1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for maintaining information about logical memory blocks. 4 * 5 * Peter Bergner, IBM Corp. June 2001. 6 * Copyright (C) 2001 Peter Bergner. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/init.h> 12 #include <linux/bitops.h> 13 #include <linux/poison.h> 14 #include <linux/pfn.h> 15 #include <linux/debugfs.h> 16 #include <linux/kmemleak.h> 17 #include <linux/seq_file.h> 18 #include <linux/memblock.h> 19 20 #include <asm/sections.h> 21 #include <linux/io.h> 22 23 #include "internal.h" 24 25 #define INIT_MEMBLOCK_REGIONS 128 26 #define INIT_PHYSMEM_REGIONS 4 27 28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 30 #endif 31 32 /** 33 * DOC: memblock overview 34 * 35 * Memblock is a method of managing memory regions during the early 36 * boot period when the usual kernel memory allocators are not up and 37 * running. 38 * 39 * Memblock views the system memory as collections of contiguous 40 * regions. There are several types of these collections: 41 * 42 * * ``memory`` - describes the physical memory available to the 43 * kernel; this may differ from the actual physical memory installed 44 * in the system, for instance when the memory is restricted with 45 * ``mem=`` command line parameter 46 * * ``reserved`` - describes the regions that were allocated 47 * * ``physmem`` - describes the actual physical memory available during 48 * boot regardless of the possible restrictions and memory hot(un)plug; 49 * the ``physmem`` type is only available on some architectures. 50 * 51 * Each region is represented by struct memblock_region that 52 * defines the region extents, its attributes and NUMA node id on NUMA 53 * systems. Every memory type is described by the struct memblock_type 54 * which contains an array of memory regions along with 55 * the allocator metadata. The "memory" and "reserved" types are nicely 56 * wrapped with struct memblock. This structure is statically 57 * initialized at build time. The region arrays are initially sized to 58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS 59 * for "reserved". The region array for "physmem" is initially sized to 60 * %INIT_PHYSMEM_REGIONS. 61 * The memblock_allow_resize() enables automatic resizing of the region 62 * arrays during addition of new regions. This feature should be used 63 * with care so that memory allocated for the region array will not 64 * overlap with areas that should be reserved, for example initrd. 65 * 66 * The early architecture setup should tell memblock what the physical 67 * memory layout is by using memblock_add() or memblock_add_node() 68 * functions. The first function does not assign the region to a NUMA 69 * node and it is appropriate for UMA systems. Yet, it is possible to 70 * use it on NUMA systems as well and assign the region to a NUMA node 71 * later in the setup process using memblock_set_node(). The 72 * memblock_add_node() performs such an assignment directly. 73 * 74 * Once memblock is setup the memory can be allocated using one of the 75 * API variants: 76 * 77 * * memblock_phys_alloc*() - these functions return the **physical** 78 * address of the allocated memory 79 * * memblock_alloc*() - these functions return the **virtual** address 80 * of the allocated memory. 81 * 82 * Note, that both API variants use implicit assumptions about allowed 83 * memory ranges and the fallback methods. Consult the documentation 84 * of memblock_alloc_internal() and memblock_alloc_range_nid() 85 * functions for more elaborate description. 86 * 87 * As the system boot progresses, the architecture specific mem_init() 88 * function frees all the memory to the buddy page allocator. 89 * 90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 91 * memblock data structures (except "physmem") will be discarded after the 92 * system initialization completes. 93 */ 94 95 #ifndef CONFIG_NUMA 96 struct pglist_data __refdata contig_page_data; 97 EXPORT_SYMBOL(contig_page_data); 98 #endif 99 100 unsigned long max_low_pfn; 101 unsigned long min_low_pfn; 102 unsigned long max_pfn; 103 unsigned long long max_possible_pfn; 104 105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; 109 #endif 110 111 struct memblock memblock __initdata_memblock = { 112 .memory.regions = memblock_memory_init_regions, 113 .memory.cnt = 1, /* empty dummy entry */ 114 .memory.max = INIT_MEMBLOCK_REGIONS, 115 .memory.name = "memory", 116 117 .reserved.regions = memblock_reserved_init_regions, 118 .reserved.cnt = 1, /* empty dummy entry */ 119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 120 .reserved.name = "reserved", 121 122 .bottom_up = false, 123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 124 }; 125 126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 127 struct memblock_type physmem = { 128 .regions = memblock_physmem_init_regions, 129 .cnt = 1, /* empty dummy entry */ 130 .max = INIT_PHYSMEM_REGIONS, 131 .name = "physmem", 132 }; 133 #endif 134 135 /* 136 * keep a pointer to &memblock.memory in the text section to use it in 137 * __next_mem_range() and its helpers. 138 * For architectures that do not keep memblock data after init, this 139 * pointer will be reset to NULL at memblock_discard() 140 */ 141 static __refdata struct memblock_type *memblock_memory = &memblock.memory; 142 143 #define for_each_memblock_type(i, memblock_type, rgn) \ 144 for (i = 0, rgn = &memblock_type->regions[0]; \ 145 i < memblock_type->cnt; \ 146 i++, rgn = &memblock_type->regions[i]) 147 148 #define memblock_dbg(fmt, ...) \ 149 do { \ 150 if (memblock_debug) \ 151 pr_info(fmt, ##__VA_ARGS__); \ 152 } while (0) 153 154 static int memblock_debug __initdata_memblock; 155 static bool system_has_some_mirror __initdata_memblock = false; 156 static int memblock_can_resize __initdata_memblock; 157 static int memblock_memory_in_slab __initdata_memblock = 0; 158 static int memblock_reserved_in_slab __initdata_memblock = 0; 159 160 static enum memblock_flags __init_memblock choose_memblock_flags(void) 161 { 162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 163 } 164 165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 167 { 168 return *size = min(*size, PHYS_ADDR_MAX - base); 169 } 170 171 /* 172 * Address comparison utilities 173 */ 174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 175 phys_addr_t base2, phys_addr_t size2) 176 { 177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 178 } 179 180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 181 phys_addr_t base, phys_addr_t size) 182 { 183 unsigned long i; 184 185 memblock_cap_size(base, &size); 186 187 for (i = 0; i < type->cnt; i++) 188 if (memblock_addrs_overlap(base, size, type->regions[i].base, 189 type->regions[i].size)) 190 break; 191 return i < type->cnt; 192 } 193 194 /** 195 * __memblock_find_range_bottom_up - find free area utility in bottom-up 196 * @start: start of candidate range 197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 198 * %MEMBLOCK_ALLOC_ACCESSIBLE 199 * @size: size of free area to find 200 * @align: alignment of free area to find 201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 202 * @flags: pick from blocks based on memory attributes 203 * 204 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 205 * 206 * Return: 207 * Found address on success, 0 on failure. 208 */ 209 static phys_addr_t __init_memblock 210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 211 phys_addr_t size, phys_addr_t align, int nid, 212 enum memblock_flags flags) 213 { 214 phys_addr_t this_start, this_end, cand; 215 u64 i; 216 217 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 218 this_start = clamp(this_start, start, end); 219 this_end = clamp(this_end, start, end); 220 221 cand = round_up(this_start, align); 222 if (cand < this_end && this_end - cand >= size) 223 return cand; 224 } 225 226 return 0; 227 } 228 229 /** 230 * __memblock_find_range_top_down - find free area utility, in top-down 231 * @start: start of candidate range 232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 233 * %MEMBLOCK_ALLOC_ACCESSIBLE 234 * @size: size of free area to find 235 * @align: alignment of free area to find 236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 237 * @flags: pick from blocks based on memory attributes 238 * 239 * Utility called from memblock_find_in_range_node(), find free area top-down. 240 * 241 * Return: 242 * Found address on success, 0 on failure. 