1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for maintaining information about logical memory blocks. 4 * 5 * Peter Bergner, IBM Corp. June 2001. 6 * Copyright (C) 2001 Peter Bergner. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/init.h> 12 #include <linux/bitops.h> 13 #include <linux/poison.h> 14 #include <linux/pfn.h> 15 #include <linux/debugfs.h> 16 #include <linux/kmemleak.h> 17 #include <linux/seq_file.h> 18 #include <linux/memblock.h> 19 20 #include <asm/sections.h> 21 #include <linux/io.h> 22 23 #include "internal.h" 24 25 #define INIT_MEMBLOCK_REGIONS 128 26 #define INIT_PHYSMEM_REGIONS 4 27 28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 30 #endif 31 32 /** 33 * DOC: memblock overview 34 * 35 * Memblock is a method of managing memory regions during the early 36 * boot period when the usual kernel memory allocators are not up and 37 * running. 38 * 39 * Memblock views the system memory as collections of contiguous 40 * regions. There are several types of these collections: 41 * 42 * * ``memory`` - describes the physical memory available to the 43 * kernel; this may differ from the actual physical memory installed 44 * in the system, for instance when the memory is restricted with 45 * ``mem=`` command line parameter 46 * * ``reserved`` - describes the regions that were allocated 47 * * ``physmem`` - describes the actual physical memory available during 48 * boot regardless of the possible restrictions and memory hot(un)plug; 49 * the ``physmem`` type is only available on some architectures. 50 * 51 * Each region is represented by struct memblock_region that 52 * defines the region extents, its attributes and NUMA node id on NUMA 53 * systems. Every memory type is described by the struct memblock_type 54 * which contains an array of memory regions along with 55 * the allocator metadata. The "memory" and "reserved" types are nicely 56 * wrapped with struct memblock. This structure is statically 57 * initialized at build time. The region arrays are initially sized to 58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS 59 * for "reserved". The region array for "physmem" is initially sized to 60 * %INIT_PHYSMEM_REGIONS. 61 * The memblock_allow_resize() enables automatic resizing of the region 62 * arrays during addition of new regions. This feature should be used 63 * with care so that memory allocated for the region array will not 64 * overlap with areas that should be reserved, for example initrd. 65 * 66 * The early architecture setup should tell memblock what the physical 67 * memory layout is by using memblock_add() or memblock_add_node() 68 * functions. The first function does not assign the region to a NUMA 69 * node and it is appropriate for UMA systems. Yet, it is possible to 70 * use it on NUMA systems as well and assign the region to a NUMA node 71 * later in the setup process using memblock_set_node(). The 72 * memblock_add_node() performs such an assignment directly. 73 * 74 * Once memblock is setup the memory can be allocated using one of the 75 * API variants: 76 * 77 * * memblock_phys_alloc*() - these functions return the **physical** 78 * address of the allocated memory 79 * * memblock_alloc*() - these functions return the **virtual** address 80 * of the allocated memory. 81 * 82 * Note, that both API variants use implicit assumptions about allowed 83 * memory ranges and the fallback methods. Consult the documentation 84 * of memblock_alloc_internal() and memblock_alloc_range_nid() 85 * functions for more elaborate description. 86 * 87 * As the system boot progresses, the architecture specific mem_init() 88 * function frees all the memory to the buddy page allocator. 89 * 90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 91 * memblock data structures (except "physmem") will be discarded after the 92 * system initialization completes. 93 */ 94 95 #ifndef CONFIG_NUMA 96 struct pglist_data __refdata contig_page_data; 97 EXPORT_SYMBOL(contig_page_data); 98 #endif 99 100 unsigned long max_low_pfn; 101 unsigned long min_low_pfn; 102 unsigned long max_pfn; 103 unsigned long long max_possible_pfn; 104 105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; 109 #endif 110 111 struct memblock memblock __initdata_memblock = { 112 .memory.regions = memblock_memory_init_regions, 113 .memory.cnt = 1, /* empty dummy entry */ 114 .memory.max = INIT_MEMBLOCK_REGIONS, 115 .memory.name = "memory", 116 117 .reserved.regions = memblock_reserved_init_regions, 118 .reserved.cnt = 1, /* empty dummy entry */ 119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 120 .reserved.name = "reserved", 121 122 .bottom_up = false, 123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 124 }; 125 126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 127 struct memblock_type physmem = { 128 .regions = memblock_physmem_init_regions, 129 .cnt = 1, /* empty dummy entry */ 130 .max = INIT_PHYSMEM_REGIONS, 131 .name = "physmem", 132 }; 133 #endif 134 135 /* 136 * keep a pointer to &memblock.memory in the text section to use it in 137 * __next_mem_range() and its helpers. 138 * For architectures that do not keep memblock data after init, this 139 * pointer will be reset to NULL at memblock_discard() 140 */ 141 static __refdata struct memblock_type *memblock_memory = &memblock.memory; 142 143 #define for_each_memblock_type(i, memblock_type, rgn) \ 144 for (i = 0, rgn = &memblock_type->regions[0]; \ 145 i < memblock_type->cnt; \ 146 i++, rgn = &memblock_type->regions[i]) 147 148 #define memblock_dbg(fmt, ...) \ 149 do { \ 150 if (memblock_debug) \ 151 pr_info(fmt, ##__VA_ARGS__); \ 152 } while (0) 153 154 static int memblock_debug __initdata_memblock; 155 static bool system_has_some_mirror __initdata_memblock = false; 156 static int memblock_can_resize __initdata_memblock; 157 static int memblock_memory_in_slab __initdata_memblock = 0; 158 static int memblock_reserved_in_slab __initdata_memblock = 0; 159 160 static enum memblock_flags __init_memblock choose_memblock_flags(void) 161 { 162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 163 } 164 165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 167 { 168 return *size = min(*size, PHYS_ADDR_MAX - base); 169 } 170 171 /* 172 * Address comparison utilities 173 */ 174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 175 phys_addr_t base2, phys_addr_t size2) 176 { 177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 178 } 179 180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 181 phys_addr_t base, phys_addr_t size) 182 { 183 unsigned long i; 184 185 memblock_cap_size(base, &size); 186 187 for (i = 0; i < type->cnt; i++) 188 if (memblock_addrs_overlap(base, size, type->regions[i].base, 189 type->regions[i].size)) 190 break; 191 return i < type->cnt; 192 } 193 194 /** 195 * __memblock_find_range_bottom_up - find free area utility in bottom-up 196 * @start: start of candidate range 197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 198 * %MEMBLOCK_ALLOC_ACCESSIBLE 199 * @size: size of free area to find 200 * @align: alignment of free area to find 201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 202 * @flags: pick from blocks based on memory attributes 203 * 204 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 205 * 206 * Return: 207 * Found address on success, 0 on failure. 208 */ 209 static phys_addr_t __init_memblock 210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 211 phys_addr_t size, phys_addr_t align, int nid, 212 enum memblock_flags flags) 213 { 214 phys_addr_t this_start, this_end, cand; 215 u64 i; 216 217 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 218 this_start = clamp(this_start, start, end); 219 this_end = clamp(this_end, start, end); 220 221 cand = round_up(this_start, align); 222 if (cand < this_end && this_end - cand >= size) 223 return cand; 224 } 225 226 return 0; 227 } 228 229 /** 230 * __memblock_find_range_top_down - find free area utility, in top-down 231 * @start: start of candidate range 232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 233 * %MEMBLOCK_ALLOC_ACCESSIBLE 234 * @size: size of free area to find 235 * @align: alignment of free area to find 236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 237 * @flags: pick from blocks based on memory attributes 238 * 239 * Utility called from memblock_find_in_range_node(), find free area top-down. 240 * 241 * Return: 242 * Found address on success, 0 on failure. 