1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 #include <linux/memblock.h> 22 23 #include <asm-generic/sections.h> 24 #include <linux/io.h> 25 26 #include "internal.h" 27 28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; 32 #endif 33 34 struct memblock memblock __initdata_memblock = { 35 .memory.regions = memblock_memory_init_regions, 36 .memory.cnt = 1, /* empty dummy entry */ 37 .memory.max = INIT_MEMBLOCK_REGIONS, 38 39 .reserved.regions = memblock_reserved_init_regions, 40 .reserved.cnt = 1, /* empty dummy entry */ 41 .reserved.max = INIT_MEMBLOCK_REGIONS, 42 43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 44 .physmem.regions = memblock_physmem_init_regions, 45 .physmem.cnt = 1, /* empty dummy entry */ 46 .physmem.max = INIT_PHYSMEM_REGIONS, 47 #endif 48 49 .bottom_up = false, 50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 51 }; 52 53 int memblock_debug __initdata_memblock; 54 #ifdef CONFIG_MOVABLE_NODE 55 bool movable_node_enabled __initdata_memblock = false; 56 #endif 57 static int memblock_can_resize __initdata_memblock; 58 static int memblock_memory_in_slab __initdata_memblock = 0; 59 static int memblock_reserved_in_slab __initdata_memblock = 0; 60 61 /* inline so we don't get a warning when pr_debug is compiled out */ 62 static __init_memblock const char * 63 memblock_type_name(struct memblock_type *type) 64 { 65 if (type == &memblock.memory) 66 return "memory"; 67 else if (type == &memblock.reserved) 68 return "reserved"; 69 else 70 return "unknown"; 71 } 72 73 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 74 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 75 { 76 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); 77 } 78 79 /* 80 * Address comparison utilities 81 */ 82 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 83 phys_addr_t base2, phys_addr_t size2) 84 { 85 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 86 } 87 88 static long __init_memblock memblock_overlaps_region(struct memblock_type *type, 89 phys_addr_t base, phys_addr_t size) 90 { 91 unsigned long i; 92 93 for (i = 0; i < type->cnt; i++) { 94 phys_addr_t rgnbase = type->regions[i].base; 95 phys_addr_t rgnsize = type->regions[i].size; 96 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) 97 break; 98 } 99 100 return (i < type->cnt) ? i : -1; 101 } 102 103 /* 104 * __memblock_find_range_bottom_up - find free area utility in bottom-up 105 * @start: start of candidate range 106 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 107 * @size: size of free area to find 108 * @align: alignment of free area to find 109 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 110 * 111 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 112 * 113 * RETURNS: 114 * Found address on success, 0 on failure. 115 */ 116 static phys_addr_t __init_memblock 117 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 118 phys_addr_t size, phys_addr_t align, int nid) 119 { 120 phys_addr_t this_start, this_end, cand; 121 u64 i; 122 123 for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) { 124 this_start = clamp(this_start, start, end); 125 this_end = clamp(this_end, start, end); 126 127 cand = round_up(this_start, align); 128 if (cand < this_end && this_end - cand >= size) 129 return cand; 130 } 131 132 return 0; 133 } 134 135 /** 136 * __memblock_find_range_top_down - find free area utility, in top-down 137 * @start: start of candidate range 138 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 139 * @size: size of free area to find 140 * @align: alignment of free area to find 141 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 142 * 143 * Utility called from memblock_find_in_range_node(), find free area top-down. 144 * 145 * RETURNS: 146 * Found address on success, 0 on failure. 147 */ 148 static phys_addr_t __init_memblock 149 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 150 phys_addr_t size, phys_addr_t align, int nid) 151 { 152 phys_addr_t this_start, this_end, cand; 153 u64 i; 154 155 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) { 156 this_start = clamp(this_start, start, end); 157 this_end = clamp(this_end, start, end); 158 159 if (this_end < size) 160 continue; 161 162 cand = round_down(this_end - size, align); 163 if (cand >= this_start) 164 return cand; 165 } 166 167 return 0; 168 } 169 170 /** 171 * memblock_find_in_range_node - find free area in given range and node 172 * @size: size of free area to find 173 * @align: alignment of free area to find 174 * @start: start of candidate range 175 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 176 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 177 * 178 * Find @size free area aligned to @align in the specified range and node. 179 * 180 * When allocation direction is bottom-up, the @start should be greater 181 * than the end of the kernel image. Otherwise, it will be trimmed. The 182 * reason is that we want the bottom-up allocation just near the kernel 183 * image so it is highly likely that the allocated memory and the kernel 184 * will reside in the same node. 185 * 186 * If bottom-up allocation failed, will try to allocate memory top-down. 187 * 188 * RETURNS: 189 * Found address on success, 0 on failure. 190 */ 191 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 192 phys_addr_t align, phys_addr_t start, 193 phys_addr_t end, int nid) 194 { 195 int ret; 196 phys_addr_t kernel_end; 197 198 /* pump up @end */ 199 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 200 end = memblock.current_limit; 201 202 /* avoid allocating the first page */ 203 start = max_t(phys_addr_t, start, PAGE_SIZE); 204 end = max(start, end); 205 kernel_end = __pa_symbol(_end); 206 207 /* 208 * try bottom-up allocation only when bottom-up mode 209 * is set and @end is above the kernel image. 