1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 #include <linux/memblock.h> 22 23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 25 26 struct memblock memblock __initdata_memblock = { 27 .memory.regions = memblock_memory_init_regions, 28 .memory.cnt = 1, /* empty dummy entry */ 29 .memory.max = INIT_MEMBLOCK_REGIONS, 30 31 .reserved.regions = memblock_reserved_init_regions, 32 .reserved.cnt = 1, /* empty dummy entry */ 33 .reserved.max = INIT_MEMBLOCK_REGIONS, 34 35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 36 }; 37 38 int memblock_debug __initdata_memblock; 39 static int memblock_can_resize __initdata_memblock; 40 static int memblock_memory_in_slab __initdata_memblock = 0; 41 static int memblock_reserved_in_slab __initdata_memblock = 0; 42 43 /* inline so we don't get a warning when pr_debug is compiled out */ 44 static inline const char *memblock_type_name(struct memblock_type *type) 45 { 46 if (type == &memblock.memory) 47 return "memory"; 48 else if (type == &memblock.reserved) 49 return "reserved"; 50 else 51 return "unknown"; 52 } 53 54 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 55 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 56 { 57 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); 58 } 59 60 /* 61 * Address comparison utilities 62 */ 63 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 64 phys_addr_t base2, phys_addr_t size2) 65 { 66 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 67 } 68 69 static long __init_memblock memblock_overlaps_region(struct memblock_type *type, 70 phys_addr_t base, phys_addr_t size) 71 { 72 unsigned long i; 73 74 for (i = 0; i < type->cnt; i++) { 75 phys_addr_t rgnbase = type->regions[i].base; 76 phys_addr_t rgnsize = type->regions[i].size; 77 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) 78 break; 79 } 80 81 return (i < type->cnt) ? i : -1; 82 } 83 84 /** 85 * memblock_find_in_range_node - find free area in given range and node 86 * @start: start of candidate range 87 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 88 * @size: size of free area to find 89 * @align: alignment of free area to find 90 * @nid: nid of the free area to find, %MAX_NUMNODES for any node 91 * 92 * Find @size free area aligned to @align in the specified range and node. 93 * 94 * RETURNS: 95 * Found address on success, %0 on failure. 96 */ 97 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start, 98 phys_addr_t end, phys_addr_t size, 99 phys_addr_t align, int nid) 100 { 101 phys_addr_t this_start, this_end, cand; 102 u64 i; 103 104 /* pump up @end */ 105 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 106 end = memblock.current_limit; 107 108 /* avoid allocating the first page */ 109 start = max_t(phys_addr_t, start, PAGE_SIZE); 110 end = max(start, end); 111 112 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) { 113 this_start = clamp(this_start, start, end); 114 this_end = clamp(this_end, start, end); 115 116 if (this_end < size) 117 continue; 118 119 cand = round_down(this_end - size, align); 120 if (cand >= this_start) 121 return cand; 122 } 123 return 0; 124 } 125 126 /** 127 * memblock_find_in_range - find free area in given range 128 * @start: start of candidate range 129 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 130 * @size: size of free area to find 131 * @align: alignment of free area to find 132 * 133 * Find @size free area aligned to @align in the specified range. 134 * 135 * RETURNS: 136 * Found address on success, %0 on failure. 