xref: /linux/mm/memblock.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/kmemleak.h>
21 #include <linux/seq_file.h>
22 #include <linux/memblock.h>
23 
24 #include <asm/sections.h>
25 #include <linux/io.h>
26 
27 #include "internal.h"
28 
29 /**
30  * DOC: memblock overview
31  *
32  * Memblock is a method of managing memory regions during the early
33  * boot period when the usual kernel memory allocators are not up and
34  * running.
35  *
36  * Memblock views the system memory as collections of contiguous
37  * regions. There are several types of these collections:
38  *
39  * * ``memory`` - describes the physical memory available to the
40  *   kernel; this may differ from the actual physical memory installed
41  *   in the system, for instance when the memory is restricted with
42  *   ``mem=`` command line parameter
43  * * ``reserved`` - describes the regions that were allocated
44  * * ``physmap`` - describes the actual physical memory regardless of
45  *   the possible restrictions; the ``physmap`` type is only available
46  *   on some architectures.
47  *
48  * Each region is represented by :c:type:`struct memblock_region` that
49  * defines the region extents, its attributes and NUMA node id on NUMA
50  * systems. Every memory type is described by the :c:type:`struct
51  * memblock_type` which contains an array of memory regions along with
52  * the allocator metadata. The memory types are nicely wrapped with
53  * :c:type:`struct memblock`. This structure is statically initialzed
54  * at build time. The region arrays for the "memory" and "reserved"
55  * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
56  * "physmap" type to %INIT_PHYSMEM_REGIONS.
57  * The :c:func:`memblock_allow_resize` enables automatic resizing of
58  * the region arrays during addition of new regions. This feature
59  * should be used with care so that memory allocated for the region
60  * array will not overlap with areas that should be reserved, for
61  * example initrd.
62  *
63  * The early architecture setup should tell memblock what the physical
64  * memory layout is by using :c:func:`memblock_add` or
65  * :c:func:`memblock_add_node` functions. The first function does not
66  * assign the region to a NUMA node and it is appropriate for UMA
67  * systems. Yet, it is possible to use it on NUMA systems as well and
68  * assign the region to a NUMA node later in the setup process using
69  * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
70  * performs such an assignment directly.
71  *
72  * Once memblock is setup the memory can be allocated using either
73  * memblock or bootmem APIs.
74  *
75  * As the system boot progresses, the architecture specific
76  * :c:func:`mem_init` function frees all the memory to the buddy page
77  * allocator.
78  *
79  * If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the
80  * memblock data structures will be discarded after the system
81  * initialization compltes.
82  */
83 
84 #ifndef CONFIG_NEED_MULTIPLE_NODES
85 struct pglist_data __refdata contig_page_data;
86 EXPORT_SYMBOL(contig_page_data);
87 #endif
88 
89 unsigned long max_low_pfn;
90 unsigned long min_low_pfn;
91 unsigned long max_pfn;
92 unsigned long long max_possible_pfn;
93 
94 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
95 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
96 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
97 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
98 #endif
99 
100 struct memblock memblock __initdata_memblock = {
101 	.memory.regions		= memblock_memory_init_regions,
102 	.memory.cnt		= 1,	/* empty dummy entry */
103 	.memory.max		= INIT_MEMBLOCK_REGIONS,
104 	.memory.name		= "memory",
105 
106 	.reserved.regions	= memblock_reserved_init_regions,
107 	.reserved.cnt		= 1,	/* empty dummy entry */
108 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
109 	.reserved.name		= "reserved",
110 
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 	.physmem.regions	= memblock_physmem_init_regions,
113 	.physmem.cnt		= 1,	/* empty dummy entry */
114 	.physmem.max		= INIT_PHYSMEM_REGIONS,
115 	.physmem.name		= "physmem",
116 #endif
117 
118 	.bottom_up		= false,
119 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
120 };
121 
122 int memblock_debug __initdata_memblock;
123 static bool system_has_some_mirror __initdata_memblock = false;
124 static int memblock_can_resize __initdata_memblock;
125 static int memblock_memory_in_slab __initdata_memblock = 0;
126 static int memblock_reserved_in_slab __initdata_memblock = 0;
127 
128 enum memblock_flags __init_memblock choose_memblock_flags(void)
129 {
130 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
131 }
132 
133 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
134 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
135 {
136 	return *size = min(*size, PHYS_ADDR_MAX - base);
137 }
138 
139 /*
140  * Address comparison utilities
141  */
142 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
143 				       phys_addr_t base2, phys_addr_t size2)
144 {
145 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
146 }
147 
148 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
149 					phys_addr_t base, phys_addr_t size)
150 {
151 	unsigned long i;
152 
153 	for (i = 0; i < type->cnt; i++)
154 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
155 					   type->regions[i].size))
156 			break;
157 	return i < type->cnt;
158 }
159 
160 /**
161  * __memblock_find_range_bottom_up - find free area utility in bottom-up
162  * @start: start of candidate range
163  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
164  *       %MEMBLOCK_ALLOC_ACCESSIBLE
165  * @size: size of free area to find
166  * @align: alignment of free area to find
167  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
168  * @flags: pick from blocks based on memory attributes
169  *
170  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
171  *
172  * Return:
173  * Found address on success, 0 on failure.
174  */
175 static phys_addr_t __init_memblock
176 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
177 				phys_addr_t size, phys_addr_t align, int nid,
178 				enum memblock_flags flags)
179 {
180 	phys_addr_t this_start, this_end, cand;
181 	u64 i;
182 
183 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
184 		this_start = clamp(this_start, start, end);
185 		this_end = clamp(this_end, start, end);
186 
187 		cand = round_up(this_start, align);
188 		if (cand < this_end && this_end - cand >= size)
189 			return cand;
190 	}
191 
192 	return 0;
193 }
194 
195 /**
196  * __memblock_find_range_top_down - find free area utility, in top-down
197  * @start: start of candidate range
198  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
199  *       %MEMBLOCK_ALLOC_ACCESSIBLE
200  * @size: size of free area to find
201  * @align: alignment of free area to find
202  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
203  * @flags: pick from blocks based on memory attributes
204  *
205  * Utility called from memblock_find_in_range_node(), find free area top-down.
206  *
207  * Return:
208  * Found address on success, 0 on failure.
209  */
210 static phys_addr_t __init_memblock
211 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
212 			       phys_addr_t size, phys_addr_t align, int nid,
213 			       enum memblock_flags flags)
214 {
215 	phys_addr_t this_start, this_end, cand;
216 	u64 i;
217 
218 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
219 					NULL) {
220 		this_start = clamp(this_start, start, end);
221 		this_end = clamp(this_end, start, end);
222 
223 		if (this_end < size)
224 			continue;
225 
226 		cand = round_down(this_end - size, align);
227 		if (cand >= this_start)
228 			return cand;
229 	}
230 
231 	return 0;
232 }
233 
234 /**
235  * memblock_find_in_range_node - find free area in given range and node
236  * @size: size of free area to find
237  * @align: alignment of free area to find
238  * @start: start of candidate range
239  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
240  *       %MEMBLOCK_ALLOC_ACCESSIBLE
241  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
242  * @flags: pick from blocks based on memory attributes
243  *
244  * Find @size free area aligned to @align in the specified range and node.
245  *
246  * When allocation direction is bottom-up, the @start should be greater
247  * than the end of the kernel image. Otherwise, it will be trimmed. The
248  * reason is that we want the bottom-up allocation just near the kernel
249  * image so it is highly likely that the allocated memory and the kernel
250  * will reside in the same node.
251  *
252  * If bottom-up allocation failed, will try to allocate memory top-down.
253  *
254  * Return:
255  * Found address on success, 0 on failure.