210 */ 211 if (memblock_bottom_up() && end > kernel_end) { 212 phys_addr_t bottom_up_start; 213 214 /* make sure we will allocate above the kernel */ 215 bottom_up_start = max(start, kernel_end); 216 217 /* ok, try bottom-up allocation first */ 218 ret = __memblock_find_range_bottom_up(bottom_up_start, end, 219 size, align, nid); 220 if (ret) 221 return ret; 222 223 /* 224 * we always limit bottom-up allocation above the kernel, 225 * but top-down allocation doesn't have the limit, so 226 * retrying top-down allocation may succeed when bottom-up 227 * allocation failed. 228 * 229 * bottom-up allocation is expected to be fail very rarely, 230 * so we use WARN_ONCE() here to see the stack trace if 231 * fail happens. 232 */ 233 WARN_ONCE(1, "memblock: bottom-up allocation failed, " 234 "memory hotunplug may be affected\n"); 235 } 236 237 return __memblock_find_range_top_down(start, end, size, align, nid); 238 } 239 240 /** 241 * memblock_find_in_range - find free area in given range 242 * @start: start of candidate range 243 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 244 * @size: size of free area to find 245 * @align: alignment of free area to find 246 * 247 * Find @size free area aligned to @align in the specified range. 248 * 249 * RETURNS: 250 * Found address on success, 0 on failure. 251 */ 252 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 253 phys_addr_t end, phys_addr_t size, 254 phys_addr_t align) 255 { 256 return memblock_find_in_range_node(size, align, start, end, 257 NUMA_NO_NODE); 258 } 259 260 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 261 { 262 type->total_size -= type->regions[r].size; 263 memmove(&type->regions[r], &type->regions[r + 1], 264 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 265 type->cnt--; 266 267 /* Special case for empty arrays */ 268 if (type->cnt == 0) { 269 WARN_ON(type->total_size != 0); 270 type->cnt = 1; 271 type->regions[0].base = 0; 272 type->regions[0].size = 0; 273 type->regions[0].flags = 0; 274 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 275 } 276 } 277 278 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 279 280 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( 281 phys_addr_t *addr) 282 { 283 if (memblock.reserved.regions == memblock_reserved_init_regions) 284 return 0; 285 286 *addr = __pa(memblock.reserved.regions); 287 288 return PAGE_ALIGN(sizeof(struct memblock_region) * 289 memblock.reserved.max); 290 } 291 292 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info( 293 phys_addr_t *addr) 294 { 295 if (memblock.memory.regions == memblock_memory_init_regions) 296 return 0; 297 298 *addr = __pa(memblock.memory.regions); 299 300 return PAGE_ALIGN(sizeof(struct memblock_region) * 301 memblock.memory.max); 302 } 303 304 #endif 305 306 /** 307 * memblock_double_array - double the size of the memblock regions array 308 * @type: memblock type of the regions array being doubled 309 * @new_area_start: starting address of memory range to avoid overlap with 310 * @new_area_size: size of memory range to avoid overlap with 311 * 312 * Double the size of the @type regions array. If memblock is being used to 313 * allocate memory for a new reserved regions array and there is a previously 314 * allocated memory range [@new_area_start,@new_area_start+@new_area_size] 315 * waiting to be reserved, ensure the memory used by the new array does 316 * not overlap. 317 * 318 * RETURNS: 319 * 0 on success, -1 on failure. 320 */ 321 static int __init_memblock memblock_double_array(struct memblock_type *type, 322 phys_addr_t new_area_start, 323 phys_addr_t new_area_size) 324 { 325 struct memblock_region *new_array, *old_array; 326 phys_addr_t old_alloc_size, new_alloc_size; 327 phys_addr_t old_size, new_size, addr; 328 int use_slab = slab_is_available(); 329 int *in_slab; 330 331 /* We don't allow resizing until we know about the reserved regions 332 * of memory that aren't suitable for allocation 333 */ 334 if (!memblock_can_resize) 335 return -1; 336 337 /* Calculate new doubled size */ 338 old_size = type->max * sizeof(struct memblock_region); 339 new_size = old_size << 1; 340 /* 341 * We need to allocated new one align to PAGE_SIZE, 342 * so we can free them completely later. 343 */ 344 old_alloc_size = PAGE_ALIGN(old_size); 345 new_alloc_size = PAGE_ALIGN(new_size); 346 347 /* Retrieve the slab flag */ 348 if (type == &memblock.memory) 349 in_slab = &memblock_memory_in_slab; 350 else 351 in_slab = &memblock_reserved_in_slab; 352 353 /* Try to find some space for it. 354 * 355 * WARNING: We assume that either slab_is_available() and we use it or 356 * we use MEMBLOCK for allocations. That means that this is unsafe to 357 * use when bootmem is currently active (unless bootmem itself is 358 * implemented on top of MEMBLOCK which isn't the case yet) 359 * 360 * This should however not be an issue for now, as we currently only 361 * call into MEMBLOCK while it's still active, or much later when slab 362 * is active for memory hotplug operations 363 */ 364 if (use_slab) { 365 new_array = kmalloc(new_size, GFP_KERNEL); 366 addr = new_array ? __pa(new_array) : 0; 367 } else { 368 /* only exclude range when trying to double reserved.regions */ 369 if (type != &memblock.reserved) 370 new_area_start = new_area_size = 0; 371 372 addr = memblock_find_in_range(new_area_start + new_area_size, 373 memblock.current_limit, 374 new_alloc_size, PAGE_SIZE); 375 if (!addr && new_area_size) 376 addr = memblock_find_in_range(0, 377 min(new_area_start, memblock.current_limit), 378 new_alloc_size, PAGE_SIZE); 379 380 new_array = addr ? __va(addr) : NULL; 381 } 382 if (!addr) { 383 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 384 memblock_type_name(type), type->max, type->max * 2); 385 return -1; 386 } 387 388 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", 389 memblock_type_name(type), type->max * 2, (u64)addr, 390 (u64)addr + new_size - 1); 391 392 /* 393 * Found space, we now need to