243 */ 244 static phys_addr_t __init_memblock 245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 246 phys_addr_t size, phys_addr_t align, int nid, 247 enum memblock_flags flags) 248 { 249 phys_addr_t this_start, this_end, cand; 250 u64 i; 251 252 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 253 NULL) { 254 this_start = clamp(this_start, start, end); 255 this_end = clamp(this_end, start, end); 256 257 if (this_end < size) 258 continue; 259 260 cand = round_down(this_end - size, align); 261 if (cand >= this_start) 262 return cand; 263 } 264 265 return 0; 266 } 267 268 /** 269 * memblock_find_in_range_node - find free area in given range and node 270 * @size: size of free area to find 271 * @align: alignment of free area to find 272 * @start: start of candidate range 273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 274 * %MEMBLOCK_ALLOC_ACCESSIBLE 275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 276 * @flags: pick from blocks based on memory attributes 277 * 278 * Find @size free area aligned to @align in the specified range and node. 279 * 280 * Return: 281 * Found address on success, 0 on failure. 282 */ 283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 284 phys_addr_t align, phys_addr_t start, 285 phys_addr_t end, int nid, 286 enum memblock_flags flags) 287 { 288 /* pump up @end */ 289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 290 end == MEMBLOCK_ALLOC_NOLEAKTRACE) 291 end = memblock.current_limit; 292 293 /* avoid allocating the first page */ 294 start = max_t(phys_addr_t, start, PAGE_SIZE); 295 end = max(start, end); 296 297 if (memblock_bottom_up()) 298 return __memblock_find_range_bottom_up(start, end, size, align, 299 nid, flags); 300 else 301 return __memblock_find_range_top_down(start, end, size, align, 302 nid, flags); 303 } 304 305 /** 306 * memblock_find_in_range - find free area in given range 307 * @start: start of candidate range 308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 309 * %MEMBLOCK_ALLOC_ACCESSIBLE 310 * @size: size of free area to find 311 * @align: alignment of free area to find 312 * 313 * Find @size free area aligned to @align in the specified range. 314 * 315 * Return: 316 * Found address on success, 0 on failure. 317 */ 318 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 319 phys_addr_t end, phys_addr_t size, 320 phys_addr_t align) 321 { 322 phys_addr_t ret; 323 enum memblock_flags flags = choose_memblock_flags(); 324 325 again: 326 ret = memblock_find_in_range_node(size, align, start, end, 327 NUMA_NO_NODE, flags); 328 329 if (!ret && (flags & MEMBLOCK_MIRROR)) { 330 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 331 &size); 332 flags &= ~MEMBLOCK_MIRROR; 333 goto again; 334 } 335 336 return ret; 337 } 338 339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 340 { 341 type->total_size -= type->regions[r].size; 342 memmove(&type->regions[r], &type->regions[r + 1], 343 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 344 type->cnt--; 345 346 /* Special case for empty arrays */ 347 if (type->cnt == 0) { 348 WARN_ON(type->total_size != 0); 349 type->cnt = 1; 350 type->regions[0].base = 0; 351 type->regions[0].size = 0; 352 type->regions[0].flags = 0; 353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 354 } 355 } 356 357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 358 /** 359 * memblock_discard - discard memory and reserved arrays if they were allocated 360 */ 361 void __init memblock_discard(void) 362 { 363 phys_addr_t addr, size; 364 365 if (memblock.reserved.regions != memblock_reserved_init_regions) { 366 addr = __pa(memblock.reserved.regions); 367 size = PAGE_ALIGN(sizeof(struct memblock_region) * 368 memblock.reserved.max); 369 memblock_free_late(addr, size); 370 } 371 372 if (memblock.memory.regions != memblock_memory_init_regions) { 373 addr = __pa(memblock.memory.regions); 374 size = PAGE_ALIGN(sizeof(struct memblock_region) * 375 memblock.memory.max); 376 memblock_free_late(addr, size); 377 } 378 379 memblock_memory = NULL; 380 } 381 #endif 382 383 /** 384 * memblock_double_array - double the size of the memblock regions array 385 * @type: memblock type of the regions array being doubled 386 * @new_area_start: starting address of memory range to avoid overlap with 387 * @new_area_size: size of memory range to avoid overlap with 388 * 389 * Double the size of the @type regions array. If memblock is being used to 390 * allocate memory for a new reserved regions array and there is a previously 391 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 392 * waiting to be reserved, ensure the memory used by the new array does 393 * not overlap. 394 * 395 * Return: 396 * 0 on success, -1 on failure. 397 */ 398 static int __init_memblock memblock_double_array(struct memblock_type *type, 399 phys_addr_t new_area_start, 400 phys_addr_t new_area_size) 401 { 402 struct memblock_region *new_array, *old_array; 403 phys_addr_t old_alloc_size, new_alloc_size; 404 phys_addr_t old_size, new_size, addr, new_end; 405 int use_slab = slab_is_available(); 406 int *in_slab; 407 408 /* We don't allow resizing until we know about the reserved regions 409 * of memory that aren't suitable for allocation 410 */ 411 if (!memblock_can_resize) 412 return -1; 413 414 /* Calculate new doubled size */ 415 old_size = type->max * sizeof(struct memblock_region); 416 new_size = old_size << 1; 417 /* 418 * We need to allocated new one align to PAGE_SIZE, 419 * so we can free them completely later. 420 */ 421 old_alloc_size = PAGE_ALIGN(old_size); 422 new_alloc_size = PAGE_ALIGN(new_size); 423 424 /* Retrieve the slab flag */ 425 if (type == &memblock.memory) 426 in_slab = &memblock_memory_in_slab; 427 else 428 in_slab = &memblock_reserved_in_slab; 429 430 /* Try to find some space for it */ 431 if (use_slab) { 432 new_array = kmalloc(new_size, GFP_KERNEL); 433 addr = new_array ? __pa(new_array) : 0; 434 } else { 435 /* only exclude range when trying to double reserved.regions */ 436 if (type != &memblock.reserved) 437 new_area_start = new_area_size = 0; 438 439 addr = memblock_find_in_range(new_area_start + new_area_size, 440 memblock.current_limit, 441 new_alloc_size, PAGE_SIZE); 442 if (!addr && new_area_size) 443 addr = memblock_find_in_range(0, 444 min(new_area_start, memblock.current_limit), 445 new_alloc_size, PAGE_SIZE); 446 447 new_array = addr ? __va(addr) : NULL; 448 } 449 if (!addr) { 450 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 451 type->name, type->max, type->max * 2); 452 return -1; 453 } 454 455 new_end = addr + new_size - 1; 456 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 457 type->name, type->max * 2, &addr, &new_end); 458 459 /* 460 * Found space, we now need to move the array over before we add the 461 * reserved region since it may be our reserved array itself that is 462 * full. 463 */ 464 memcpy(new_array, type->regions, old_size); 465 memset(new_array + type->max, 0, old_size); 466 old_array = type->regions; 467 type->regions = new_array; 468 type->max <<= 1; 469 470 /* Free old array. We needn't free it if the array is the static one */ 471 if (*in_slab) 472 kfree(old_array); 473 else if (old_array != memblock_memory_init_regions && 474 old_array != memblock_reserved_init_regions) 475 memblock_free(old_array, old_alloc_size); 476 477 /* 478 * Reserve the new array if that comes from the memblock. Otherwise, we 479 * needn't do it 480 */ 481 if (!use_slab) 482 BUG_ON(memblock_reserve(addr, new_alloc_size)); 483 484 /* Update slab flag */ 485 *in_slab = use_slab; 486 487 return 0; 488 } 489 490 /** 491 * memblock_merge_regions - merge neighboring compatible regions 492 * @type: memblock type to scan 493 * 494 * Scan @type and merge neighboring compatible regions. 