1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 #include <linux/memblock.h> 22 23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 25 26 struct memblock memblock __initdata_memblock = { 27 .memory.regions = memblock_memory_init_regions, 28 .memory.cnt = 1, /* empty dummy entry */ 29 .memory.max = INIT_MEMBLOCK_REGIONS, 30 31 .reserved.regions = memblock_reserved_init_regions, 32 .reserved.cnt = 1, /* empty dummy entry */ 33 .reserved.max = INIT_MEMBLOCK_REGIONS, 34 35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 36 }; 37 38 int memblock_debug __initdata_memblock; 39 static int memblock_can_resize __initdata_memblock; 40 static int memblock_memory_in_slab __initdata_memblock = 0; 41 static int memblock_reserved_in_slab __initdata_memblock = 0; 42 43 /* inline so we don't get a warning when pr_debug is compiled out */ 44 static inline const char *memblock_type_name(struct memblock_type *type) 45 { 46 if (type == &memblock.memory) 47 return "memory"; 48 else if (type == &memblock.reserved) 49 return "reserved"; 50 else 51 return "unknown"; 52 } 53 54 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 55 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 56 { 57 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); 58 } 59 60 /* 61 * Address comparison utilities 62 */ 63 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 64 phys_addr_t base2, phys_addr_t size2) 65 { 66 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 67 } 68 69 static long __init_memblock memblock_overlaps_region(struct memblock_type *type, 70 phys_addr_t base, phys_addr_t size) 71 { 72 unsigned long i; 73 74 for (i = 0; i < type->cnt; i++) { 75 phys_addr_t rgnbase = type->regions[i].base; 76 phys_addr_t rgnsize = type->regions[i].size; 77 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) 78 break; 79 } 80 81 return (i < type->cnt) ? i : -1; 82 } 83 84 /** 85 * memblock_find_in_range_node - find free area in given range and node 86 * @start: start of candidate range 87 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 88 * @size: size of free area to find 89 * @align: alignment of free area to find 90 * @nid: nid of the free area to find, %MAX_NUMNODES for any node 91 * 92 * Find @size free area aligned to @align in the specified range and node. 93 * 94 * RETURNS: 95 * Found address on success, %0 on failure. 96 */ 97 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start, 98 phys_addr_t end, phys_addr_t size, 99 phys_addr_t align, int nid) 100 { 101 phys_addr_t this_start, this_end, cand; 102 u64 i; 103 104 /* pump up @end */ 105 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 106 end = memblock.current_limit; 107 108 /* avoid allocating the first page */ 109 start = max_t(phys_addr_t, start, PAGE_SIZE); 110 end = max(start, end); 111 112 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) { 113 this_start = clamp(this_start, start, end); 114 this_end = clamp(this_end, start, end); 115 116 if (this_end < size) 117 continue; 118 119 cand = round_down(this_end - size, align); 120 if (cand >= this_start) 121 return cand; 122 } 123 return 0; 124 } 125 126 /** 127 * memblock_find_in_range - find free area in given range 128 * @start: start of candidate range 129 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 130 * @size: size of free area to find 131 * @align: alignment of free area to find 132 * 133 * Find @size free area aligned to @align in the specified range. 134 * 135 * RETURNS: 136 * Found address on success, %0 on failure. 137 */ 138 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 139 phys_addr_t end, phys_addr_t size, 140 phys_addr_t align) 141 { 142 return memblock_find_in_range_node(start, end, size, align, 143 MAX_NUMNODES); 144 } 145 146 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 147 { 148 type->total_size -= type->regions[r].size; 149 memmove(&type->regions[r], &type->regions[r + 1], 150 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 151 type->cnt--; 152 153 /* Special case for empty arrays */ 154 if (type->cnt == 0) { 155 WARN_ON(type->total_size != 0); 156 type->cnt = 1; 157 type->regions[0].base = 0; 158 type->regions[0].size = 0; 159 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 160 } 