243 */ 244 static phys_addr_t __init_memblock 245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 246 phys_addr_t size, phys_addr_t align, int nid, 247 enum memblock_flags flags) 248 { 249 phys_addr_t this_start, this_end, cand; 250 u64 i; 251 252 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 253 NULL) { 254 this_start = clamp(this_start, start, end); 255 this_end = clamp(this_end, start, end); 256 257 if (this_end < size) 258 continue; 259 260 cand = round_down(this_end - size, align); 261 if (cand >= this_start) 262 return cand; 263 } 264 265 return 0; 266 } 267 268 /** 269 * memblock_find_in_range_node - find free area in given range and node 270 * @size: size of free area to find 271 * @align: alignment of free area to find 272 * @start: start of candidate range 273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 274 * %MEMBLOCK_ALLOC_ACCESSIBLE 275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 276 * @flags: pick from blocks based on memory attributes 277 * 278 * Find @size free area aligned to @align in the specified range and node. 279 * 280 * Return: 281 * Found address on success, 0 on failure. 282 */ 283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 284 phys_addr_t align, phys_addr_t start, 285 phys_addr_t end, int nid, 286 enum memblock_flags flags) 287 { 288 /* pump up @end */ 289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 290 end == MEMBLOCK_ALLOC_KASAN) 291 end = memblock.current_limit; 292 293 /* avoid allocating the first page */ 294 start = max_t(phys_addr_t, start, PAGE_SIZE); 295 end = max(start, end); 296 297 if (memblock_bottom_up()) 298 return __memblock_find_range_bottom_up(start, end, size, align, 299 nid, flags); 300 else 301 return __memblock_find_range_top_down(start, end, size, align, 302 nid, flags); 303 } 304 305 /** 306 * memblock_find_in_range - find free area in given range 307 * @start: start of candidate range 308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 309 * %MEMBLOCK_ALLOC_ACCESSIBLE 310 * @size: size of free area to find 311 * @align: alignment of free area to find 312 * 313 * Find @size free area aligned to @align in the specified range. 314 * 315 * Return: 316 * Found address on success, 0 on failure. 317 */ 318 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 319 phys_addr_t end, phys_addr_t size, 320 phys_addr_t align) 321 { 322 phys_addr_t ret; 323 enum memblock_flags flags = choose_memblock_flags(); 324 325 again: 326 ret = memblock_find_in_range_node(size, align, start, end, 327 NUMA_NO_NODE, flags); 328 329 if (!ret && (flags & MEMBLOCK_MIRROR)) { 330 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 331 &size); 332 flags &= ~MEMBLOCK_MIRROR; 333 goto again; 334 } 335 336 return ret; 337 } 338 339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 340 { 341 type->total_size -= type->regions[r].size; 342 memmove(&type->regions[r], &type->regions[r + 1], 343 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 344 type->cnt--; 345 346 /* Special case for empty arrays */ 347 if (type->cnt == 0) { 348 WARN_ON(type->total_size != 0); 349 type->cnt = 1; 350 type->regions[0].base = 0; 351 type->regions[0].size = 0; 352 type->regions[0].flags = 0; 353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 354 } 355 } 356 357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 358 /** 359 * memblock_discard - discard memory and reserved arrays if they were allocated 360 */ 361 void __init memblock_discard(void) 362 { 363 phys_addr_t addr, size; 364 365 if (memblock.reserved.regions != memblock_reserved_init_regions) { 366 addr = __pa(memblock.reserved.regions); 367 size = PAGE_ALIGN(sizeof(struct memblock_region) * 368 memblock.reserved.max); 369 __memblock_free_late(addr, size); 370 } 371 372 if (memblock.memory.regions != memblock_memory_init_regions) { 373 addr = __pa(memblock.memory.regions); 374 size = PAGE_ALIGN(sizeof(struct memblock_region) * 375 memblock.memory.max); 376 __memblock_free_late(addr, size); 377 } 378 379 memblock_memory = NULL; 380 } 381 #endif 382 383 /** 384 * memblock_double_array - double the size of the memblock regions array 385 * @type: memblock type of the regions array being doubled 386 * @new_area_start: starting address of memory range to avoid overlap with 387 * @new_area_size: size of memory range to avoid overlap with 388 * 389 * Double the size of the @type regions array. If memblock is being used to 390 * allocate memory for a new reserved regions array and there is a previously 391 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 392 * waiting to be reserved, ensure the memory used by the new array does 393 * not overlap. 394 * 395 * Return: 396 * 0 on success, -1 on failure. 397 */ 398 static int __init_memblock memblock_double_array(struct memblock_type *type, 399 phys_addr_t new_area_start, 400 phys_addr_t new_area_size) 401 { 402 struct memblock_region *new_array, *old_array; 403 phys_addr_t old_alloc_size, new_alloc_size; 404 phys_addr_t old_size, new_size, addr, new_end; 405 int use_slab = slab_is_available(); 406 int *in_slab; 407 408 /* We don't allow resizing until we know about the reserved regions 409 * of memory that aren't suitable for allocation 410 */ 411 if (!memblock_can_resize) 412 return -1; 413 414 /* Calculate new doubled size */ 415 old_size = type->max * sizeof(struct memblock_region); 416 new_size = old_size << 1; 417 /* 418 * We need to allocated new one align to PAGE_SIZE, 419 * so we can free them completely later. 420 */ 421 old_alloc_size = PAGE_ALIGN(old_size); 422 new_alloc_size = PAGE_ALIGN(new_size); 423 424 /* Retrieve the slab flag */ 425 if (type == &memblock.memory) 426 in_slab = &memblock_memory_in_slab; 427 else 428 in_slab = &memblock_reserved_in_slab; 429 430 /* Try to find some space for it */ 431 if (use_slab) { 432 new_array = kmalloc(new_size, GFP_KERNEL); 433 addr = new_array ? __pa(new_array) : 0; 434 } else { 435 /* only exclude range when trying to double reserved.regions */ 436 if (type != &memblock.reserved) 437 new_area_start = new_area_size = 0; 438 439 addr = memblock_find_in_range(new_area_start + new_area_size, 440 memblock.current_limit, 441 new_alloc_size, PAGE_SIZE); 442 if (!addr && new_area_size) 443 addr = memblock_find_in_range(0, 444 min(new_area_start, memblock.current_limit), 445 new_alloc_size, PAGE_SIZE); 446 447 new_array = addr ? __va(addr) : NULL; 448 } 449 if (!addr) { 450 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 451 type->name, type->max, type->max * 2); 452 return -1; 453 } 454 455 new_end = addr + new_size - 1; 456 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 457 type->name, type->max * 2, &addr, &new_end); 458 459 /* 460 * Found space, we now need to move the array over before we add the 461 * reserved region since it may be our reserved array itself that is 462 * full. 463 */ 464 memcpy(new_array, type->regions, old_size); 465 memset(new_array + type->max, 0, old_size); 466 old_array = type->regions; 467 type->regions = new_array; 468 type->max <<= 1; 469 470 /* Free old array. We needn't free it if the array is the static one */ 471 if (*in_slab) 472 kfree(old_array); 473 else if (old_array != memblock_memory_init_regions && 474 old_array != memblock_reserved_init_regions) 475 memblock_free(__pa(old_array), old_alloc_size); 476 477 /* 478 * Reserve the new array if that comes from the memblock. Otherwise, we 479 * needn't do it 480 */ 481 if (!use_slab) 482 BUG_ON(memblock_reserve(addr, new_alloc_size)); 483 484 /* Update slab flag */ 485 *in_slab = use_slab; 486 487 return 0; 488 } 489 490 /** 491 * memblock_merge_regions - merge neighboring compatible regions 492 * @type: memblock type to scan 493 * 494 * Scan @type and merge neighboring compatible regions. 