495 */ 496 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 497 { 498 int i = 0; 499 500 /* cnt never goes below 1 */ 501 while (i < type->cnt - 1) { 502 struct memblock_region *this = &type->regions[i]; 503 struct memblock_region *next = &type->regions[i + 1]; 504 505 if (this->base + this->size != next->base || 506 memblock_get_region_node(this) != 507 memblock_get_region_node(next) || 508 this->flags != next->flags) { 509 BUG_ON(this->base + this->size > next->base); 510 i++; 511 continue; 512 } 513 514 this->size += next->size; 515 /* move forward from next + 1, index of which is i + 2 */ 516 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 517 type->cnt--; 518 } 519 } 520 521 /** 522 * memblock_insert_region - insert new memblock region 523 * @type: memblock type to insert into 524 * @idx: index for the insertion point 525 * @base: base address of the new region 526 * @size: size of the new region 527 * @nid: node id of the new region 528 * @flags: flags of the new region 529 * 530 * Insert new memblock region [@base, @base + @size) into @type at @idx. 531 * @type must already have extra room to accommodate the new region. 532 */ 533 static void __init_memblock memblock_insert_region(struct memblock_type *type, 534 int idx, phys_addr_t base, 535 phys_addr_t size, 536 int nid, 537 enum memblock_flags flags) 538 { 539 struct memblock_region *rgn = &type->regions[idx]; 540 541 BUG_ON(type->cnt >= type->max); 542 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 543 rgn->base = base; 544 rgn->size = size; 545 rgn->flags = flags; 546 memblock_set_region_node(rgn, nid); 547 type->cnt++; 548 type->total_size += size; 549 } 550 551 /** 552 * memblock_add_range - add new memblock region 553 * @type: memblock type to add new region into 554 * @base: base address of the new region 555 * @size: size of the new region 556 * @nid: nid of the new region 557 * @flags: flags of the new region 558 * 559 * Add new memblock region [@base, @base + @size) into @type. The new region 560 * is allowed to overlap with existing ones - overlaps don't affect already 561 * existing regions. @type is guaranteed to be minimal (all neighbouring 562 * compatible regions are merged) after the addition. 563 * 564 * Return: 565 * 0 on success, -errno on failure. 566 */ 567 static int __init_memblock memblock_add_range(struct memblock_type *type, 568 phys_addr_t base, phys_addr_t size, 569 int nid, enum memblock_flags flags) 570 { 571 bool insert = false; 572 phys_addr_t obase = base; 573 phys_addr_t end = base + memblock_cap_size(base, &size); 574 int idx, nr_new; 575 struct memblock_region *rgn; 576 577 if (!size) 578 return 0; 579 580 /* special case for empty array */ 581 if (type->regions[0].size == 0) { 582 WARN_ON(type->cnt != 1 || type->total_size); 583 type->regions[0].base = base; 584 type->regions[0].size = size; 585 type->regions[0].flags = flags; 586 memblock_set_region_node(&type->regions[0], nid); 587 type->total_size = size; 588 return 0; 589 } 590 repeat: 591 /* 592 * The following is executed twice. Once with %false @insert and 593 * then with %true. The first counts the number of regions needed 594 * to accommodate the new area. The second actually inserts them. 595 */ 596 base = obase; 597 nr_new = 0; 598 599 for_each_memblock_type(idx, type, rgn) { 600 phys_addr_t rbase = rgn->base; 601 phys_addr_t rend = rbase + rgn->size; 602 603 if (rbase >= end) 604 break; 605 if (rend <= base) 606 continue; 607 /* 608 * @rgn overlaps. If it separates the lower part of new 609 * area, insert that portion. 610 */ 611 if (rbase > base) { 612 #ifdef CONFIG_NUMA 613 WARN_ON(nid != memblock_get_region_node(rgn)); 614 #endif 615 WARN_ON(flags != rgn->flags); 616 nr_new++; 617 if (insert) 618 memblock_insert_region(type, idx++, base, 619 rbase - base, nid, 620 flags); 621 } 622 /* area below @rend is dealt with, forget about it */ 623 base = min(rend, end); 624 } 625 626 /* insert the remaining portion */ 627 if (base < end) { 628 nr_new++; 629 if (insert) 630 memblock_insert_region(type, idx, base, end - base, 631 nid, flags); 632 } 633 634 if (!nr_new) 635 return 0; 636 637 /* 638 * If this was the first round, resize array and repeat for actual 639 * insertions; otherwise, merge and return. 640 */ 641 if (!insert) { 642 while (type->cnt + nr_new > type->max) 643 if (memblock_double_array(type, obase, size) < 0) 644 return -ENOMEM; 645 insert = true; 646 goto repeat; 647 } else { 648 memblock_merge_regions(type); 649 return 0; 650 } 651 } 652 653 /** 654 * memblock_add_node - add new memblock region within a NUMA node 655 * @base: base address of the new region 656 * @size: size of the new region 657 * @nid: nid of the new region 658 * @flags: flags of the new region 659 * 660 * Add new memblock region [@base, @base + @size) to the "memory" 661 * type. See memblock_add_range() description for mode details 662 * 663 * Return: 664 * 0 on success, -errno on failure. 665 */ 666 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 667 int nid, enum memblock_flags flags) 668 { 669 phys_addr_t end = base + size - 1; 670 671 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__, 672 &base, &end, nid, flags, (void *)_RET_IP_); 673 674 return memblock_add_range(&memblock.memory, base, size, nid, flags); 675 } 676 677 /** 678 * memblock_add - add new memblock region 679 * @base: base address of the new region 680 * @size: size of the new region 681 * 682 * Add new memblock region [@base, @base + @size) to the "memory" 683 * type. See memblock_add_range() description for mode details 684 * 685 * Return: 686 * 0 on success, -errno on failure. 687 */ 688 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 689 { 690 phys_addr_t end = base + size - 1; 691 692 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 693 &base, &end, (void *)_RET_IP_); 694 695 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 696 } 697 698 /** 699 * memblock_isolate_range - isolate given range into disjoint memblocks 700 * @type: memblock type to isolate range for 701 * @base: base of range to isolate 702 * @size: size of range to isolate 703 * @start_rgn: out parameter for the start of isolated region 704 * @end_rgn: out parameter for the end of isolated region 705 * 706 * Walk @type and ensure that regions don't cross the boundaries defined by 707 * [@base, @base + @size). Crossing regions are split at the boundaries, 708 * which may create at most two more regions. The index of the first 709 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 710 * 711 * Return: 712 * 0 on success, -errno on failure. 713 */ 714 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 715 phys_addr_t base, phys_addr_t size, 716 int *start_rgn, int *end_rgn) 717 { 718 phys_addr_t end = base + memblock_cap_size(base, &size); 719 int idx; 720 struct memblock_region *rgn; 721 722 *start_rgn = *end_rgn = 0; 723 724 if (!size) 725 return 0; 726 727 /* we'll create at most two more regions */ 728 while (type->cnt + 2 > type->max) 729 if (memblock_double_array(type, base, size) < 0) 730 return -ENOMEM; 731 732 for_each_memblock_type(idx, type, rgn) { 733 phys_addr_t rbase = rgn->base; 734 phys_addr_t rend = rbase + rgn->size; 735 736 if (rbase >= end) 737 break; 738 if (rend <= base) 739 continue; 740 741 if (rbase < base) { 742 /* 743 * @rgn intersects from below. Split and continue 744 * to process the next region - the new top half. 745 */ 746 rgn->base = base; 747 rgn->size -= base - rbase; 748 type->total_size -= base - rbase; 749 memblock_insert_region(type, idx, rbase, base - rbase, 750 memblock_get_region_node(rgn), 751 rgn->flags); 752 } else if (rend > end) { 753 /* 754 * @rgn intersects from above. Split and redo the 755 * current region - the new bottom half. 756 */ 757 rgn->base = end; 758 rgn->size -= end - rbase; 759 type->total_size -= end - rbase; 760 memblock_insert_region(type, idx--, rbase, end - rbase, 761 memblock_get_region_node(rgn), 762 rgn->flags); 763 } else { 764 /* @rgn is fully contained, record it */ 765 if (!