xref: /linux/mm/memblock.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/kmemleak.h>
21 #include <linux/seq_file.h>
22 #include <linux/memblock.h>
23 #include <linux/bootmem.h>
24 
25 #include <asm/sections.h>
26 #include <linux/io.h>
27 
28 #include "internal.h"
29 
30 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
31 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
32 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
33 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
34 #endif
35 
36 struct memblock memblock __initdata_memblock = {
37 	.memory.regions		= memblock_memory_init_regions,
38 	.memory.cnt		= 1,	/* empty dummy entry */
39 	.memory.max		= INIT_MEMBLOCK_REGIONS,
40 	.memory.name		= "memory",
41 
42 	.reserved.regions	= memblock_reserved_init_regions,
43 	.reserved.cnt		= 1,	/* empty dummy entry */
44 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
45 	.reserved.name		= "reserved",
46 
47 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
48 	.physmem.regions	= memblock_physmem_init_regions,
49 	.physmem.cnt		= 1,	/* empty dummy entry */
50 	.physmem.max		= INIT_PHYSMEM_REGIONS,
51 	.physmem.name		= "physmem",
52 #endif
53 
54 	.bottom_up		= false,
55 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
56 };
57 
58 int memblock_debug __initdata_memblock;
59 static bool system_has_some_mirror __initdata_memblock = false;
60 static int memblock_can_resize __initdata_memblock;
61 static int memblock_memory_in_slab __initdata_memblock = 0;
62 static int memblock_reserved_in_slab __initdata_memblock = 0;
63 
64 ulong __init_memblock choose_memblock_flags(void)
65 {
66 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
67 }
68 
69 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
70 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
71 {
72 	return *size = min(*size, PHYS_ADDR_MAX - base);
73 }
74 
75 /*
76  * Address comparison utilities
77  */
78 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
79 				       phys_addr_t base2, phys_addr_t size2)
80 {
81 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
82 }
83 
84 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
85 					phys_addr_t base, phys_addr_t size)
86 {
87 	unsigned long i;
88 
89 	for (i = 0; i < type->cnt; i++)
90 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
91 					   type->regions[i].size))
92 			break;
93 	return i < type->cnt;
94 }
95 
96 /*
97  * __memblock_find_range_bottom_up - find free area utility in bottom-up
98  * @start: start of candidate range
99  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
100  * @size: size of free area to find
101  * @align: alignment of free area to find
102  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
103  * @flags: pick from blocks based on memory attributes
104  *
105  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
106  *
107  * RETURNS:
108  * Found address on success, 0 on failure.
109  */
110 static phys_addr_t __init_memblock
111 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
112 				phys_addr_t size, phys_addr_t align, int nid,
113 				ulong flags)
114 {
115 	phys_addr_t this_start, this_end, cand;
116 	u64 i;
117 
118 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
119 		this_start = clamp(this_start, start, end);
120 		this_end = clamp(this_end, start, end);
121 
122 		cand = round_up(this_start, align);
123 		if (cand < this_end && this_end - cand >= size)
124 			return cand;
125 	}
126 
127 	return 0;
128 }
129 
130 /**
131  * __memblock_find_range_top_down - find free area utility, in top-down
132  * @start: start of candidate range
133  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
134  * @size: size of free area to find
135  * @align: alignment of free area to find
136  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
137  * @flags: pick from blocks based on memory attributes
138  *
139  * Utility called from memblock_find_in_range_node(), find free area top-down.
140  *
141  * RETURNS:
142  * Found address on success, 0 on failure.
143  */
144 static phys_addr_t __init_memblock
145 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
146 			       phys_addr_t size, phys_addr_t align, int nid,
147 			       ulong flags)
148 {
149 	phys_addr_t this_start, this_end, cand;
150 	u64 i;
151 
152 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
153 					NULL) {
154 		this_start = clamp(this_start, start, end);
155 		this_end = clamp(this_end, start, end);
156 
157 		if (this_end < size)
158 			continue;
159 
160 		cand = round_down(this_end - size, align);
161 		if (cand >= this_start)
162 			return cand;
163 	}
164 
165 	return 0;
166 }
167 
168 /**
169  * memblock_find_in_range_node - find free area in given range and node
170  * @size: size of free area to find
171  * @align: alignment of free area to find
172  * @start: start of candidate range
173  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
174  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
175  * @flags: pick from blocks based on memory attributes
176  *
177  * Find @size free area aligned to @align in the specified range and node.
178  *
179  * When allocation direction is bottom-up, the @start should be greater
180  * than the end of the kernel image. Otherwise, it will be trimmed. The
181  * reason is that we want the bottom-up allocation just near the kernel
182  * image so it is highly likely that the allocated memory and the kernel
183  * will reside in the same node.
184  *
185  * If bottom-up allocation failed, will try to allocate memory top-down.
186  *
187  * RETURNS:
188  * Found address on success, 0 on failure.
189  */
190 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
191 					phys_addr_t align, phys_addr_t start,
192 					phys_addr_t end, int nid, ulong flags)
193 {
194 	phys_addr_t kernel_end, ret;
195 
196 	/* pump up @end */
197 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
198 		end = memblock.current_limit;
199 
200 	/* avoid allocating the first page */
201 	start = max_t(phys_addr_t, start, PAGE_SIZE);
202 	end = max(start, end);
203 	kernel_end = __pa_symbol(_end);
204 
205 	/*
206 	 * try bottom-up allocation only when bottom-up mode
207 	 * is set and @end is above the kernel image.
208 	 */
209 	if (memblock_bottom_up() && end > kernel_end) {
210 		phys_addr_t bottom_up_start;
211 
212 		/* make sure we will allocate above the kernel */
213 		bottom_up_start = max(start, kernel_end);
214 
215 		/* ok, try bottom-up allocation first */
216 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
217 						      size, align, nid, flags);
218 		if (ret)
219 			return ret;
220 
221 		/*
222 		 * we always limit bottom-up allocation above the kernel,
223 		 * but top-down allocation doesn't have the limit, so
224 		 * retrying top-down allocation may succeed when bottom-up
225 		 * allocation failed.
226 		 *
227 		 * bottom-up allocation is expected to be fail very rarely,
228 		 * so we use WARN_ONCE() here to see the stack trace if
229 		 * fail happens.
230 		 */
231 		WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
232 			  "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
233 	}
234 
235 	return __memblock_find_range_top_down(start, end, size, align, nid,
236 					      flags);
237 }
238 
239 /**
240  * memblock_find_in_range - find free area in given range
241  * @start: start of candidate range
242  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
243  * @size: size of free area to find
244  * @align: alignment of free area to find
245  *
246  * Find @size free area aligned to @align in the specified range.
247  *
248  * RETURNS:
249  * Found address on success, 0 on failure.