161 } 162 163 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( 164 phys_addr_t *addr) 165 { 166 if (memblock.reserved.regions == memblock_reserved_init_regions) 167 return 0; 168 169 *addr = __pa(memblock.reserved.regions); 170 171 return PAGE_ALIGN(sizeof(struct memblock_region) * 172 memblock.reserved.max); 173 } 174 175 /** 176 * memblock_double_array - double the size of the memblock regions array 177 * @type: memblock type of the regions array being doubled 178 * @new_area_start: starting address of memory range to avoid overlap with 179 * @new_area_size: size of memory range to avoid overlap with 180 * 181 * Double the size of the @type regions array. If memblock is being used to 182 * allocate memory for a new reserved regions array and there is a previously 183 * allocated memory range [@new_area_start,@new_area_start+@new_area_size] 184 * waiting to be reserved, ensure the memory used by the new array does 185 * not overlap. 186 * 187 * RETURNS: 188 * 0 on success, -1 on failure. 189 */ 190 static int __init_memblock memblock_double_array(struct memblock_type *type, 191 phys_addr_t new_area_start, 192 phys_addr_t new_area_size) 193 { 194 struct memblock_region *new_array, *old_array; 195 phys_addr_t old_alloc_size, new_alloc_size; 196 phys_addr_t old_size, new_size, addr; 197 int use_slab = slab_is_available(); 198 int *in_slab; 199 200 /* We don't allow resizing until we know about the reserved regions 201 * of memory that aren't suitable for allocation 202 */ 203 if (!memblock_can_resize) 204 return -1; 205 206 /* Calculate new doubled size */ 207 old_size = type->max * sizeof(struct memblock_region); 208 new_size = old_size << 1; 209 /* 210 * We need to allocated new one align to PAGE_SIZE, 211 * so we can free them completely later. 212 */ 213 old_alloc_size = PAGE_ALIGN(old_size); 214 new_alloc_size = PAGE_ALIGN(new_size); 215 216 /* Retrieve the slab flag */ 217 if (type == &memblock.memory) 218 in_slab = &memblock_memory_in_slab; 219 else 220 in_slab = &memblock_reserved_in_slab; 221 222 /* Try to find some space for it. 223 * 224 * WARNING: We assume that either slab_is_available() and we use it or 225 * we use MEMBLOCK for allocations. That means that this is unsafe to use 226 * when bootmem is currently active (unless bootmem itself is implemented 227 * on top of MEMBLOCK which isn't the case yet) 228 * 229 * This should however not be an issue for now, as we currently only 230 * call into MEMBLOCK while it's still active, or much later when slab is 231 * active for memory hotplug operations 232 */ 233 if (use_slab) { 234 new_array = kmalloc(new_size, GFP_KERNEL); 235 addr = new_array ? __pa(new_array) : 0; 236 } else { 237 /* only exclude range when trying to double reserved.regions */ 238 if (type != &memblock.reserved) 239 new_area_start = new_area_size = 0; 240 241 addr = memblock_find_in_range(new_area_start + new_area_size, 242 memblock.current_limit, 243 new_alloc_size, PAGE_SIZE); 244 if (!addr && new_area_size) 245 addr = memblock_find_in_range(0, 246 min(new_area_start, memblock.current_limit), 247 new_alloc_size, PAGE_SIZE); 248 249 new_array = addr ? __va(addr) : 0; 250 } 251 if (!addr) { 252 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 253 memblock_type_name(type), type->max, type->max * 2); 254 return -1; 255 } 256 257 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]", 258 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1); 259 260 /* Found space, we now need to move the array over before 261 * we add the reserved region since it may be our reserved 262 * array itself that is full. 263 */ 264 memcpy(new_array, type->regions, old_size); 265 memset(new_array + type->max, 0, old_size); 266 old_array = type->regions; 267 type->regions = new_array; 268 type->max <<= 1; 269 270 /* Free old array. We needn't free it if the array is the 271 * static one 272 */ 273 if (*in_slab) 274 kfree(old_array); 275 else if (old_array != memblock_memory_init_regions && 276 old_array != memblock_reserved_init_regions) 277 memblock_free(__pa(old_array), old_alloc_size); 278 279 /* Reserve the new array if that comes from the memblock. 