137 */ 138 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 139 phys_addr_t end, phys_addr_t size, 140 phys_addr_t align) 141 { 142 return memblock_find_in_range_node(start, end, size, align, 143 MAX_NUMNODES); 144 } 145 146 /* 147 * Free memblock.reserved.regions 148 */ 149 int __init_memblock memblock_free_reserved_regions(void) 150 { 151 if (memblock.reserved.regions == memblock_reserved_init_regions) 152 return 0; 153 154 return memblock_free(__pa(memblock.reserved.regions), 155 sizeof(struct memblock_region) * memblock.reserved.max); 156 } 157 158 /* 159 * Reserve memblock.reserved.regions 160 */ 161 int __init_memblock memblock_reserve_reserved_regions(void) 162 { 163 if (memblock.reserved.regions == memblock_reserved_init_regions) 164 return 0; 165 166 return memblock_reserve(__pa(memblock.reserved.regions), 167 sizeof(struct memblock_region) * memblock.reserved.max); 168 } 169 170 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 171 { 172 type->total_size -= type->regions[r].size; 173 memmove(&type->regions[r], &type->regions[r + 1], 174 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 175 type->cnt--; 176 177 /* Special case for empty arrays */ 178 if (type->cnt == 0) { 179 WARN_ON(type->total_size != 0); 180 type->cnt = 1; 181 type->regions[0].base = 0; 182 type->regions[0].size = 0; 183 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 184 } 185 } 186 187 static int __init_memblock memblock_double_array(struct memblock_type *type) 188 { 189 struct memblock_region *new_array, *old_array; 190 phys_addr_t old_size, new_size, addr; 191 int use_slab = slab_is_available(); 192 int *in_slab; 193 194 /* We don't allow resizing until we know about the reserved regions 195 * of memory that aren't suitable for allocation 196 */ 197 if (!memblock_can_resize) 198 return -1; 199 200 /* Calculate new doubled size */ 201 old_size = type->max * sizeof(struct memblock_region); 202 new_size = old_size << 1; 203 204 /* Retrieve the slab flag */ 205 if (type == &memblock.memory) 206 in_slab = &memblock_memory_in_slab; 207 else 208 in_slab = &memblock_reserved_in_slab; 209 210 /* Try to find some space for it. 211 * 212 * WARNING: We assume that either slab_is_available() and we use it or 213 * we use MEMBLOCK for allocations. That means that this is unsafe to use 214 * when bootmem is currently active (unless bootmem itself is implemented 215 * on top of MEMBLOCK which isn't the case yet) 216 * 217 * This should however not be an issue for now, as we currently only 218 * call into MEMBLOCK while it's still active, or much later when slab is 219 * active for memory hotplug operations 220 */ 221 if (use_slab) { 222 new_array = kmalloc(new_size, GFP_KERNEL); 223 addr = new_array ? __pa(new_array) : 0; 224 } else { 225 addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t)); 226 new_array = addr ? __va(addr) : 0; 227 } 228 if (!addr) { 229 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 230 memblock_type_name(type), type->max, type->max * 2); 231 return -1; 232 } 233 234 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]", 235 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1); 236 237 /* Found space, we now need to move the array over before 238 * we add the reserved region since it may be our reserved 239 * array itself that is full. 240 */ 241 memcpy(new_array, type->regions, old_size); 242 memset(new_array + type->max, 0, old_size); 243 old_array = type->regions; 244 type->regions = new_array; 245 type->max <<= 1; 246 247 /* Free old array. We needn't free it if the array is the 248 * static one 249 */ 250 if (*in_slab) 251 kfree(old_array); 252 else if (old_array != memblock_memory_init_regions && 253 old_array != memblock_reserved_init_regions) 254 memblock_free(__pa(old_array), old_size); 255 256 /* Reserve the new array if that comes from the memblock. 257 * Otherwise, we needn't do it 258 */ 259 if (!use_slab) 260 BUG_ON(memblock_reserve(addr, new_size)); 261 262 /* Update slab flag */ 263 *in_slab = use_slab; 264 265 return 0; 266 } 267 268 /** 269 * memblock_merge_regions - merge neighboring compatible regions 270 * @type: memblock type to scan 271 * 272 * Scan @type and merge neighboring compatible regions. 