250  */
251 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
252 					phys_addr_t end, phys_addr_t size,
253 					phys_addr_t align)
254 {
255 	phys_addr_t ret;
256 	ulong flags = choose_memblock_flags();
257 
258 again:
259 	ret = memblock_find_in_range_node(size, align, start, end,
260 					    NUMA_NO_NODE, flags);
261 
262 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
263 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
264 			&size);
265 		flags &= ~MEMBLOCK_MIRROR;
266 		goto again;
267 	}
268 
269 	return ret;
270 }
271 
272 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
273 {
274 	type->total_size -= type->regions[r].size;
275 	memmove(&type->regions[r], &type->regions[r + 1],
276 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
277 	type->cnt--;
278 
279 	/* Special case for empty arrays */
280 	if (type->cnt == 0) {
281 		WARN_ON(type->total_size != 0);
282 		type->cnt = 1;
283 		type->regions[0].base = 0;
284 		type->regions[0].size = 0;
285 		type->regions[0].flags = 0;
286 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
287 	}
288 }
289 
290 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
291 /**
292  * Discard memory and reserved arrays if they were allocated
293  */
294 void __init memblock_discard(void)
295 {
296 	phys_addr_t addr, size;
297 
298 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
299 		addr = __pa(memblock.reserved.regions);
300 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
301 				  memblock.reserved.max);
302 		__memblock_free_late(addr, size);
303 	}
304 
305 	if (memblock.memory.regions != memblock_memory_init_regions) {
306 		addr = __pa(memblock.memory.regions);
307 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
308 				  memblock.memory.max);
309 		__memblock_free_late(addr, size);
310 	}
311 }
312 #endif
313 
314 /**
315  * memblock_double_array - double the size of the memblock regions array
316  * @type: memblock type of the regions array being doubled
317  * @new_area_start: starting address of memory range to avoid overlap with
318  * @new_area_size: size of memory range to avoid overlap with
319  *
320  * Double the size of the @type regions array. If memblock is being used to
321  * allocate memory for a new reserved regions array and there is a previously
322  * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
323  * waiting to be reserved, ensure the memory used by the new array does
324  * not overlap.
325  *
326  * RETURNS:
327  * 0 on success, -1 on failure.
328  */
329 static int __init_memblock memblock_double_array(struct memblock_type *type,
330 						phys_addr_t new_area_start,
331 						phys_addr_t new_area_size)
332 {
333 	struct memblock_region *new_array, *old_array;
334 	phys_addr_t old_alloc_size, new_alloc_size;
335 	phys_addr_t old_size, new_size, addr;
336 	int use_slab = slab_is_available();
337 	int *in_slab;
338 
339 	/* We don't allow resizing until we know about the reserved regions
340 	 * of memory that aren't suitable for allocation
341 	 */
342 	if (!memblock_can_resize)
343 		return -1;
344 
345 	/* Calculate new doubled size */
346 	old_size = type->max * sizeof(struct memblock_region);
347 	new_size = old_size << 1;
348 	/*
349 	 * We need to allocated new one align to PAGE_SIZE,
350 	 *   so we can free them completely later.
351 	 */
352 	old_alloc_size = PAGE_ALIGN(old_size);
353 	new_alloc_size = PAGE_ALIGN(new_size);
354 
355 	/* Retrieve the slab flag */
356 	if (type == &memblock.memory)
357 		in_slab = &memblock_memory_in_slab;
358 	else
359 		in_slab = &memblock_reserved_in_slab;
360 
361 	/* Try to find some space for it.
362 	 *
363 	 * WARNING: We assume that either slab_is_available() and we use it or
364 	 * we use MEMBLOCK for allocations. That means that this is unsafe to
365 	 * use when bootmem is currently active (unless bootmem itself is
366 	 * implemented on top of MEMBLOCK which isn't the case yet)
367 	 *
368 	 * This should however not be an issue for now, as we currently only
369 	 * call into MEMBLOCK while it's still active, or much later when slab
370 	 * is active for memory hotplug operations
371 	 */
372 	if (use_slab) {
373 		new_array = kmalloc(new_size, GFP_KERNEL);
374 		addr = new_array ? __pa(new_array) : 0;
375 	} else {
376 		/* only exclude range when trying to double reserved.regions */
377 		if (type != &memblock.reserved)
378 			new_area_start = new_area_size = 0;
379 
380 		addr = memblock_find_in_range(new_area_start + new_area_size,
381 						memblock.current_limit,
382 						new_alloc_size, PAGE_SIZE);
383 		if (!addr && new_area_size)
384 			addr = memblock_find_in_range(0,
385 				min(new_area_start, memblock.current_limit),
386 				new_alloc_size, PAGE_SIZE);
387 
388 		new_array = addr ? __va(addr) : NULL;
389 	}
390 	if (!addr) {
391 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
392 		       type->name, type->max, type->max * 2);
393 		return -1;
394 	}
395 
396 	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
397 			type->name, type->max * 2, (u64)addr,
398 			(u64)addr + new_size - 1);
399 
400 	/*
401 	 * Found space, we now need to move the array over before we add the
402 	 * reserved region since it may be our reserved array itself that is
403 	 * full.
404 	 */
405 	memcpy(new_array, type->regions, old_size);
406 	memset(new_array + type->max, 0, old_size);
407 	old_array = type->regions;
408 	type->regions = new_array;
409 	type->max <<= 1;
410 
411 	/* Free old array. We needn't free it if the array is the static one */
412 	if (*in_slab)
413 		kfree(old_array);
414 	else if (old_array != memblock_memory_init_regions &&
415 		 old_array != memblock_reserved_init_regions)
416 		memblock_free(__pa(old_array), old_alloc_size);
417 
418 	/*
419 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
420 	 * needn't do it
421 	 */
422 	if (!use_slab)
423 		BUG_ON(memblock_reserve(addr, new_alloc_size));
424 
425 	/* Update slab flag */
426 	*in_slab = use_slab;
427 
428 	return 0;
429 }
430 
431 /**
432  * memblock_merge_regions - merge neighboring compatible regions
433  * @type: memblock type to scan
434  *
435  * Scan @type and merge neighboring compatible regions.
436  */
437 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
438 {
439 	int i = 0;
440 
441 	/* cnt never goes below 1 */
442 	while (i < type->cnt - 1) {
443 		struct memblock_region *this = &type->regions[i];
444 		struct memblock_region *next = &type->regions[i + 1];
445 
446 		if (this->base + this->size != next->base ||
447 		    memblock_get_region_node(this) !=
448 		    memblock_get_region_node(next) ||
449 		    this->flags != next->flags) {
450 			BUG_ON(this->base + this->size > next->base);
451 			i++;
452 			continue;
453 		}
454 
455 		this->size += next->size;
456 		/* move forward from next + 1, index of which is i + 2 */
457 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
458 		type->cnt--;
459 	}
460 }
461 
462 /**
463  * memblock_insert_region - insert new memblock region
464  * @type:	memblock type to insert into
465  * @idx:	index for the insertion point
466  * @base:	base address of the new region
467  * @size:	size of the new region
468  * @nid:	node id of the new region
469  * @flags:	flags of the new region
470  *
471  * Insert new memblock region [@base,@base+@size) into @type at @idx.