280 * Otherwise, we needn't do it 281 */ 282 if (!use_slab) 283 BUG_ON(memblock_reserve(addr, new_alloc_size)); 284 285 /* Update slab flag */ 286 *in_slab = use_slab; 287 288 return 0; 289 } 290 291 /** 292 * memblock_merge_regions - merge neighboring compatible regions 293 * @type: memblock type to scan 294 * 295 * Scan @type and merge neighboring compatible regions. 296 */ 297 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 298 { 299 int i = 0; 300 301 /* cnt never goes below 1 */ 302 while (i < type->cnt - 1) { 303 struct memblock_region *this = &type->regions[i]; 304 struct memblock_region *next = &type->regions[i + 1]; 305 306 if (this->base + this->size != next->base || 307 memblock_get_region_node(this) != 308 memblock_get_region_node(next)) { 309 BUG_ON(this->base + this->size > next->base); 310 i++; 311 continue; 312 } 313 314 this->size += next->size; 315 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next)); 316 type->cnt--; 317 } 318 } 319 320 /** 321 * memblock_insert_region - insert new memblock region 322 * @type: memblock type to insert into 323 * @idx: index for the insertion point 324 * @base: base address of the new region 325 * @size: size of the new region 326 * 327 * Insert new memblock region [@base,@base+@size) into @type at @idx. 328 * @type must already have extra room to accomodate the new region. 329 */ 330 static void __init_memblock memblock_insert_region(struct memblock_type *type, 331 int idx, phys_addr_t base, 332 phys_addr_t size, int nid) 333 { 334 struct memblock_region *rgn = &type->regions[idx]; 335 336 BUG_ON(type->cnt >= type->max); 337 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 338 rgn->base = base; 339 rgn->size = size; 340 memblock_set_region_node(rgn, nid); 341 type->cnt++; 342 type->total_size += size; 343 } 344 345 /** 346 * memblock_add_region - add new memblock region 347 * @type: memblock type to add new region into 348 * @base: base address of the new region 349 * @size: size of the new region 350 * @nid: nid of the new region 351 * 352 * Add new memblock region [@base,@base+@size) into @type. The new region 353 * is allowed to overlap with existing ones - overlaps don't affect already 354 * existing regions. @type is guaranteed to be minimal (all neighbouring 355 * compatible regions are merged) after the addition. 356 * 357 * RETURNS: 358 * 0 on success, -errno on failure. 359 */ 360 static int __init_memblock memblock_add_region(struct memblock_type *type, 361 phys_addr_t base, phys_addr_t size, int nid) 362 { 363 bool insert = false; 364 phys_addr_t obase = base; 365 phys_addr_t end = base + memblock_cap_size(base, &size); 366 int i, nr_new; 367 368 if (!size) 369 return 0; 370 371 /* special case for empty array */ 372 if (type->regions[0].size == 0) { 373 WARN_ON(type->cnt != 1 || type->total_size); 374 type->regions[0].base = base; 375 type->regions[0].size = size; 376 memblock_set_region_node(&type->regions[0], nid); 377 type->total_size = size; 378 return 0; 379 } 380 repeat: 381 /* 382 * The following is executed twice. Once with %false @insert and 383 * then with %true. The first counts the number of regions needed 384 * to accomodate the new area. The second actually inserts them. 385 */ 386 base = obase; 387 nr_new = 0; 388 389 for (i = 0; i < type->cnt; i++) { 390 struct memblock_region *rgn = &type->regions[i]; 391 phys_addr_t rbase = rgn->base; 392 phys_addr_t rend = rbase + rgn->size; 393 394 if (rbase >= end) 395 break; 396 if (rend <= base) 397 continue; 398 /* 399 * @rgn overlaps. If it separates the lower part of new 400 * area, insert that portion. 401 */ 402 if (rbase > base) { 403 nr_new++; 404 if (insert) 405 memblock_insert_region(type, i++, base, 406 rbase - base, nid); 407 } 408 /* area below @rend is dealt with, forget about it */ 409 base = min(rend, end); 410 } 411 412 /* insert the remaining portion */ 413 if (base < end) { 414 nr_new++; 415 if (insert) 416 memblock_insert_region(type, i, base, end - base, nid); 417 } 418 419 /* 420 * If this was the first round, resize array and repeat for actual 421 * insertions; otherwise, merge and return. 