblock.memory, addr) != -1;
851 }
852 
853 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
854 {
855 	int idx = memblock_search(&memblock.memory, base);
856 	phys_addr_t end = base + memblock_cap_size(base, &size);
857 
858 	if (idx == -1)
859 		return 0;
860 	return memblock.memory.regions[idx].base <= base &&
861 		(memblock.memory.regions[idx].base +
862 		 memblock.memory.regions[idx].size) >= end;
863 }
864 
865 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
866 {
867 	memblock_cap_size(base, &size);
868 	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
869 }
870 
871 
872 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
873 {
874 	memblock.current_limit = limit;
875 }
876 
877 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
878 {
879 	unsigned long long base, size;
880 	int i;
881 
882 	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
883 
884 	for (i = 0; i < type->cnt; i++) {
885 		struct memblock_region *rgn = &type->regions[i];
886 		char nid_buf[32] = "";
887 
888 		base = rgn->base;
889 		size = rgn->size;
890 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
891 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
892 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
893 				 memblock_get_region_node(rgn));
894 #endif
895 		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
896 			name, i, base, base + size - 1, size, nid_buf);
897 	}
898 }
899 
900 void __init_memblock __memblock_dump_all(void)
901 {
902 	pr_info("MEMBLOCK configuration:\n");
903 	pr_info(" memory size = %#llx reserved size = %#llx\n",
904 		(unsigned long long)memblock.memory.total_size,
905 		(unsigned long long)memblock.reserved.total_size);
906 
907 	memblock_dump(&memblock.memory, "memory");
908 	memblock_dump(&memblock.reserved, "reserved");
909 }
910 
911 void __init memblock_allow_resize(void)
912 {
913 	memblock_can_resize = 1;
914 }
915 
916 static int __init early_memblock(char *p)
917 {
918 	if (p && strstr(p, "debug"))
919 		memblock_debug = 1;
920 	return 0;
921 }
922 early_param("memblock", early_memblock);
923 
924 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
925 
926 static int memblock_debug_show(struct seq_file *m, void *private)
927 {
928 	struct memblock_type *type = m->private;
929 	struct memblock_region *reg;
930 	int i;
931 
932 	for (i = 0; i < type->cnt; i++) {
933 		reg = &type->regions[i];
934 		seq_printf(m, "%4d: ", i);
935 		if (sizeof(phys_addr_t) == 4)
936 			seq_printf(m, "0x%08lx..0x%08lx\n",
937 				   (unsigned long)reg->base,
938 				   (unsigned long)(reg->base + reg->size - 1));
939 		else
940 			seq_printf(m, "0x%016llx..0x%016llx\n",
941 				   (unsigned long long)reg->base,
942 				   (unsigned long long)(reg->base + reg->size - 1));
943 
944 	}
945 	return 0;
946 }
947 
948 static int memblock_debug_open(struct inode *inode, struct file *file)
949 {
950 	return single_open(file, memblock_debug_show, inode->i_private);
951 }
952 
953 static const struct file_operations memblock_debug_fops = {
954 	.open = memblock_debug_open,
955 	.read = seq_read,
956 	.llseek = seq_lseek,
957 	.release = single_release,
958 };
959 
960 static int __init memblock_init_debugfs(void)
961 {
962 	struct dentry *root = debugfs_create_dir("memblock", NULL);
963 	if (!root)
964 		return -ENXIO;
965 	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
966 	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
967 
968 	return 0;
969 }
970 __initcall(memblock_init_debugfs);
971 
972 #endif /* CONFIG_DEBUG_FS */
973