495 */ 496 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 497 { 498 int i = 0; 499 500 /* cnt never goes below 1 */ 501 while (i < type->cnt - 1) { 502 struct memblock_region *this = &type->regions[i]; 503 struct memblock_region *next = &type->regions[i + 1]; 504 505 if (this->base + this->size != next->base || 506 memblock_get_region_node(this) != 507 memblock_get_region_node(next) || 508 this->flags != next->flags) { 509 BUG_ON(this->base + this->size > next->base); 510 i++; 511 continue; 512 } 513 514 this->size += next->size; 515 /* move forward from next + 1, index of which is i + 2 */ 516 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 517 type->cnt--; 518 } 519 } 520 521 /** 522 * memblock_insert_region - insert new memblock region 523 * @type: memblock type to insert into 524 * @idx: index for the insertion point 525 * @base: base address of the new region 526 * @size: size of the new region 527 * @nid: node id of the new region 528 * @flags: flags of the new region 529 * 530 * Insert new memblock region [@base, @base + @size) into @type at @idx. 531 * @type must already have extra room to accommodate the new region. 532 */ 533 static void __init_memblock memblock_insert_region(struct memblock_type *type, 534 int idx, phys_addr_t base, 535 phys_addr_t size, 536 int nid, 537 enum memblock_flags flags) 538 { 539 struct memblock_region *rgn = &type->regions[idx]; 540 541 BUG_ON(type->cnt >= type->max); 542 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 543 rgn->base = base; 544 rgn->size = size; 545 rgn->flags = flags; 546 memblock_set_region_node(rgn, nid); 547 type->cnt++; 548 type->total_size += size; 549 } 550 551 /** 552 * memblock_add_range - add new memblock region 553 * @type: memblock type to add new region into 554 * @base: base address of the new region 555 * @size: size of the new region 556 * @nid: nid of the new region 557 * @flags: flags of the new region 558 * 559 * Add new memblock region [@base, @base + @size) into @type. The new region 560 * is allowed to overlap with existing ones - overlaps don't affect already 561 * existing regions. @type is guaranteed to be minimal (all neighbouring 562 * compatible regions are merged) after the addition. 563 * 564 * Return: 565 * 0 on success, -errno on failure. 566 */ 567 static int __init_memblock memblock_add_range(struct memblock_type *type, 568 phys_addr_t base, phys_addr_t size, 569 int nid, enum memblock_flags flags) 570 { 571 bool insert = false; 572 phys_addr_t obase = base; 573 phys_addr_t end = base + memblock_cap_size(base, &size); 574 int idx, nr_new; 575 struct memblock_region *rgn; 576 577 if (!size) 578 return 0; 579 580 /* special case for empty array */ 581 if (type->regions[0].size == 0) { 582 WARN_ON(type->cnt != 1 || type->total_size); 583 type->regions[0].base = base; 584 type->regions[0].size = size; 585 type->regions[0].flags = flags; 586 memblock_set_region_node(&type->regions[0], nid); 587 type->total_size = size; 588 return 0; 589 } 590 repeat: 591 /* 592 * The following is executed twice. Once with %false @insert and 593 * then with %true. The first counts the number of regions needed 594 * to accommodate the new area. The second actually inserts them. 595 */ 596 base = obase; 597 nr_new = 0; 598 599 for_each_memblock_type(idx, type, rgn) { 600 phys_addr_t rbase = rgn->base; 601 phys_addr_t rend = rbase + rgn->size; 602 603 if (rbase >= end) 604 break; 605 if (rend <= base) 606 continue; 607 /* 608 * @rgn overlaps. If it separates the lower part of new 609 * area, insert that portion. 610 */ 611 if (rbase > base) { 612 #ifdef CONFIG_NUMA 613 WARN_ON(nid != memblock_get_region_node(rgn)); 614 #endif 615 WARN_ON(flags != rgn->flags); 616 nr_new++; 617 if (insert) 618 memblock_insert_region(type, idx++, base, 619 rbase - base, nid, 620 flags); 621 } 622 /* area below @rend is dealt with, forget about it */ 623 base = min(rend, end); 624 } 625 626 /* insert the remaining portion */ 627 if (base < end) { 628 nr_new++; 629 if (insert) 630 memblock_insert_region(type, idx, base, end - base, 631 nid, flags); 632 } 633 634 if (!nr_new) 635 return 0; 636 637 /* 638 * If this was the first round, resize array and repeat for actual 639 * insertions; otherwise, merge and return. 640 */ 641 if (!insert) { 642 while (type->cnt + nr_new > type->max) 643 if (memblock_double_array(type, obase, size) < 0) 644 return -ENOMEM; 645 insert = true; 646 goto repeat; 647 } else { 648 memblock_merge_regions(type); 649 return 0; 650 } 651 } 652 653 /** 654 * memblock_add_node - add new memblock region within a NUMA node 655 * @base: base address of the new region 656 * @size: size of the new region 657 * @nid: nid of the new region 658 * 659 * Add new memblock region [@base, @base + @size) to the "memory" 660 * type. See memblock_add_range() description for mode details 661 * 662 * Return: 663 * 0 on success, -errno on failure. 664 */ 665 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 666 int nid) 667 { 668 return memblock_add_range(&memblock.memory, base, size, nid, 0); 669 } 670 671 /** 672 * memblock_add - add new memblock region 673 * @base: base address of the new region 674 * @size: size of the new region 675 * 676 * Add new memblock region [@base, @base + @size) to the "memory" 677 * type. See memblock_add_range() description for mode details 678 * 679 * Return: 680 * 0 on success, -errno on failure. 681 */ 682 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 683 { 684 phys_addr_t end = base + size - 1; 685 686 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 687 &base, &end, (void *)_RET_IP_); 688 689 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 690 } 691 692 /** 693 * memblock_isolate_range - isolate given range into disjoint memblocks 694 * @type: memblock type to isolate range for 695 * @base: base of range to isolate 696 * @size: size of range to isolate 697 * @start_rgn: out parameter for the start of isolated region 698 * @end_rgn: out parameter for the end of isolated region 699 * 700 * Walk @type and ensure that regions don't cross the boundaries defined by 701 * [@base, @base + @size). Crossing regions are split at the boundaries, 702 * which may create at most two more regions. The index of the first 703 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 704 * 705 * Return: 706 * 0 on success, -errno on failure. 707 */ 708 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 709 phys_addr_t base, phys_addr_t size, 710 int *start_rgn, int *end_rgn) 711 { 712 phys_addr_t end = base + memblock_cap_size(base, &size); 713 int idx; 714 struct memblock_region *rgn; 715 716 *start_rgn = *end_rgn = 0; 717 718 if (!size) 719 return 0; 720 721 /* we'll create at most two more regions */ 722 while (type->cnt + 2 > type->max) 723 if (memblock_double_array(type, base, size) < 0) 724 return -ENOMEM; 725 726 for_each_memblock_type(idx, type, rgn) { 727 phys_addr_t rbase = rgn->base; 728 phys_addr_t rend = rbase + rgn->size; 729 730 if (rbase >= end) 731 break; 732 if (rend <= base) 733 continue; 734 735 if (rbase < base) { 736 /* 737 * @rgn intersects from below. Split and continue 738 * to process the next region - the new top half. 739 */ 740 rgn->base = base; 741 rgn->size -= base - rbase; 742 type->total_size -= base - rbase; 743 memblock_insert_region(type, idx, rbase, base - rbase, 744 memblock_get_region_node(rgn), 745 rgn->flags); 746 } else if (rend > end) { 747 /* 748 * @rgn intersects from above. Split and redo the 749 * current region - the new bottom half. 750 */ 751 rgn->base = end; 752 rgn->size -= end - rbase; 753 type->total_size -= end - rbase; 754 memblock_insert_region(type, idx--, rbase, end - rbase, 755 memblock_get_region_node(rgn), 756 rgn->flags); 757 } else { 758 /* @rgn is fully contained, record it */ 759 if (!