422 */ 423 if (!insert) { 424 while (type->cnt + nr_new > type->max) 425 if (memblock_double_array(type, obase, size) < 0) 426 return -ENOMEM; 427 insert = true; 428 goto repeat; 429 } else { 430 memblock_merge_regions(type); 431 return 0; 432 } 433 } 434 435 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 436 int nid) 437 { 438 return memblock_add_region(&memblock.memory, base, size, nid); 439 } 440 441 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 442 { 443 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES); 444 } 445 446 /** 447 * memblock_isolate_range - isolate given range into disjoint memblocks 448 * @type: memblock type to isolate range for 449 * @base: base of range to isolate 450 * @size: size of range to isolate 451 * @start_rgn: out parameter for the start of isolated region 452 * @end_rgn: out parameter for the end of isolated region 453 * 454 * Walk @type and ensure that regions don't cross the boundaries defined by 455 * [@base,@base+@size). Crossing regions are split at the boundaries, 456 * which may create at most two more regions. The index of the first 457 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 458 * 459 * RETURNS: 460 * 0 on success, -errno on failure. 461 */ 462 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 463 phys_addr_t base, phys_addr_t size, 464 int *start_rgn, int *end_rgn) 465 { 466 phys_addr_t end = base + memblock_cap_size(base, &size); 467 int i; 468 469 *start_rgn = *end_rgn = 0; 470 471 if (!size) 472 return 0; 473 474 /* we'll create at most two more regions */ 475 while (type->cnt + 2 > type->max) 476 if (memblock_double_array(type, base, size) < 0) 477 return -ENOMEM; 478 479 for (i = 0; i < type->cnt; i++) { 480 struct memblock_region *rgn = &type->regions[i]; 481 phys_addr_t rbase = rgn->base; 482 phys_addr_t rend = rbase + rgn->size; 483 484 if (rbase >= end) 485 break; 486 if (rend <= base) 487 continue; 488 489 if (rbase < base) { 490 /* 491 * @rgn intersects from below. Split and continue 492 * to process the next region - the new top half. 493 */ 494 rgn->base = base; 495 rgn->size -= base - rbase; 496 type->total_size -= base - rbase; 497 memblock_insert_region(type, i, rbase, base - rbase, 498 memblock_get_region_node(rgn)); 499 } else if (rend > end) { 500 /* 501 * @rgn intersects from above. Split and redo the 502 * current region - the new bottom half. 503 */ 504 rgn->base = end; 505 rgn->size -= end - rbase; 506 type->total_size -= end - rbase; 507 memblock_insert_region(type, i--, rbase, end - rbase, 508 memblock_get_region_node(rgn)); 509 } else { 510 /* @rgn is fully contained, record it */ 511 if (!*end_rgn) 512 *start_rgn = i; 513 *end_rgn = i + 1; 514 } 515 } 516 517 return 0; 518 } 519 520 static int __init_memblock __memblock_remove(struct memblock_type *type, 521 phys_addr_t base, phys_addr_t size) 522 { 523 int start_rgn, end_rgn; 524 int i, ret; 525 526 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 527 if (ret) 528 return ret; 529 530 for (i = end_rgn - 1; i >= start_rgn; i--) 531 memblock_remove_region(type, i); 532 return 0; 533 } 534 535 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 536 { 537 return __memblock_remove(&memblock.memory, base, size); 538 } 539 540 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 541 { 542 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", 543 (unsigned long long)base, 544 (unsigned long long)base + size, 545 (void *)_RET_IP_); 546 547 return __memblock_remove(&memblock.reserved, base, size); 548 } 549 550 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 551 { 552 struct memblock_type *_rgn = &memblock.reserved; 553 554 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n", 555 (unsigned long long)base, 556 (unsigned long long)base + size, 557 (void *)_RET_IP_); 558 559 return memblock_add_region(_rgn, base, size, MAX_NUMNODES); 560 } 561 562 /** 563 * __next_free_mem_range - next function for for_each_free_mem_range() 564 * @idx: pointer to u64 loop variable 565 * @nid: nid: node selector, %MAX_NUMNODES for all nodes 566 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 567 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 568 * @out_nid: ptr to int for nid of the range, can be %NULL 569 * 570 * Find the first free area from *@idx which matches @nid, fill the out 571 * parameters, and update *@idx for the next iteration. The lower 32bit of 572 * *@idx contains index into memory region and the upper 32bit indexes the 573 * areas before each reserved region. For example, if reserved regions 574 * look like the following, 575 * 576 * 0:[0-16), 1:[32-48), 2:[128-130) 577 * 578 * The upper 32bit indexes the following regions. 