256  */
257 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
258 					phys_addr_t align, phys_addr_t start,
259 					phys_addr_t end, int nid,
260 					enum memblock_flags flags)
261 {
262 	phys_addr_t kernel_end, ret;
263 
264 	/* pump up @end */
265 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
266 	    end == MEMBLOCK_ALLOC_KASAN)
267 		end = memblock.current_limit;
268 
269 	/* avoid allocating the first page */
270 	start = max_t(phys_addr_t, start, PAGE_SIZE);
271 	end = max(start, end);
272 	kernel_end = __pa_symbol(_end);
273 
274 	/*
275 	 * try bottom-up allocation only when bottom-up mode
276 	 * is set and @end is above the kernel image.
277 	 */
278 	if (memblock_bottom_up() && end > kernel_end) {
279 		phys_addr_t bottom_up_start;
280 
281 		/* make sure we will allocate above the kernel */
282 		bottom_up_start = max(start, kernel_end);
283 
284 		/* ok, try bottom-up allocation first */
285 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
286 						      size, align, nid, flags);
287 		if (ret)
288 			return ret;
289 
290 		/*
291 		 * we always limit bottom-up allocation above the kernel,
292 		 * but top-down allocation doesn't have the limit, so
293 		 * retrying top-down allocation may succeed when bottom-up
294 		 * allocation failed.
295 		 *
296 		 * bottom-up allocation is expected to be fail very rarely,
297 		 * so we use WARN_ONCE() here to see the stack trace if
298 		 * fail happens.
299 		 */
300 		WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
301 			  "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
302 	}
303 
304 	return __memblock_find_range_top_down(start, end, size, align, nid,
305 					      flags);
306 }
307 
308 /**
309  * memblock_find_in_range - find free area in given range
310  * @start: start of candidate range
311  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
312  *       %MEMBLOCK_ALLOC_ACCESSIBLE
313  * @size: size of free area to find
314  * @align: alignment of free area to find
315  *
316  * Find @size free area aligned to @align in the specified range.
317  *
318  * Return:
319  * Found address on success, 0 on failure.
320  */
321 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
322 					phys_addr_t end, phys_addr_t size,
323 					phys_addr_t align)
324 {
325 	phys_addr_t ret;
326 	enum memblock_flags flags = choose_memblock_flags();
327 
328 again:
329 	ret = memblock_find_in_range_node(size, align, start, end,
330 					    NUMA_NO_NODE, flags);
331 
332 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
333 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
334 			&size);
335 		flags &= ~MEMBLOCK_MIRROR;
336 		goto again;
337 	}
338 
339 	return ret;
340 }
341 
342 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
343 {
344 	type->total_size -= type->regions[r].size;
345 	memmove(&type->regions[r], &type->regions[r + 1],
346 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
347 	type->cnt--;
348 
349 	/* Special case for empty arrays */
350 	if (type->cnt == 0) {
351 		WARN_ON(type->total_size != 0);
352 		type->cnt = 1;
353 		type->regions[0].base = 0;
354 		type->regions[0].size = 0;
355 		type->regions[0].flags = 0;
356 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
357 	}
358 }
359 
360 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
361 /**
362  * memblock_discard - discard memory and reserved arrays if they were allocated
363  */
364 void __init memblock_discard(void)
365 {
366 	phys_addr_t addr, size;
367 
368 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
369 		addr = __pa(memblock.reserved.regions);
370 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
371 				  memblock.reserved.max);
372 		__memblock_free_late(addr, size);
373 	}
374 
375 	if (memblock.memory.regions != memblock_memory_init_regions) {
376 		addr = __pa(memblock.memory.regions);
377 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 				  memblock.memory.max);
379 		__memblock_free_late(addr, size);
380 	}
381 }
382 #endif
383 
384 /**
385  * memblock_double_array - double the size of the memblock regions array
386  * @type: memblock type of the regions array being doubled
387  * @new_area_start: starting address of memory range to avoid overlap with
388  * @new_area_size: size of memory range to avoid overlap with
389  *
390  * Double the size of the @type regions array. If memblock is being used to
391  * allocate memory for a new reserved regions array and there is a previously
392  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
393  * waiting to be reserved, ensure the memory used by the new array does
394  * not overlap.
395  *
396  * Return:
397  * 0 on success, -1 on failure.
398  */
399 static int __init_memblock memblock_double_array(struct memblock_type *type,
400 						phys_addr_t new_area_start,
401 						phys_addr_t new_area_size)
402 {
403 	struct memblock_region *new_array, *old_array;
404 	phys_addr_t old_alloc_size, new_alloc_size;
405 	phys_addr_t old_size, new_size, addr, new_end;
406 	int use_slab = slab_is_available();
407 	int *in_slab;
408 
409 	/* We don't allow resizing until we know about the reserved regions
410 	 * of memory that aren't suitable for allocation
411 	 */
412 	if (!memblock_can_resize)
413 		return -1;
414 
415 	/* Calculate new doubled size */
416 	old_size = type->max * sizeof(struct memblock_region);
417 	new_size = old_size << 1;
418 	/*
419 	 * We need to allocated new one align to PAGE_SIZE,
420 	 *   so we can free them completely later.
421 	 */
422 	old_alloc_size = PAGE_ALIGN(old_size);
423 	new_alloc_size = PAGE_ALIGN(new_size);
424 
425 	/* Retrieve the slab flag */
426 	if (type == &memblock.memory)
427 		in_slab = &memblock_memory_in_slab;
428 	else
429 		in_slab = &memblock_reserved_in_slab;
430 
431 	/* Try to find some space for it.
432 	 *
433 	 * WARNING: We assume that either slab_is_available() and we use it or
434 	 * we use MEMBLOCK for allocations. That means that this is unsafe to
435 	 * use when bootmem is currently active (unless bootmem itself is
436 	 * implemented on top of MEMBLOCK which isn't the case yet)
437 	 *
438 	 * This should however not be an issue for now, as we currently only
439 	 * call into MEMBLOCK while it's still active, or much later when slab
440 	 * is active for memory hotplug operations
441 	 */
442 	if (use_slab) {
443 		new_array = kmalloc(new_size, GFP_KERNEL);
444 		addr = new_array ? __pa(new_array) : 0;
445 	} else {
446 		/* only exclude range when trying to double reserved.regions */
447 		if (type != &memblock.reserved)
448 			new_area_start = new_area_size = 0;
449 
450 		addr = memblock_find_in_range(new_area_start + new_area_size,
451 						memblock.current_limit,
452 						new_alloc_size, PAGE_SIZE);
453 		if (!addr && new_area_size)
454 			addr = memblock_find_in_range(0,
455 				min(new_area_start, memblock.current_limit),
456 				new_alloc_size, PAGE_SIZE);
457 
458 		new_array = addr ? __va(addr) : NULL;
459 	}
460 	if (!addr) {
461 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
462 		       type->name, type->max, type->max * 2);
463 		return -1;
464 	}
465 
466 	new_end = addr + new_size - 1;
467 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
468 			type->name, type->max * 2, &addr, &new_end);
469 
470 	/*
471 	 * Found space, we now need to move the array over before we add the
472 	 * reserved region since it may be our reserved array itself that is
473 	 * full.
474 	 */
475 	memcpy(new_array, type->regions, old_size);
476 	memset(new_array + type->max, 0, old_size);
477 	old_array = type->regions;
478 	type->regions = new_array;
479 	type->max <<= 1;
480 
481 	/* Free old array. We needn't free it if the array is the static one */
482 	if (*in_slab)
483 		kfree(old_array);
484 	else if (old_array != memblock_memory_init_regions &&
485 		 old_array != memblock_reserved_init_regions)
486 		memblock_free(__pa(old_array), old_alloc_size);
487 
488 	/*
489 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
490 	 * needn't do it
491 	 */
492 	if (!use_slab)
493 		BUG_ON(memblock_reserve(addr, new_alloc_size));
494 
495 	/* Update slab flag */
496 	*in_slab = use_slab;
497 
498 	return 0;
499 }
500 
501 /**
502  * memblock_merge_regions - merge neighboring compatible regions
503  * @type: memblock type to scan
504  *
505  * Scan @type and merge neighboring compatible regions.