273 */ 274 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 275 { 276 int i = 0; 277 278 /* cnt never goes below 1 */ 279 while (i < type->cnt - 1) { 280 struct memblock_region *this = &type->regions[i]; 281 struct memblock_region *next = &type->regions[i + 1]; 282 283 if (this->base + this->size != next->base || 284 memblock_get_region_node(this) != 285 memblock_get_region_node(next)) { 286 BUG_ON(this->base + this->size > next->base); 287 i++; 288 continue; 289 } 290 291 this->size += next->size; 292 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next)); 293 type->cnt--; 294 } 295 } 296 297 /** 298 * memblock_insert_region - insert new memblock region 299 * @type: memblock type to insert into 300 * @idx: index for the insertion point 301 * @base: base address of the new region 302 * @size: size of the new region 303 * 304 * Insert new memblock region [@base,@base+@size) into @type at @idx. 305 * @type must already have extra room to accomodate the new region. 306 */ 307 static void __init_memblock memblock_insert_region(struct memblock_type *type, 308 int idx, phys_addr_t base, 309 phys_addr_t size, int nid) 310 { 311 struct memblock_region *rgn = &type->regions[idx]; 312 313 BUG_ON(type->cnt >= type->max); 314 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 315 rgn->base = base; 316 rgn->size = size; 317 memblock_set_region_node(rgn, nid); 318 type->cnt++; 319 type->total_size += size; 320 } 321 322 /** 323 * memblock_add_region - add new memblock region 324 * @type: memblock type to add new region into 325 * @base: base address of the new region 326 * @size: size of the new region 327 * @nid: nid of the new region 328 * 329 * Add new memblock region [@base,@base+@size) into @type. The new region 330 * is allowed to overlap with existing ones - overlaps don't affect already 331 * existing regions. @type is guaranteed to be minimal (all neighbouring 332 * compatible regions are merged) after the addition. 333 * 334 * RETURNS: 335 * 0 on success, -errno on failure. 336 */ 337 static int __init_memblock memblock_add_region(struct memblock_type *type, 338 phys_addr_t base, phys_addr_t size, int nid) 339 { 340 bool insert = false; 341 phys_addr_t obase = base; 342 phys_addr_t end = base + memblock_cap_size(base, &size); 343 int i, nr_new; 344 345 if (!size) 346 return 0; 347 348 /* special case for empty array */ 349 if (type->regions[0].size == 0) { 350 WARN_ON(type->cnt != 1 || type->total_size); 351 type->regions[0].base = base; 352 type->regions[0].size = size; 353 memblock_set_region_node(&type->regions[0], nid); 354 type->total_size = size; 355 return 0; 356 } 357 repeat: 358 /* 359 * The following is executed twice. Once with %false @insert and 360 * then with %true. The first counts the number of regions needed 361 * to accomodate the new area. The second actually inserts them. 362 */ 363 base = obase; 364 nr_new = 0; 365 366 for (i = 0; i < type->cnt; i++) { 367 struct memblock_region *rgn = &type->regions[i]; 368 phys_addr_t rbase = rgn->base; 369 phys_addr_t rend = rbase + rgn->size; 370 371 if (rbase >= end) 372 break; 373 if (rend <= base) 374 continue; 375 /* 376 * @rgn overlaps. If it separates the lower part of new 377 * area, insert that portion. 378 */ 379 if (rbase > base) { 380 nr_new++; 381 if (insert) 382 memblock_insert_region(type, i++, base, 383 rbase - base, nid); 384 } 385 /* area below @rend is dealt with, forget about it */ 386 base = min(rend, end); 387 } 388 389 /* insert the remaining portion */ 390 if (base < end) { 391 nr_new++; 392 if (insert) 393 memblock_insert_region(type, i, base, end - base, nid); 394 } 395 396 /* 397 * If this was the first round, resize array and repeat for actual 398 * insertions; otherwise, merge and return. 