579 * 580 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 581 * 582 * As both region arrays are sorted, the function advances the two indices 583 * in lockstep and returns each intersection. 584 */ 585 void __init_memblock __next_free_mem_range(u64 *idx, int nid, 586 phys_addr_t *out_start, 587 phys_addr_t *out_end, int *out_nid) 588 { 589 struct memblock_type *mem = &memblock.memory; 590 struct memblock_type *rsv = &memblock.reserved; 591 int mi = *idx & 0xffffffff; 592 int ri = *idx >> 32; 593 594 for ( ; mi < mem->cnt; mi++) { 595 struct memblock_region *m = &mem->regions[mi]; 596 phys_addr_t m_start = m->base; 597 phys_addr_t m_end = m->base + m->size; 598 599 /* only memory regions are associated with nodes, check it */ 600 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) 601 continue; 602 603 /* scan areas before each reservation for intersection */ 604 for ( ; ri < rsv->cnt + 1; ri++) { 605 struct memblock_region *r = &rsv->regions[ri]; 606 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; 607 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; 608 609 /* if ri advanced past mi, break out to advance mi */ 610 if (r_start >= m_end) 611 break; 612 /* if the two regions intersect, we're done */ 613 if (m_start < r_end) { 614 if (out_start) 615 *out_start = max(m_start, r_start); 616 if (out_end) 617 *out_end = min(m_end, r_end); 618 if (out_nid) 619 *out_nid = memblock_get_region_node(m); 620 /* 621 * The region which ends first is advanced 622 * for the next iteration. 623 */ 624 if (m_end <= r_end) 625 mi++; 626 else 627 ri++; 628 *idx = (u32)mi | (u64)ri << 32; 629 return; 630 } 631 } 632 } 633 634 /* signal end of iteration */ 635 *idx = ULLONG_MAX; 636 } 637 638 /** 639 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse() 640 * @idx: pointer to u64 loop variable 641 * @nid: nid: node selector, %MAX_NUMNODES for all nodes 642 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 643 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 644 * @out_nid: ptr to int for nid of the range, can be %NULL 645 * 646 * Reverse of __next_free_mem_range(). 647 */ 648 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid, 649 phys_addr_t *out_start, 650 phys_addr_t *out_end, int *out_nid) 651 { 652 struct memblock_type *mem = &memblock.memory; 653 struct memblock_type *rsv = &memblock.reserved; 654 int mi = *idx & 0xffffffff; 655 int ri = *idx >> 32; 656 657 if (*idx == (u64)ULLONG_MAX) { 658 mi = mem->cnt - 1; 659 ri = rsv->cnt; 660 } 661 662 for ( ; mi >= 0; mi--) { 663 struct memblock_region *m = &mem->regions[mi]; 664 phys_addr_t m_start = m->base; 665 phys_addr_t m_end = m->base + m->size; 666 667 /* only memory regions are associated with nodes, check it */ 668 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) 669 continue; 670 671 /* scan areas before each reservation for intersection */ 672 for ( ; ri >= 0; ri--) { 673 struct memblock_region *r = &rsv->regions[ri]; 674 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; 675 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; 676 677 /* if ri advanced past mi, break out to advance mi */ 678 if (r_end <= m_start) 679 break; 680 /* if the two regions intersect, we're done */ 681 if (m_end > r_start) { 682 if (out_start) 683 *out_start = max(m_start, r_start); 684 if (out_end) 685 *out_end = min(m_end, r_end); 686 if (out_nid) 687 *out_nid = memblock_get_region_node(m); 688 689 if (m_start >= r_start) 690 mi--; 691 else 692 ri--; 693 *idx = (u32)mi | (u64)ri << 32; 694 return; 695 } 696 } 697 } 698 699 *idx = ULLONG_MAX; 700 } 701 702 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 703 /* 704 * Common iterator interface used to define for_each_mem_range(). 