move the array over before we add the 394 * reserved region since it may be our reserved array itself that is 395 * full. 396 */ 397 memcpy(new_array, type->regions, old_size); 398 memset(new_array + type->max, 0, old_size); 399 old_array = type->regions; 400 type->regions = new_array; 401 type->max <<= 1; 402 403 /* Free old array. We needn't free it if the array is the static one */ 404 if (*in_slab) 405 kfree(old_array); 406 else if (old_array != memblock_memory_init_regions && 407 old_array != memblock_reserved_init_regions) 408 memblock_free(__pa(old_array), old_alloc_size); 409 410 /* 411 * Reserve the new array if that comes from the memblock. Otherwise, we 412 * needn't do it 413 */ 414 if (!use_slab) 415 BUG_ON(memblock_reserve(addr, new_alloc_size)); 416 417 /* Update slab flag */ 418 *in_slab = use_slab; 419 420 return 0; 421 } 422 423 /** 424 * memblock_merge_regions - merge neighboring compatible regions 425 * @type: memblock type to scan 426 * 427 * Scan @type and merge neighboring compatible regions. 428 */ 429 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 430 { 431 int i = 0; 432 433 /* cnt never goes below 1 */ 434 while (i < type->cnt - 1) { 435 struct memblock_region *this = &type->regions[i]; 436 struct memblock_region *next = &type->regions[i + 1]; 437 438 if (this->base + this->size != next->base || 439 memblock_get_region_node(this) != 440 memblock_get_region_node(next) || 441 this->flags != next->flags) { 442 BUG_ON(this->base + this->size > next->base); 443 i++; 444 continue; 445 } 446 447 this->size += next->size; 448 /* move forward from next + 1, index of which is i + 2 */ 449 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 450 type->cnt--; 451 } 452 } 453 454 /** 455 * memblock_insert_region - insert new memblock region 456 * @type: memblock type to insert into 457 * @idx: index for the insertion point 458 * @base: base address of the new region 459 * @size: size of the new region 460 * @nid: node id of the new region 461 * @flags: flags of the new region 462 * 463 * Insert new memblock region [@base,@base+@size) into @type at @idx. 464 * @type must already have extra room to accomodate the new region. 465 */ 466 static void __init_memblock memblock_insert_region(struct memblock_type *type, 467 int idx, phys_addr_t base, 468 phys_addr_t size, 469 int nid, unsigned long flags) 470 { 471 struct memblock_region *rgn = &type->regions[idx]; 472 473 BUG_ON(type->cnt >= type->max); 474 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 475 rgn->base = base; 476 rgn->size = size; 477 rgn->flags = flags; 478 memblock_set_region_node(rgn, nid); 479 type->cnt++; 480 type->total_size += size; 481 } 482 483 /** 484 * memblock_add_range - add new memblock region 485 * @type: memblock type to add new region into 486 * @base: base address of the new region 487 * @size: size of the new region 488 * @nid: nid of the new region 489 * @flags: flags of the new region 490 * 491 * Add new memblock region [@base,@base+@size) into @type. The new region 492 * is allowed to overlap with existing ones - overlaps don't affect already 493 * existing regions. @type is guaranteed to be minimal (all neighbouring 494 * compatible regions are merged) after the addition. 495 * 496 * RETURNS: 497 * 0 on success, -errno on failure. 498 */ 499 int __init_memblock memblock_add_range(struct memblock_type *type, 500 phys_addr_t base, phys_addr_t size, 501 int nid, unsigned long flags) 502 { 503 bool insert = false; 504 phys_addr_t obase = base; 505 phys_addr_t end = base + memblock_cap_size(base, &size); 506 int i, nr_new; 507 508 if (!size) 509 return 0; 510 511 /* special case for empty array */ 512 if (type->regions[0].size == 0) { 513 WARN_ON(type->cnt != 1 || type->total_size); 514 type->regions[0].base = base; 515 type->regions[0].size = size; 516 type->regions[0].flags = flags; 517 memblock_set_region_node(&type->regions[0], nid); 518 type->total_size = size; 519 return 0; 520 } 521 repeat: 522 /* 523 * The following is executed twice. Once with %false @insert and 524 * then with %true. The first counts the number of regions needed 525 * to accomodate the new area. The second actually inserts them. 526 */ 527 base = obase; 528 nr_new = 0; 529 530 for (i = 0; i < type->cnt; i++) { 531 struct memblock_region *rgn = &type->regions[i]; 532 phys_addr_t rbase = rgn->base; 533 phys_addr_t rend = rbase + rgn->size; 534 535 if (rbase >= end) 536 break; 537 if (rend <= base) 538 continue; 539 /* 540 * @rgn overlaps. If it separates the lower part of new 541 * area, insert that portion. 542 */ 543 if (rbase > base) { 544 nr_new++; 545 if (insert) 546 memblock_insert_region(type, i++, base, 547 rbase - base, nid, 548 flags); 549 } 550 /* area below @rend is dealt with, forget about it */ 551 base = min(rend, end); 552 } 553 554 /* insert the remaining portion */ 555 if (base < end) { 556 nr_new++; 557 if (insert) 558 memblock_insert_region(type, i, base, end - base, 559 nid, flags); 560 } 561 562 /* 563 * If this was the first round, resize array and repeat for actual 564 * insertions; otherwise, merge and return. 565 */ 566 if (!insert) { 567 while (type->cnt + nr_new > type->max) 568 if (memblock_double_array(type, obase, size) < 0) 569 return -ENOMEM; 570 insert = true; 571 goto repeat; 572 } else { 573 memblock_merge_regions(type); 574 return 0; 575 } 576 } 577 578 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 579 int nid) 580 { 581 return memblock_add_range(&memblock.memory, base, size, nid, 0); 582 } 583 584 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 585 { 586 return memblock_add_range(&memblock.memory, base, size, 587 MAX_NUMNODES, 0); 588 } 589 590 /** 591 * memblock_isolate_range - isolate given range into disjoint memblocks 592 * @type: memblock type to isolate range for 593 * @base: base of range to isolate 594 * @size: size of range to isolate 595 * @start_rgn: out parameter for the start of isolated region 596 * @end_rgn: out parameter for the end of isolated region 597 * 598 * Walk @type and ensure that regions don't cross the boundaries defined by 599 * [@base,@base+@size). Crossing regions are split at the boundaries, 600 * which may create at most two more regions. The index of the first 601 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 602 * 603 * RETURNS: 604 * 0 on success, -errno on failure. 