399 */ 400 if (!insert) { 401 while (type->cnt + nr_new > type->max) 402 if (memblock_double_array(type) < 0) 403 return -ENOMEM; 404 insert = true; 405 goto repeat; 406 } else { 407 memblock_merge_regions(type); 408 return 0; 409 } 410 } 411 412 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 413 int nid) 414 { 415 return memblock_add_region(&memblock.memory, base, size, nid); 416 } 417 418 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 419 { 420 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES); 421 } 422 423 /** 424 * memblock_isolate_range - isolate given range into disjoint memblocks 425 * @type: memblock type to isolate range for 426 * @base: base of range to isolate 427 * @size: size of range to isolate 428 * @start_rgn: out parameter for the start of isolated region 429 * @end_rgn: out parameter for the end of isolated region 430 * 431 * Walk @type and ensure that regions don't cross the boundaries defined by 432 * [@base,@base+@size). Crossing regions are split at the boundaries, 433 * which may create at most two more regions. The index of the first 434 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 435 * 436 * RETURNS: 437 * 0 on success, -errno on failure. 438 */ 439 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 440 phys_addr_t base, phys_addr_t size, 441 int *start_rgn, int *end_rgn) 442 { 443 phys_addr_t end = base + memblock_cap_size(base, &size); 444 int i; 445 446 *start_rgn = *end_rgn = 0; 447 448 if (!size) 449 return 0; 450 451 /* we'll create at most two more regions */ 452 while (type->cnt + 2 > type->max) 453 if (memblock_double_array(type) < 0) 454 return -ENOMEM; 455 456 for (i = 0; i < type->cnt; i++) { 457 struct memblock_region *rgn = &type->regions[i]; 458 phys_addr_t rbase = rgn->base; 459 phys_addr_t rend = rbase + rgn->size; 460 461 if (rbase >= end) 462 break; 463 if (rend <= base) 464 continue; 465 466 if (rbase < base) { 467 /* 468 * @rgn intersects from below. Split and continue 469 * to process the next region - the new top half. 470 */ 471 rgn->base = base; 472 rgn->size -= base - rbase; 473 type->total_size -= base - rbase; 474 memblock_insert_region(type, i, rbase, base - rbase, 475 memblock_get_region_node(rgn)); 476 } else if (rend > end) { 477 /* 478 * @rgn intersects from above. Split and redo the 479 * current region - the new bottom half. 480 */ 481 rgn->base = end; 482 rgn->size -= end - rbase; 483 type->total_size -= end - rbase; 484 memblock_insert_region(type, i--, rbase, end - rbase, 485 memblock_get_region_node(rgn)); 486 } else { 487 /* @rgn is fully contained, record it */ 488 if (!*end_rgn) 489 *start_rgn = i; 490 *end_rgn = i + 1; 491 } 492 } 493 494 return 0; 495 } 496 497 static int __init_memblock __memblock_remove(struct memblock_type *type, 498 phys_addr_t base, phys_addr_t size) 499 { 500 int start_rgn, end_rgn; 501 int i, ret; 502 503 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 504 if (ret) 505 return ret; 506 507 for (i = end_rgn - 1; i >= start_rgn; i--) 508 memblock_remove_region(type, i); 509 return 0; 510 } 511 512 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 513 { 514 return __memblock_remove(&memblock.memory, base, size); 515 } 516 517 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 518 { 519 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", 520 (unsigned long long)base, 521 (unsigned long long)base + size, 522 (void *)_RET_IP_); 523 524 return __memblock_remove(&memblock.reserved, base, size); 525 } 526 527 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 528 { 529 struct memblock_type *_rgn = &memblock.reserved; 530 531 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n", 532 (unsigned long long)base, 533 (unsigned long long)base + size, 534 (void *)_RET_IP_); 535 536 return memblock_add_region(_rgn, base, size, MAX_NUMNODES); 537 } 538 539 /** 540 * __next_free_mem_range - next function for for_each_free_mem_range() 541 * @idx: pointer to u64 loop variable 542 * @nid: nid: node selector, %MAX_NUMNODES for all nodes 543 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 544 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 545 * @p_nid: ptr to int for nid of the range, can be %NULL 546 * 547 * Find the first free area from *@idx which matches @nid, fill the out 548 * parameters, and update *@idx for the next iteration. The lower 32bit of 549 * *@idx contains index into memory region and the upper 32bit indexes the 550 * areas before each reserved region. For example, if reserved regions 551 * look like the following, 552 * 553 * 0:[0-16), 1:[32-48), 2:[128-130) 554 * 555 * The upper 32bit indexes the following regions. 