*end_rgn) 766 *start_rgn = idx; 767 *end_rgn = idx + 1; 768 } 769 } 770 771 return 0; 772 } 773 774 static int __init_memblock memblock_remove_range(struct memblock_type *type, 775 phys_addr_t base, phys_addr_t size) 776 { 777 int start_rgn, end_rgn; 778 int i, ret; 779 780 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 781 if (ret) 782 return ret; 783 784 for (i = end_rgn - 1; i >= start_rgn; i--) 785 memblock_remove_region(type, i); 786 return 0; 787 } 788 789 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 790 { 791 phys_addr_t end = base + size - 1; 792 793 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 794 &base, &end, (void *)_RET_IP_); 795 796 return memblock_remove_range(&memblock.memory, base, size); 797 } 798 799 /** 800 * memblock_free - free boot memory allocation 801 * @ptr: starting address of the boot memory allocation 802 * @size: size of the boot memory block in bytes 803 * 804 * Free boot memory block previously allocated by memblock_alloc_xx() API. 805 * The freeing memory will not be released to the buddy allocator. 806 */ 807 void __init_memblock memblock_free(void *ptr, size_t size) 808 { 809 if (ptr) 810 memblock_phys_free(__pa(ptr), size); 811 } 812 813 /** 814 * memblock_phys_free - free boot memory block 815 * @base: phys starting address of the boot memory block 816 * @size: size of the boot memory block in bytes 817 * 818 * Free boot memory block previously allocated by memblock_alloc_xx() API. 819 * The freeing memory will not be released to the buddy allocator. 820 */ 821 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size) 822 { 823 phys_addr_t end = base + size - 1; 824 825 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 826 &base, &end, (void *)_RET_IP_); 827 828 kmemleak_free_part_phys(base, size); 829 return memblock_remove_range(&memblock.reserved, base, size); 830 } 831 832 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 833 { 834 phys_addr_t end = base + size - 1; 835 836 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 837 &base, &end, (void *)_RET_IP_); 838 839 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 840 } 841 842 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 843 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) 844 { 845 phys_addr_t end = base + size - 1; 846 847 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 848 &base, &end, (void *)_RET_IP_); 849 850 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); 851 } 852 #endif 853 854 /** 855 * memblock_setclr_flag - set or clear flag for a memory region 856 * @base: base address of the region 857 * @size: size of the region 858 * @set: set or clear the flag 859 * @flag: the flag to update 860 * 861 * This function isolates region [@base, @base + @size), and sets/clears flag 862 * 863 * Return: 0 on success, -errno on failure. 864 */ 865 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 866 phys_addr_t size, int set, int flag) 867 { 868 struct memblock_type *type = &memblock.memory; 869 int i, ret, start_rgn, end_rgn; 870 871 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 872 if (ret) 873 return ret; 874 875 for (i = start_rgn; i < end_rgn; i++) { 876 struct memblock_region *r = &type->regions[i]; 877 878 if (set) 879 r->flags |= flag; 880 else 881 r->flags &= ~flag; 882 } 883 884 memblock_merge_regions(type); 885 return 0; 886 } 887 888 /** 889 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 890 * @base: the base phys addr of the region 891 * @size: the size of the region 892 * 893 * Return: 0 on success, -errno on failure. 894 */ 895 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 896 { 897 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 898 } 899 900 /** 901 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 902 * @base: the base phys addr of the region 903 * @size: the size of the region 904 * 905 * Return: 0 on success, -errno on failure. 906 */ 907 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 908 { 909 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 910 } 911 912 /** 913 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 914 * @base: the base phys addr of the region 915 * @size: the size of the region 916 * 917 * Return: 0 on success, -errno on failure. 918 */ 919 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 920 { 921 system_has_some_mirror = true; 922 923 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 924 } 925 926 /** 927 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 928 * @base: the base phys addr of the region 929 * @size: the size of the region 930 * 931 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the 932 * direct mapping of the physical memory. These regions will still be 933 * covered by the memory map. The struct page representing NOMAP memory 934 * frames in the memory map will be PageReserved() 935 * 936 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from 937 * memblock, the caller must inform kmemleak to ignore that memory 938 * 939 * Return: 0 on success, -errno on failure. 940 */ 941 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 942 { 943 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 944 } 945 946 /** 947 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 948 * @base: the base phys addr of the region 949 * @size: the size of the region 950 * 951 * Return: 0 on success, -errno on failure. 952 */ 953 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 954 { 955 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 956 } 957 958 static bool should_skip_region(struct memblock_type *type, 959 struct memblock_region *m, 960 int nid, int flags) 961 { 962 int m_nid = memblock_get_region_node(m); 963 964 /* we never skip regions when iterating memblock.reserved or physmem */ 965 if (type != memblock_memory) 966 return false; 967 968 /* only memory regions are associated with nodes, check it */ 969 if (nid != NUMA_NO_NODE && nid != m_nid) 970 return true; 971 972 /* skip hotpluggable memory regions if needed */ 973 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) && 974 !(flags & MEMBLOCK_HOTPLUG)) 975 return true; 976 977 /* if we want mirror memory skip non-mirror memory regions */ 978 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 979 return true; 980 981 /* skip nomap memory unless we were asked for it explicitly */ 982 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 983 return true; 984 985 /* skip driver-managed memory unless we were asked for it explicitly */ 986 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m)) 987 return true; 988 989 return false; 990 } 991 992 /** 993 * __next_mem_range - next function for for_each_free_mem_range() etc. 994 * @idx: pointer to u64 loop variable 995 * @nid: node selector, %NUMA_NO_NODE for all nodes 996 * @flags: pick from blocks based on memory attributes 997 * @type_a: pointer to memblock_type from where the range is taken 998 * @type_b: pointer to memblock_type which excludes memory from being taken 999 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1000 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1001 * @out_nid: ptr to int for nid of the range, can be %NULL 1002 * 1003 * Find the first area from *@idx which matches @nid, fill the out 1004 * parameters, and update *@idx for the next iteration. The lower 32bit of 1005 * *@idx contains index into type_a and the upper 32bit indexes the 1006 * areas before each region in type_b. For example, if type_b regions 1007 * look like the following, 1008 * 1009 * 0:[0-16), 1:[32-48), 2:[128-130) 1010 * 1011 * The upper 32bit indexes the following regions. 1012 * 1013 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 1014 * 1015 * As both region arrays are sorted, the function advances the two indices 1016 * in lockstep and returns each intersection. 1017 */ 1018 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 1019 struct memblock_type *type_a, 1020 struct memblock_type *type_b, phys_addr_t *out_start, 1021 phys_addr_t *out_end, int *out_nid) 1022 { 1023 int idx_a = *idx & 0xffffffff; 1024 int idx_b = *idx >> 32; 1025 1026 if (WARN_ONCE(nid == MAX_NUMNODES, 1027 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1028 nid = NUMA_NO_NODE; 1029 1030 for (; idx_a < type_a->cnt; idx_a++) { 1031 struct memblock_region *m = &type_a->regions[idx_a]; 1032 1033 phys_addr_t m_start = m->base; 1034 phys_addr_t m_end = m->base + m->size; 1035 int m_nid = memblock_get_region_node(m); 1036 1037 if (should_skip_region(type_a, m, nid, flags)) 1038 continue; 1039 1040 if (!type_b) { 1041 if (out_start) 1042 *out_start = m_start; 1043 if (out_end) 1044 *out_end = m_end; 1045 if (out_nid) 1046 *out_nid = m_nid; 1047 idx_a++; 1048 *idx = (u32)idx_a | (u64)idx_b << 32; 1049 return; 1050 } 1051 1052 /* scan areas before each reservation */ 1053 for (; idx_b < type_b->cnt + 1; idx_b++) { 1054 struct memblock_region *r; 1055 phys_addr_t r_start; 1056 phys_addr_t r_end; 1057 1058 r = &type_b->regions[idx_b]; 1059 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1060 r_end = idx_b < type_b->cnt ? 