605 */ 606 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 607 phys_addr_t base, phys_addr_t size, 608 int *start_rgn, int *end_rgn) 609 { 610 phys_addr_t end = base + memblock_cap_size(base, &size); 611 int i; 612 613 *start_rgn = *end_rgn = 0; 614 615 if (!size) 616 return 0; 617 618 /* we'll create at most two more regions */ 619 while (type->cnt + 2 > type->max) 620 if (memblock_double_array(type, base, size) < 0) 621 return -ENOMEM; 622 623 for (i = 0; i < type->cnt; i++) { 624 struct memblock_region *rgn = &type->regions[i]; 625 phys_addr_t rbase = rgn->base; 626 phys_addr_t rend = rbase + rgn->size; 627 628 if (rbase >= end) 629 break; 630 if (rend <= base) 631 continue; 632 633 if (rbase < base) { 634 /* 635 * @rgn intersects from below. Split and continue 636 * to process the next region - the new top half. 637 */ 638 rgn->base = base; 639 rgn->size -= base - rbase; 640 type->total_size -= base - rbase; 641 memblock_insert_region(type, i, rbase, base - rbase, 642 memblock_get_region_node(rgn), 643 rgn->flags); 644 } else if (rend > end) { 645 /* 646 * @rgn intersects from above. Split and redo the 647 * current region - the new bottom half. 648 */ 649 rgn->base = end; 650 rgn->size -= end - rbase; 651 type->total_size -= end - rbase; 652 memblock_insert_region(type, i--, rbase, end - rbase, 653 memblock_get_region_node(rgn), 654 rgn->flags); 655 } else { 656 /* @rgn is fully contained, record it */ 657 if (!*end_rgn) 658 *start_rgn = i; 659 *end_rgn = i + 1; 660 } 661 } 662 663 return 0; 664 } 665 666 int __init_memblock memblock_remove_range(struct memblock_type *type, 667 phys_addr_t base, phys_addr_t size) 668 { 669 int start_rgn, end_rgn; 670 int i, ret; 671 672 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 673 if (ret) 674 return ret; 675 676 for (i = end_rgn - 1; i >= start_rgn; i--) 677 memblock_remove_region(type, i); 678 return 0; 679 } 680 681 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 682 { 683 return memblock_remove_range(&memblock.memory, base, size); 684 } 685 686 687 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 688 { 689 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", 690 (unsigned long long)base, 691 (unsigned long long)base + size - 1, 692 (void *)_RET_IP_); 693 694 kmemleak_free_part(__va(base), size); 695 return memblock_remove_range(&memblock.reserved, base, size); 696 } 697 698 static int __init_memblock memblock_reserve_region(phys_addr_t base, 699 phys_addr_t size, 700 int nid, 701 unsigned long flags) 702 { 703 struct memblock_type *_rgn = &memblock.reserved; 704 705 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n", 706 (unsigned long long)base, 707 (unsigned long long)base + size - 1, 708 flags, (void *)_RET_IP_); 709 710 return memblock_add_range(_rgn, base, size, nid, flags); 711 } 712 713 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 714 { 715 return memblock_reserve_region(base, size, MAX_NUMNODES, 0); 716 } 717 718 /** 719 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 720 * @base: the base phys addr of the region 721 * @size: the size of the region 722 * 723 * This function isolates region [@base, @base + @size), and mark it with flag 724 * MEMBLOCK_HOTPLUG. 725 * 726 * Return 0 on succees, -errno on failure. 727 */ 728 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 729 { 730 struct memblock_type *type = &memblock.memory; 731 int i, ret, start_rgn, end_rgn; 732 733 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 734 if (ret) 735 return ret; 736 737 for (i = start_rgn; i < end_rgn; i++) 738 memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG); 739 740 memblock_merge_regions(type); 741 return 0; 742 } 743 744 /** 745 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 746 * @base: the base phys addr of the region 747 * @size: the size of the region 748 * 749 * This function isolates region [@base, @base + @size), and clear flag 750 * MEMBLOCK_HOTPLUG for the isolated regions. 751 * 752 * Return 0 on succees, -errno on failure. 753 */ 754 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 755 { 756 struct memblock_type *type = &memblock.memory; 757 int i, ret, start_rgn, end_rgn; 758 759 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 760 if (ret) 761 return ret; 762 763 for (i = start_rgn; i < end_rgn; i++) 764 memblock_clear_region_flags(&type->regions[i], 765 MEMBLOCK_HOTPLUG); 766 767 memblock_merge_regions(type); 768 return 0; 769 } 770 771 /** 772 * __next__mem_range - next function for for_each_free_mem_range() etc. 773 * @idx: pointer to u64 loop variable 774 * @nid: node selector, %NUMA_NO_NODE for all nodes 775 * @type_a: pointer to memblock_type from where the range is taken 776 * @type_b: pointer to memblock_type which excludes memory from being taken 777 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 778 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 779 * @out_nid: ptr to int for nid of the range, can be %NULL 780 * 781 * Find the first area from *@idx which matches @nid, fill the out 782 * parameters, and update *@idx for the next iteration. The lower 32bit of 783 * *@idx contains index into type_a and the upper 32bit indexes the 784 * areas before each region in type_b. For example, if type_b regions 785 * look like the following, 786 * 787 * 0:[0-16), 1:[32-48), 2:[128-130) 788 * 789 * The upper 32bit indexes the following regions. 