556 * 557 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 558 * 559 * As both region arrays are sorted, the function advances the two indices 560 * in lockstep and returns each intersection. 561 */ 562 void __init_memblock __next_free_mem_range(u64 *idx, int nid, 563 phys_addr_t *out_start, 564 phys_addr_t *out_end, int *out_nid) 565 { 566 struct memblock_type *mem = &memblock.memory; 567 struct memblock_type *rsv = &memblock.reserved; 568 int mi = *idx & 0xffffffff; 569 int ri = *idx >> 32; 570 571 for ( ; mi < mem->cnt; mi++) { 572 struct memblock_region *m = &mem->regions[mi]; 573 phys_addr_t m_start = m->base; 574 phys_addr_t m_end = m->base + m->size; 575 576 /* only memory regions are associated with nodes, check it */ 577 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) 578 continue; 579 580 /* scan areas before each reservation for intersection */ 581 for ( ; ri < rsv->cnt + 1; ri++) { 582 struct memblock_region *r = &rsv->regions[ri]; 583 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; 584 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; 585 586 /* if ri advanced past mi, break out to advance mi */ 587 if (r_start >= m_end) 588 break; 589 /* if the two regions intersect, we're done */ 590 if (m_start < r_end) { 591 if (out_start) 592 *out_start = max(m_start, r_start); 593 if (out_end) 594 *out_end = min(m_end, r_end); 595 if (out_nid) 596 *out_nid = memblock_get_region_node(m); 597 /* 598 * The region which ends first is advanced 599 * for the next iteration. 600 */ 601 if (m_end <= r_end) 602 mi++; 603 else 604 ri++; 605 *idx = (u32)mi | (u64)ri << 32; 606 return; 607 } 608 } 609 } 610 611 /* signal end of iteration */ 612 *idx = ULLONG_MAX; 613 } 614 615 /** 616 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse() 617 * @idx: pointer to u64 loop variable 618 * @nid: nid: node selector, %MAX_NUMNODES for all nodes 619 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 620 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 621 * @p_nid: ptr to int for nid of the range, can be %NULL 622 * 623 * Reverse of __next_free_mem_range(). 624 */ 625 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid, 626 phys_addr_t *out_start, 627 phys_addr_t *out_end, int *out_nid) 628 { 629 struct memblock_type *mem = &memblock.memory; 630 struct memblock_type *rsv = &memblock.reserved; 631 int mi = *idx & 0xffffffff; 632 int ri = *idx >> 32; 633 634 if (*idx == (u64)ULLONG_MAX) { 635 mi = mem->cnt - 1; 636 ri = rsv->cnt; 637 } 638 639 for ( ; mi >= 0; mi--) { 640 struct memblock_region *m = &mem->regions[mi]; 641 phys_addr_t m_start = m->base; 642 phys_addr_t m_end = m->base + m->size; 643 644 /* only memory regions are associated with nodes, check it */ 645 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) 646 continue; 647 648 /* scan areas before each reservation for intersection */ 649 for ( ; ri >= 0; ri--) { 650 struct memblock_region *r = &rsv->regions[ri]; 651 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; 652 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; 653 654 /* if ri advanced past mi, break out to advance mi */ 655 if (r_end <= m_start) 656 break; 657 /* if the two regions intersect, we're done */ 658 if (m_end > r_start) { 659 if (out_start) 660 *out_start = max(m_start, r_start); 661 if (out_end) 662 *out_end = min(m_end, r_end); 663 if (out_nid) 664 *out_nid = memblock_get_region_node(m); 665 666 if (m_start >= r_start) 667 mi--; 668 else 669 ri--; 670 *idx = (u32)mi | (u64)ri << 32; 671 return; 672 } 673 } 674 } 675 676 *idx = ULLONG_MAX; 677 } 678 679 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 680 /* 681 * Common iterator interface used to define for_each_mem_range(). 