506  */
507 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
508 {
509 	int i = 0;
510 
511 	/* cnt never goes below 1 */
512 	while (i < type->cnt - 1) {
513 		struct memblock_region *this = &type->regions[i];
514 		struct memblock_region *next = &type->regions[i + 1];
515 
516 		if (this->base + this->size != next->base ||
517 		    memblock_get_region_node(this) !=
518 		    memblock_get_region_node(next) ||
519 		    this->flags != next->flags) {
520 			BUG_ON(this->base + this->size > next->base);
521 			i++;
522 			continue;
523 		}
524 
525 		this->size += next->size;
526 		/* move forward from next + 1, index of which is i + 2 */
527 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
528 		type->cnt--;
529 	}
530 }
531 
532 /**
533  * memblock_insert_region - insert new memblock region
534  * @type:	memblock type to insert into
535  * @idx:	index for the insertion point
536  * @base:	base address of the new region
537  * @size:	size of the new region
538  * @nid:	node id of the new region
539  * @flags:	flags of the new region
540  *
541  * Insert new memblock region [@base, @base + @size) into @type at @idx.
542  * @type must already have extra room to accommodate the new region.
543  */
544 static void __init_memblock memblock_insert_region(struct memblock_type *type,
545 						   int idx, phys_addr_t base,
546 						   phys_addr_t size,
547 						   int nid,
548 						   enum memblock_flags flags)
549 {
550 	struct memblock_region *rgn = &type->regions[idx];
551 
552 	BUG_ON(type->cnt >= type->max);
553 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
554 	rgn->base = base;
555 	rgn->size = size;
556 	rgn->flags = flags;
557 	memblock_set_region_node(rgn, nid);
558 	type->cnt++;
559 	type->total_size += size;
560 }
561 
562 /**
563  * memblock_add_range - add new memblock region
564  * @type: memblock type to add new region into
565  * @base: base address of the new region
566  * @size: size of the new region
567  * @nid: nid of the new region
568  * @flags: flags of the new region
569  *
570  * Add new memblock region [@base, @base + @size) into @type.  The new region
571  * is allowed to overlap with existing ones - overlaps don't affect already
572  * existing regions.  @type is guaranteed to be minimal (all neighbouring
573  * compatible regions are merged) after the addition.
574  *
575  * Return:
576  * 0 on success, -errno on failure.
577  */
578 int __init_memblock memblock_add_range(struct memblock_type *type,
579 				phys_addr_t base, phys_addr_t size,
580 				int nid, enum memblock_flags flags)
581 {
582 	bool insert = false;
583 	phys_addr_t obase = base;
584 	phys_addr_t end = base + memblock_cap_size(base, &size);
585 	int idx, nr_new;
586 	struct memblock_region *rgn;
587 
588 	if (!size)
589 		return 0;
590 
591 	/* special case for empty array */
592 	if (type->regions[0].size == 0) {
593 		WARN_ON(type->cnt != 1 || type->total_size);
594 		type->regions[0].base = base;
595 		type->regions[0].size = size;
596 		type->regions[0].flags = flags;
597 		memblock_set_region_node(&type->regions[0], nid);
598 		type->total_size = size;
599 		return 0;
600 	}
601 repeat:
602 	/*
603 	 * The following is executed twice.  Once with %false @insert and
604 	 * then with %true.  The first counts the number of regions needed
605 	 * to accommodate the new area.  The second actually inserts them.
606 	 */
607 	base = obase;
608 	nr_new = 0;
609 
610 	for_each_memblock_type(idx, type, rgn) {
611 		phys_addr_t rbase = rgn->base;
612 		phys_addr_t rend = rbase + rgn->size;
613 
614 		if (rbase >= end)
615 			break;
616 		if (rend <= base)
617 			continue;
618 		/*
619 		 * @rgn overlaps.  If it separates the lower part of new
620 		 * area, insert that portion.
621 		 */
622 		if (rbase > base) {
623 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
624 			WARN_ON(nid != memblock_get_region_node(rgn));
625 #endif
626 			WARN_ON(flags != rgn->flags);
627 			nr_new++;
628 			if (insert)
629 				memblock_insert_region(type, idx++, base,
630 						       rbase - base, nid,
631 						       flags);
632 		}
633 		/* area below @rend is dealt with, forget about it */
634 		base = min(rend, end);
635 	}
636 
637 	/* insert the remaining portion */
638 	if (base < end) {
639 		nr_new++;
640 		if (insert)
641 			memblock_insert_region(type, idx, base, end - base,
642 					       nid, flags);
643 	}
644 
645 	if (!nr_new)
646 		return 0;
647 
648 	/*
649 	 * If this was the first round, resize array and repeat for actual
650 	 * insertions; otherwise, merge and return.
651 	 */
652 	if (!insert) {
653 		while (type->cnt + nr_new > type->max)
654 			if (memblock_double_array(type, obase, size) < 0)
655 				return -ENOMEM;
656 		insert = true;
657 		goto repeat;
658 	} else {
659 		memblock_merge_regions(type);
660 		return 0;
661 	}
662 }
663 
664 /**
665  * memblock_add_node - add new memblock region within a NUMA node
666  * @base: base address of the new region
667  * @size: size of the new region
668  * @nid: nid of the new region
669  *
670  * Add new memblock region [@base, @base + @size) to the "memory"
671  * type. See memblock_add_range() description for mode details
672  *
673  * Return:
674  * 0 on success, -errno on failure.
675  */
676 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
677 				       int nid)
678 {
679 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
680 }
681 
682 /**
683  * memblock_add - add new memblock region
684  * @base: base address of the new region
685  * @size: size of the new region
686  *
687  * Add new memblock region [@base, @base + @size) to the "memory"
688  * type. See memblock_add_range() description for mode details
689  *
690  * Return:
691  * 0 on success, -errno on failure.
692  */
693 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
694 {
695 	phys_addr_t end = base + size - 1;
696 
697 	memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
698 		     &base, &end, (void *)_RET_IP_);
699 
700 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
701 }
702 
703 /**
704  * memblock_isolate_range - isolate given range into disjoint memblocks
705  * @type: memblock type to isolate range for
706  * @base: base of range to isolate
707  * @size: size of range to isolate
708  * @start_rgn: out parameter for the start of isolated region
709  * @end_rgn: out parameter for the end of isolated region
710  *
711  * Walk @type and ensure that regions don't cross the boundaries defined by
712  * [@base, @base + @size).  Crossing regions are split at the boundaries,
713  * which may create at most two more regions.  The index of the first
714  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
715  *
716  * Return:
717  * 0 on success, -errno on failure.
718  */
719 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
720 					phys_addr_t base, phys_addr_t size,
721 					int *start_rgn, int *end_rgn)
722 {
723 	phys_addr_t end = base + memblock_cap_size(base, &size);
724 	int idx;
725 	struct memblock_region *rgn;
726 
727 	*start_rgn = *end_rgn = 0;
728 
729 	if (!size)
730 		return 0;
731 
732 	/* we'll create at most two more regions */
733 	while (type->cnt + 2 > type->max)
734 		if (memblock_double_array(type, base, size) < 0)
735 			return -ENOMEM;
736 
737 	for_each_memblock_type(idx, type, rgn) {
738 		phys_addr_t rbase = rgn->base;
739 		phys_addr_t rend = rbase + rgn->size;
740 
741 		if (rbase >= end)
742 			break;
743 		if (rend <= base)
744 			continue;
745 
746 		if (rbase < base) {
747 			/*
748 			 * @rgn intersects from below.  Split and continue
749 			 * to process the next region - the new top half.