705 */ 706 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 707 unsigned long *out_start_pfn, 708 unsigned long *out_end_pfn, int *out_nid) 709 { 710 struct memblock_type *type = &memblock.memory; 711 struct memblock_region *r; 712 713 while (++*idx < type->cnt) { 714 r = &type->regions[*idx]; 715 716 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 717 continue; 718 if (nid == MAX_NUMNODES || nid == r->nid) 719 break; 720 } 721 if (*idx >= type->cnt) { 722 *idx = -1; 723 return; 724 } 725 726 if (out_start_pfn) 727 *out_start_pfn = PFN_UP(r->base); 728 if (out_end_pfn) 729 *out_end_pfn = PFN_DOWN(r->base + r->size); 730 if (out_nid) 731 *out_nid = r->nid; 732 } 733 734 /** 735 * memblock_set_node - set node ID on memblock regions 736 * @base: base of area to set node ID for 737 * @size: size of area to set node ID for 738 * @nid: node ID to set 739 * 740 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid. 741 * Regions which cross the area boundaries are split as necessary. 742 * 743 * RETURNS: 744 * 0 on success, -errno on failure. 745 */ 746 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 747 int nid) 748 { 749 struct memblock_type *type = &memblock.memory; 750 int start_rgn, end_rgn; 751 int i, ret; 752 753 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 754 if (ret) 755 return ret; 756 757 for (i = start_rgn; i < end_rgn; i++) 758 type->regions[i].nid = nid; 759 760 memblock_merge_regions(type); 761 return 0; 762 } 763 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 764 765 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 766 phys_addr_t align, phys_addr_t max_addr, 767 int nid) 768 { 769 phys_addr_t found; 770 771 /* align @size to avoid excessive fragmentation on reserved array */ 772 size = round_up(size, align); 773 774 found = memblock_find_in_range_node(0, max_addr, size, align, nid); 775 if (found && !memblock_reserve(found, size)) 776 return found; 777 778 return 0; 779 } 780 781 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 782 { 783 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 784 } 785 786 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 787 { 788 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES); 789 } 790 791 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 792 { 793 phys_addr_t alloc; 794 795 alloc = __memblock_alloc_base(size, align, max_addr); 796 797 if (alloc == 0) 798 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", 799 (unsigned long long) size, (unsigned long long) max_addr); 800 801 return alloc; 802 } 803 804 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 805 { 806 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 807 } 808 809 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 810 { 811 phys_addr_t res = memblock_alloc_nid(size, align, nid); 812 813 if (res) 814 return res; 815 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 816 } 817 818 819 /* 820 * Remaining API functions 821 */ 822 823 phys_addr_t __init memblock_phys_mem_size(void) 824 { 825 return memblock.memory.total_size; 826 } 827 828 /* lowest address */ 829 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 830 { 831 return memblock.memory.regions[0].base; 832 } 833 834 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 835 { 836 int idx = memblock.memory.cnt - 1; 837 838 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 839 } 840 841 void __init memblock_enforce_memory_limit(phys_addr_t limit) 842 { 843 unsigned long i; 844 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 845 846 if (!limit) 847 return; 848 849 /* find out max address */ 850 for (i = 0; i < memblock.memory.cnt; i++) { 851 struct memblock_region *r = &memblock.memory.regions[i]; 852 853 if (limit <= r->size) { 854 max_addr = r->base + limit; 855 break; 856 } 857 limit -= r->size; 858 } 859 860 /* truncate both memory and reserved regions */ 861 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX); 862 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX); 863 } 864 865 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 866 { 867 unsigned int left = 0, right = type->cnt; 868 869 do { 870 unsigned int mid = (right + left) / 2; 871 872 if (addr < type->regions[mid].base) 873 right = mid; 874 else if (addr >= (type->regions[mid].base + 875 type->regions[mid].size)) 876 left = mid + 1; 877 else 878 return mid; 879 } while (left < right); 880 return -1; 881 } 882 883 int __init memblock_is_reserved(phys_addr_t addr) 884 { 885 return memblock_search(&memblock.reserved, addr) != -1; 886 } 887 888 int __init_memblock memblock_is_memory(phys_addr_t addr) 889 { 890 return memblock_search(&memblock.memory, addr) != -1; 891 } 892 893 /** 894 * memblock_is_region_memory - check if a region is a subset of memory 895 * @base: base of region to check 896 * @size: size of region to check 897 * 898 * Check if the region [@base, @base+@size) is a subset of a memory block. 