*end_rgn) 760 *start_rgn = idx; 761 *end_rgn = idx + 1; 762 } 763 } 764 765 return 0; 766 } 767 768 static int __init_memblock memblock_remove_range(struct memblock_type *type, 769 phys_addr_t base, phys_addr_t size) 770 { 771 int start_rgn, end_rgn; 772 int i, ret; 773 774 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 775 if (ret) 776 return ret; 777 778 for (i = end_rgn - 1; i >= start_rgn; i--) 779 memblock_remove_region(type, i); 780 return 0; 781 } 782 783 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 784 { 785 phys_addr_t end = base + size - 1; 786 787 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 788 &base, &end, (void *)_RET_IP_); 789 790 return memblock_remove_range(&memblock.memory, base, size); 791 } 792 793 /** 794 * memblock_free - free boot memory block 795 * @base: phys starting address of the boot memory block 796 * @size: size of the boot memory block in bytes 797 * 798 * Free boot memory block previously allocated by memblock_alloc_xx() API. 799 * The freeing memory will not be released to the buddy allocator. 800 */ 801 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 802 { 803 phys_addr_t end = base + size - 1; 804 805 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 806 &base, &end, (void *)_RET_IP_); 807 808 kmemleak_free_part_phys(base, size); 809 return memblock_remove_range(&memblock.reserved, base, size); 810 } 811 812 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 813 { 814 phys_addr_t end = base + size - 1; 815 816 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 817 &base, &end, (void *)_RET_IP_); 818 819 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 820 } 821 822 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 823 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) 824 { 825 phys_addr_t end = base + size - 1; 826 827 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 828 &base, &end, (void *)_RET_IP_); 829 830 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); 831 } 832 #endif 833 834 /** 835 * memblock_setclr_flag - set or clear flag for a memory region 836 * @base: base address of the region 837 * @size: size of the region 838 * @set: set or clear the flag 839 * @flag: the flag to update 840 * 841 * This function isolates region [@base, @base + @size), and sets/clears flag 842 * 843 * Return: 0 on success, -errno on failure. 844 */ 845 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 846 phys_addr_t size, int set, int flag) 847 { 848 struct memblock_type *type = &memblock.memory; 849 int i, ret, start_rgn, end_rgn; 850 851 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 852 if (ret) 853 return ret; 854 855 for (i = start_rgn; i < end_rgn; i++) { 856 struct memblock_region *r = &type->regions[i]; 857 858 if (set) 859 r->flags |= flag; 860 else 861 r->flags &= ~flag; 862 } 863 864 memblock_merge_regions(type); 865 return 0; 866 } 867 868 /** 869 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 870 * @base: the base phys addr of the region 871 * @size: the size of the region 872 * 873 * Return: 0 on success, -errno on failure. 874 */ 875 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 876 { 877 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 878 } 879 880 /** 881 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 882 * @base: the base phys addr of the region 883 * @size: the size of the region 884 * 885 * Return: 0 on success, -errno on failure. 886 */ 887 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 888 { 889 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 890 } 891 892 /** 893 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 894 * @base: the base phys addr of the region 895 * @size: the size of the region 896 * 897 * Return: 0 on success, -errno on failure. 898 */ 899 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 900 { 901 system_has_some_mirror = true; 902 903 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 904 } 905 906 /** 907 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 908 * @base: the base phys addr of the region 909 * @size: the size of the region 910 * 911 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the 912 * direct mapping of the physical memory. These regions will still be 913 * covered by the memory map. The struct page representing NOMAP memory 914 * frames in the memory map will be PageReserved() 915 * 916 * Return: 0 on success, -errno on failure. 917 */ 918 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 919 { 920 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 921 } 922 923 /** 924 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 925 * @base: the base phys addr of the region 926 * @size: the size of the region 927 * 928 * Return: 0 on success, -errno on failure. 929 */ 930 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 931 { 932 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 933 } 934 935 static bool should_skip_region(struct memblock_type *type, 936 struct memblock_region *m, 937 int nid, int flags) 938 { 939 int m_nid = memblock_get_region_node(m); 940 941 /* we never skip regions when iterating memblock.reserved or physmem */ 942 if (type != memblock_memory) 943 return false; 944 945 /* only memory regions are associated with nodes, check it */ 946 if (nid != NUMA_NO_NODE && nid != m_nid) 947 return true; 948 949 /* skip hotpluggable memory regions if needed */ 950 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) && 951 !(flags & MEMBLOCK_HOTPLUG)) 952 return true; 953 954 /* if we want mirror memory skip non-mirror memory regions */ 955 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 956 return true; 957 958 /* skip nomap memory unless we were asked for it explicitly */ 959 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 960 return true; 961 962 return false; 963 } 964 965 /** 966 * __next_mem_range - next function for for_each_free_mem_range() etc. 967 * @idx: pointer to u64 loop variable 968 * @nid: node selector, %NUMA_NO_NODE for all nodes 969 * @flags: pick from blocks based on memory attributes 970 * @type_a: pointer to memblock_type from where the range is taken 971 * @type_b: pointer to memblock_type which excludes memory from being taken 972 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 973 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 974 * @out_nid: ptr to int for nid of the range, can be %NULL 975 * 976 * Find the first area from *@idx which matches @nid, fill the out 977 * parameters, and update *@idx for the next iteration. The lower 32bit of 978 * *@idx contains index into type_a and the upper 32bit indexes the 979 * areas before each region in type_b. For example, if type_b regions 980 * look like the following, 981 * 982 * 0:[0-16), 1:[32-48), 2:[128-130) 983 * 984 * The upper 32bit indexes the following regions. 985 * 986 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 987 * 988 * As both region arrays are sorted, the function advances the two indices 989 * in lockstep and returns each intersection. 990 */ 991 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 992 struct memblock_type *type_a, 993 struct memblock_type *type_b, phys_addr_t *out_start, 994 phys_addr_t *out_end, int *out_nid) 995 { 996 int idx_a = *idx & 0xffffffff; 997 int idx_b = *idx >> 32; 998 999 if (WARN_ONCE(nid == MAX_NUMNODES, 1000 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1001 nid = NUMA_NO_NODE; 1002 1003 for (; idx_a < type_a->cnt; idx_a++) { 1004 struct memblock_region *m = &type_a->regions[idx_a]; 1005 1006 phys_addr_t m_start = m->base; 1007 phys_addr_t m_end = m->base + m->size; 1008 int m_nid = memblock_get_region_node(m); 1009 1010 if (should_skip_region(type_a, m, nid, flags)) 1011 continue; 1012 1013 if (!type_b) { 1014 if (out_start) 1015 *out_start = m_start; 1016 if (out_end) 1017 *out_end = m_end; 1018 if (out_nid) 1019 *out_nid = m_nid; 1020 idx_a++; 1021 *idx = (u32)idx_a | (u64)idx_b << 32; 1022 return; 1023 } 1024 1025 /* scan areas before each reservation */ 1026 for (; idx_b < type_b->cnt + 1; idx_b++) { 1027 struct memblock_region *r; 1028 phys_addr_t r_start; 1029 phys_addr_t r_end; 1030 1031 r = &type_b->regions[idx_b]; 1032 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1033 r_end = idx_b < type_b->cnt ? 