472  * @type must already have extra room to accommodate the new region.
473  */
474 static void __init_memblock memblock_insert_region(struct memblock_type *type,
475 						   int idx, phys_addr_t base,
476 						   phys_addr_t size,
477 						   int nid, unsigned long flags)
478 {
479 	struct memblock_region *rgn = &type->regions[idx];
480 
481 	BUG_ON(type->cnt >= type->max);
482 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
483 	rgn->base = base;
484 	rgn->size = size;
485 	rgn->flags = flags;
486 	memblock_set_region_node(rgn, nid);
487 	type->cnt++;
488 	type->total_size += size;
489 }
490 
491 /**
492  * memblock_add_range - add new memblock region
493  * @type: memblock type to add new region into
494  * @base: base address of the new region
495  * @size: size of the new region
496  * @nid: nid of the new region
497  * @flags: flags of the new region
498  *
499  * Add new memblock region [@base,@base+@size) into @type.  The new region
500  * is allowed to overlap with existing ones - overlaps don't affect already
501  * existing regions.  @type is guaranteed to be minimal (all neighbouring
502  * compatible regions are merged) after the addition.
503  *
504  * RETURNS:
505  * 0 on success, -errno on failure.
506  */
507 int __init_memblock memblock_add_range(struct memblock_type *type,
508 				phys_addr_t base, phys_addr_t size,
509 				int nid, unsigned long flags)
510 {
511 	bool insert = false;
512 	phys_addr_t obase = base;
513 	phys_addr_t end = base + memblock_cap_size(base, &size);
514 	int idx, nr_new;
515 	struct memblock_region *rgn;
516 
517 	if (!size)
518 		return 0;
519 
520 	/* special case for empty array */
521 	if (type->regions[0].size == 0) {
522 		WARN_ON(type->cnt != 1 || type->total_size);
523 		type->regions[0].base = base;
524 		type->regions[0].size = size;
525 		type->regions[0].flags = flags;
526 		memblock_set_region_node(&type->regions[0], nid);
527 		type->total_size = size;
528 		return 0;
529 	}
530 repeat:
531 	/*
532 	 * The following is executed twice.  Once with %false @insert and
533 	 * then with %true.  The first counts the number of regions needed
534 	 * to accommodate the new area.  The second actually inserts them.
535 	 */
536 	base = obase;
537 	nr_new = 0;
538 
539 	for_each_memblock_type(idx, type, rgn) {
540 		phys_addr_t rbase = rgn->base;
541 		phys_addr_t rend = rbase + rgn->size;
542 
543 		if (rbase >= end)
544 			break;
545 		if (rend <= base)
546 			continue;
547 		/*
548 		 * @rgn overlaps.  If it separates the lower part of new
549 		 * area, insert that portion.
550 		 */
551 		if (rbase > base) {
552 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
553 			WARN_ON(nid != memblock_get_region_node(rgn));
554 #endif
555 			WARN_ON(flags != rgn->flags);
556 			nr_new++;
557 			if (insert)
558 				memblock_insert_region(type, idx++, base,
559 						       rbase - base, nid,
560 						       flags);
561 		}
562 		/* area below @rend is dealt with, forget about it */
563 		base = min(rend, end);
564 	}
565 
566 	/* insert the remaining portion */
567 	if (base < end) {
568 		nr_new++;
569 		if (insert)
570 			memblock_insert_region(type, idx, base, end - base,
571 					       nid, flags);
572 	}
573 
574 	if (!nr_new)
575 		return 0;
576 
577 	/*
578 	 * If this was the first round, resize array and repeat for actual
579 	 * insertions; otherwise, merge and return.
580 	 */
581 	if (!insert) {
582 		while (type->cnt + nr_new > type->max)
583 			if (memblock_double_array(type, obase, size) < 0)
584 				return -ENOMEM;
585 		insert = true;
586 		goto repeat;
587 	} else {
588 		memblock_merge_regions(type);
589 		return 0;
590 	}
591 }
592 
593 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
594 				       int nid)
595 {
596 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
597 }
598 
599 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
600 {
601 	phys_addr_t end = base + size - 1;
602 
603 	memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
604 		     &base, &end, (void *)_RET_IP_);
605 
606 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
607 }
608 
609 /**
610  * memblock_isolate_range - isolate given range into disjoint memblocks
611  * @type: memblock type to isolate range for
612  * @base: base of range to isolate
613  * @size: size of range to isolate
614  * @start_rgn: out parameter for the start of isolated region
615  * @end_rgn: out parameter for the end of isolated region
616  *
617  * Walk @type and ensure that regions don't cross the boundaries defined by
618  * [@base,@base+@size).  Crossing regions are split at the boundaries,
619  * which may create at most two more regions.  The index of the first
620  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
621  *
622  * RETURNS:
623  * 0 on success, -errno on failure.
624  */
625 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
626 					phys_addr_t base, phys_addr_t size,
627 					int *start_rgn, int *end_rgn)
628 {
629 	phys_addr_t end = base + memblock_cap_size(base, &size);
630 	int idx;
631 	struct memblock_region *rgn;
632 
633 	*start_rgn = *end_rgn = 0;
634 
635 	if (!size)
636 		return 0;
637 
638 	/* we'll create at most two more regions */
639 	while (type->cnt + 2 > type->max)
640 		if (memblock_double_array(type, base, size) < 0)
641 			return -ENOMEM;
642 
643 	for_each_memblock_type(idx, type, rgn) {
644 		phys_addr_t rbase = rgn->base;
645 		phys_addr_t rend = rbase + rgn->size;
646 
647 		if (rbase >= end)
648 			break;
649 		if (rend <= base)
650 			continue;
651 
652 		if (rbase < base) {
653 			/*
654 			 * @rgn intersects from below.  Split and continue
655 			 * to process the next region - the new top half.
656 			 */
657 			rgn->base = base;
658 			rgn->size -= base - rbase;
659 			type->total_size -= base - rbase;
660 			memblock_insert_region(type, idx, rbase, base - rbase,
661 					       memblock_get_region_node(rgn),
662 					       rgn->flags);
663 		} else if (rend > end) {
664 			/*
665 			 * @rgn intersects from above.  Split and redo the
666 			 * current region - the new bottom half.