1061 r->base : PHYS_ADDR_MAX; 1062 1063 /* 1064 * if idx_b advanced past idx_a, 1065 * break out to advance idx_a 1066 */ 1067 if (r_start >= m_end) 1068 break; 1069 /* if the two regions intersect, we're done */ 1070 if (m_start < r_end) { 1071 if (out_start) 1072 *out_start = 1073 max(m_start, r_start); 1074 if (out_end) 1075 *out_end = min(m_end, r_end); 1076 if (out_nid) 1077 *out_nid = m_nid; 1078 /* 1079 * The region which ends first is 1080 * advanced for the next iteration. 1081 */ 1082 if (m_end <= r_end) 1083 idx_a++; 1084 else 1085 idx_b++; 1086 *idx = (u32)idx_a | (u64)idx_b << 32; 1087 return; 1088 } 1089 } 1090 } 1091 1092 /* signal end of iteration */ 1093 *idx = ULLONG_MAX; 1094 } 1095 1096 /** 1097 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1098 * 1099 * @idx: pointer to u64 loop variable 1100 * @nid: node selector, %NUMA_NO_NODE for all nodes 1101 * @flags: pick from blocks based on memory attributes 1102 * @type_a: pointer to memblock_type from where the range is taken 1103 * @type_b: pointer to memblock_type which excludes memory from being taken 1104 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1105 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1106 * @out_nid: ptr to int for nid of the range, can be %NULL 1107 * 1108 * Finds the next range from type_a which is not marked as unsuitable 1109 * in type_b. 1110 * 1111 * Reverse of __next_mem_range(). 1112 */ 1113 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1114 enum memblock_flags flags, 1115 struct memblock_type *type_a, 1116 struct memblock_type *type_b, 1117 phys_addr_t *out_start, 1118 phys_addr_t *out_end, int *out_nid) 1119 { 1120 int idx_a = *idx & 0xffffffff; 1121 int idx_b = *idx >> 32; 1122 1123 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1124 nid = NUMA_NO_NODE; 1125 1126 if (*idx == (u64)ULLONG_MAX) { 1127 idx_a = type_a->cnt - 1; 1128 if (type_b != NULL) 1129 idx_b = type_b->cnt; 1130 else 1131 idx_b = 0; 1132 } 1133 1134 for (; idx_a >= 0; idx_a--) { 1135 struct memblock_region *m = &type_a->regions[idx_a]; 1136 1137 phys_addr_t m_start = m->base; 1138 phys_addr_t m_end = m->base + m->size; 1139 int m_nid = memblock_get_region_node(m); 1140 1141 if (should_skip_region(type_a, m, nid, flags)) 1142 continue; 1143 1144 if (!type_b) { 1145 if (out_start) 1146 *out_start = m_start; 1147 if (out_end) 1148 *out_end = m_end; 1149 if (out_nid) 1150 *out_nid = m_nid; 1151 idx_a--; 1152 *idx = (u32)idx_a | (u64)idx_b << 32; 1153 return; 1154 } 1155 1156 /* scan areas before each reservation */ 1157 for (; idx_b >= 0; idx_b--) { 1158 struct memblock_region *r; 1159 phys_addr_t r_start; 1160 phys_addr_t r_end; 1161 1162 r = &type_b->regions[idx_b]; 1163 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1164 r_end = idx_b < type_b->cnt ? 1165 r->base : PHYS_ADDR_MAX; 1166 /* 1167 * if idx_b advanced past idx_a, 1168 * break out to advance idx_a 1169 */ 1170 1171 if (r_end <= m_start) 1172 break; 1173 /* if the two regions intersect, we're done */ 1174 if (m_end > r_start) { 1175 if (out_start) 1176 *out_start = max(m_start, r_start); 1177 if (out_end) 1178 *out_end = min(m_end, r_end); 1179 if (out_nid) 1180 *out_nid = m_nid; 1181 if (m_start >= r_start) 1182 idx_a--; 1183 else 1184 idx_b--; 1185 *idx = (u32)idx_a | (u64)idx_b << 32; 1186 return; 1187 } 1188 } 1189 } 1190 /* signal end of iteration */ 1191 *idx = ULLONG_MAX; 1192 } 1193 1194 /* 1195 * Common iterator interface used to define for_each_mem_pfn_range(). 1196 */ 1197 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1198 unsigned long *out_start_pfn, 1199 unsigned long *out_end_pfn, int *out_nid) 1200 { 1201 struct memblock_type *type = &memblock.memory; 1202 struct memblock_region *r; 1203 int r_nid; 1204 1205 while (++*idx < type->cnt) { 1206 r = &type->regions[*idx]; 1207 r_nid = memblock_get_region_node(r); 1208 1209 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1210 continue; 1211 if (nid == MAX_NUMNODES || nid == r_nid) 1212 break; 1213 } 1214 if (*idx >= type->cnt) { 1215 *idx = -1; 1216 return; 1217 } 1218 1219 if (out_start_pfn) 1220 *out_start_pfn = PFN_UP(r->base); 1221 if (out_end_pfn) 1222 *out_end_pfn = PFN_DOWN(r->base + r->size); 1223 if (out_nid) 1224 *out_nid = r_nid; 1225 } 1226 1227 /** 1228 * memblock_set_node - set node ID on memblock regions 1229 * @base: base of area to set node ID for 1230 * @size: size of area to set node ID for 1231 * @type: memblock type to set node ID for 1232 * @nid: node ID to set 1233 * 1234 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1235 * Regions which cross the area boundaries are split as necessary. 1236 * 1237 * Return: 1238 * 0 on success, -errno on failure. 1239 */ 1240 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1241 struct memblock_type *type, int nid) 1242 { 1243 #ifdef CONFIG_NUMA 1244 int start_rgn, end_rgn; 1245 int i, ret; 1246 1247 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1248 if (ret) 1249 return ret; 1250 1251 for (i = start_rgn; i < end_rgn; i++) 1252 memblock_set_region_node(&type->regions[i], nid); 1253 1254 memblock_merge_regions(type); 1255 #endif 1256 return 0; 1257 } 1258 1259 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1260 /** 1261 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() 1262 * 1263 * @idx: pointer to u64 loop variable 1264 * @zone: zone in which all of the memory blocks reside 1265 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL 1266 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL 1267 * 1268 * This function is meant to be a zone/pfn specific wrapper for the 1269 * for_each_mem_range type iterators. Specifically they are used in the 1270 * deferred memory init routines and as such we were duplicating much of 1271 * this logic throughout the code. So instead of having it in multiple 1272 * locations it seemed like it would make more sense to centralize this to 1273 * one new iterator that does everything they need. 1274 */ 1275 void __init_memblock 1276 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 1277 unsigned long *out_spfn, unsigned long *out_epfn) 1278 { 1279 int zone_nid = zone_to_nid(zone); 1280 phys_addr_t spa, epa; 1281 int nid; 1282 1283 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1284 &memblock.memory, &memblock.reserved, 1285 &spa, &epa, &nid); 1286 1287 while (*idx != U64_MAX) { 1288 unsigned long epfn = PFN_DOWN(epa); 1289 unsigned long spfn = PFN_UP(spa); 1290 1291 /* 1292 * Verify the end is at least past the start of the zone and 1293 * that we have at least one PFN to initialize. 1294 */ 1295 if (zone->zone_start_pfn < epfn && spfn < epfn) { 1296 /* if we went too far just stop searching */ 1297 if (zone_end_pfn(zone) <= spfn) { 1298 *idx = U64_MAX; 1299 break; 1300 } 1301 1302 if (out_spfn) 1303 *out_spfn = max(zone->zone_start_pfn, spfn); 1304 if (out_epfn) 1305 *out_epfn = min(zone_end_pfn(zone), epfn); 1306 1307 return; 1308 } 1309 1310 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1311 &memblock.memory, &memblock.reserved, 1312 &spa, &epa, &nid); 1313 } 1314 1315 /* signal end of iteration */ 1316 if (out_spfn) 1317 *out_spfn = ULONG_MAX; 1318 if (out_epfn) 1319 *out_epfn = 0; 1320 } 1321 1322 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1323 1324 /** 1325 * memblock_alloc_range_nid - allocate boot memory block 1326 * @size: size of memory block to be allocated in bytes 1327 * @align: alignment of the region and block's size 1328 * @start: the lower bound of the memory region to allocate (phys address) 1329 * @end: the upper bound of the memory region to allocate (phys address) 1330 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1331 * @exact_nid: control the allocation fall back to other nodes 1332 * 1333 * The allocation is performed from memory region limited by 1334 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. 