1034 r->base : PHYS_ADDR_MAX; 1035 1036 /* 1037 * if idx_b advanced past idx_a, 1038 * break out to advance idx_a 1039 */ 1040 if (r_start >= m_end) 1041 break; 1042 /* if the two regions intersect, we're done */ 1043 if (m_start < r_end) { 1044 if (out_start) 1045 *out_start = 1046 max(m_start, r_start); 1047 if (out_end) 1048 *out_end = min(m_end, r_end); 1049 if (out_nid) 1050 *out_nid = m_nid; 1051 /* 1052 * The region which ends first is 1053 * advanced for the next iteration. 1054 */ 1055 if (m_end <= r_end) 1056 idx_a++; 1057 else 1058 idx_b++; 1059 *idx = (u32)idx_a | (u64)idx_b << 32; 1060 return; 1061 } 1062 } 1063 } 1064 1065 /* signal end of iteration */ 1066 *idx = ULLONG_MAX; 1067 } 1068 1069 /** 1070 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1071 * 1072 * @idx: pointer to u64 loop variable 1073 * @nid: node selector, %NUMA_NO_NODE for all nodes 1074 * @flags: pick from blocks based on memory attributes 1075 * @type_a: pointer to memblock_type from where the range is taken 1076 * @type_b: pointer to memblock_type which excludes memory from being taken 1077 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1078 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1079 * @out_nid: ptr to int for nid of the range, can be %NULL 1080 * 1081 * Finds the next range from type_a which is not marked as unsuitable 1082 * in type_b. 1083 * 1084 * Reverse of __next_mem_range(). 1085 */ 1086 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1087 enum memblock_flags flags, 1088 struct memblock_type *type_a, 1089 struct memblock_type *type_b, 1090 phys_addr_t *out_start, 1091 phys_addr_t *out_end, int *out_nid) 1092 { 1093 int idx_a = *idx & 0xffffffff; 1094 int idx_b = *idx >> 32; 1095 1096 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1097 nid = NUMA_NO_NODE; 1098 1099 if (*idx == (u64)ULLONG_MAX) { 1100 idx_a = type_a->cnt - 1; 1101 if (type_b != NULL) 1102 idx_b = type_b->cnt; 1103 else 1104 idx_b = 0; 1105 } 1106 1107 for (; idx_a >= 0; idx_a--) { 1108 struct memblock_region *m = &type_a->regions[idx_a]; 1109 1110 phys_addr_t m_start = m->base; 1111 phys_addr_t m_end = m->base + m->size; 1112 int m_nid = memblock_get_region_node(m); 1113 1114 if (should_skip_region(type_a, m, nid, flags)) 1115 continue; 1116 1117 if (!type_b) { 1118 if (out_start) 1119 *out_start = m_start; 1120 if (out_end) 1121 *out_end = m_end; 1122 if (out_nid) 1123 *out_nid = m_nid; 1124 idx_a--; 1125 *idx = (u32)idx_a | (u64)idx_b << 32; 1126 return; 1127 } 1128 1129 /* scan areas before each reservation */ 1130 for (; idx_b >= 0; idx_b--) { 1131 struct memblock_region *r; 1132 phys_addr_t r_start; 1133 phys_addr_t r_end; 1134 1135 r = &type_b->regions[idx_b]; 1136 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1137 r_end = idx_b < type_b->cnt ? 1138 r->base : PHYS_ADDR_MAX; 1139 /* 1140 * if idx_b advanced past idx_a, 1141 * break out to advance idx_a 1142 */ 1143 1144 if (r_end <= m_start) 1145 break; 1146 /* if the two regions intersect, we're done */ 1147 if (m_end > r_start) { 1148 if (out_start) 1149 *out_start = max(m_start, r_start); 1150 if (out_end) 1151 *out_end = min(m_end, r_end); 1152 if (out_nid) 1153 *out_nid = m_nid; 1154 if (m_start >= r_start) 1155 idx_a--; 1156 else 1157 idx_b--; 1158 *idx = (u32)idx_a | (u64)idx_b << 32; 1159 return; 1160 } 1161 } 1162 } 1163 /* signal end of iteration */ 1164 *idx = ULLONG_MAX; 1165 } 1166 1167 /* 1168 * Common iterator interface used to define for_each_mem_pfn_range(). 1169 */ 1170 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1171 unsigned long *out_start_pfn, 1172 unsigned long *out_end_pfn, int *out_nid) 1173 { 1174 struct memblock_type *type = &memblock.memory; 1175 struct memblock_region *r; 1176 int r_nid; 1177 1178 while (++*idx < type->cnt) { 1179 r = &type->regions[*idx]; 1180 r_nid = memblock_get_region_node(r); 1181 1182 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1183 continue; 1184 if (nid == MAX_NUMNODES || nid == r_nid) 1185 break; 1186 } 1187 if (*idx >= type->cnt) { 1188 *idx = -1; 1189 return; 1190 } 1191 1192 if (out_start_pfn) 1193 *out_start_pfn = PFN_UP(r->base); 1194 if (out_end_pfn) 1195 *out_end_pfn = PFN_DOWN(r->base + r->size); 1196 if (out_nid) 1197 *out_nid = r_nid; 1198 } 1199 1200 /** 1201 * memblock_set_node - set node ID on memblock regions 1202 * @base: base of area to set node ID for 1203 * @size: size of area to set node ID for 1204 * @type: memblock type to set node ID for 1205 * @nid: node ID to set 1206 * 1207 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1208 * Regions which cross the area boundaries are split as necessary. 1209 * 1210 * Return: 1211 * 0 on success, -errno on failure. 1212 */ 1213 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1214 struct memblock_type *type, int nid) 1215 { 1216 #ifdef CONFIG_NUMA 1217 int start_rgn, end_rgn; 1218 int i, ret; 1219 1220 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1221 if (ret) 1222 return ret; 1223 1224 for (i = start_rgn; i < end_rgn; i++) 1225 memblock_set_region_node(&type->regions[i], nid); 1226 1227 memblock_merge_regions(type); 1228 #endif 1229 return 0; 1230 } 1231 1232 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1233 /** 1234 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() 1235 * 1236 * @idx: pointer to u64 loop variable 1237 * @zone: zone in which all of the memory blocks reside 1238 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL 1239 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL 1240 * 1241 * This function is meant to be a zone/pfn specific wrapper for the 1242 * for_each_mem_range type iterators. Specifically they are used in the 1243 * deferred memory init routines and as such we were duplicating much of 1244 * this logic throughout the code. So instead of having it in multiple 1245 * locations it seemed like it would make more sense to centralize this to 1246 * one new iterator that does everything they need. 1247 */ 1248 void __init_memblock 1249 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 1250 unsigned long *out_spfn, unsigned long *out_epfn) 1251 { 1252 int zone_nid = zone_to_nid(zone); 1253 phys_addr_t spa, epa; 1254 int nid; 1255 1256 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1257 &memblock.memory, &memblock.reserved, 1258 &spa, &epa, &nid); 1259 1260 while (*idx != U64_MAX) { 1261 unsigned long epfn = PFN_DOWN(epa); 1262 unsigned long spfn = PFN_UP(spa); 1263 1264 /* 1265 * Verify the end is at least past the start of the zone and 1266 * that we have at least one PFN to initialize. 1267 */ 1268 if (zone->zone_start_pfn < epfn && spfn < epfn) { 1269 /* if we went too far just stop searching */ 1270 if (zone_end_pfn(zone) <= spfn) { 1271 *idx = U64_MAX; 1272 break; 1273 } 1274 1275 if (out_spfn) 1276 *out_spfn = max(zone->zone_start_pfn, spfn); 1277 if (out_epfn) 1278 *out_epfn = min(zone_end_pfn(zone), epfn); 1279 1280 return; 1281 } 1282 1283 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1284 &memblock.memory, &memblock.reserved, 1285 &spa, &epa, &nid); 1286 } 1287 1288 /* signal end of iteration */ 1289 if (out_spfn) 1290 *out_spfn = ULONG_MAX; 1291 if (out_epfn) 1292 *out_epfn = 0; 1293 } 1294 1295 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1296 1297 /** 1298 * memblock_alloc_range_nid - allocate boot memory block 1299 * @size: size of memory block to be allocated in bytes 1300 * @align: alignment of the region and block's size 1301 * @start: the lower bound of the memory region to allocate (phys address) 1302 * @end: the upper bound of the memory region to allocate (phys address) 1303 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1304 * @exact_nid: control the allocation fall back to other nodes 1305 * 1306 * The allocation is performed from memory region limited by 1307 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. 1308 * 1309 * If the specified node can not hold the requested memory and @exact_nid 1310 * is false, the allocation falls back to any node in the system. 1311 * 1312 * For systems with memory mirroring, the allocation is attempted first 1313 * from the regions with mirroring enabled and then retried from any 1314 * memory region. 