667 			 */
668 			rgn->base = end;
669 			rgn->size -= end - rbase;
670 			type->total_size -= end - rbase;
671 			memblock_insert_region(type, idx--, rbase, end - rbase,
672 					       memblock_get_region_node(rgn),
673 					       rgn->flags);
674 		} else {
675 			/* @rgn is fully contained, record it */
676 			if (!*end_rgn)
677 				*start_rgn = idx;
678 			*end_rgn = idx + 1;
679 		}
680 	}
681 
682 	return 0;
683 }
684 
685 static int __init_memblock memblock_remove_range(struct memblock_type *type,
686 					  phys_addr_t base, phys_addr_t size)
687 {
688 	int start_rgn, end_rgn;
689 	int i, ret;
690 
691 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
692 	if (ret)
693 		return ret;
694 
695 	for (i = end_rgn - 1; i >= start_rgn; i--)
696 		memblock_remove_region(type, i);
697 	return 0;
698 }
699 
700 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
701 {
702 	phys_addr_t end = base + size - 1;
703 
704 	memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
705 		     &base, &end, (void *)_RET_IP_);
706 
707 	return memblock_remove_range(&memblock.memory, base, size);
708 }
709 
710 
711 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
712 {
713 	phys_addr_t end = base + size - 1;
714 
715 	memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
716 		     &base, &end, (void *)_RET_IP_);
717 
718 	kmemleak_free_part_phys(base, size);
719 	return memblock_remove_range(&memblock.reserved, base, size);
720 }
721 
722 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
723 {
724 	phys_addr_t end = base + size - 1;
725 
726 	memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
727 		     &base, &end, (void *)_RET_IP_);
728 
729 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
730 }
731 
732 /**
733  *
734  * This function isolates region [@base, @base + @size), and sets/clears flag
735  *
736  * Return 0 on success, -errno on failure.
737  */
738 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
739 				phys_addr_t size, int set, int flag)
740 {
741 	struct memblock_type *type = &memblock.memory;
742 	int i, ret, start_rgn, end_rgn;
743 
744 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
745 	if (ret)
746 		return ret;
747 
748 	for (i = start_rgn; i < end_rgn; i++)
749 		if (set)
750 			memblock_set_region_flags(&type->regions[i], flag);
751 		else
752 			memblock_clear_region_flags(&type->regions[i], flag);
753 
754 	memblock_merge_regions(type);
755 	return 0;
756 }
757 
758 /**
759  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
760  * @base: the base phys addr of the region
761  * @size: the size of the region
762  *
763  * Return 0 on success, -errno on failure.
764  */
765 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
766 {
767 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
768 }
769 
770 /**
771  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
772  * @base: the base phys addr of the region
773  * @size: the size of the region
774  *
775  * Return 0 on success, -errno on failure.
776  */
777 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
778 {
779 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
780 }
781 
782 /**
783  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
784  * @base: the base phys addr of the region
785  * @size: the size of the region
786  *
787  * Return 0 on success, -errno on failure.
788  */
789 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
790 {
791 	system_has_some_mirror = true;
792 
793 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
794 }
795 
796 /**
797  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
798  * @base: the base phys addr of the region
799  * @size: the size of the region
800  *
801  * Return 0 on success, -errno on failure.
802  */
803 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
804 {
805 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
806 }
807 
808 /**
809  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
810  * @base: the base phys addr of the region
811  * @size: the size of the region
812  *
813  * Return 0 on success, -errno on failure.
814  */
815 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
816 {
817 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
818 }
819 
820 /**
821  * __next_reserved_mem_region - next function for for_each_reserved_region()
822  * @idx: pointer to u64 loop variable
823  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
824  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
825  *
826  * Iterate over all reserved memory regions.
827  */
828 void __init_memblock __next_reserved_mem_region(u64 *idx,
829 					   phys_addr_t *out_start,
830 					   phys_addr_t *out_end)
831 {
832 	struct memblock_type *type = &memblock.reserved;
833 
834 	if (*idx < type->cnt) {
835 		struct memblock_region *r = &type->regions[*idx];
836 		phys_addr_t base = r->base;
837 		phys_addr_t size = r->size;
838 
839 		if (out_start)
840 			*out_start = base;
841 		if (out_end)
842 			*out_end = base + size - 1;
843 
844 		*idx += 1;
845 		return;
846 	}
847 
848 	/* signal end of iteration */
849 	*idx = ULLONG_MAX;
850 }
851 
852 /**
853  * __next__mem_range - next function for for_each_free_mem_range() etc.
854  * @idx: pointer to u64 loop variable
855  * @nid: node selector, %NUMA_NO_NODE for all nodes
856  * @flags: pick from blocks based on memory attributes
857  * @type_a: pointer to memblock_type from where the range is taken
858  * @type_b: pointer to memblock_type which excludes memory from being taken
859  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
860  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
861  * @out_nid: ptr to int for nid of the range, can be %NULL
862  *
863  * Find the first area from *@idx which matches @nid, fill the out
864  * parameters, and update *@idx for the next iteration.  The lower 32bit of
865  * *@idx contains index into type_a and the upper 32bit indexes the
866  * areas before each region in type_b.	For example, if type_b regions
867  * look like the following,
868  *
869  *	0:[0-16), 1:[32-48), 2:[128-130)
870  *
871  * The upper 32bit indexes the following regions.
872  *
873  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
874  *
875  * As both region arrays are sorted, the function advances the two indices
876  * in lockstep and returns each intersection.
877  */
878 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
879 				      struct memblock_type *type_a,
880 				      struct memblock_type *type_b,
881 				      phys_addr_t *out_start,
882 				      phys_addr_t *out_end, int *out_nid)
883 {
884 	int idx_a = *idx & 0xffffffff;
885 	int idx_b = *idx >> 32;
886 
887 	if (WARN_ONCE(nid == MAX_NUMNODES,
888 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
889 		nid = NUMA_NO_NODE;
890 
891 	for (; idx_a < type_a->cnt; idx_a++) {
892 		struct memblock_region *m = &type_a->regions[idx_a];
893 
894 		phys_addr_t m_start = m->base;
895 		phys_addr_t m_end = m->base + m->size;
896 		int	    m_nid = memblock_get_region_node(m);
897 
898 		/* only memory regions are associated with nodes, check it */
899 		if (nid != NUMA_NO_NODE && nid != m_nid)
900 			continue;
901 
902 		/* skip hotpluggable memory regions if needed */
903 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
904 			continue;
905 
906 		/* if we want mirror memory skip non-mirror memory regions */
907 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
908 			continue;
909 
910 		/* skip nomap memory unless we were asked for it explicitly */
911 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
912 			continue;
913 
914 		if (!type_b) {
915 			if (out_start)
916 				*out_start = m_start;
917 			if (out_end)
918 				*out_end = m_end;
919 			if (out_nid)
920 				*out_nid = m_nid;
921 			idx_a++;
922 			*idx = (u32)idx_a | (u64)idx_b << 32;
923 			return;
924 		}
925 
926 		/* scan areas before each reservation */
927 		for (; idx_b < type_b->cnt + 1; idx_b++) {
928 			struct memblock_region *r;
929 			phys_addr_t r_start;
930 			phys_addr_t r_end;
931 
932 			r = &type_b->regions[idx_b];
933 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
934 			r_end = idx_b < type_b->cnt ?