790 * 791 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 792 * 793 * As both region arrays are sorted, the function advances the two indices 794 * in lockstep and returns each intersection. 795 */ 796 void __init_memblock __next_mem_range(u64 *idx, int nid, 797 struct memblock_type *type_a, 798 struct memblock_type *type_b, 799 phys_addr_t *out_start, 800 phys_addr_t *out_end, int *out_nid) 801 { 802 int idx_a = *idx & 0xffffffff; 803 int idx_b = *idx >> 32; 804 805 if (WARN_ONCE(nid == MAX_NUMNODES, 806 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 807 nid = NUMA_NO_NODE; 808 809 for (; idx_a < type_a->cnt; idx_a++) { 810 struct memblock_region *m = &type_a->regions[idx_a]; 811 812 phys_addr_t m_start = m->base; 813 phys_addr_t m_end = m->base + m->size; 814 int m_nid = memblock_get_region_node(m); 815 816 /* only memory regions are associated with nodes, check it */ 817 if (nid != NUMA_NO_NODE && nid != m_nid) 818 continue; 819 820 if (!type_b) { 821 if (out_start) 822 *out_start = m_start; 823 if (out_end) 824 *out_end = m_end; 825 if (out_nid) 826 *out_nid = m_nid; 827 idx_a++; 828 *idx = (u32)idx_a | (u64)idx_b << 32; 829 return; 830 } 831 832 /* scan areas before each reservation */ 833 for (; idx_b < type_b->cnt + 1; idx_b++) { 834 struct memblock_region *r; 835 phys_addr_t r_start; 836 phys_addr_t r_end; 837 838 r = &type_b->regions[idx_b]; 839 r_start = idx_b ? r[-1].base + r[-1].size : 0; 840 r_end = idx_b < type_b->cnt ? 841 r->base : ULLONG_MAX; 842 843 /* 844 * if idx_b advanced past idx_a, 845 * break out to advance idx_a 846 */ 847 if (r_start >= m_end) 848 break; 849 /* if the two regions intersect, we're done */ 850 if (m_start < r_end) { 851 if (out_start) 852 *out_start = 853 max(m_start, r_start); 854 if (out_end) 855 *out_end = min(m_end, r_end); 856 if (out_nid) 857 *out_nid = m_nid; 858 /* 859 * The region which ends first is 860 * advanced for the next iteration. 861 */ 862 if (m_end <= r_end) 863 idx_a++; 864 else 865 idx_b++; 866 *idx = (u32)idx_a | (u64)idx_b << 32; 867 return; 868 } 869 } 870 } 871 872 /* signal end of iteration */ 873 *idx = ULLONG_MAX; 874 } 875 876 /** 877 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 878 * 879 * Finds the next range from type_a which is not marked as unsuitable 880 * in type_b. 881 * 882 * @idx: pointer to u64 loop variable 883 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes 884 * @type_a: pointer to memblock_type from where the range is taken 885 * @type_b: pointer to memblock_type which excludes memory from being taken 886 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 887 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 888 * @out_nid: ptr to int for nid of the range, can be %NULL 889 * 890 * Reverse of __next_mem_range(). 891 */ 892 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 893 struct memblock_type *type_a, 894 struct memblock_type *type_b, 895 phys_addr_t *out_start, 896 phys_addr_t *out_end, int *out_nid) 897 { 898 int idx_a = *idx & 0xffffffff; 899 int idx_b = *idx >> 32; 900 901 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 902 nid = NUMA_NO_NODE; 903 904 if (*idx == (u64)ULLONG_MAX) { 905 idx_a = type_a->cnt - 1; 906 idx_b = type_b->cnt; 907 } 908 909 for (; idx_a >= 0; idx_a--) { 910 struct memblock_region *m = &type_a->regions[idx_a]; 911 912 phys_addr_t m_start = m->base; 913 phys_addr_t m_end = m->base + m->size; 914 int m_nid = memblock_get_region_node(m); 915 916 /* only memory regions are associated with nodes, check it */ 917 if (nid != NUMA_NO_NODE && nid != m_nid) 918 continue; 919 920 /* skip hotpluggable memory regions if needed */ 921 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 922 continue; 923 924 if (!type_b) { 925 if (out_start) 926 *out_start = m_start; 927 if (out_end) 928 *out_end = m_end; 929 if (out_nid) 930 *out_nid = m_nid; 931 idx_a++; 932 *idx = (u32)idx_a | (u64)idx_b << 32; 933 return; 934 } 935 936 /* scan areas before each reservation */ 937 for (; idx_b >= 0; idx_b--) { 938 struct memblock_region *r; 939 phys_addr_t r_start; 940 phys_addr_t r_end; 941 942 r = &type_b->regions[idx_b]; 943 r_start = idx_b ? r[-1].base + r[-1].size : 0; 944 r_end = idx_b < type_b->cnt ? 945 r->base : ULLONG_MAX; 946 /* 947 * if idx_b advanced past idx_a, 948 * break out to advance idx_a 949 */ 950 951 if (r_end <= m_start) 952 break; 953 /* if the two regions intersect, we're done */ 954 if (m_end > r_start) { 955 if (out_start) 956 *out_start = max(m_start, r_start); 957 if (out_end) 958 *out_end = min(m_end, r_end); 959 if (out_nid) 960 *out_nid = m_nid; 961 if (m_start >= r_start) 962 idx_a--; 963 else 964 idx_b--; 965 *idx = (u32)idx_a | (u64)idx_b << 32; 966 return; 967 } 968 } 969 } 970 /* signal end of iteration */ 971 *idx = ULLONG_MAX; 972 } 973 974 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 975 /* 976 * Common iterator interface used to define for_each_mem_range(). 977 */ 978 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 979 unsigned long *out_start_pfn, 980 unsigned long *out_end_pfn, int *out_nid) 981 { 982 struct memblock_type *type = &memblock.memory; 983 struct memblock_region *r; 984 985 while (++*idx < type->cnt) { 986 r = &type->regions[*idx]; 987 988 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 989 continue; 990 if (nid == MAX_NUMNODES || nid == r->nid) 991 break; 992 } 993 if (*idx >= type->cnt) { 994 *idx = -1; 995 return; 996 } 997 998 if (out_start_pfn) 999 *out_start_pfn = PFN_UP(r->base); 1000 if (out_end_pfn) 1001 *out_end_pfn = PFN_DOWN(r->base + r->size); 1002 if (out_nid) 1003 *out_nid = r->nid; 1004 } 1005 1006 /** 1007 * memblock_set_node - set node ID on memblock regions 1008 * @base: base of area to set node ID for 1009 * @size: size of area to set node ID for 1010 * @type: memblock type to set node ID for 1011 * @nid: node ID to set 1012 * 1013 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid. 1014 * Regions which cross the area boundaries are split as necessary. 