1315 * 1316 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for 1317 * allocated boot memory block, so that it is never reported as leaks. 1318 * 1319 * Return: 1320 * Physical address of allocated memory block on success, %0 on failure. 1321 */ 1322 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1323 phys_addr_t align, phys_addr_t start, 1324 phys_addr_t end, int nid, 1325 bool exact_nid) 1326 { 1327 enum memblock_flags flags = choose_memblock_flags(); 1328 phys_addr_t found; 1329 1330 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1331 nid = NUMA_NO_NODE; 1332 1333 if (!align) { 1334 /* Can't use WARNs this early in boot on powerpc */ 1335 dump_stack(); 1336 align = SMP_CACHE_BYTES; 1337 } 1338 1339 again: 1340 found = memblock_find_in_range_node(size, align, start, end, nid, 1341 flags); 1342 if (found && !memblock_reserve(found, size)) 1343 goto done; 1344 1345 if (nid != NUMA_NO_NODE && !exact_nid) { 1346 found = memblock_find_in_range_node(size, align, start, 1347 end, NUMA_NO_NODE, 1348 flags); 1349 if (found && !memblock_reserve(found, size)) 1350 goto done; 1351 } 1352 1353 if (flags & MEMBLOCK_MIRROR) { 1354 flags &= ~MEMBLOCK_MIRROR; 1355 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1356 &size); 1357 goto again; 1358 } 1359 1360 return 0; 1361 1362 done: 1363 /* Skip kmemleak for kasan_init() due to high volume. */ 1364 if (end != MEMBLOCK_ALLOC_KASAN) 1365 /* 1366 * The min_count is set to 0 so that memblock allocated 1367 * blocks are never reported as leaks. This is because many 1368 * of these blocks are only referred via the physical 1369 * address which is not looked up by kmemleak. 1370 */ 1371 kmemleak_alloc_phys(found, size, 0, 0); 1372 1373 return found; 1374 } 1375 1376 /** 1377 * memblock_phys_alloc_range - allocate a memory block inside specified range 1378 * @size: size of memory block to be allocated in bytes 1379 * @align: alignment of the region and block's size 1380 * @start: the lower bound of the memory region to allocate (physical address) 1381 * @end: the upper bound of the memory region to allocate (physical address) 1382 * 1383 * Allocate @size bytes in the between @start and @end. 1384 * 1385 * Return: physical address of the allocated memory block on success, 1386 * %0 on failure. 1387 */ 1388 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1389 phys_addr_t align, 1390 phys_addr_t start, 1391 phys_addr_t end) 1392 { 1393 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", 1394 __func__, (u64)size, (u64)align, &start, &end, 1395 (void *)_RET_IP_); 1396 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1397 false); 1398 } 1399 1400 /** 1401 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node 1402 * @size: size of memory block to be allocated in bytes 1403 * @align: alignment of the region and block's size 1404 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1405 * 1406 * Allocates memory block from the specified NUMA node. If the node 1407 * has no available memory, attempts to allocated from any node in the 1408 * system. 1409 * 1410 * Return: physical address of the allocated memory block on success, 1411 * %0 on failure. 1412 */ 1413 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1414 { 1415 return memblock_alloc_range_nid(size, align, 0, 1416 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); 1417 } 1418 1419 /** 1420 * memblock_alloc_internal - allocate boot memory block 1421 * @size: size of memory block to be allocated in bytes 1422 * @align: alignment of the region and block's size 1423 * @min_addr: the lower bound of the memory region to allocate (phys address) 1424 * @max_addr: the upper bound of the memory region to allocate (phys address) 1425 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1426 * @exact_nid: control the allocation fall back to other nodes 1427 * 1428 * Allocates memory block using memblock_alloc_range_nid() and 1429 * converts the returned physical address to virtual. 1430 * 1431 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1432 * will fall back to memory below @min_addr. Other constraints, such 1433 * as node and mirrored memory will be handled again in 1434 * memblock_alloc_range_nid(). 1435 * 1436 * Return: 1437 * Virtual address of allocated memory block on success, NULL on failure. 1438 */ 1439 static void * __init memblock_alloc_internal( 1440 phys_addr_t size, phys_addr_t align, 1441 phys_addr_t min_addr, phys_addr_t max_addr, 1442 int nid, bool exact_nid) 1443 { 1444 phys_addr_t alloc; 1445 1446 /* 1447 * Detect any accidental use of these APIs after slab is ready, as at 1448 * this moment memblock may be deinitialized already and its 1449 * internal data may be destroyed (after execution of memblock_free_all) 1450 */ 1451 if (WARN_ON_ONCE(slab_is_available())) 1452 return kzalloc_node(size, GFP_NOWAIT, nid); 1453 1454 if (max_addr > memblock.current_limit) 1455 max_addr = memblock.current_limit; 1456 1457 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, 1458 exact_nid); 1459 1460 /* retry allocation without lower limit */ 1461 if (!alloc && min_addr) 1462 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, 1463 exact_nid); 1464 1465 if (!alloc) 1466 return NULL; 1467 1468 return phys_to_virt(alloc); 1469 } 1470 1471 /** 1472 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node 1473 * without zeroing memory 1474 * @size: size of memory block to be allocated in bytes 1475 * @align: alignment of the region and block's size 1476 * @min_addr: the lower bound of the memory region from where the allocation 1477 * is preferred (phys address) 1478 * @max_addr: the upper bound of the memory region from where the allocation 1479 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1480 * allocate only from memory limited by memblock.current_limit value 1481 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1482 * 1483 * Public function, provides additional debug information (including caller 1484 * info), if enabled. Does not zero allocated memory. 1485 * 1486 * Return: 1487 * Virtual address of allocated memory block on success, NULL on failure. 1488 */ 1489 void * __init memblock_alloc_exact_nid_raw( 1490 phys_addr_t size, phys_addr_t align, 1491 phys_addr_t min_addr, phys_addr_t max_addr, 1492 int nid) 1493 { 1494 void *ptr; 1495 1496 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1497 __func__, (u64)size, (u64)align, nid, &min_addr, 1498 &max_addr, (void *)_RET_IP_); 1499 1500 ptr = memblock_alloc_internal(size, align, 1501 min_addr, max_addr, nid, true); 1502 if (ptr && size > 0) 1503 page_init_poison(ptr, size); 1504 1505 return ptr; 1506 } 1507 1508 /** 1509 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1510 * memory and without panicking 1511 * @size: size of memory block to be allocated in bytes 1512 * @align: alignment of the region and block's size 1513 * @min_addr: the lower bound of the memory region from where the allocation 1514 * is preferred (phys address) 1515 * @max_addr: the upper bound of the memory region from where the allocation 1516 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1517 * allocate only from memory limited by memblock.current_limit value 1518 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1519 * 1520 * Public function, provides additional debug information (including caller 1521 * info), if enabled. Does not zero allocated memory, does not panic if request 1522 * cannot be satisfied. 1523 * 1524 * Return: 1525 * Virtual address of allocated memory block on success, NULL on failure. 