750 			 */
751 			rgn->base = base;
752 			rgn->size -= base - rbase;
753 			type->total_size -= base - rbase;
754 			memblock_insert_region(type, idx, rbase, base - rbase,
755 					       memblock_get_region_node(rgn),
756 					       rgn->flags);
757 		} else if (rend > end) {
758 			/*
759 			 * @rgn intersects from above.  Split and redo the
760 			 * current region - the new bottom half.
761 			 */
762 			rgn->base = end;
763 			rgn->size -= end - rbase;
764 			type->total_size -= end - rbase;
765 			memblock_insert_region(type, idx--, rbase, end - rbase,
766 					       memblock_get_region_node(rgn),
767 					       rgn->flags);
768 		} else {
769 			/* @rgn is fully contained, record it */
770 			if (!*end_rgn)
771 				*start_rgn = idx;
772 			*end_rgn = idx + 1;
773 		}
774 	}
775 
776 	return 0;
777 }
778 
779 static int __init_memblock memblock_remove_range(struct memblock_type *type,
780 					  phys_addr_t base, phys_addr_t size)
781 {
782 	int start_rgn, end_rgn;
783 	int i, ret;
784 
785 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
786 	if (ret)
787 		return ret;
788 
789 	for (i = end_rgn - 1; i >= start_rgn; i--)
790 		memblock_remove_region(type, i);
791 	return 0;
792 }
793 
794 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
795 {
796 	phys_addr_t end = base + size - 1;
797 
798 	memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
799 		     &base, &end, (void *)_RET_IP_);
800 
801 	return memblock_remove_range(&memblock.memory, base, size);
802 }
803 
804 /**
805  * memblock_free - free boot memory block
806  * @base: phys starting address of the  boot memory block
807  * @size: size of the boot memory block in bytes
808  *
809  * Free boot memory block previously allocated by memblock_alloc_xx() API.
810  * The freeing memory will not be released to the buddy allocator.
811  */
812 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
813 {
814 	phys_addr_t end = base + size - 1;
815 
816 	memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
817 		     &base, &end, (void *)_RET_IP_);
818 
819 	kmemleak_free_part_phys(base, size);
820 	return memblock_remove_range(&memblock.reserved, base, size);
821 }
822 
823 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
824 {
825 	phys_addr_t end = base + size - 1;
826 
827 	memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
828 		     &base, &end, (void *)_RET_IP_);
829 
830 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
831 }
832 
833 /**
834  * memblock_setclr_flag - set or clear flag for a memory region
835  * @base: base address of the region
836  * @size: size of the region
837  * @set: set or clear the flag
838  * @flag: the flag to udpate
839  *
840  * This function isolates region [@base, @base + @size), and sets/clears flag
841  *
842  * Return: 0 on success, -errno on failure.
843  */
844 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
845 				phys_addr_t size, int set, int flag)
846 {
847 	struct memblock_type *type = &memblock.memory;
848 	int i, ret, start_rgn, end_rgn;
849 
850 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
851 	if (ret)
852 		return ret;
853 
854 	for (i = start_rgn; i < end_rgn; i++)
855 		if (set)
856 			memblock_set_region_flags(&type->regions[i], flag);
857 		else
858 			memblock_clear_region_flags(&type->regions[i], flag);
859 
860 	memblock_merge_regions(type);
861 	return 0;
862 }
863 
864 /**
865  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
866  * @base: the base phys addr of the region
867  * @size: the size of the region
868  *
869  * Return: 0 on success, -errno on failure.
870  */
871 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
872 {
873 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
874 }
875 
876 /**
877  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
878  * @base: the base phys addr of the region
879  * @size: the size of the region
880  *
881  * Return: 0 on success, -errno on failure.
882  */
883 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
884 {
885 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
886 }
887 
888 /**
889  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
890  * @base: the base phys addr of the region
891  * @size: the size of the region
892  *
893  * Return: 0 on success, -errno on failure.
894  */
895 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
896 {
897 	system_has_some_mirror = true;
898 
899 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
900 }
901 
902 /**
903  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
904  * @base: the base phys addr of the region
905  * @size: the size of the region
906  *
907  * Return: 0 on success, -errno on failure.
908  */
909 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
910 {
911 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
912 }
913 
914 /**
915  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
916  * @base: the base phys addr of the region
917  * @size: the size of the region
918  *
919  * Return: 0 on success, -errno on failure.
920  */
921 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
922 {
923 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
924 }
925 
926 /**
927  * __next_reserved_mem_region - next function for for_each_reserved_region()
928  * @idx: pointer to u64 loop variable
929  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
930  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
931  *
932  * Iterate over all reserved memory regions.
933  */
934 void __init_memblock __next_reserved_mem_region(u64 *idx,
935 					   phys_addr_t *out_start,
936 					   phys_addr_t *out_end)
937 {
938 	struct memblock_type *type = &memblock.reserved;
939 
940 	if (*idx < type->cnt) {
941 		struct memblock_region *r = &type->regions[*idx];
942 		phys_addr_t base = r->base;
943 		phys_addr_t size = r->size;
944 
945 		if (out_start)
946 			*out_start = base;
947 		if (out_end)
948 			*out_end = base + size - 1;
949 
950 		*idx += 1;
951 		return;
952 	}
953 
954 	/* signal end of iteration */
955 	*idx = ULLONG_MAX;
956 }
957 
958 /**
959  * __next__mem_range - next function for for_each_free_mem_range() etc.
960  * @idx: pointer to u64 loop variable
961  * @nid: node selector, %NUMA_NO_NODE for all nodes
962  * @flags: pick from blocks based on memory attributes
963  * @type_a: pointer to memblock_type from where the range is taken
964  * @type_b: pointer to memblock_type which excludes memory from being taken
965  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
966  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
967  * @out_nid: ptr to int for nid of the range, can be %NULL
968  *
969  * Find the first area from *@idx which matches @nid, fill the out
970  * parameters, and update *@idx for the next iteration.  The lower 32bit of
971  * *@idx contains index into type_a and the upper 32bit indexes the
972  * areas before each region in type_b.	For example, if type_b regions
973  * look like the following,
974  *
975  *	0:[0-16), 1:[32-48), 2:[128-130)
976  *
977  * The upper 32bit indexes the following regions.
978  *
979  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
980  *
981  * As both region arrays are sorted, the function advances the two indices
982  * in lockstep and returns each intersection.