1015 * 1016 * RETURNS: 1017 * 0 on success, -errno on failure. 1018 */ 1019 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1020 struct memblock_type *type, int nid) 1021 { 1022 int start_rgn, end_rgn; 1023 int i, ret; 1024 1025 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1026 if (ret) 1027 return ret; 1028 1029 for (i = start_rgn; i < end_rgn; i++) 1030 memblock_set_region_node(&type->regions[i], nid); 1031 1032 memblock_merge_regions(type); 1033 return 0; 1034 } 1035 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1036 1037 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1038 phys_addr_t align, phys_addr_t start, 1039 phys_addr_t end, int nid) 1040 { 1041 phys_addr_t found; 1042 1043 if (!align) 1044 align = SMP_CACHE_BYTES; 1045 1046 found = memblock_find_in_range_node(size, align, start, end, nid); 1047 if (found && !memblock_reserve(found, size)) { 1048 /* 1049 * The min_count is set to 0 so that memblock allocations are 1050 * never reported as leaks. 1051 */ 1052 kmemleak_alloc(__va(found), size, 0, 0); 1053 return found; 1054 } 1055 return 0; 1056 } 1057 1058 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align, 1059 phys_addr_t start, phys_addr_t end) 1060 { 1061 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE); 1062 } 1063 1064 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 1065 phys_addr_t align, phys_addr_t max_addr, 1066 int nid) 1067 { 1068 return memblock_alloc_range_nid(size, align, 0, max_addr, nid); 1069 } 1070 1071 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 1072 { 1073 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 1074 } 1075 1076 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1077 { 1078 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE); 1079 } 1080 1081 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1082 { 1083 phys_addr_t alloc; 1084 1085 alloc = __memblock_alloc_base(size, align, max_addr); 1086 1087 if (alloc == 0) 1088 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", 1089 (unsigned long long) size, (unsigned long long) max_addr); 1090 1091 return alloc; 1092 } 1093 1094 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 1095 { 1096 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1097 } 1098 1099 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1100 { 1101 phys_addr_t res = memblock_alloc_nid(size, align, nid); 1102 1103 if (res) 1104 return res; 1105 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1106 } 1107 1108 /** 1109 * memblock_virt_alloc_internal - allocate boot memory block 1110 * @size: size of memory block to be allocated in bytes 1111 * @align: alignment of the region and block's size 1112 * @min_addr: the lower bound of the memory region to allocate (phys address) 1113 * @max_addr: the upper bound of the memory region to allocate (phys address) 1114 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1115 * 1116 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1117 * will fall back to memory below @min_addr. Also, allocation may fall back 1118 * to any node in the system if the specified node can not 1119 * hold the requested memory. 1120 * 1121 * The allocation is performed from memory region limited by 1122 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE. 1123 * 1124 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0. 1125 * 1126 * The phys address of allocated boot memory block is converted to virtual and 1127 * allocated memory is reset to 0. 1128 * 1129 * In addition, function sets the min_count to 0 using kmemleak_alloc for 1130 * allocated boot memory block, so that it is never reported as leaks. 1131 * 1132 * RETURNS: 1133 * Virtual address of allocated memory block on success, NULL on failure. 1134 */ 1135 static void * __init memblock_virt_alloc_internal( 1136 phys_addr_t size, phys_addr_t align, 1137 phys_addr_t min_addr, phys_addr_t max_addr, 1138 int nid) 1139 { 1140 phys_addr_t alloc; 1141 void *ptr; 1142 1143 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1144 nid = NUMA_NO_NODE; 1145 1146 /* 1147 * Detect any accidental use of these APIs after slab is ready, as at 1148 * this moment memblock may be deinitialized already and its 1149 * internal data may be destroyed (after execution of free_all_bootmem) 1150 */ 1151 if (WARN_ON_ONCE(slab_is_available())) 1152 return kzalloc_node(size, GFP_NOWAIT, nid); 1153 1154 if (!align) 1155 align = SMP_CACHE_BYTES; 1156 1157 if (max_addr > memblock.current_limit) 1158 max_addr = memblock.current_limit; 1159 1160 again: 1161 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr, 1162 nid); 1163 if (alloc) 1164 goto done; 1165 1166 if (nid != NUMA_NO_NODE) { 1167 alloc = memblock_find_in_range_node(size, align, min_addr, 1168 max_addr, NUMA_NO_NODE); 1169 if (alloc) 1170 goto done; 1171 } 1172 1173 if (min_addr) { 1174 min_addr = 0; 1175 goto again; 1176 } else { 1177 goto error; 1178 } 1179 1180 done: 1181 memblock_reserve(alloc, size); 1182 ptr = phys_to_virt(alloc); 1183 memset(ptr, 0, size); 1184 1185 /* 1186 * The min_count is set to 0 so that bootmem allocated blocks 1187 * are never reported as leaks. This is because many of these blocks 1188 * are only referred via the physical address which is not 1189 * looked up by kmemleak. 1190 */ 1191 kmemleak_alloc(ptr, size, 0, 0); 1192 1193 return ptr; 1194 1195 error: 1196 return NULL; 1197 } 1198 1199 /** 1200 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block 1201 * @size: size of memory block to be allocated in bytes 1202 * @align: alignment of the region and block's size 1203 * @min_addr: the lower bound of the memory region from where the allocation 1204 * is preferred (phys address) 1205 * @max_addr: the upper bound of the memory region from where the allocation 1206 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1207 * allocate only from memory limited by memblock.current_limit value 1208 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1209 * 1210 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides 1211 * additional debug information (including caller info), if enabled. 