1526 */ 1527 void * __init memblock_alloc_try_nid_raw( 1528 phys_addr_t size, phys_addr_t align, 1529 phys_addr_t min_addr, phys_addr_t max_addr, 1530 int nid) 1531 { 1532 void *ptr; 1533 1534 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1535 __func__, (u64)size, (u64)align, nid, &min_addr, 1536 &max_addr, (void *)_RET_IP_); 1537 1538 ptr = memblock_alloc_internal(size, align, 1539 min_addr, max_addr, nid, false); 1540 if (ptr && size > 0) 1541 page_init_poison(ptr, size); 1542 1543 return ptr; 1544 } 1545 1546 /** 1547 * memblock_alloc_try_nid - allocate boot memory block 1548 * @size: size of memory block to be allocated in bytes 1549 * @align: alignment of the region and block's size 1550 * @min_addr: the lower bound of the memory region from where the allocation 1551 * is preferred (phys address) 1552 * @max_addr: the upper bound of the memory region from where the allocation 1553 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1554 * allocate only from memory limited by memblock.current_limit value 1555 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1556 * 1557 * Public function, provides additional debug information (including caller 1558 * info), if enabled. This function zeroes the allocated memory. 1559 * 1560 * Return: 1561 * Virtual address of allocated memory block on success, NULL on failure. 1562 */ 1563 void * __init memblock_alloc_try_nid( 1564 phys_addr_t size, phys_addr_t align, 1565 phys_addr_t min_addr, phys_addr_t max_addr, 1566 int nid) 1567 { 1568 void *ptr; 1569 1570 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1571 __func__, (u64)size, (u64)align, nid, &min_addr, 1572 &max_addr, (void *)_RET_IP_); 1573 ptr = memblock_alloc_internal(size, align, 1574 min_addr, max_addr, nid, false); 1575 if (ptr) 1576 memset(ptr, 0, size); 1577 1578 return ptr; 1579 } 1580 1581 /** 1582 * __memblock_free_late - free pages directly to buddy allocator 1583 * @base: phys starting address of the boot memory block 1584 * @size: size of the boot memory block in bytes 1585 * 1586 * This is only useful when the memblock allocator has already been torn 1587 * down, but we are still initializing the system. Pages are released directly 1588 * to the buddy allocator. 1589 */ 1590 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1591 { 1592 phys_addr_t cursor, end; 1593 1594 end = base + size - 1; 1595 memblock_dbg("%s: [%pa-%pa] %pS\n", 1596 __func__, &base, &end, (void *)_RET_IP_); 1597 kmemleak_free_part_phys(base, size); 1598 cursor = PFN_UP(base); 1599 end = PFN_DOWN(base + size); 1600 1601 for (; cursor < end; cursor++) { 1602 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1603 totalram_pages_inc(); 1604 } 1605 } 1606 1607 /* 1608 * Remaining API functions 1609 */ 1610 1611 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1612 { 1613 return memblock.memory.total_size; 1614 } 1615 1616 phys_addr_t __init_memblock memblock_reserved_size(void) 1617 { 1618 return memblock.reserved.total_size; 1619 } 1620 1621 /* lowest address */ 1622 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1623 { 1624 return memblock.memory.regions[0].base; 1625 } 1626 1627 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1628 { 1629 int idx = memblock.memory.cnt - 1; 1630 1631 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1632 } 1633 1634 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1635 { 1636 phys_addr_t max_addr = PHYS_ADDR_MAX; 1637 struct memblock_region *r; 1638 1639 /* 1640 * translate the memory @limit size into the max address within one of 1641 * the memory memblock regions, if the @limit exceeds the total size 1642 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1643 */ 1644 for_each_mem_region(r) { 1645 if (limit <= r->size) { 1646 max_addr = r->base + limit; 1647 break; 1648 } 1649 limit -= r->size; 1650 } 1651 1652 return max_addr; 1653 } 1654 1655 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1656 { 1657 phys_addr_t max_addr; 1658 1659 if (!limit) 1660 return; 1661 1662 max_addr = __find_max_addr(limit); 1663 1664 /* @limit exceeds the total size of the memory, do nothing */ 1665 if (max_addr == PHYS_ADDR_MAX) 1666 return; 1667 1668 /* truncate both memory and reserved regions */ 1669 memblock_remove_range(&memblock.memory, max_addr, 1670 PHYS_ADDR_MAX); 1671 memblock_remove_range(&memblock.reserved, max_addr, 1672 PHYS_ADDR_MAX); 1673 } 1674 1675 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1676 { 1677 int start_rgn, end_rgn; 1678 int i, ret; 1679 1680 if (!size) 1681 return; 1682 1683 ret = memblock_isolate_range(&memblock.memory, base, size, 1684 &start_rgn, &end_rgn); 1685 if (ret) 1686 return; 1687 1688 /* remove all the MAP regions */ 1689 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1690 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1691 memblock_remove_region(&memblock.memory, i); 1692 1693 for (i = start_rgn - 1; i >= 0; i--) 1694 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1695 memblock_remove_region(&memblock.memory, i); 1696 1697 /* truncate the reserved regions */ 1698 memblock_remove_range(&memblock.reserved, 0, base); 1699 memblock_remove_range(&memblock.reserved, 1700 base + size, PHYS_ADDR_MAX); 1701 } 1702 1703 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1704 { 1705 phys_addr_t max_addr; 1706 1707 if (!limit) 1708 return; 1709 1710 max_addr = __find_max_addr(limit); 1711 1712 /* @limit exceeds the total size of the memory, do nothing */ 1713 if (max_addr == PHYS_ADDR_MAX) 1714 return; 1715 1716 memblock_cap_memory_range(0, max_addr); 1717 } 1718 1719 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1720 { 1721 unsigned int left = 0, right = type->cnt; 1722 1723 do { 1724 unsigned int mid = (right + left) / 2; 1725 1726 if (addr < type->regions[mid].base) 1727 right = mid; 1728 else if (addr >= (type->regions[mid].base + 1729 type->regions[mid].size)) 1730 left = mid + 1; 1731 else 1732 return mid; 1733 } while (left < right); 1734 return -1; 1735 } 1736 1737 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1738 { 1739 return memblock_search(&memblock.reserved, addr) != -1; 1740 } 1741 1742 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1743 { 1744 return memblock_search(&memblock.memory, addr) != -1; 1745 } 1746 1747 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1748 { 1749 int i = memblock_search(&memblock.memory, addr); 1750 1751 if (i == -1) 1752 return false; 1753 return !memblock_is_nomap(&memblock.memory.regions[i]); 1754 } 1755 1756 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1757 unsigned long *start_pfn, unsigned long *end_pfn) 1758 { 1759 struct memblock_type *type = &memblock.memory; 1760 int mid = memblock_search(type, PFN_PHYS(pfn)); 1761 1762 if (mid == -1) 1763 return -1; 1764 1765 *start_pfn = PFN_DOWN(type->regions[mid].base); 1766 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1767 1768 return memblock_get_region_node(&type->regions[mid]); 1769 } 1770 1771 /** 1772 * memblock_is_region_memory - check if a region is a subset of memory 1773 * @base: base of region to check 1774 * @size: size of region to check 1775 * 1776 * Check if the region [@base, @base + @size) is a subset of a memory block. 1777 * 1778 * Return: 1779 * 0 if false, non-zero if true 1780 */ 1781 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1782 { 1783 int idx = memblock_search(&memblock.memory, base); 1784 phys_addr_t end = base + memblock_cap_size(base, &size); 1785 1786 if (idx == -1) 1787 return false; 1788 return (memblock.memory.regions[idx].base + 1789 memblock.memory.regions[idx].size) >= end; 1790 } 1791 1792 /** 1793 * memblock_is_region_reserved - check if a region intersects reserved memory 1794 * @base: base of region to check 1795 * @size: size of region to check 1796 * 1797 * Check if the region [@base, @base + @size) intersects a reserved 1798 * memory block. 