983  */
984 void __init_memblock __next_mem_range(u64 *idx, int nid,
985 				      enum memblock_flags flags,
986 				      struct memblock_type *type_a,
987 				      struct memblock_type *type_b,
988 				      phys_addr_t *out_start,
989 				      phys_addr_t *out_end, int *out_nid)
990 {
991 	int idx_a = *idx & 0xffffffff;
992 	int idx_b = *idx >> 32;
993 
994 	if (WARN_ONCE(nid == MAX_NUMNODES,
995 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
996 		nid = NUMA_NO_NODE;
997 
998 	for (; idx_a < type_a->cnt; idx_a++) {
999 		struct memblock_region *m = &type_a->regions[idx_a];
1000 
1001 		phys_addr_t m_start = m->base;
1002 		phys_addr_t m_end = m->base + m->size;
1003 		int	    m_nid = memblock_get_region_node(m);
1004 
1005 		/* only memory regions are associated with nodes, check it */
1006 		if (nid != NUMA_NO_NODE && nid != m_nid)
1007 			continue;
1008 
1009 		/* skip hotpluggable memory regions if needed */
1010 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1011 			continue;
1012 
1013 		/* if we want mirror memory skip non-mirror memory regions */
1014 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1015 			continue;
1016 
1017 		/* skip nomap memory unless we were asked for it explicitly */
1018 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1019 			continue;
1020 
1021 		if (!type_b) {
1022 			if (out_start)
1023 				*out_start = m_start;
1024 			if (out_end)
1025 				*out_end = m_end;
1026 			if (out_nid)
1027 				*out_nid = m_nid;
1028 			idx_a++;
1029 			*idx = (u32)idx_a | (u64)idx_b << 32;
1030 			return;
1031 		}
1032 
1033 		/* scan areas before each reservation */
1034 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1035 			struct memblock_region *r;
1036 			phys_addr_t r_start;
1037 			phys_addr_t r_end;
1038 
1039 			r = &type_b->regions[idx_b];
1040 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1041 			r_end = idx_b < type_b->cnt ?
1042 				r->base : PHYS_ADDR_MAX;
1043 
1044 			/*
1045 			 * if idx_b advanced past idx_a,
1046 			 * break out to advance idx_a
1047 			 */
1048 			if (r_start >= m_end)
1049 				break;
1050 			/* if the two regions intersect, we're done */
1051 			if (m_start < r_end) {
1052 				if (out_start)
1053 					*out_start =
1054 						max(m_start, r_start);
1055 				if (out_end)
1056 					*out_end = min(m_end, r_end);
1057 				if (out_nid)
1058 					*out_nid = m_nid;
1059 				/*
1060 				 * The region which ends first is
1061 				 * advanced for the next iteration.
1062 				 */
1063 				if (m_end <= r_end)
1064 					idx_a++;
1065 				else
1066 					idx_b++;
1067 				*idx = (u32)idx_a | (u64)idx_b << 32;
1068 				return;
1069 			}
1070 		}
1071 	}
1072 
1073 	/* signal end of iteration */
1074 	*idx = ULLONG_MAX;
1075 }
1076 
1077 /**
1078  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1079  *
1080  * @idx: pointer to u64 loop variable
1081  * @nid: node selector, %NUMA_NO_NODE for all nodes
1082  * @flags: pick from blocks based on memory attributes
1083  * @type_a: pointer to memblock_type from where the range is taken
1084  * @type_b: pointer to memblock_type which excludes memory from being taken
1085  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1086  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1087  * @out_nid: ptr to int for nid of the range, can be %NULL
1088  *
1089  * Finds the next range from type_a which is not marked as unsuitable
1090  * in type_b.
1091  *
1092  * Reverse of __next_mem_range().
1093  */
1094 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1095 					  enum memblock_flags flags,
1096 					  struct memblock_type *type_a,
1097 					  struct memblock_type *type_b,
1098 					  phys_addr_t *out_start,
1099 					  phys_addr_t *out_end, int *out_nid)
1100 {
1101 	int idx_a = *idx & 0xffffffff;
1102 	int idx_b = *idx >> 32;
1103 
1104 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1105 		nid = NUMA_NO_NODE;
1106 
1107 	if (*idx == (u64)ULLONG_MAX) {
1108 		idx_a = type_a->cnt - 1;
1109 		if (type_b != NULL)
1110 			idx_b = type_b->cnt;
1111 		else
1112 			idx_b = 0;
1113 	}
1114 
1115 	for (; idx_a >= 0; idx_a--) {
1116 		struct memblock_region *m = &type_a->regions[idx_a];
1117 
1118 		phys_addr_t m_start = m->base;
1119 		phys_addr_t m_end = m->base + m->size;
1120 		int m_nid = memblock_get_region_node(m);
1121 
1122 		/* only memory regions are associated with nodes, check it */
1123 		if (nid != NUMA_NO_NODE && nid != m_nid)
1124 			continue;
1125 
1126 		/* skip hotpluggable memory regions if needed */
1127 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1128 			continue;
1129 
1130 		/* if we want mirror memory skip non-mirror memory regions */
1131 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1132 			continue;
1133 
1134 		/* skip nomap memory unless we were asked for it explicitly */
1135 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1136 			continue;
1137 
1138 		if (!type_b) {
1139 			if (out_start)
1140 				*out_start = m_start;
1141 			if (out_end)
1142 				*out_end = m_end;
1143 			if (out_nid)
1144 				*out_nid = m_nid;
1145 			idx_a--;
1146 			*idx = (u32)idx_a | (u64)idx_b << 32;
1147 			return;
1148 		}
1149 
1150 		/* scan areas before each reservation */
1151 		for (; idx_b >= 0; idx_b--) {
1152 			struct memblock_region *r;
1153 			phys_addr_t r_start;
1154 			phys_addr_t r_end;
1155 
1156 			r = &type_b->regions[idx_b];
1157 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1158 			r_end = idx_b < type_b->cnt ?
1159 				r->base : PHYS_ADDR_MAX;
1160 			/*
1161 			 * if idx_b advanced past idx_a,
1162 			 * break out to advance idx_a
1163 			 */
1164 
1165 			if (r_end <= m_start)
1166 				break;
1167 			/* if the two regions intersect, we're done */
1168 			if (m_end > r_start) {
1169 				if (out_start)
1170 					*out_start = max(m_start, r_start);
1171 				if (out_end)
1172 					*out_end = min(m_end, r_end);
1173 				if (out_nid)
1174 					*out_nid = m_nid;
1175 				if (m_start >= r_start)
1176 					idx_a--;
1177 				else
1178 					idx_b--;
1179 				*idx = (u32)idx_a | (u64)idx_b << 32;
1180 				return;
1181 			}
1182 		}
1183 	}
1184 	/* signal end of iteration */
1185 	*idx = ULLONG_MAX;
1186 }
1187 
1188 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1189 /*
1190  * Common iterator interface used to define for_each_mem_pfn_range().
1191  */
1192 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1193 				unsigned long *out_start_pfn,
1194 				unsigned long *out_end_pfn, int *out_nid)
1195 {
1196 	struct memblock_type *type = &memblock.memory;
1197 	struct memblock_region *r;
1198 
1199 	while (++*idx < type->cnt) {
1200 		r = &type->regions[*idx];
1201 
1202 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1203 			continue;
1204 		if (nid == MAX_NUMNODES || nid == r->nid)
1205 			break;
1206 	}
1207 	if (*idx >= type->cnt) {
1208 		*idx = -1;
1209 		return;
1210 	}
1211 
1212 	if (out_start_pfn)
1213 		*out_start_pfn = PFN_UP(r->base);
1214 	if (out_end_pfn)
1215 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1216 	if (out_nid)
1217 		*out_nid = r->nid;
1218 }
1219 
1220 /**
1221  * memblock_set_node - set node ID on memblock regions
1222  * @base: base of area to set node ID for
1223  * @size: size of area to set node ID for
1224  * @type: memblock type to set node ID for
1225  * @nid: node ID to set
1226  *
1227  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1228  * Regions which cross the area boundaries are split as necessary.
1229  *
1230  * Return:
1231  * 0 on success, -errno on failure.