1335 * 1336 * If the specified node can not hold the requested memory and @exact_nid 1337 * is false, the allocation falls back to any node in the system. 1338 * 1339 * For systems with memory mirroring, the allocation is attempted first 1340 * from the regions with mirroring enabled and then retried from any 1341 * memory region. 1342 * 1343 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for 1344 * allocated boot memory block, so that it is never reported as leaks. 1345 * 1346 * Return: 1347 * Physical address of allocated memory block on success, %0 on failure. 1348 */ 1349 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1350 phys_addr_t align, phys_addr_t start, 1351 phys_addr_t end, int nid, 1352 bool exact_nid) 1353 { 1354 enum memblock_flags flags = choose_memblock_flags(); 1355 phys_addr_t found; 1356 1357 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1358 nid = NUMA_NO_NODE; 1359 1360 if (!align) { 1361 /* Can't use WARNs this early in boot on powerpc */ 1362 dump_stack(); 1363 align = SMP_CACHE_BYTES; 1364 } 1365 1366 again: 1367 found = memblock_find_in_range_node(size, align, start, end, nid, 1368 flags); 1369 if (found && !memblock_reserve(found, size)) 1370 goto done; 1371 1372 if (nid != NUMA_NO_NODE && !exact_nid) { 1373 found = memblock_find_in_range_node(size, align, start, 1374 end, NUMA_NO_NODE, 1375 flags); 1376 if (found && !memblock_reserve(found, size)) 1377 goto done; 1378 } 1379 1380 if (flags & MEMBLOCK_MIRROR) { 1381 flags &= ~MEMBLOCK_MIRROR; 1382 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1383 &size); 1384 goto again; 1385 } 1386 1387 return 0; 1388 1389 done: 1390 /* 1391 * Skip kmemleak for those places like kasan_init() and 1392 * early_pgtable_alloc() due to high volume. 1393 */ 1394 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE) 1395 /* 1396 * The min_count is set to 0 so that memblock allocated 1397 * blocks are never reported as leaks. This is because many 1398 * of these blocks are only referred via the physical 1399 * address which is not looked up by kmemleak. 1400 */ 1401 kmemleak_alloc_phys(found, size, 0, 0); 1402 1403 return found; 1404 } 1405 1406 /** 1407 * memblock_phys_alloc_range - allocate a memory block inside specified range 1408 * @size: size of memory block to be allocated in bytes 1409 * @align: alignment of the region and block's size 1410 * @start: the lower bound of the memory region to allocate (physical address) 1411 * @end: the upper bound of the memory region to allocate (physical address) 1412 * 1413 * Allocate @size bytes in the between @start and @end. 1414 * 1415 * Return: physical address of the allocated memory block on success, 1416 * %0 on failure. 1417 */ 1418 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1419 phys_addr_t align, 1420 phys_addr_t start, 1421 phys_addr_t end) 1422 { 1423 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", 1424 __func__, (u64)size, (u64)align, &start, &end, 1425 (void *)_RET_IP_); 1426 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1427 false); 1428 } 1429 1430 /** 1431 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node 1432 * @size: size of memory block to be allocated in bytes 1433 * @align: alignment of the region and block's size 1434 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1435 * 1436 * Allocates memory block from the specified NUMA node. If the node 1437 * has no available memory, attempts to allocated from any node in the 1438 * system. 1439 * 1440 * Return: physical address of the allocated memory block on success, 1441 * %0 on failure. 1442 */ 1443 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1444 { 1445 return memblock_alloc_range_nid(size, align, 0, 1446 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); 1447 } 1448 1449 /** 1450 * memblock_alloc_internal - allocate boot memory block 1451 * @size: size of memory block to be allocated in bytes 1452 * @align: alignment of the region and block's size 1453 * @min_addr: the lower bound of the memory region to allocate (phys address) 1454 * @max_addr: the upper bound of the memory region to allocate (phys address) 1455 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1456 * @exact_nid: control the allocation fall back to other nodes 1457 * 1458 * Allocates memory block using memblock_alloc_range_nid() and 1459 * converts the returned physical address to virtual. 1460 * 1461 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1462 * will fall back to memory below @min_addr. Other constraints, such 1463 * as node and mirrored memory will be handled again in 1464 * memblock_alloc_range_nid(). 1465 * 1466 * Return: 1467 * Virtual address of allocated memory block on success, NULL on failure. 1468 */ 1469 static void * __init memblock_alloc_internal( 1470 phys_addr_t size, phys_addr_t align, 1471 phys_addr_t min_addr, phys_addr_t max_addr, 1472 int nid, bool exact_nid) 1473 { 1474 phys_addr_t alloc; 1475 1476 /* 1477 * Detect any accidental use of these APIs after slab is ready, as at 1478 * this moment memblock may be deinitialized already and its 1479 * internal data may be destroyed (after execution of memblock_free_all) 1480 */ 1481 if (WARN_ON_ONCE(slab_is_available())) 1482 return kzalloc_node(size, GFP_NOWAIT, nid); 1483 1484 if (max_addr > memblock.current_limit) 1485 max_addr = memblock.current_limit; 1486 1487 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, 1488 exact_nid); 1489 1490 /* retry allocation without lower limit */ 1491 if (!alloc && min_addr) 1492 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, 1493 exact_nid); 1494 1495 if (!alloc) 1496 return NULL; 1497 1498 return phys_to_virt(alloc); 1499 } 1500 1501 /** 1502 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node 1503 * without zeroing memory 1504 * @size: size of memory block to be allocated in bytes 1505 * @align: alignment of the region and block's size 1506 * @min_addr: the lower bound of the memory region from where the allocation 1507 * is preferred (phys address) 1508 * @max_addr: the upper bound of the memory region from where the allocation 1509 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1510 * allocate only from memory limited by memblock.current_limit value 1511 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1512 * 1513 * Public function, provides additional debug information (including caller 1514 * info), if enabled. Does not zero allocated memory. 1515 * 1516 * Return: 1517 * Virtual address of allocated memory block on success, NULL on failure. 1518 */ 1519 void * __init memblock_alloc_exact_nid_raw( 1520 phys_addr_t size, phys_addr_t align, 1521 phys_addr_t min_addr, phys_addr_t max_addr, 1522 int nid) 1523 { 1524 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1525 __func__, (u64)size, (u64)align, nid, &min_addr, 1526 &max_addr, (void *)_RET_IP_); 1527 1528 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1529 true); 1530 } 1531 1532 /** 1533 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1534 * memory and without panicking 1535 * @size: size of memory block to be allocated in bytes 1536 * @align: alignment of the region and block's size 1537 * @min_addr: the lower bound of the memory region from where the allocation 1538 * is preferred (phys address) 1539 * @max_addr: the upper bound of the memory region from where the allocation 1540 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1541 * allocate only from memory limited by memblock.current_limit value 1542 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1543 * 1544 * Public function, provides additional debug information (including caller 1545 * info), if enabled. Does not zero allocated memory, does not panic if request 1546 * cannot be satisfied. 1547 * 1548 * Return: 1549 * Virtual address of allocated memory block on success, NULL on failure. 