935 				r->base : PHYS_ADDR_MAX;
936 
937 			/*
938 			 * if idx_b advanced past idx_a,
939 			 * break out to advance idx_a
940 			 */
941 			if (r_start >= m_end)
942 				break;
943 			/* if the two regions intersect, we're done */
944 			if (m_start < r_end) {
945 				if (out_start)
946 					*out_start =
947 						max(m_start, r_start);
948 				if (out_end)
949 					*out_end = min(m_end, r_end);
950 				if (out_nid)
951 					*out_nid = m_nid;
952 				/*
953 				 * The region which ends first is
954 				 * advanced for the next iteration.
955 				 */
956 				if (m_end <= r_end)
957 					idx_a++;
958 				else
959 					idx_b++;
960 				*idx = (u32)idx_a | (u64)idx_b << 32;
961 				return;
962 			}
963 		}
964 	}
965 
966 	/* signal end of iteration */
967 	*idx = ULLONG_MAX;
968 }
969 
970 /**
971  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
972  *
973  * Finds the next range from type_a which is not marked as unsuitable
974  * in type_b.
975  *
976  * @idx: pointer to u64 loop variable
977  * @nid: node selector, %NUMA_NO_NODE for all nodes
978  * @flags: pick from blocks based on memory attributes
979  * @type_a: pointer to memblock_type from where the range is taken
980  * @type_b: pointer to memblock_type which excludes memory from being taken
981  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
982  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
983  * @out_nid: ptr to int for nid of the range, can be %NULL
984  *
985  * Reverse of __next_mem_range().
986  */
987 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
988 					  struct memblock_type *type_a,
989 					  struct memblock_type *type_b,
990 					  phys_addr_t *out_start,
991 					  phys_addr_t *out_end, int *out_nid)
992 {
993 	int idx_a = *idx & 0xffffffff;
994 	int idx_b = *idx >> 32;
995 
996 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
997 		nid = NUMA_NO_NODE;
998 
999 	if (*idx == (u64)ULLONG_MAX) {
1000 		idx_a = type_a->cnt - 1;
1001 		if (type_b != NULL)
1002 			idx_b = type_b->cnt;
1003 		else
1004 			idx_b = 0;
1005 	}
1006 
1007 	for (; idx_a >= 0; idx_a--) {
1008 		struct memblock_region *m = &type_a->regions[idx_a];
1009 
1010 		phys_addr_t m_start = m->base;
1011 		phys_addr_t m_end = m->base + m->size;
1012 		int m_nid = memblock_get_region_node(m);
1013 
1014 		/* only memory regions are associated with nodes, check it */
1015 		if (nid != NUMA_NO_NODE && nid != m_nid)
1016 			continue;
1017 
1018 		/* skip hotpluggable memory regions if needed */
1019 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1020 			continue;
1021 
1022 		/* if we want mirror memory skip non-mirror memory regions */
1023 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1024 			continue;
1025 
1026 		/* skip nomap memory unless we were asked for it explicitly */
1027 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1028 			continue;
1029 
1030 		if (!type_b) {
1031 			if (out_start)
1032 				*out_start = m_start;
1033 			if (out_end)
1034 				*out_end = m_end;
1035 			if (out_nid)
1036 				*out_nid = m_nid;
1037 			idx_a--;
1038 			*idx = (u32)idx_a | (u64)idx_b << 32;
1039 			return;
1040 		}
1041 
1042 		/* scan areas before each reservation */
1043 		for (; idx_b >= 0; idx_b--) {
1044 			struct memblock_region *r;
1045 			phys_addr_t r_start;
1046 			phys_addr_t r_end;
1047 
1048 			r = &type_b->regions[idx_b];
1049 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1050 			r_end = idx_b < type_b->cnt ?
1051 				r->base : PHYS_ADDR_MAX;
1052 			/*
1053 			 * if idx_b advanced past idx_a,
1054 			 * break out to advance idx_a
1055 			 */
1056 
1057 			if (r_end <= m_start)
1058 				break;
1059 			/* if the two regions intersect, we're done */
1060 			if (m_end > r_start) {
1061 				if (out_start)
1062 					*out_start = max(m_start, r_start);
1063 				if (out_end)
1064 					*out_end = min(m_end, r_end);
1065 				if (out_nid)
1066 					*out_nid = m_nid;
1067 				if (m_start >= r_start)
1068 					idx_a--;
1069 				else
1070 					idx_b--;
1071 				*idx = (u32)idx_a | (u64)idx_b << 32;
1072 				return;
1073 			}
1074 		}
1075 	}
1076 	/* signal end of iteration */
1077 	*idx = ULLONG_MAX;
1078 }
1079 
1080 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1081 /*
1082  * Common iterator interface used to define for_each_mem_range().
1083  */
1084 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1085 				unsigned long *out_start_pfn,
1086 				unsigned long *out_end_pfn, int *out_nid)
1087 {
1088 	struct memblock_type *type = &memblock.memory;
1089 	struct memblock_region *r;
1090 
1091 	while (++*idx < type->cnt) {
1092 		r = &type->regions[*idx];
1093 
1094 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1095 			continue;
1096 		if (nid == MAX_NUMNODES || nid == r->nid)
1097 			break;
1098 	}
1099 	if (*idx >= type->cnt) {
1100 		*idx = -1;
1101 		return;
1102 	}
1103 
1104 	if (out_start_pfn)
1105 		*out_start_pfn = PFN_UP(r->base);
1106 	if (out_end_pfn)
1107 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1108 	if (out_nid)
1109 		*out_nid = r->nid;
1110 }
1111 
1112 /**
1113  * memblock_set_node - set node ID on memblock regions
1114  * @base: base of area to set node ID for
1115  * @size: size of area to set node ID for
1116  * @type: memblock type to set node ID for
1117  * @nid: node ID to set
1118  *
1119  * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1120  * Regions which cross the area boundaries are split as necessary.
1121  *
1122  * RETURNS:
1123  * 0 on success, -errno on failure.
1124  */
1125 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1126 				      struct memblock_type *type, int nid)
1127 {
1128 	int start_rgn, end_rgn;
1129 	int i, ret;
1130 
1131 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1132 	if (ret)
1133 		return ret;
1134 
1135 	for (i = start_rgn; i < end_rgn; i++)
1136 		memblock_set_region_node(&type->regions[i], nid);
1137 
1138 	memblock_merge_regions(type);
1139 	return 0;
1140 }
1141 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1142 
1143 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1144 					phys_addr_t align, phys_addr_t start,
1145 					phys_addr_t end, int nid, ulong flags)
1146 {
1147 	phys_addr_t found;
1148 
1149 	if (!align)
1150 		align = SMP_CACHE_BYTES;
1151 
1152 	found = memblock_find_in_range_node(size, align, start, end, nid,
1153 					    flags);
1154 	if (found && !memblock_reserve(found, size)) {
1155 		/*
1156 		 * The min_count is set to 0 so that memblock allocations are
1157 		 * never reported as leaks.