1212 * 1213 * RETURNS: 1214 * Virtual address of allocated memory block on success, NULL on failure. 1215 */ 1216 void * __init memblock_virt_alloc_try_nid_nopanic( 1217 phys_addr_t size, phys_addr_t align, 1218 phys_addr_t min_addr, phys_addr_t max_addr, 1219 int nid) 1220 { 1221 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1222 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1223 (u64)max_addr, (void *)_RET_IP_); 1224 return memblock_virt_alloc_internal(size, align, min_addr, 1225 max_addr, nid); 1226 } 1227 1228 /** 1229 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking 1230 * @size: size of memory block to be allocated in bytes 1231 * @align: alignment of the region and block's size 1232 * @min_addr: the lower bound of the memory region from where the allocation 1233 * is preferred (phys address) 1234 * @max_addr: the upper bound of the memory region from where the allocation 1235 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1236 * allocate only from memory limited by memblock.current_limit value 1237 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1238 * 1239 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic() 1240 * which provides debug information (including caller info), if enabled, 1241 * and panics if the request can not be satisfied. 1242 * 1243 * RETURNS: 1244 * Virtual address of allocated memory block on success, NULL on failure. 1245 */ 1246 void * __init memblock_virt_alloc_try_nid( 1247 phys_addr_t size, phys_addr_t align, 1248 phys_addr_t min_addr, phys_addr_t max_addr, 1249 int nid) 1250 { 1251 void *ptr; 1252 1253 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1254 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1255 (u64)max_addr, (void *)_RET_IP_); 1256 ptr = memblock_virt_alloc_internal(size, align, 1257 min_addr, max_addr, nid); 1258 if (ptr) 1259 return ptr; 1260 1261 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n", 1262 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1263 (u64)max_addr); 1264 return NULL; 1265 } 1266 1267 /** 1268 * __memblock_free_early - free boot memory block 1269 * @base: phys starting address of the boot memory block 1270 * @size: size of the boot memory block in bytes 1271 * 1272 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API. 1273 * The freeing memory will not be released to the buddy allocator. 1274 */ 1275 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size) 1276 { 1277 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1278 __func__, (u64)base, (u64)base + size - 1, 1279 (void *)_RET_IP_); 1280 kmemleak_free_part(__va(base), size); 1281 memblock_remove_range(&memblock.reserved, base, size); 1282 } 1283 1284 /* 1285 * __memblock_free_late - free bootmem block pages directly to buddy allocator 1286 * @addr: phys starting address of the boot memory block 1287 * @size: size of the boot memory block in bytes 1288 * 1289 * This is only useful when the bootmem allocator has already been torn 1290 * down, but we are still initializing the system. Pages are released directly 1291 * to the buddy allocator, no bootmem metadata is updated because it is gone. 1292 */ 1293 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1294 { 1295 u64 cursor, end; 1296 1297 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1298 __func__, (u64)base, (u64)base + size - 1, 1299 (void *)_RET_IP_); 1300 kmemleak_free_part(__va(base), size); 1301 cursor = PFN_UP(base); 1302 end = PFN_DOWN(base + size); 1303 1304 for (; cursor < end; cursor++) { 1305 __free_pages_bootmem(pfn_to_page(cursor), 0); 1306 totalram_pages++; 1307 } 1308 } 1309 1310 /* 1311 * Remaining API functions 1312 */ 1313 1314 phys_addr_t __init memblock_phys_mem_size(void) 1315 { 1316 return memblock.memory.total_size; 1317 } 1318 1319 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) 1320 { 1321 unsigned long pages = 0; 1322 struct memblock_region *r; 1323 unsigned long start_pfn, end_pfn; 1324 1325 for_each_memblock(memory, r) { 1326 start_pfn = memblock_region_memory_base_pfn(r); 1327 end_pfn = memblock_region_memory_end_pfn(r); 1328 start_pfn = min_t(unsigned long, start_pfn, limit_pfn); 1329 end_pfn = min_t(unsigned long, end_pfn, limit_pfn); 1330 pages += end_pfn - start_pfn; 1331 } 1332 1333 return PFN_PHYS(pages); 1334 } 1335 1336 /* lowest address */ 1337 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1338 { 1339 return memblock.memory.regions[0].base; 1340 } 1341 1342 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1343 { 1344 int idx = memblock.memory.cnt - 1; 1345 1346 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1347 } 1348 1349 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1350 { 1351 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 1352 struct memblock_region *r; 1353 1354 if (!limit) 1355 return; 1356 1357 /* find out max address */ 1358 for_each_memblock(memory, r) { 1359 if (limit <= r->size) { 1360 max_addr = r->base + limit; 1361 break; 1362 } 1363 limit -= r->size; 1364 } 1365 1366 /* truncate both memory and reserved regions */ 1367 memblock_remove_range(&memblock.memory, max_addr, 1368 (phys_addr_t)ULLONG_MAX); 1369 memblock_remove_range(&memblock.reserved, max_addr, 1370 (phys_addr_t)ULLONG_MAX); 1371 } 1372 1373 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1374 { 1375 unsigned int left = 0, right = type->cnt; 1376 1377 do { 1378 unsigned int mid = (right + left) / 2; 1379 1380 if (addr < type->regions[mid].base) 1381 right = mid; 1382 else if (addr >= (type->regions[mid].base + 1383 type->regions[mid].size)) 1384 left = mid + 1; 1385 else 1386 return mid; 1387 } while (left < right); 