1232  */
1233 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1234 				      struct memblock_type *type, int nid)
1235 {
1236 	int start_rgn, end_rgn;
1237 	int i, ret;
1238 
1239 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1240 	if (ret)
1241 		return ret;
1242 
1243 	for (i = start_rgn; i < end_rgn; i++)
1244 		memblock_set_region_node(&type->regions[i], nid);
1245 
1246 	memblock_merge_regions(type);
1247 	return 0;
1248 }
1249 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1250 
1251 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1252 					phys_addr_t align, phys_addr_t start,
1253 					phys_addr_t end, int nid,
1254 					enum memblock_flags flags)
1255 {
1256 	phys_addr_t found;
1257 
1258 	if (!align) {
1259 		/* Can't use WARNs this early in boot on powerpc */
1260 		dump_stack();
1261 		align = SMP_CACHE_BYTES;
1262 	}
1263 
1264 	found = memblock_find_in_range_node(size, align, start, end, nid,
1265 					    flags);
1266 	if (found && !memblock_reserve(found, size)) {
1267 		/*
1268 		 * The min_count is set to 0 so that memblock allocations are
1269 		 * never reported as leaks.
1270 		 */
1271 		kmemleak_alloc_phys(found, size, 0, 0);
1272 		return found;
1273 	}
1274 	return 0;
1275 }
1276 
1277 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1278 					phys_addr_t start, phys_addr_t end,
1279 					enum memblock_flags flags)
1280 {
1281 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1282 					flags);
1283 }
1284 
1285 phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1286 					phys_addr_t align, phys_addr_t max_addr,
1287 					int nid, enum memblock_flags flags)
1288 {
1289 	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1290 }
1291 
1292 phys_addr_t __init memblock_phys_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1293 {
1294 	enum memblock_flags flags = choose_memblock_flags();
1295 	phys_addr_t ret;
1296 
1297 again:
1298 	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1299 				      nid, flags);
1300 
1301 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1302 		flags &= ~MEMBLOCK_MIRROR;
1303 		goto again;
1304 	}
1305 	return ret;
1306 }
1307 
1308 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1309 {
1310 	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1311 				       MEMBLOCK_NONE);
1312 }
1313 
1314 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1315 {
1316 	phys_addr_t alloc;
1317 
1318 	alloc = __memblock_alloc_base(size, align, max_addr);
1319 
1320 	if (alloc == 0)
1321 		panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1322 		      &size, &max_addr);
1323 
1324 	return alloc;
1325 }
1326 
1327 phys_addr_t __init memblock_phys_alloc(phys_addr_t size, phys_addr_t align)
1328 {
1329 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1330 }
1331 
1332 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1333 {
1334 	phys_addr_t res = memblock_phys_alloc_nid(size, align, nid);
1335 
1336 	if (res)
1337 		return res;
1338 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1339 }
1340 
1341 /**
1342  * memblock_alloc_internal - allocate boot memory block
1343  * @size: size of memory block to be allocated in bytes
1344  * @align: alignment of the region and block's size
1345  * @min_addr: the lower bound of the memory region to allocate (phys address)
1346  * @max_addr: the upper bound of the memory region to allocate (phys address)
1347  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1348  *
1349  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1350  * will fall back to memory below @min_addr. Also, allocation may fall back
1351  * to any node in the system if the specified node can not
1352  * hold the requested memory.
1353  *
1354  * The allocation is performed from memory region limited by
1355  * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
1356  *
1357  * The phys address of allocated boot memory block is converted to virtual and
1358  * allocated memory is reset to 0.
1359  *
1360  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1361  * allocated boot memory block, so that it is never reported as leaks.
1362  *
1363  * Return:
1364  * Virtual address of allocated memory block on success, NULL on failure.
1365  */
1366 static void * __init memblock_alloc_internal(
1367 				phys_addr_t size, phys_addr_t align,
1368 				phys_addr_t min_addr, phys_addr_t max_addr,
1369 				int nid)
1370 {
1371 	phys_addr_t alloc;
1372 	void *ptr;
1373 	enum memblock_flags flags = choose_memblock_flags();
1374 
1375 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1376 		nid = NUMA_NO_NODE;
1377 
1378 	/*
1379 	 * Detect any accidental use of these APIs after slab is ready, as at
1380 	 * this moment memblock may be deinitialized already and its
1381 	 * internal data may be destroyed (after execution of memblock_free_all)
1382 	 */
1383 	if (WARN_ON_ONCE(slab_is_available()))
1384 		return kzalloc_node(size, GFP_NOWAIT, nid);
1385 
1386 	if (!align) {
1387 		dump_stack();
1388 		align = SMP_CACHE_BYTES;
1389 	}
1390 
1391 	if (max_addr > memblock.current_limit)
1392 		max_addr = memblock.current_limit;
1393 again:
1394 	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1395 					    nid, flags);
1396 	if (alloc && !memblock_reserve(alloc, size))
1397 		goto done;
1398 
1399 	if (nid != NUMA_NO_NODE) {
1400 		alloc = memblock_find_in_range_node(size, align, min_addr,
1401 						    max_addr, NUMA_NO_NODE,
1402 						    flags);
1403 		if (alloc && !memblock_reserve(alloc, size))
1404 			goto done;
1405 	}
1406 
1407 	if (min_addr) {
1408 		min_addr = 0;
1409 		goto again;
1410 	}
1411 
1412 	if (flags & MEMBLOCK_MIRROR) {
1413 		flags &= ~MEMBLOCK_MIRROR;
1414 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1415 			&size);
1416 		goto again;
1417 	}
1418 
1419 	return NULL;
1420 done:
1421 	ptr = phys_to_virt(alloc);
1422 
1423 	/* Skip kmemleak for kasan_init() due to high volume. */
1424 	if (max_addr != MEMBLOCK_ALLOC_KASAN)
1425 		/*
1426 		 * The min_count is set to 0 so that bootmem allocated
1427 		 * blocks are never reported as leaks. This is because many
1428 		 * of these blocks are only referred via the physical
1429 		 * address which is not looked up by kmemleak.
1430 		 */
1431 		kmemleak_alloc(ptr, size, 0, 0);
1432 
1433 	return ptr;
1434 }
1435 
1436 /**
1437  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1438  * memory and without panicking
1439  * @size: size of memory block to be allocated in bytes
1440  * @align: alignment of the region and block's size
1441  * @min_addr: the lower bound of the memory region from where the allocation
1442  *	  is preferred (phys address)
1443  * @max_addr: the upper bound of the memory region from where the allocation
1444  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1445  *	      allocate only from memory limited by memblock.current_limit value
1446  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1447  *
1448  * Public function, provides additional debug information (including caller
1449  * info), if enabled. Does not zero allocated memory, does not panic if request
1450  * cannot be satisfied.
1451  *
1452  * Return:
1453  * Virtual address of allocated memory block on success, NULL on failure.
1454  */
1455 void * __init memblock_alloc_try_nid_raw(
1456 			phys_addr_t size, phys_addr_t align,
1457 			phys_addr_t min_addr, phys_addr_t max_addr,
1458 			int nid)
1459 {
1460 	void *ptr;
1461 
1462 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1463 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1464 		     &max_addr, (void *)_RET_IP_);
1465 
1466 	ptr = memblock_alloc_internal(size, align,
1467 					   min_addr, max_addr, nid);
1468 	if (ptr && size > 0)
1469 		page_init_poison(ptr, size);
1470 
1471 	return ptr;
1472 }
1473 
1474 /**
1475  * memblock_alloc_try_nid_nopanic - allocate boot memory block
1476  * @size: size of memory block to be allocated in bytes
1477  * @align: alignment of the region and block's size
1478  * @min_addr: the lower bound of the memory region from where the allocation
1479  *	  is preferred (phys address)
1480  * @max_addr: the upper bound of the memory region from where the allocation
1481  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1482  *	      allocate only from memory limited by memblock.current_limit value
1483  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1484  *
1485  * Public function, provides additional debug information (including caller
1486  * info), if enabled. This function zeroes the allocated memory.
1487  *
1488  * Return:
1489  * Virtual address of allocated memory block on success, NULL on failure.