1550 */ 1551 void * __init memblock_alloc_try_nid_raw( 1552 phys_addr_t size, phys_addr_t align, 1553 phys_addr_t min_addr, phys_addr_t max_addr, 1554 int nid) 1555 { 1556 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1557 __func__, (u64)size, (u64)align, nid, &min_addr, 1558 &max_addr, (void *)_RET_IP_); 1559 1560 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1561 false); 1562 } 1563 1564 /** 1565 * memblock_alloc_try_nid - allocate boot memory block 1566 * @size: size of memory block to be allocated in bytes 1567 * @align: alignment of the region and block's size 1568 * @min_addr: the lower bound of the memory region from where the allocation 1569 * is preferred (phys address) 1570 * @max_addr: the upper bound of the memory region from where the allocation 1571 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1572 * allocate only from memory limited by memblock.current_limit value 1573 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1574 * 1575 * Public function, provides additional debug information (including caller 1576 * info), if enabled. This function zeroes the allocated memory. 1577 * 1578 * Return: 1579 * Virtual address of allocated memory block on success, NULL on failure. 1580 */ 1581 void * __init memblock_alloc_try_nid( 1582 phys_addr_t size, phys_addr_t align, 1583 phys_addr_t min_addr, phys_addr_t max_addr, 1584 int nid) 1585 { 1586 void *ptr; 1587 1588 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1589 __func__, (u64)size, (u64)align, nid, &min_addr, 1590 &max_addr, (void *)_RET_IP_); 1591 ptr = memblock_alloc_internal(size, align, 1592 min_addr, max_addr, nid, false); 1593 if (ptr) 1594 memset(ptr, 0, size); 1595 1596 return ptr; 1597 } 1598 1599 /** 1600 * memblock_free_late - free pages directly to buddy allocator 1601 * @base: phys starting address of the boot memory block 1602 * @size: size of the boot memory block in bytes 1603 * 1604 * This is only useful when the memblock allocator has already been torn 1605 * down, but we are still initializing the system. Pages are released directly 1606 * to the buddy allocator. 1607 */ 1608 void __init memblock_free_late(phys_addr_t base, phys_addr_t size) 1609 { 1610 phys_addr_t cursor, end; 1611 1612 end = base + size - 1; 1613 memblock_dbg("%s: [%pa-%pa] %pS\n", 1614 __func__, &base, &end, (void *)_RET_IP_); 1615 kmemleak_free_part_phys(base, size); 1616 cursor = PFN_UP(base); 1617 end = PFN_DOWN(base + size); 1618 1619 for (; cursor < end; cursor++) { 1620 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1621 totalram_pages_inc(); 1622 } 1623 } 1624 1625 /* 1626 * Remaining API functions 1627 */ 1628 1629 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1630 { 1631 return memblock.memory.total_size; 1632 } 1633 1634 phys_addr_t __init_memblock memblock_reserved_size(void) 1635 { 1636 return memblock.reserved.total_size; 1637 } 1638 1639 /* lowest address */ 1640 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1641 { 1642 return memblock.memory.regions[0].base; 1643 } 1644 1645 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1646 { 1647 int idx = memblock.memory.cnt - 1; 1648 1649 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1650 } 1651 1652 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1653 { 1654 phys_addr_t max_addr = PHYS_ADDR_MAX; 1655 struct memblock_region *r; 1656 1657 /* 1658 * translate the memory @limit size into the max address within one of 1659 * the memory memblock regions, if the @limit exceeds the total size 1660 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1661 */ 1662 for_each_mem_region(r) { 1663 if (limit <= r->size) { 1664 max_addr = r->base + limit; 1665 break; 1666 } 1667 limit -= r->size; 1668 } 1669 1670 return max_addr; 1671 } 1672 1673 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1674 { 1675 phys_addr_t max_addr; 1676 1677 if (!limit) 1678 return; 1679 1680 max_addr = __find_max_addr(limit); 1681 1682 /* @limit exceeds the total size of the memory, do nothing */ 1683 if (max_addr == PHYS_ADDR_MAX) 1684 return; 1685 1686 /* truncate both memory and reserved regions */ 1687 memblock_remove_range(&memblock.memory, max_addr, 1688 PHYS_ADDR_MAX); 1689 memblock_remove_range(&memblock.reserved, max_addr, 1690 PHYS_ADDR_MAX); 1691 } 1692 1693 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1694 { 1695 int start_rgn, end_rgn; 1696 int i, ret; 1697 1698 if (!size) 1699 return; 1700 1701 if (!memblock_memory->total_size) { 1702 pr_warn("%s: No memory registered yet\n", __func__); 1703 return; 1704 } 1705 1706 ret = memblock_isolate_range(&memblock.memory, base, size, 1707 &start_rgn, &end_rgn); 1708 if (ret) 1709 return; 1710 1711 /* remove all the MAP regions */ 1712 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1713 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1714 memblock_remove_region(&memblock.memory, i); 1715 1716 for (i = start_rgn - 1; i >= 0; i--) 1717 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1718 memblock_remove_region(&memblock.memory, i); 1719 1720 /* truncate the reserved regions */ 1721 memblock_remove_range(&memblock.reserved, 0, base); 1722 memblock_remove_range(&memblock.reserved, 1723 base + size, PHYS_ADDR_MAX); 1724 } 1725 1726 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1727 { 1728 phys_addr_t max_addr; 1729 1730 if (!limit) 1731 return; 1732 1733 max_addr = __find_max_addr(limit); 1734 1735 /* @limit exceeds the total size of the memory, do nothing */ 1736 if (max_addr == PHYS_ADDR_MAX) 1737 return; 1738 1739 memblock_cap_memory_range(0, max_addr); 1740 } 1741 1742 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1743 { 1744 unsigned int left = 0, right = type->cnt; 1745 1746 do { 1747 unsigned int mid = (right + left) / 2; 1748 1749 if (addr < type->regions[mid].base) 1750 right = mid; 1751 else if (addr >= (type->regions[mid].base + 1752 type->regions[mid].size)) 1753 left = mid + 1; 1754 else 1755 return mid; 1756 } while (left < right); 1757 return -1; 1758 } 1759 1760 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1761 { 1762 return memblock_search(&memblock.reserved, addr) != -1; 1763 } 1764 1765 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1766 { 1767 return memblock_search(&memblock.memory, addr) != -1; 1768 } 1769 1770 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1771 { 1772 int i = memblock_search(&memblock.memory, addr); 1773 1774 if (i == -1) 1775 return false; 1776 return !memblock_is_nomap(&memblock.memory.regions[i]); 1777 } 1778 1779 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1780 unsigned long *start_pfn, unsigned long *end_pfn) 1781 { 1782 struct memblock_type *type = &memblock.memory; 1783 int mid = memblock_search(type, PFN_PHYS(pfn)); 1784 1785 if (mid == -1) 1786 return -1; 1787 1788 *start_pfn = PFN_DOWN(type->regions[mid].base); 1789 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1790 1791 return memblock_get_region_node(&type->regions[mid]); 1792 } 1793 1794 /** 1795 * memblock_is_region_memory - check if a region is a subset of memory 1796 * @base: base of region to check 1797 * @size: size of region to check 1798 * 1799 * Check if the region [@base, @base + @size) is a subset of a memory block. 1800 * 1801 * Return: 1802 * 0 if false, non-zero if true 1803 */ 1804 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1805 { 1806 int idx = memblock_search(&memblock.memory, base); 1807 phys_addr_t end = base + memblock_cap_size(base, &size); 1808 1809 if (idx == -1) 1810 return false; 1811 return (memblock.memory.regions[idx].base + 1812 memblock.memory.regions[idx].size) >= end; 1813 } 1814 1815 /** 1816 * memblock_is_region_reserved - check if a region intersects reserved memory 1817 * @base: base of region to check 1818 * @size: size of region to check 1819 * 1820 * Check if the region [@base, @base + @size) intersects a reserved 1821 * memory block. 