1158 		 */
1159 		kmemleak_alloc_phys(found, size, 0, 0);
1160 		return found;
1161 	}
1162 	return 0;
1163 }
1164 
1165 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1166 					phys_addr_t start, phys_addr_t end,
1167 					ulong flags)
1168 {
1169 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1170 					flags);
1171 }
1172 
1173 phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1174 					phys_addr_t align, phys_addr_t max_addr,
1175 					int nid, ulong flags)
1176 {
1177 	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1178 }
1179 
1180 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1181 {
1182 	ulong flags = choose_memblock_flags();
1183 	phys_addr_t ret;
1184 
1185 again:
1186 	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1187 				      nid, flags);
1188 
1189 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1190 		flags &= ~MEMBLOCK_MIRROR;
1191 		goto again;
1192 	}
1193 	return ret;
1194 }
1195 
1196 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1197 {
1198 	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1199 				       MEMBLOCK_NONE);
1200 }
1201 
1202 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1203 {
1204 	phys_addr_t alloc;
1205 
1206 	alloc = __memblock_alloc_base(size, align, max_addr);
1207 
1208 	if (alloc == 0)
1209 		panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1210 		      &size, &max_addr);
1211 
1212 	return alloc;
1213 }
1214 
1215 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1216 {
1217 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1218 }
1219 
1220 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1221 {
1222 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1223 
1224 	if (res)
1225 		return res;
1226 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1227 }
1228 
1229 #if defined(CONFIG_NO_BOOTMEM)
1230 /**
1231  * memblock_virt_alloc_internal - allocate boot memory block
1232  * @size: size of memory block to be allocated in bytes
1233  * @align: alignment of the region and block's size
1234  * @min_addr: the lower bound of the memory region to allocate (phys address)
1235  * @max_addr: the upper bound of the memory region to allocate (phys address)
1236  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1237  *
1238  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1239  * will fall back to memory below @min_addr. Also, allocation may fall back
1240  * to any node in the system if the specified node can not
1241  * hold the requested memory.
1242  *
1243  * The allocation is performed from memory region limited by
1244  * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1245  *
1246  * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1247  *
1248  * The phys address of allocated boot memory block is converted to virtual and
1249  * allocated memory is reset to 0.
1250  *
1251  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1252  * allocated boot memory block, so that it is never reported as leaks.
1253  *
1254  * RETURNS:
1255  * Virtual address of allocated memory block on success, NULL on failure.
1256  */
1257 static void * __init memblock_virt_alloc_internal(
1258 				phys_addr_t size, phys_addr_t align,
1259 				phys_addr_t min_addr, phys_addr_t max_addr,
1260 				int nid)
1261 {
1262 	phys_addr_t alloc;
1263 	void *ptr;
1264 	ulong flags = choose_memblock_flags();
1265 
1266 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1267 		nid = NUMA_NO_NODE;
1268 
1269 	/*
1270 	 * Detect any accidental use of these APIs after slab is ready, as at
1271 	 * this moment memblock may be deinitialized already and its
1272 	 * internal data may be destroyed (after execution of free_all_bootmem)
1273 	 */
1274 	if (WARN_ON_ONCE(slab_is_available()))
1275 		return kzalloc_node(size, GFP_NOWAIT, nid);
1276 
1277 	if (!align)
1278 		align = SMP_CACHE_BYTES;
1279 
1280 	if (max_addr > memblock.current_limit)
1281 		max_addr = memblock.current_limit;
1282 again:
1283 	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1284 					    nid, flags);
1285 	if (alloc && !memblock_reserve(alloc, size))
1286 		goto done;
1287 
1288 	if (nid != NUMA_NO_NODE) {
1289 		alloc = memblock_find_in_range_node(size, align, min_addr,
1290 						    max_addr, NUMA_NO_NODE,
1291 						    flags);
1292 		if (alloc && !memblock_reserve(alloc, size))
1293 			goto done;
1294 	}
1295 
1296 	if (min_addr) {
1297 		min_addr = 0;
1298 		goto again;
1299 	}
1300 
1301 	if (flags & MEMBLOCK_MIRROR) {
1302 		flags &= ~MEMBLOCK_MIRROR;
1303 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1304 			&size);
1305 		goto again;
1306 	}
1307 
1308 	return NULL;
1309 done:
1310 	ptr = phys_to_virt(alloc);
1311 
1312 	/*
1313 	 * The min_count is set to 0 so that bootmem allocated blocks
1314 	 * are never reported as leaks. This is because many of these blocks
1315 	 * are only referred via the physical address which is not
1316 	 * looked up by kmemleak.
1317 	 */
1318 	kmemleak_alloc(ptr, size, 0, 0);
1319 
1320 	return ptr;
1321 }
1322 
1323 /**
1324  * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1325  * memory and without panicking
1326  * @size: size of memory block to be allocated in bytes
1327  * @align: alignment of the region and block's size
1328  * @min_addr: the lower bound of the memory region from where the allocation
1329  *	  is preferred (phys address)
1330  * @max_addr: the upper bound of the memory region from where the allocation
1331  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1332  *	      allocate only from memory limited by memblock.current_limit value
1333  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1334  *
1335  * Public function, provides additional debug information (including caller
1336  * info), if enabled. Does not zero allocated memory, does not panic if request
1337  * cannot be satisfied.
1338  *
1339  * RETURNS:
1340  * Virtual address of allocated memory block on success, NULL on failure.
1341  */
1342 void * __init memblock_virt_alloc_try_nid_raw(
1343 			phys_addr_t size, phys_addr_t align,
1344 			phys_addr_t min_addr, phys_addr_t max_addr,
1345 			int nid)
1346 {
1347 	void *ptr;
1348 
1349 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1350 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1351 		     (u64)max_addr, (void *)_RET_IP_);
1352 
1353 	ptr = memblock_virt_alloc_internal(size, align,
1354 					   min_addr, max_addr, nid);
1355 #ifdef CONFIG_DEBUG_VM
1356 	if (ptr && size > 0)
1357 		memset(ptr, PAGE_POISON_PATTERN, size);
1358 #endif
1359 	return ptr;
1360 }
1361 
1362 /**
1363  * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1364  * @size: size of memory block to be allocated in bytes
1365  * @align: alignment of the region and block's size
1366  * @min_addr: the lower bound of the memory region from where the allocation
1367  *	  is preferred (phys address)
1368  * @max_addr: the upper bound of the memory region from where the allocation
1369  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1370  *	      allocate only from memory limited by memblock.current_limit value
1371  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1372  *
1373  * Public function, provides additional debug information (including caller
1374  * info), if enabled. This function zeroes the allocated memory.