1799 * 1800 * Return: 1801 * True if they intersect, false if not. 1802 */ 1803 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1804 { 1805 return memblock_overlaps_region(&memblock.reserved, base, size); 1806 } 1807 1808 void __init_memblock memblock_trim_memory(phys_addr_t align) 1809 { 1810 phys_addr_t start, end, orig_start, orig_end; 1811 struct memblock_region *r; 1812 1813 for_each_mem_region(r) { 1814 orig_start = r->base; 1815 orig_end = r->base + r->size; 1816 start = round_up(orig_start, align); 1817 end = round_down(orig_end, align); 1818 1819 if (start == orig_start && end == orig_end) 1820 continue; 1821 1822 if (start < end) { 1823 r->base = start; 1824 r->size = end - start; 1825 } else { 1826 memblock_remove_region(&memblock.memory, 1827 r - memblock.memory.regions); 1828 r--; 1829 } 1830 } 1831 } 1832 1833 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1834 { 1835 memblock.current_limit = limit; 1836 } 1837 1838 phys_addr_t __init_memblock memblock_get_current_limit(void) 1839 { 1840 return memblock.current_limit; 1841 } 1842 1843 static void __init_memblock memblock_dump(struct memblock_type *type) 1844 { 1845 phys_addr_t base, end, size; 1846 enum memblock_flags flags; 1847 int idx; 1848 struct memblock_region *rgn; 1849 1850 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1851 1852 for_each_memblock_type(idx, type, rgn) { 1853 char nid_buf[32] = ""; 1854 1855 base = rgn->base; 1856 size = rgn->size; 1857 end = base + size - 1; 1858 flags = rgn->flags; 1859 #ifdef CONFIG_NUMA 1860 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1861 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1862 memblock_get_region_node(rgn)); 1863 #endif 1864 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1865 type->name, idx, &base, &end, &size, nid_buf, flags); 1866 } 1867 } 1868 1869 static void __init_memblock __memblock_dump_all(void) 1870 { 1871 pr_info("MEMBLOCK configuration:\n"); 1872 pr_info(" memory size = %pa reserved size = %pa\n", 1873 &memblock.memory.total_size, 1874 &memblock.reserved.total_size); 1875 1876 memblock_dump(&memblock.memory); 1877 memblock_dump(&memblock.reserved); 1878 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1879 memblock_dump(&physmem); 1880 #endif 1881 } 1882 1883 void __init_memblock memblock_dump_all(void) 1884 { 1885 if (memblock_debug) 1886 __memblock_dump_all(); 1887 } 1888 1889 void __init memblock_allow_resize(void) 1890 { 1891 memblock_can_resize = 1; 1892 } 1893 1894 static int __init early_memblock(char *p) 1895 { 1896 if (p && strstr(p, "debug")) 1897 memblock_debug = 1; 1898 return 0; 1899 } 1900 early_param("memblock", early_memblock); 1901 1902 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) 1903 { 1904 struct page *start_pg, *end_pg; 1905 phys_addr_t pg, pgend; 1906 1907 /* 1908 * Convert start_pfn/end_pfn to a struct page pointer. 1909 */ 1910 start_pg = pfn_to_page(start_pfn - 1) + 1; 1911 end_pg = pfn_to_page(end_pfn - 1) + 1; 1912 1913 /* 1914 * Convert to physical addresses, and round start upwards and end 1915 * downwards. 1916 */ 1917 pg = PAGE_ALIGN(__pa(start_pg)); 1918 pgend = __pa(end_pg) & PAGE_MASK; 1919 1920 /* 1921 * If there are free pages between these, free the section of the 1922 * memmap array. 1923 */ 1924 if (pg < pgend) 1925 memblock_free(pg, pgend - pg); 1926 } 1927 1928 /* 1929 * The mem_map array can get very big. Free the unused area of the memory map. 1930 */ 1931 static void __init free_unused_memmap(void) 1932 { 1933 unsigned long start, end, prev_end = 0; 1934 int i; 1935 1936 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || 1937 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 1938 return; 1939 1940 /* 1941 * This relies on each bank being in address order. 1942 * The banks are sorted previously in bootmem_init(). 1943 */ 1944 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { 1945 #ifdef CONFIG_SPARSEMEM 1946 /* 1947 * Take care not to free memmap entries that don't exist 1948 * due to SPARSEMEM sections which aren't present. 1949 */ 1950 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 1951 #endif 1952 /* 1953 * Align down here since many operations in VM subsystem 1954 * presume that there are no holes in the memory map inside 1955 * a pageblock 1956 */ 1957 start = round_down(start, pageblock_nr_pages); 1958 1959 /* 1960 * If we had a previous bank, and there is a space 1961 * between the current bank and the previous, free it. 1962 */ 1963 if (prev_end && prev_end < start) 1964 free_memmap(prev_end, start); 1965 1966 /* 1967 * Align up here since many operations in VM subsystem 1968 * presume that there are no holes in the memory map inside 1969 * a pageblock 1970 */ 1971 prev_end = ALIGN(end, pageblock_nr_pages); 1972 } 1973 1974 #ifdef CONFIG_SPARSEMEM 1975 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) { 1976 prev_end = ALIGN(end, pageblock_nr_pages); 1977 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 1978 } 1979 #endif 1980 } 1981 1982 static void __init __free_pages_memory(unsigned long start, unsigned long end) 1983 { 1984 int order; 1985 1986 while (start < end) { 1987 order = min(MAX_ORDER - 1UL, __ffs(start)); 1988 1989 while (start + (1UL << order) > end) 1990 order--; 1991 1992 memblock_free_pages(pfn_to_page(start), start, order); 1993 1994 start += (1UL << order); 1995 } 1996 } 1997 1998 static unsigned long __init __free_memory_core(phys_addr_t start, 1999 phys_addr_t end) 2000 { 2001 unsigned long start_pfn = PFN_UP(start); 2002 unsigned long end_pfn = min_t(unsigned long, 2003 PFN_DOWN(end), max_low_pfn); 2004 2005 if (start_pfn >= end_pfn) 2006 return 0; 2007 2008 __free_pages_memory(start_pfn, end_pfn); 2009 2010 return end_pfn - start_pfn; 2011 } 2012 2013 static void __init memmap_init_reserved_pages(void) 2014 { 2015 struct memblock_region *region; 2016 phys_addr_t start, end; 2017 u64 i; 2018 2019 /* initialize struct pages for the reserved regions */ 2020 for_each_reserved_mem_range(i, &start, &end) 2021 reserve_bootmem_region(start, end); 2022 2023 /* and also treat struct pages for the NOMAP regions as PageReserved */ 2024 for_each_mem_region(region) { 2025 if (memblock_is_nomap(region)) { 2026 start = region->base; 2027 end = start + region->size; 2028 reserve_bootmem_region(start, end); 2029 } 2030 } 2031 } 2032 2033 static unsigned long __init free_low_memory_core_early(void) 2034 { 2035 unsigned long count = 0; 2036 phys_addr_t start, end; 2037 u64 i; 2038 2039 memblock_clear_hotplug(0, -1); 2040 2041 memmap_init_reserved_pages(); 2042 2043 /* 2044 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 2045 * because in some case like Node0 doesn't have RAM installed 2046 * low ram will be on Node1 2047 */ 2048 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 2049 NULL) 2050 count += __free_memory_core(start, end); 2051 2052 return count; 2053 } 2054 2055 static int reset_managed_pages_done __initdata; 2056 2057 void reset_node_managed_pages(pg_data_t *pgdat) 2058 { 2059 struct zone *z; 2060 2061 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 2062 atomic_long_set(&z->managed_pages, 0); 2063 } 2064 2065 void __init reset_all_zones_managed_pages(void) 2066 { 2067 struct pglist_data *pgdat; 2068 2069 if (reset_managed_pages_done) 2070 return; 2071 2072 for_each_online_pgdat(pgdat) 2073 reset_node_managed_pages(pgdat); 2074 2075 reset_managed_pages_done = 1; 2076 } 2077 2078 /** 2079 * memblock_free_all - release free pages to the buddy allocator 2080 */ 2081 void __init memblock_free_all(void) 2082 { 2083 unsigned long pages; 2084 2085 free_unused_memmap(); 2086 reset_all_zones_managed_pages(); 2087 2088 pages = free_low_memory_core_early(); 2089 totalram_pages_add(pages); 2090 } 2091 2092 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 2093 2094 static int memblock_debug_show(struct seq_file *m, void *private) 2095 { 2096 struct memblock_type *type = m->private; 2097 struct memblock_region *reg; 2098 int i; 2099 phys_addr_t end; 2100 2101 for (i = 0; i < type->cnt; i++) { 2102 reg = &type->regions[i]; 2103 end = reg->base + reg->size - 1; 2104 2105 seq_printf(m, "%4d: ", i); 2106 seq_printf(m, "%pa..%pa\n", ®->base, &end); 2107 } 2108 return 0; 2109 } 2110 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2111 2112 static int __init memblock_init_debugfs(void) 2113 { 2114 struct dentry *root = debugfs_create_dir("memblock", NULL); 2115 2116 debugfs_create_file("memory", 0444, root, 2117 &memblock.memory, &memblock_debug_fops); 2118 debugfs_create_file("reserved", 0444, root, 2119 &memblock.reserved, &memblock_debug_fops); 2120 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2121 debugfs_create_file("physmem", 0444, root, &physmem, 2122 &memblock_debug_fops); 2123 #endif 2124 2125 return 0; 2126 } 2127 __initcall(memblock_init_debugfs); 2128 2129 #endif /* CONFIG_DEBUG_FS */ 2130