1822 * 1823 * Return: 1824 * True if they intersect, false if not. 1825 */ 1826 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1827 { 1828 return memblock_overlaps_region(&memblock.reserved, base, size); 1829 } 1830 1831 void __init_memblock memblock_trim_memory(phys_addr_t align) 1832 { 1833 phys_addr_t start, end, orig_start, orig_end; 1834 struct memblock_region *r; 1835 1836 for_each_mem_region(r) { 1837 orig_start = r->base; 1838 orig_end = r->base + r->size; 1839 start = round_up(orig_start, align); 1840 end = round_down(orig_end, align); 1841 1842 if (start == orig_start && end == orig_end) 1843 continue; 1844 1845 if (start < end) { 1846 r->base = start; 1847 r->size = end - start; 1848 } else { 1849 memblock_remove_region(&memblock.memory, 1850 r - memblock.memory.regions); 1851 r--; 1852 } 1853 } 1854 } 1855 1856 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1857 { 1858 memblock.current_limit = limit; 1859 } 1860 1861 phys_addr_t __init_memblock memblock_get_current_limit(void) 1862 { 1863 return memblock.current_limit; 1864 } 1865 1866 static void __init_memblock memblock_dump(struct memblock_type *type) 1867 { 1868 phys_addr_t base, end, size; 1869 enum memblock_flags flags; 1870 int idx; 1871 struct memblock_region *rgn; 1872 1873 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1874 1875 for_each_memblock_type(idx, type, rgn) { 1876 char nid_buf[32] = ""; 1877 1878 base = rgn->base; 1879 size = rgn->size; 1880 end = base + size - 1; 1881 flags = rgn->flags; 1882 #ifdef CONFIG_NUMA 1883 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1884 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1885 memblock_get_region_node(rgn)); 1886 #endif 1887 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1888 type->name, idx, &base, &end, &size, nid_buf, flags); 1889 } 1890 } 1891 1892 static void __init_memblock __memblock_dump_all(void) 1893 { 1894 pr_info("MEMBLOCK configuration:\n"); 1895 pr_info(" memory size = %pa reserved size = %pa\n", 1896 &memblock.memory.total_size, 1897 &memblock.reserved.total_size); 1898 1899 memblock_dump(&memblock.memory); 1900 memblock_dump(&memblock.reserved); 1901 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1902 memblock_dump(&physmem); 1903 #endif 1904 } 1905 1906 void __init_memblock memblock_dump_all(void) 1907 { 1908 if (memblock_debug) 1909 __memblock_dump_all(); 1910 } 1911 1912 void __init memblock_allow_resize(void) 1913 { 1914 memblock_can_resize = 1; 1915 } 1916 1917 static int __init early_memblock(char *p) 1918 { 1919 if (p && strstr(p, "debug")) 1920 memblock_debug = 1; 1921 return 0; 1922 } 1923 early_param("memblock", early_memblock); 1924 1925 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) 1926 { 1927 struct page *start_pg, *end_pg; 1928 phys_addr_t pg, pgend; 1929 1930 /* 1931 * Convert start_pfn/end_pfn to a struct page pointer. 1932 */ 1933 start_pg = pfn_to_page(start_pfn - 1) + 1; 1934 end_pg = pfn_to_page(end_pfn - 1) + 1; 1935 1936 /* 1937 * Convert to physical addresses, and round start upwards and end 1938 * downwards. 1939 */ 1940 pg = PAGE_ALIGN(__pa(start_pg)); 1941 pgend = __pa(end_pg) & PAGE_MASK; 1942 1943 /* 1944 * If there are free pages between these, free the section of the 1945 * memmap array. 1946 */ 1947 if (pg < pgend) 1948 memblock_phys_free(pg, pgend - pg); 1949 } 1950 1951 /* 1952 * The mem_map array can get very big. Free the unused area of the memory map. 1953 */ 1954 static void __init free_unused_memmap(void) 1955 { 1956 unsigned long start, end, prev_end = 0; 1957 int i; 1958 1959 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || 1960 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 1961 return; 1962 1963 /* 1964 * This relies on each bank being in address order. 1965 * The banks are sorted previously in bootmem_init(). 1966 */ 1967 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { 1968 #ifdef CONFIG_SPARSEMEM 1969 /* 1970 * Take care not to free memmap entries that don't exist 1971 * due to SPARSEMEM sections which aren't present. 1972 */ 1973 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 1974 #endif 1975 /* 1976 * Align down here since many operations in VM subsystem 1977 * presume that there are no holes in the memory map inside 1978 * a pageblock 1979 */ 1980 start = round_down(start, pageblock_nr_pages); 1981 1982 /* 1983 * If we had a previous bank, and there is a space 1984 * between the current bank and the previous, free it. 1985 */ 1986 if (prev_end && prev_end < start) 1987 free_memmap(prev_end, start); 1988 1989 /* 1990 * Align up here since many operations in VM subsystem 1991 * presume that there are no holes in the memory map inside 1992 * a pageblock 1993 */ 1994 prev_end = ALIGN(end, pageblock_nr_pages); 1995 } 1996 1997 #ifdef CONFIG_SPARSEMEM 1998 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) { 1999 prev_end = ALIGN(end, pageblock_nr_pages); 2000 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 2001 } 2002 #endif 2003 } 2004 2005 static void __init __free_pages_memory(unsigned long start, unsigned long end) 2006 { 2007 int order; 2008 2009 while (start < end) { 2010 order = min(MAX_ORDER - 1UL, __ffs(start)); 2011 2012 while (start + (1UL << order) > end) 2013 order--; 2014 2015 memblock_free_pages(pfn_to_page(start), start, order); 2016 2017 start += (1UL << order); 2018 } 2019 } 2020 2021 static unsigned long __init __free_memory_core(phys_addr_t start, 2022 phys_addr_t end) 2023 { 2024 unsigned long start_pfn = PFN_UP(start); 2025 unsigned long end_pfn = min_t(unsigned long, 2026 PFN_DOWN(end), max_low_pfn); 2027 2028 if (start_pfn >= end_pfn) 2029 return 0; 2030 2031 __free_pages_memory(start_pfn, end_pfn); 2032 2033 return end_pfn - start_pfn; 2034 } 2035 2036 static void __init memmap_init_reserved_pages(void) 2037 { 2038 struct memblock_region *region; 2039 phys_addr_t start, end; 2040 u64 i; 2041 2042 /* initialize struct pages for the reserved regions */ 2043 for_each_reserved_mem_range(i, &start, &end) 2044 reserve_bootmem_region(start, end); 2045 2046 /* and also treat struct pages for the NOMAP regions as PageReserved */ 2047 for_each_mem_region(region) { 2048 if (memblock_is_nomap(region)) { 2049 start = region->base; 2050 end = start + region->size; 2051 reserve_bootmem_region(start, end); 2052 } 2053 } 2054 } 2055 2056 static unsigned long __init free_low_memory_core_early(void) 2057 { 2058 unsigned long count = 0; 2059 phys_addr_t start, end; 2060 u64 i; 2061 2062 memblock_clear_hotplug(0, -1); 2063 2064 memmap_init_reserved_pages(); 2065 2066 /* 2067 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 2068 * because in some case like Node0 doesn't have RAM installed 2069 * low ram will be on Node1 2070 */ 2071 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 2072 NULL) 2073 count += __free_memory_core(start, end); 2074 2075 return count; 2076 } 2077 2078 static int reset_managed_pages_done __initdata; 2079 2080 void reset_node_managed_pages(pg_data_t *pgdat) 2081 { 2082 struct zone *z; 2083 2084 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 2085 atomic_long_set(&z->managed_pages, 0); 2086 } 2087 2088 void __init reset_all_zones_managed_pages(void) 2089 { 2090 struct pglist_data *pgdat; 2091 2092 if (reset_managed_pages_done) 2093 return; 2094 2095 for_each_online_pgdat(pgdat) 2096 reset_node_managed_pages(pgdat); 2097 2098 reset_managed_pages_done = 1; 2099 } 2100 2101 /** 2102 * memblock_free_all - release free pages to the buddy allocator 2103 */ 2104 void __init memblock_free_all(void) 2105 { 2106 unsigned long pages; 2107 2108 free_unused_memmap(); 2109 reset_all_zones_managed_pages(); 2110 2111 pages = free_low_memory_core_early(); 2112 totalram_pages_add(pages); 2113 } 2114 2115 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 2116 2117 static int memblock_debug_show(struct seq_file *m, void *private) 2118 { 2119 struct memblock_type *type = m->private; 2120 struct memblock_region *reg; 2121 int i; 2122 phys_addr_t end; 2123 2124 for (i = 0; i < type->cnt; i++) { 2125 reg = &type->regions[i]; 2126 end = reg->base + reg->size - 1; 2127 2128 seq_printf(m, "%4d: ", i); 2129 seq_printf(m, "%pa..%pa\n", ®->base, &end); 2130 } 2131 return 0; 2132 } 2133 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2134 2135 static int __init memblock_init_debugfs(void) 2136 { 2137 struct dentry *root = debugfs_create_dir("memblock", NULL); 2138 2139 debugfs_create_file("memory", 0444, root, 2140 &memblock.memory, &memblock_debug_fops); 2141 debugfs_create_file("reserved", 0444, root, 2142 &memblock.reserved, &memblock_debug_fops); 2143 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2144 debugfs_create_file("physmem", 0444, root, &physmem, 2145 &memblock_debug_fops); 2146 #endif 2147 2148 return 0; 2149 } 2150 __initcall(memblock_init_debugfs); 2151 2152 #endif /* CONFIG_DEBUG_FS */ 2153