899 * 900 * RETURNS: 901 * 0 if false, non-zero if true 902 */ 903 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 904 { 905 int idx = memblock_search(&memblock.memory, base); 906 phys_addr_t end = base + memblock_cap_size(base, &size); 907 908 if (idx == -1) 909 return 0; 910 return memblock.memory.regions[idx].base <= base && 911 (memblock.memory.regions[idx].base + 912 memblock.memory.regions[idx].size) >= end; 913 } 914 915 /** 916 * memblock_is_region_reserved - check if a region intersects reserved memory 917 * @base: base of region to check 918 * @size: size of region to check 919 * 920 * Check if the region [@base, @base+@size) intersects a reserved memory block. 921 * 922 * RETURNS: 923 * 0 if false, non-zero if true 924 */ 925 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 926 { 927 memblock_cap_size(base, &size); 928 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; 929 } 930 931 932 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 933 { 934 memblock.current_limit = limit; 935 } 936 937 static void __init_memblock memblock_dump(struct memblock_type *type, char *name) 938 { 939 unsigned long long base, size; 940 int i; 941 942 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); 943 944 for (i = 0; i < type->cnt; i++) { 945 struct memblock_region *rgn = &type->regions[i]; 946 char nid_buf[32] = ""; 947 948 base = rgn->base; 949 size = rgn->size; 950 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 951 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 952 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 953 memblock_get_region_node(rgn)); 954 #endif 955 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n", 956 name, i, base, base + size - 1, size, nid_buf); 957 } 958 } 959 960 void __init_memblock __memblock_dump_all(void) 961 { 962 pr_info("MEMBLOCK configuration:\n"); 963 pr_info(" memory size = %#llx reserved size = %#llx\n", 964 (unsigned long long)memblock.memory.total_size, 965 (unsigned long long)memblock.reserved.total_size); 966 967 memblock_dump(&memblock.memory, "memory"); 968 memblock_dump(&memblock.reserved, "reserved"); 969 } 970 971 void __init memblock_allow_resize(void) 972 { 973 memblock_can_resize = 1; 974 } 975 976 static int __init early_memblock(char *p) 977 { 978 if (p && strstr(p, "debug")) 979 memblock_debug = 1; 980 return 0; 981 } 982 early_param("memblock", early_memblock); 983 984 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 985 986 static int memblock_debug_show(struct seq_file *m, void *private) 987 { 988 struct memblock_type *type = m->private; 989 struct memblock_region *reg; 990 int i; 991 992 for (i = 0; i < type->cnt; i++) { 993 reg = &type->regions[i]; 994 seq_printf(m, "%4d: ", i); 995 if (sizeof(phys_addr_t) == 4) 996 seq_printf(m, "0x%08lx..0x%08lx\n", 997 (unsigned long)reg->base, 998 (unsigned long)(reg->base + reg->size - 1)); 999 else 1000 seq_printf(m, "0x%016llx..0x%016llx\n", 1001 (unsigned long long)reg->base, 1002 (unsigned long long)(reg->base + reg->size - 1)); 1003 1004 } 1005 return 0; 1006 } 1007 1008 static int memblock_debug_open(struct inode *inode, struct file *file) 1009 { 1010 return single_open(file, memblock_debug_show, inode->i_private); 1011 } 1012 1013 static const struct file_operations memblock_debug_fops = { 1014 .open = memblock_debug_open, 1015 .read = seq_read, 1016 .llseek = seq_lseek, 1017 .release = single_release, 1018 }; 1019 1020 static int __init memblock_init_debugfs(void) 1021 { 1022 struct dentry *root = debugfs_create_dir("memblock", NULL); 1023 if (!root) 1024 return -ENXIO; 1025 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 1026 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 1027 1028 return 0; 1029 } 1030 __initcall(memblock_init_debugfs); 1031 1032 #endif /* CONFIG_DEBUG_FS */ 1033