682 */ 683 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 684 unsigned long *out_start_pfn, 685 unsigned long *out_end_pfn, int *out_nid) 686 { 687 struct memblock_type *type = &memblock.memory; 688 struct memblock_region *r; 689 690 while (++*idx < type->cnt) { 691 r = &type->regions[*idx]; 692 693 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 694 continue; 695 if (nid == MAX_NUMNODES || nid == r->nid) 696 break; 697 } 698 if (*idx >= type->cnt) { 699 *idx = -1; 700 return; 701 } 702 703 if (out_start_pfn) 704 *out_start_pfn = PFN_UP(r->base); 705 if (out_end_pfn) 706 *out_end_pfn = PFN_DOWN(r->base + r->size); 707 if (out_nid) 708 *out_nid = r->nid; 709 } 710 711 /** 712 * memblock_set_node - set node ID on memblock regions 713 * @base: base of area to set node ID for 714 * @size: size of area to set node ID for 715 * @nid: node ID to set 716 * 717 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid. 718 * Regions which cross the area boundaries are split as necessary. 719 * 720 * RETURNS: 721 * 0 on success, -errno on failure. 722 */ 723 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 724 int nid) 725 { 726 struct memblock_type *type = &memblock.memory; 727 int start_rgn, end_rgn; 728 int i, ret; 729 730 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 731 if (ret) 732 return ret; 733 734 for (i = start_rgn; i < end_rgn; i++) 735 type->regions[i].nid = nid; 736 737 memblock_merge_regions(type); 738 return 0; 739 } 740 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 741 742 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 743 phys_addr_t align, phys_addr_t max_addr, 744 int nid) 745 { 746 phys_addr_t found; 747 748 /* align @size to avoid excessive fragmentation on reserved array */ 749 size = round_up(size, align); 750 751 found = memblock_find_in_range_node(0, max_addr, size, align, nid); 752 if (found && !memblock_reserve(found, size)) 753 return found; 754 755 return 0; 756 } 757 758 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 759 { 760 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 761 } 762 763 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 764 { 765 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES); 766 } 767 768 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 769 { 770 phys_addr_t alloc; 771 772 alloc = __memblock_alloc_base(size, align, max_addr); 773 774 if (alloc == 0) 775 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", 776 (unsigned long long) size, (unsigned long long) max_addr); 777 778 return alloc; 779 } 780 781 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 782 { 783 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 784 } 785 786 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 787 { 788 phys_addr_t res = memblock_alloc_nid(size, align, nid); 789 790 if (res) 791 return res; 792 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 793 } 794 795 796 /* 797 * Remaining API functions 798 */ 799 800 phys_addr_t __init memblock_phys_mem_size(void) 801 { 802 return memblock.memory.total_size; 803 } 804 805 /* lowest address */ 806 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 807 { 808 return memblock.memory.regions[0].base; 809 } 810 811 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 812 { 813 int idx = memblock.memory.cnt - 1; 814 815 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 816 } 817 818 void __init memblock_enforce_memory_limit(phys_addr_t limit) 819 { 820 unsigned long i; 821 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 822 823 if (!limit) 824 return; 825 826 /* find out max address */ 827 for (i = 0; i < memblock.memory.cnt; i++) { 828 struct memblock_region *r = &memblock.memory.regions[i]; 829 830 if (limit <= r->size) { 831 max_addr = r->base + limit; 832 break; 833 } 834 limit -= r->size; 835 } 836 837 /* truncate both memory and reserved regions */ 838 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX); 839 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX); 840 } 841 842 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 843 { 844 unsigned