1375  *
1376  * RETURNS:
1377  * Virtual address of allocated memory block on success, NULL on failure.
1378  */
1379 void * __init memblock_virt_alloc_try_nid_nopanic(
1380 				phys_addr_t size, phys_addr_t align,
1381 				phys_addr_t min_addr, phys_addr_t max_addr,
1382 				int nid)
1383 {
1384 	void *ptr;
1385 
1386 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1387 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1388 		     (u64)max_addr, (void *)_RET_IP_);
1389 
1390 	ptr = memblock_virt_alloc_internal(size, align,
1391 					   min_addr, max_addr, nid);
1392 	if (ptr)
1393 		memset(ptr, 0, size);
1394 	return ptr;
1395 }
1396 
1397 /**
1398  * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1399  * @size: size of memory block to be allocated in bytes
1400  * @align: alignment of the region and block's size
1401  * @min_addr: the lower bound of the memory region from where the allocation
1402  *	  is preferred (phys address)
1403  * @max_addr: the upper bound of the memory region from where the allocation
1404  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1405  *	      allocate only from memory limited by memblock.current_limit value
1406  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1407  *
1408  * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1409  * which provides debug information (including caller info), if enabled,
1410  * and panics if the request can not be satisfied.
1411  *
1412  * RETURNS:
1413  * Virtual address of allocated memory block on success, NULL on failure.
1414  */
1415 void * __init memblock_virt_alloc_try_nid(
1416 			phys_addr_t size, phys_addr_t align,
1417 			phys_addr_t min_addr, phys_addr_t max_addr,
1418 			int nid)
1419 {
1420 	void *ptr;
1421 
1422 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1423 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1424 		     (u64)max_addr, (void *)_RET_IP_);
1425 	ptr = memblock_virt_alloc_internal(size, align,
1426 					   min_addr, max_addr, nid);
1427 	if (ptr) {
1428 		memset(ptr, 0, size);
1429 		return ptr;
1430 	}
1431 
1432 	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1433 	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1434 	      (u64)max_addr);
1435 	return NULL;
1436 }
1437 #endif
1438 
1439 /**
1440  * __memblock_free_early - free boot memory block
1441  * @base: phys starting address of the  boot memory block
1442  * @size: size of the boot memory block in bytes
1443  *
1444  * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1445  * The freeing memory will not be released to the buddy allocator.
1446  */
1447 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1448 {
1449 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1450 		     __func__, (u64)base, (u64)base + size - 1,
1451 		     (void *)_RET_IP_);
1452 	kmemleak_free_part_phys(base, size);
1453 	memblock_remove_range(&memblock.reserved, base, size);
1454 }
1455 
1456 /*
1457  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1458  * @addr: phys starting address of the  boot memory block
1459  * @size: size of the boot memory block in bytes
1460  *
1461  * This is only useful when the bootmem allocator has already been torn
1462  * down, but we are still initializing the system.  Pages are released directly
1463  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1464  */
1465 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1466 {
1467 	u64 cursor, end;
1468 
1469 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1470 		     __func__, (u64)base, (u64)base + size - 1,
1471 		     (void *)_RET_IP_);
1472 	kmemleak_free_part_phys(base, size);
1473 	cursor = PFN_UP(base);
1474 	end = PFN_DOWN(base + size);
1475 
1476 	for (; cursor < end; cursor++) {
1477 		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1478 		totalram_pages++;
1479 	}
1480 }
1481 
1482 /*
1483  * Remaining API functions
1484  */
1485 
1486 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1487 {
1488 	return memblock.memory.total_size;
1489 }
1490 
1491 phys_addr_t __init_memblock memblock_reserved_size(void)
1492 {
1493 	return memblock.reserved.total_size;
1494 }
1495 
1496 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1497 {
1498 	unsigned long pages = 0;
1499 	struct memblock_region *r;
1500 	unsigned long start_pfn, end_pfn;
1501 
1502 	for_each_memblock(memory, r) {
1503 		start_pfn = memblock_region_memory_base_pfn(r);
1504 		end_pfn = memblock_region_memory_end_pfn(r);
1505 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1506 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1507 		pages += end_pfn - start_pfn;
1508 	}
1509 
1510 	return PFN_PHYS(pages);
1511 }
1512 
1513 /* lowest address */
1514 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1515 {
1516 	return memblock.memory.regions[0].base;
1517 }
1518 
1519 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1520 {
1521 	int idx = memblock.memory.cnt - 1;
1522 
1523 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1524 }
1525 
1526 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1527 {
1528 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1529 	struct memblock_region *r;
1530 
1531 	/*
1532 	 * translate the memory @limit size into the max address within one of
1533 	 * the memory memblock regions, if the @limit exceeds the total size
1534 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1535 	 */
1536 	for_each_memblock(memory, r) {
1537 		if (limit <= r->size) {
1538 			max_addr = r->base + limit;
1539 			break;
1540 		}
1541 		limit -= r->size;
1542 	}
1543 
1544 	return max_addr;
1545 }
1546 
1547 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1548 {
1549 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1550 
1551 	if (!limit)
1552 		return;
1553 
1554 	max_addr = __find_max_addr(limit);
1555 
1556 	/* @limit exceeds the total size of the memory, do nothing */
1557 	if (max_addr == PHYS_ADDR_MAX)
1558 		return;
1559 
1560 	/* truncate both memory and reserved regions */
1561 	memblock_remove_range(&memblock.memory, max_addr,
1562 			      PHYS_ADDR_MAX);
1563 	memblock_remove_range(&memblock.reserved, max_addr,
1564 			      PHYS_ADDR_MAX);
1565 }
1566 
1567 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1568 {
1569 	int start_rgn, end_rgn;
1570 	int i, ret;
1571 
1572 	if (!size)
1573 		return;
1574 
1575 	ret = memblock_isolate_range(&memblock.memory, base, size,
1576 						&start_rgn, &end_rgn);
1577 	if (ret)
1578 		return;
1579 
1580 	/* remove all the MAP regions */
1581 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1582 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1583 			memblock_remove_region(&memblock.memory, i);
1584 
1585 	for (i = start_rgn - 1; i >= 0; i--)
1586 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1587 			memblock_remove_region(&memblock.memory, i);
1588 
1589 	/* truncate the reserved regions */
1590 	memblock_remove_range(&memblock.reserved, 0, base);
1591 	memblock_remove_range(&memblock.reserved,
1592 			base + size, PHYS_ADDR_MAX);
1593 }
1594 
1595 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1596 {
1597 	phys_addr_t max_addr;
1598 
1599 	if (!limit)
1600 		return;
1601 
1602 	max_addr = __find_max_addr(limit);
1603 
1604 	/* @limit exceeds the total size of the memory, do nothing */
1605 	if (max_addr == PHYS_ADDR_MAX)
1606 		return;
1607 
1608 	memblock_cap_memory_range(0, max_addr);
1609 }
1610 
1611 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1612 {
1613 	unsigned int left = 0, right = type->cnt;
1614 
1615 	do {
1616 		unsigned int mid = (right + left) / 2;
1617 
1618 		if (addr < type->regions[mid].base)
1619 			right = mid;
1620 		else if (addr >= (type->regions[mid].base +
1621 				  type->regions[mid].size))
1622 			left = mid + 1;
1623 		else
1624 			return mid;
1625 	} while (left < right);
1626 	return -1;
1627 }
1628 
1629 bool __init memblock_is_reserved(phys_addr_t addr)
1630 {
1631 	return memblock_search(&memblock.reserved, addr) != -1;
1632 }
1633 
1634 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1635 {
1636 	return memblock_search(&memblock.memory, addr) != -1;
1637 }
1638 
1639 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1640 {
1641 	int i = memblock_search(&memblock.memory, addr);
1642 
1643 	if (i == -1)
1644 		return false;
1645 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1646 }
1647 
1648 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1649 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1650 			 unsigned long *start_pfn, unsigned long *end_pfn)
1651 {
1652 	struct memblock_type *type = &memblock.memory;
1653 	int mid = memblock_search(type, PFN_PHYS(pfn));
1654 
1655 	if (mid == -1)
1656 		return -1;
1657 
1658 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1659 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1660 
1661 	return type->regions[mid].nid;
1662 }
1663 #endif
1664 
1665 /**
1666  * memblock_is_region_memory - check if a region is a subset of memory
1667  * @base: base of region to check
1668  * @size: size of region to check
1669  *
1670  * Check if the region [@base, @base+@size) is a subset of a memory block.