1490  */
1491 void * __init memblock_alloc_try_nid_nopanic(
1492 				phys_addr_t size, phys_addr_t align,
1493 				phys_addr_t min_addr, phys_addr_t max_addr,
1494 				int nid)
1495 {
1496 	void *ptr;
1497 
1498 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1499 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1500 		     &max_addr, (void *)_RET_IP_);
1501 
1502 	ptr = memblock_alloc_internal(size, align,
1503 					   min_addr, max_addr, nid);
1504 	if (ptr)
1505 		memset(ptr, 0, size);
1506 	return ptr;
1507 }
1508 
1509 /**
1510  * memblock_alloc_try_nid - allocate boot memory block with panicking
1511  * @size: size of memory block to be allocated in bytes
1512  * @align: alignment of the region and block's size
1513  * @min_addr: the lower bound of the memory region from where the allocation
1514  *	  is preferred (phys address)
1515  * @max_addr: the upper bound of the memory region from where the allocation
1516  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1517  *	      allocate only from memory limited by memblock.current_limit value
1518  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1519  *
1520  * Public panicking version of memblock_alloc_try_nid_nopanic()
1521  * which provides debug information (including caller info), if enabled,
1522  * and panics if the request can not be satisfied.
1523  *
1524  * Return:
1525  * Virtual address of allocated memory block on success, NULL on failure.
1526  */
1527 void * __init memblock_alloc_try_nid(
1528 			phys_addr_t size, phys_addr_t align,
1529 			phys_addr_t min_addr, phys_addr_t max_addr,
1530 			int nid)
1531 {
1532 	void *ptr;
1533 
1534 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1535 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1536 		     &max_addr, (void *)_RET_IP_);
1537 	ptr = memblock_alloc_internal(size, align,
1538 					   min_addr, max_addr, nid);
1539 	if (ptr) {
1540 		memset(ptr, 0, size);
1541 		return ptr;
1542 	}
1543 
1544 	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n",
1545 	      __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr);
1546 	return NULL;
1547 }
1548 
1549 /**
1550  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1551  * @base: phys starting address of the  boot memory block
1552  * @size: size of the boot memory block in bytes
1553  *
1554  * This is only useful when the bootmem allocator has already been torn
1555  * down, but we are still initializing the system.  Pages are released directly
1556  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1557  */
1558 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1559 {
1560 	phys_addr_t cursor, end;
1561 
1562 	end = base + size - 1;
1563 	memblock_dbg("%s: [%pa-%pa] %pF\n",
1564 		     __func__, &base, &end, (void *)_RET_IP_);
1565 	kmemleak_free_part_phys(base, size);
1566 	cursor = PFN_UP(base);
1567 	end = PFN_DOWN(base + size);
1568 
1569 	for (; cursor < end; cursor++) {
1570 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1571 		totalram_pages_inc();
1572 	}
1573 }
1574 
1575 /*
1576  * Remaining API functions
1577  */
1578 
1579 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1580 {
1581 	return memblock.memory.total_size;
1582 }
1583 
1584 phys_addr_t __init_memblock memblock_reserved_size(void)
1585 {
1586 	return memblock.reserved.total_size;
1587 }
1588 
1589 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1590 {
1591 	unsigned long pages = 0;
1592 	struct memblock_region *r;
1593 	unsigned long start_pfn, end_pfn;
1594 
1595 	for_each_memblock(memory, r) {
1596 		start_pfn = memblock_region_memory_base_pfn(r);
1597 		end_pfn = memblock_region_memory_end_pfn(r);
1598 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1599 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1600 		pages += end_pfn - start_pfn;
1601 	}
1602 
1603 	return PFN_PHYS(pages);
1604 }
1605 
1606 /* lowest address */
1607 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1608 {
1609 	return memblock.memory.regions[0].base;
1610 }
1611 
1612 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1613 {
1614 	int idx = memblock.memory.cnt - 1;
1615 
1616 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1617 }
1618 
1619 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1620 {
1621 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1622 	struct memblock_region *r;
1623 
1624 	/*
1625 	 * translate the memory @limit size into the max address within one of
1626 	 * the memory memblock regions, if the @limit exceeds the total size
1627 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1628 	 */
1629 	for_each_memblock(memory, r) {
1630 		if (limit <= r->size) {
1631 			max_addr = r->base + limit;
1632 			break;
1633 		}
1634 		limit -= r->size;
1635 	}
1636 
1637 	return max_addr;
1638 }
1639 
1640 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1641 {
1642 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1643 
1644 	if (!limit)
1645 		return;
1646 
1647 	max_addr = __find_max_addr(limit);
1648 
1649 	/* @limit exceeds the total size of the memory, do nothing */
1650 	if (max_addr == PHYS_ADDR_MAX)
1651 		return;
1652 
1653 	/* truncate both memory and reserved regions */
1654 	memblock_remove_range(&memblock.memory, max_addr,
1655 			      PHYS_ADDR_MAX);
1656 	memblock_remove_range(&memblock.reserved, max_addr,
1657 			      PHYS_ADDR_MAX);
1658 }
1659 
1660 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1661 {
1662 	int start_rgn, end_rgn;
1663 	int i, ret;
1664 
1665 	if (!size)
1666 		return;
1667 
1668 	ret = memblock_isolate_range(&memblock.memory, base, size,
1669 						&start_rgn, &end_rgn);
1670 	if (ret)
1671 		return;
1672 
1673 	/* remove all the MAP regions */
1674 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1675 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1676 			memblock_remove_region(&memblock.memory, i);
1677 
1678 	for (i = start_rgn - 1; i >= 0; i--)
1679 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1680 			memblock_remove_region(&memblock.memory, i);
1681 
1682 	/* truncate the reserved regions */
1683 	memblock_remove_range(&memblock.reserved, 0, base);
1684 	memblock_remove_range(&memblock.reserved,
1685 			base + size, PHYS_ADDR_MAX);
1686 }
1687 
1688 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1689 {
1690 	phys_addr_t max_addr;
1691 
1692 	if (!limit)
1693 		return;
1694 
1695 	max_addr = __find_max_addr(limit);
1696 
1697 	/* @limit exceeds the total size of the memory, do nothing */
1698 	if (max_addr == PHYS_ADDR_MAX)
1699 		return;
1700 
1701 	memblock_cap_memory_range(0, max_addr);
1702 }
1703 
1704 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1705 {
1706 	unsigned int left = 0, right = type->cnt;
1707 
1708 	do {
1709 		unsigned int mid = (right + left) / 2;
1710 
1711 		if (addr < type->regions[mid].base)
1712 			right = mid;
1713 		else if (addr >= (type->regions[mid].base +
1714 				  type->regions[mid].size))
1715 			left = mid + 1;
1716 		else
1717 			return mid;
1718 	} while (left < right);
1719 	return -1;
1720 }
1721 
1722 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1723 {
1724 	return memblock_search(&memblock.reserved, addr) != -1;
1725 }
1726 
1727 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1728 {
1729 	return memblock_search(&memblock.memory, addr) != -1;
1730 }
1731 
1732 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1733 {
1734 	int i = memblock_search(&memblock.memory, addr);
1735 
1736 	if (i == -1)
1737 		return false;
1738 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1739 }
1740 
1741 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1742 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1743 			 unsigned long *start_pfn, unsigned long *end_pfn)
1744 {
1745 	struct memblock_type *type = &memblock.memory;
1746 	int mid = memblock_search(type, PFN_PHYS(pfn));
1747 
1748 	if (mid == -1)
1749 		return -1;
1750 
1751 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1752 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1753 
1754 	return type->regions[mid].nid;
1755 }
1756 #endif
1757 
1758 /**
1759  * memblock_is_region_memory - check if a region is a subset of memory
1760  * @base: base of region to check
1761  * @size: size of region to check
1762  *
1763  * Check if the region [@base, @base + @size) is a subset of a memory block.