int left = 0, right = type->cnt; 845 846 do { 847 unsigned int mid = (right + left) / 2; 848 849 if (addr < type->regions[mid].base) 850 right = mid; 851 else if (addr >= (type->regions[mid].base + 852 type->regions[mid].size)) 853 left = mid + 1; 854 else 855 return mid; 856 } while (left < right); 857 return -1; 858 } 859 860 int __init memblock_is_reserved(phys_addr_t addr) 861 { 862 return memblock_search(&memblock.reserved, addr) != -1; 863 } 864 865 int __init_memblock memblock_is_memory(phys_addr_t addr) 866 { 867 return memblock_search(&memblock.memory, addr) != -1; 868 } 869 870 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 871 { 872 int idx = memblock_search(&memblock.memory, base); 873 phys_addr_t end = base + memblock_cap_size(base, &size); 874 875 if (idx == -1) 876 return 0; 877 return memblock.memory.regions[idx].base <= base && 878 (memblock.memory.regions[idx].base + 879 memblock.memory.regions[idx].size) >= end; 880 } 881 882 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 883 { 884 memblock_cap_size(base, &size); 885 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; 886 } 887 888 889 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 890 { 891 memblock.current_limit = limit; 892 } 893 894 static void __init_memblock memblock_dump(struct memblock_type *type, char *name) 895 { 896 unsigned long long base, size; 897 int i; 898 899 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); 900 901 for (i = 0; i < type->cnt; i++) { 902 struct memblock_region *rgn = &type->regions[i]; 903 char nid_buf[32] = ""; 904 905 base = rgn->base; 906 size = rgn->size; 907 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 908 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 909 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 910 memblock_get_region_node(rgn)); 911 #endif 912 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n", 913 name, i, base, base + size - 1, size, nid_buf); 914 } 915 } 916 917 void __init_memblock __memblock_dump_all(void) 918 { 919 pr_info("MEMBLOCK configuration:\n"); 920 pr_info(" memory size = %#llx reserved size = %#llx\n", 921 (unsigned long long)memblock.memory.total_size, 922 (unsigned long long)memblock.reserved.total_size); 923 924 memblock_dump(&memblock.memory, "memory"); 925 memblock_dump(&memblock.reserved, "reserved"); 926 } 927 928 void __init memblock_allow_resize(void) 929 { 930 memblock_can_resize = 1; 931 } 932 933 static int __init early_memblock(char *p) 934 { 935 if (p && strstr(p, "debug")) 936 memblock_debug = 1; 937 return 0; 938 } 939 early_param("memblock", early_memblock); 940 941 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 942 943 static int memblock_debug_show(struct seq_file *m, void *private) 944 { 945 struct memblock_type *type = m->private; 946 struct memblock_region *reg; 947 int i; 948 949 for (i = 0; i < type->cnt; i++) { 950 reg = &type->regions[i]; 951 seq_printf(m, "%4d: ", i); 952 if (sizeof(phys_addr_t) == 4) 953 seq_printf(m, "0x%08lx..0x%08lx\n", 954 (unsigned long)reg->base, 955 (unsigned long)(reg->base + reg->size - 1)); 956 else 957 seq_printf(m, "0x%016llx..0x%016llx\n", 958 (unsigned long long)reg->base, 959 (unsigned long long)(reg->base + reg->size - 1)); 960 961 } 962 return 0; 963 } 964 965 static int memblock_debug_open(struct inode *inode, struct file *file) 966 { 967 return single_open(file, memblock_debug_show, inode->i_private); 968 } 969 970 static const struct file_operations memblock_debug_fops = { 971 .open = memblock_debug_open, 972 .read = seq_read, 973 .llseek = seq_lseek, 974 .release = single_release, 975 }; 976 977 static int __init memblock_init_debugfs(void) 978 { 979 struct dentry *root = debugfs_create_dir("memblock", NULL); 980 if (!root) 981 return -ENXIO; 982 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 983 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 984 985 return 0; 986 } 987 __initcall(memblock_init_debugfs); 988 989 #endif /* CONFIG_DEBUG_FS */ 990