1388 return -1; 1389 } 1390 1391 int __init memblock_is_reserved(phys_addr_t addr) 1392 { 1393 return memblock_search(&memblock.reserved, addr) != -1; 1394 } 1395 1396 int __init_memblock memblock_is_memory(phys_addr_t addr) 1397 { 1398 return memblock_search(&memblock.memory, addr) != -1; 1399 } 1400 1401 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1402 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1403 unsigned long *start_pfn, unsigned long *end_pfn) 1404 { 1405 struct memblock_type *type = &memblock.memory; 1406 int mid = memblock_search(type, PFN_PHYS(pfn)); 1407 1408 if (mid == -1) 1409 return -1; 1410 1411 *start_pfn = PFN_DOWN(type->regions[mid].base); 1412 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1413 1414 return type->regions[mid].nid; 1415 } 1416 #endif 1417 1418 /** 1419 * memblock_is_region_memory - check if a region is a subset of memory 1420 * @base: base of region to check 1421 * @size: size of region to check 1422 * 1423 * Check if the region [@base, @base+@size) is a subset of a memory block. 1424 * 1425 * RETURNS: 1426 * 0 if false, non-zero if true 1427 */ 1428 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1429 { 1430 int idx = memblock_search(&memblock.memory, base); 1431 phys_addr_t end = base + memblock_cap_size(base, &size); 1432 1433 if (idx == -1) 1434 return 0; 1435 return memblock.memory.regions[idx].base <= base && 1436 (memblock.memory.regions[idx].base + 1437 memblock.memory.regions[idx].size) >= end; 1438 } 1439 1440 /** 1441 * memblock_is_region_reserved - check if a region intersects reserved memory 1442 * @base: base of region to check 1443 * @size: size of region to check 1444 * 1445 * Check if the region [@base, @base+@size) intersects a reserved memory block. 1446 * 1447 * RETURNS: 1448 * 0 if false, non-zero if true 1449 */ 1450 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1451 { 1452 memblock_cap_size(base, &size); 1453 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; 1454 } 1455 1456 void __init_memblock memblock_trim_memory(phys_addr_t align) 1457 { 1458 phys_addr_t start, end, orig_start, orig_end; 1459 struct memblock_region *r; 1460 1461 for_each_memblock(memory, r) { 1462 orig_start = r->base; 1463 orig_end = r->base + r->size; 1464 start = round_up(orig_start, align); 1465 end = round_down(orig_end, align); 1466 1467 if (start == orig_start && end == orig_end) 1468 continue; 1469 1470 if (start < end) { 1471 r->base = start; 1472 r->size = end - start; 1473 } else { 1474 memblock_remove_region(&memblock.memory, 1475 r - memblock.memory.regions); 1476 r--; 1477 } 1478 } 1479 } 1480 1481 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1482 { 1483 memblock.current_limit = limit; 1484 } 1485 1486 phys_addr_t __init_memblock memblock_get_current_limit(void) 1487 { 1488 return memblock.current_limit; 1489 } 1490 1491 static void __init_memblock memblock_dump(struct memblock_type *type, char *name) 1492 { 1493 unsigned long long base, size; 1494 unsigned long flags; 1495 int i; 1496 1497 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); 1498 1499 for (i = 0; i < type->cnt; i++) { 1500 struct memblock_region *rgn = &type->regions[i]; 1501 char nid_buf[32] = ""; 1502 1503 base = rgn->base; 1504 size = rgn->size; 1505 flags = rgn->flags; 1506 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1507 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1508 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1509 memblock_get_region_node(rgn)); 1510 #endif 1511 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n", 1512 name, i, base, base + size - 1, size, nid_buf, flags); 1513 } 1514 } 1515 1516 void __init_memblock __memblock_dump_all(void) 1517 { 1518 pr_info("MEMBLOCK configuration:\n"); 1519 pr_info(" memory size = %#llx reserved size = %#llx\n", 1520 (unsigned long long)memblock.memory.total_size, 1521 (unsigned long long)memblock.reserved.total_size); 1522 1523 memblock_dump(&memblock.memory, "memory"); 1524 memblock_dump(&memblock.reserved, "reserved"); 1525 } 1526 1527 void __init memblock_allow_resize(void) 1528 { 1529 memblock_can_resize = 1; 1530 } 1531 1532 static int __init early_memblock(char *p) 1533 { 1534 if (p && strstr(p, "debug")) 1535 memblock_debug = 1; 1536 return 0; 1537 } 1538 early_param("memblock", early_memblock); 1539 1540 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 1541 1542 static int memblock_debug_show(struct seq_file *m, void *private) 1543 { 1544 struct memblock_type *type = m->private; 1545 struct memblock_region *reg; 1546 int i; 1547 1548 for (i = 0; i < type->cnt; i++) { 1549 reg = &type->regions[i]; 1550 seq_printf(m, "%4d: ", i); 1551 if (sizeof(phys_addr_t) == 4) 1552 seq_printf(m, "0x%08lx..0x%08lx\n", 1553 (unsigned long)reg->base, 1554 (unsigned long)(reg->base + reg->size - 1)); 1555 else 1556 seq_printf(m, "0x%016llx..0x%016llx\n", 1557 (unsigned long long)reg->base, 1558 (unsigned long long)(reg->base + reg->size - 1)); 1559 1560 } 1561 return 0; 1562 } 1563 1564 static int memblock_debug_open(struct inode *inode, struct file *file) 1565 { 1566 return single_open(file, memblock_debug_show, inode->i_private); 1567 } 1568 1569 static const struct file_operations memblock_debug_fops = { 1570 .open = memblock_debug_open, 1571 .read = seq_read, 1572 .llseek = seq_lseek, 1573 .release = single_release, 1574 }; 1575 1576 static int __init memblock_init_debugfs(void) 1577 { 1578 struct dentry *root = debugfs_create_dir("memblock", NULL); 1579 if (!root) 1580 return -ENXIO; 1581 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 1582 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 1583 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1584 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops); 1585 #endif 1586 1587 return 0; 1588 } 1589 __initcall(memblock_init_debugfs); 1590 1591 #endif /* CONFIG_DEBUG_FS */ 1592