1764  *
1765  * Return:
1766  * 0 if false, non-zero if true
1767  */
1768 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1769 {
1770 	int idx = memblock_search(&memblock.memory, base);
1771 	phys_addr_t end = base + memblock_cap_size(base, &size);
1772 
1773 	if (idx == -1)
1774 		return false;
1775 	return (memblock.memory.regions[idx].base +
1776 		 memblock.memory.regions[idx].size) >= end;
1777 }
1778 
1779 /**
1780  * memblock_is_region_reserved - check if a region intersects reserved memory
1781  * @base: base of region to check
1782  * @size: size of region to check
1783  *
1784  * Check if the region [@base, @base + @size) intersects a reserved
1785  * memory block.
1786  *
1787  * Return:
1788  * True if they intersect, false if not.
1789  */
1790 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1791 {
1792 	memblock_cap_size(base, &size);
1793 	return memblock_overlaps_region(&memblock.reserved, base, size);
1794 }
1795 
1796 void __init_memblock memblock_trim_memory(phys_addr_t align)
1797 {
1798 	phys_addr_t start, end, orig_start, orig_end;
1799 	struct memblock_region *r;
1800 
1801 	for_each_memblock(memory, r) {
1802 		orig_start = r->base;
1803 		orig_end = r->base + r->size;
1804 		start = round_up(orig_start, align);
1805 		end = round_down(orig_end, align);
1806 
1807 		if (start == orig_start && end == orig_end)
1808 			continue;
1809 
1810 		if (start < end) {
1811 			r->base = start;
1812 			r->size = end - start;
1813 		} else {
1814 			memblock_remove_region(&memblock.memory,
1815 					       r - memblock.memory.regions);
1816 			r--;
1817 		}
1818 	}
1819 }
1820 
1821 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1822 {
1823 	memblock.current_limit = limit;
1824 }
1825 
1826 phys_addr_t __init_memblock memblock_get_current_limit(void)
1827 {
1828 	return memblock.current_limit;
1829 }
1830 
1831 static void __init_memblock memblock_dump(struct memblock_type *type)
1832 {
1833 	phys_addr_t base, end, size;
1834 	enum memblock_flags flags;
1835 	int idx;
1836 	struct memblock_region *rgn;
1837 
1838 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1839 
1840 	for_each_memblock_type(idx, type, rgn) {
1841 		char nid_buf[32] = "";
1842 
1843 		base = rgn->base;
1844 		size = rgn->size;
1845 		end = base + size - 1;
1846 		flags = rgn->flags;
1847 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1848 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1849 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1850 				 memblock_get_region_node(rgn));
1851 #endif
1852 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1853 			type->name, idx, &base, &end, &size, nid_buf, flags);
1854 	}
1855 }
1856 
1857 void __init_memblock __memblock_dump_all(void)
1858 {
1859 	pr_info("MEMBLOCK configuration:\n");
1860 	pr_info(" memory size = %pa reserved size = %pa\n",
1861 		&memblock.memory.total_size,
1862 		&memblock.reserved.total_size);
1863 
1864 	memblock_dump(&memblock.memory);
1865 	memblock_dump(&memblock.reserved);
1866 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1867 	memblock_dump(&memblock.physmem);
1868 #endif
1869 }
1870 
1871 void __init memblock_allow_resize(void)
1872 {
1873 	memblock_can_resize = 1;
1874 }
1875 
1876 static int __init early_memblock(char *p)
1877 {
1878 	if (p && strstr(p, "debug"))
1879 		memblock_debug = 1;
1880 	return 0;
1881 }
1882 early_param("memblock", early_memblock);
1883 
1884 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1885 {
1886 	int order;
1887 
1888 	while (start < end) {
1889 		order = min(MAX_ORDER - 1UL, __ffs(start));
1890 
1891 		while (start + (1UL << order) > end)
1892 			order--;
1893 
1894 		memblock_free_pages(pfn_to_page(start), start, order);
1895 
1896 		start += (1UL << order);
1897 	}
1898 }
1899 
1900 static unsigned long __init __free_memory_core(phys_addr_t start,
1901 				 phys_addr_t end)
1902 {
1903 	unsigned long start_pfn = PFN_UP(start);
1904 	unsigned long end_pfn = min_t(unsigned long,
1905 				      PFN_DOWN(end), max_low_pfn);
1906 
1907 	if (start_pfn >= end_pfn)
1908 		return 0;
1909 
1910 	__free_pages_memory(start_pfn, end_pfn);
1911 
1912 	return end_pfn - start_pfn;
1913 }
1914 
1915 static unsigned long __init free_low_memory_core_early(void)
1916 {
1917 	unsigned long count = 0;
1918 	phys_addr_t start, end;
1919 	u64 i;
1920 
1921 	memblock_clear_hotplug(0, -1);
1922 
1923 	for_each_reserved_mem_region(i, &start, &end)
1924 		reserve_bootmem_region(start, end);
1925 
1926 	/*
1927 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1928 	 *  because in some case like Node0 doesn't have RAM installed
1929 	 *  low ram will be on Node1
1930 	 */
1931 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1932 				NULL)
1933 		count += __free_memory_core(start, end);
1934 
1935 	return count;
1936 }
1937 
1938 static int reset_managed_pages_done __initdata;
1939 
1940 void reset_node_managed_pages(pg_data_t *pgdat)
1941 {
1942 	struct zone *z;
1943 
1944 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1945 		atomic_long_set(&z->managed_pages, 0);
1946 }
1947 
1948 void __init reset_all_zones_managed_pages(void)
1949 {
1950 	struct pglist_data *pgdat;
1951 
1952 	if (reset_managed_pages_done)
1953 		return;
1954 
1955 	for_each_online_pgdat(pgdat)
1956 		reset_node_managed_pages(pgdat);
1957 
1958 	reset_managed_pages_done = 1;
1959 }
1960 
1961 /**
1962  * memblock_free_all - release free pages to the buddy allocator
1963  *
1964  * Return: the number of pages actually released.
1965  */
1966 unsigned long __init memblock_free_all(void)
1967 {
1968 	unsigned long pages;
1969 
1970 	reset_all_zones_managed_pages();
1971 
1972 	pages = free_low_memory_core_early();
1973 	totalram_pages_add(pages);
1974 
1975 	return pages;
1976 }
1977 
1978 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1979 
1980 static int memblock_debug_show(struct seq_file *m, void *private)
1981 {
1982 	struct memblock_type *type = m->private;
1983 	struct memblock_region *reg;
1984 	int i;
1985 	phys_addr_t end;
1986 
1987 	for (i = 0; i < type->cnt; i++) {
1988 		reg = &type->regions[i];
1989 		end = reg->base + reg->size - 1;
1990 
1991 		seq_printf(m, "%4d: ", i);
1992 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1993 	}
1994 	return 0;
1995 }
1996 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1997 
1998 static int __init memblock_init_debugfs(void)
1999 {
2000 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2001 	if (!root)
2002 		return -ENXIO;
2003 	debugfs_create_file("memory", 0444, root,
2004 			    &memblock.memory, &memblock_debug_fops);
2005 	debugfs_create_file("reserved", 0444, root,
2006 			    &memblock.reserved, &memblock_debug_fops);
2007 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2008 	debugfs_create_file("physmem", 0444, root,
2009 			    &memblock.physmem, &memblock_debug_fops);
2010 #endif
2011 
2012 	return 0;
2013 }
2014 __initcall(memblock_init_debugfs);
2015 
2016 #endif /* CONFIG_DEBUG_FS */
2017