1671  *
1672  * RETURNS:
1673  * 0 if false, non-zero if true
1674  */
1675 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1676 {
1677 	int idx = memblock_search(&memblock.memory, base);
1678 	phys_addr_t end = base + memblock_cap_size(base, &size);
1679 
1680 	if (idx == -1)
1681 		return false;
1682 	return (memblock.memory.regions[idx].base +
1683 		 memblock.memory.regions[idx].size) >= end;
1684 }
1685 
1686 /**
1687  * memblock_is_region_reserved - check if a region intersects reserved memory
1688  * @base: base of region to check
1689  * @size: size of region to check
1690  *
1691  * Check if the region [@base, @base+@size) intersects a reserved memory block.
1692  *
1693  * RETURNS:
1694  * True if they intersect, false if not.
1695  */
1696 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1697 {
1698 	memblock_cap_size(base, &size);
1699 	return memblock_overlaps_region(&memblock.reserved, base, size);
1700 }
1701 
1702 void __init_memblock memblock_trim_memory(phys_addr_t align)
1703 {
1704 	phys_addr_t start, end, orig_start, orig_end;
1705 	struct memblock_region *r;
1706 
1707 	for_each_memblock(memory, r) {
1708 		orig_start = r->base;
1709 		orig_end = r->base + r->size;
1710 		start = round_up(orig_start, align);
1711 		end = round_down(orig_end, align);
1712 
1713 		if (start == orig_start && end == orig_end)
1714 			continue;
1715 
1716 		if (start < end) {
1717 			r->base = start;
1718 			r->size = end - start;
1719 		} else {
1720 			memblock_remove_region(&memblock.memory,
1721 					       r - memblock.memory.regions);
1722 			r--;
1723 		}
1724 	}
1725 }
1726 
1727 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1728 {
1729 	memblock.current_limit = limit;
1730 }
1731 
1732 phys_addr_t __init_memblock memblock_get_current_limit(void)
1733 {
1734 	return memblock.current_limit;
1735 }
1736 
1737 static void __init_memblock memblock_dump(struct memblock_type *type)
1738 {
1739 	phys_addr_t base, end, size;
1740 	unsigned long flags;
1741 	int idx;
1742 	struct memblock_region *rgn;
1743 
1744 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1745 
1746 	for_each_memblock_type(idx, type, rgn) {
1747 		char nid_buf[32] = "";
1748 
1749 		base = rgn->base;
1750 		size = rgn->size;
1751 		end = base + size - 1;
1752 		flags = rgn->flags;
1753 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1754 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1755 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1756 				 memblock_get_region_node(rgn));
1757 #endif
1758 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1759 			type->name, idx, &base, &end, &size, nid_buf, flags);
1760 	}
1761 }
1762 
1763 void __init_memblock __memblock_dump_all(void)
1764 {
1765 	pr_info("MEMBLOCK configuration:\n");
1766 	pr_info(" memory size = %pa reserved size = %pa\n",
1767 		&memblock.memory.total_size,
1768 		&memblock.reserved.total_size);
1769 
1770 	memblock_dump(&memblock.memory);
1771 	memblock_dump(&memblock.reserved);
1772 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1773 	memblock_dump(&memblock.physmem);
1774 #endif
1775 }
1776 
1777 void __init memblock_allow_resize(void)
1778 {
1779 	memblock_can_resize = 1;
1780 }
1781 
1782 static int __init early_memblock(char *p)
1783 {
1784 	if (p && strstr(p, "debug"))
1785 		memblock_debug = 1;
1786 	return 0;
1787 }
1788 early_param("memblock", early_memblock);
1789 
1790 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1791 
1792 static int memblock_debug_show(struct seq_file *m, void *private)
1793 {
1794 	struct memblock_type *type = m->private;
1795 	struct memblock_region *reg;
1796 	int i;
1797 	phys_addr_t end;
1798 
1799 	for (i = 0; i < type->cnt; i++) {
1800 		reg = &type->regions[i];
1801 		end = reg->base + reg->size - 1;
1802 
1803 		seq_printf(m, "%4d: ", i);
1804 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1805 	}
1806 	return 0;
1807 }
1808 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1809 
1810 static int __init memblock_init_debugfs(void)
1811 {
1812 	struct dentry *root = debugfs_create_dir("memblock", NULL);
1813 	if (!root)
1814 		return -ENXIO;
1815 	debugfs_create_file("memory", 0444, root,
1816 			    &memblock.memory, &memblock_debug_fops);
1817 	debugfs_create_file("reserved", 0444, root,
1818 			    &memblock.reserved, &memblock_debug_fops);
1819 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1820 	debugfs_create_file("physmem", 0444, root,
1821 			    &memblock.physmem, &memblock_debug_fops);
1822 #endif
1823 
1824 	return 0;
1825 }
1826 __initcall(memblock_init_debugfs);
1827 
1828 #endif /* CONFIG_DEBUG_FS */
1829