1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 #include <linux/memblock.h> 22 23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 25 26 struct memblock memblock __initdata_memblock = { 27 .memory.regions = memblock_memory_init_regions, 28 .memory.cnt = 1, /* empty dummy entry */ 29 .memory.max = INIT_MEMBLOCK_REGIONS, 30 31 .reserved.regions = memblock_reserved_init_regions, 32 .reserved.cnt = 1, /* empty dummy entry */ 33 .reserved.max = INIT_MEMBLOCK_REGIONS, 34 35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 36 }; 37 38 int memblock_debug __initdata_memblock; 39 static int memblock_can_resize __initdata_memblock; 40 41 /* inline so we don't get a warning when pr_debug is compiled out */ 42 static inline const char *memblock_type_name(struct memblock_type *type) 43 { 44 if (type == &memblock.memory) 45 return "memory"; 46 else if (type == &memblock.reserved) 47 return "reserved"; 48 else 49 return "unknown"; 50 } 51 52 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 53 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 54 { 55 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); 56 } 57 58 /* 59 * Address comparison utilities 60 */ 61 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 62 phys_addr_t base2, phys_addr_t size2) 63 { 64 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 65 } 66 67 static long __init_memblock memblock_overlaps_region(struct memblock_type *type, 68 phys_addr_t base, phys_addr_t size) 69 { 70 unsigned long i; 71 72 for (i = 0; i < type->cnt; i++) { 73 phys_addr_t rgnbase = type->regions[i].base; 74 phys_addr_t rgnsize = type->regions[i].size; 75 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) 76 break; 77 } 78 79 return (i < type->cnt) ? i : -1; 80 } 81 82 /** 83 * memblock_find_in_range_node - find free area in given range and node 84 * @start: start of candidate range 85 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 86 * @size: size of free area to find 87 * @align: alignment of free area to find 88 * @nid: nid of the free area to find, %MAX_NUMNODES for any node 89 * 90 * Find @size free area aligned to @align in the specified range and node. 91 * 92 * RETURNS: 93 * Found address on success, %0 on failure. 94 */ 95 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start, 96 phys_addr_t end, phys_addr_t size, 97 phys_addr_t align, int nid) 98 { 99 phys_addr_t this_start, this_end, cand; 100 u64 i; 101 102 /* align @size to avoid excessive fragmentation on reserved array */ 103 size = round_up(size, align); 104 105 /* pump up @end */ 106 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 107 end = memblock.current_limit; 108 109 /* adjust @start to avoid underflow and allocating the first page */ 110 start = max3(start, size, (phys_addr_t)PAGE_SIZE); 111 end = max(start, end); 112 113 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) { 114 this_start = clamp(this_start, start, end); 115 this_end = clamp(this_end, start, end); 116 117 cand = round_down(this_end - size, align); 118 if (cand >= this_start) 119 return cand; 120 } 121 return 0; 122 } 123 124 /** 125 * memblock_find_in_range - find free area in given range 126 * @start: start of candidate range 127 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 128 * @size: size of free area to find 129 * @align: alignment of free area to find 130 * 131 * Find @size free area aligned to @align in the specified range. 132 * 133 * RETURNS: 134 * Found address on success, %0 on failure. 135 */ 136 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 137 phys_addr_t end, phys_addr_t size, 138 phys_addr_t align) 139 { 140 return memblock_find_in_range_node(start, end, size, align, 141 MAX_NUMNODES); 142 } 143 144 /* 145 * Free memblock.reserved.regions 146 */ 147 int __init_memblock memblock_free_reserved_regions(void) 148 { 149 if (memblock.reserved.regions == memblock_reserved_init_regions) 150 return 0; 151 152 return memblock_free(__pa(memblock.reserved.regions), 153 sizeof(struct memblock_region) * memblock.reserved.max); 154 } 155 156 /* 157 * Reserve memblock.reserved.regions 158 */ 159 int __init_memblock memblock_reserve_reserved_regions(void) 160 { 161 if (memblock.reserved.regions == memblock_reserved_init_regions) 162 return 0; 163 164 return memblock_reserve(__pa(memblock.reserved.regions), 165 sizeof(struct memblock_region) * memblock.reserved.max); 166 } 167 168 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 169 { 170 type->total_size -= type->regions[r].size; 171 memmove(&type->regions[r], &type->regions[r + 1], 172 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 173 type->cnt--; 174 175 /* Special case for empty arrays */ 176 if (type->cnt == 0) { 177 WARN_ON(type->total_size != 0); 178 type->cnt = 1; 179 type->regions[0].base = 0; 180 type->regions[0].size = 0; 181 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 182 } 183 } 184 185 static int __init_memblock memblock_double_array(struct memblock_type *type) 186 { 187 struct memblock_region *new_array, *old_array; 188 phys_addr_t old_size, new_size, addr; 189 int use_slab = slab_is_available(); 190 191 /* We don't allow resizing until we know about the reserved regions 192 * of memory that aren't suitable for allocation 193 */ 194 if (!memblock_can_resize) 195 return -1; 196 197 /* Calculate new doubled size */ 198 old_size = type->max * sizeof(struct memblock_region); 199 new_size = old_size << 1; 200 201 /* Try to find some space for it. 202 * 203 * WARNING: We assume that either slab_is_available() and we use it or 204 * we use MEMBLOCK for allocations. That means that this is unsafe to use 205 * when bootmem is currently active (unless bootmem itself is implemented 206 * on top of MEMBLOCK which isn't the case yet) 207 * 208 * This should however not be an issue for now, as we currently only 209 * call into MEMBLOCK while it's still active, or much later when slab is 210 * active for memory hotplug operations 211 */ 212 if (use_slab) { 213 new_array = kmalloc(new_size, GFP_KERNEL); 214 addr = new_array ? __pa(new_array) : 0; 215 } else 216 addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t)); 217 if (!addr) { 218 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 219 memblock_type_name(type), type->max, type->max * 2); 220 return -1; 221 } 222 new_array = __va(addr); 223 224 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]", 225 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1); 226 227 /* Found space, we now need to move the array over before 228 * we add the reserved region since it may be our reserved 229 * array itself that is full. 230 */ 231 memcpy(new_array, type->regions, old_size); 232 memset(new_array + type->max, 0, old_size); 233 old_array = type->regions; 234 type->regions = new_array; 235 type->max <<= 1; 236 237 /* If we use SLAB that's it, we are done */ 238 if (use_slab) 239 return 0; 240 241 /* Add the new reserved region now. Should not fail ! */ 242 BUG_ON(memblock_reserve(addr, new_size)); 243 244 /* If the array wasn't our static init one, then free it. We only do 245 * that before SLAB is available as later on, we don't know whether 246 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal 247 * anyways 248 */ 249 if (old_array != memblock_memory_init_regions && 250 old_array != memblock_reserved_init_regions) 251 memblock_free(__pa(old_array), old_size); 252 253 return 0; 254 } 255 256 /** 257 * memblock_merge_regions - merge neighboring compatible regions 258 * @type: memblock type to scan 259 * 260 * Scan @type and merge neighboring compatible regions. 261 */ 262 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 263 { 264 int i = 0; 265 266 /* cnt never goes below 1 */ 267 while (i < type->cnt - 1) { 268 struct memblock_region *this = &type->regions[i]; 269 struct memblock_region *next = &type->regions[i + 1]; 270 271 if (this->base + this->size != next->base || 272 memblock_get_region_node(this) != 273 memblock_get_region_node(next)) { 274 BUG_ON(this->base + this->size > next->base); 275 i++; 276 continue; 277 } 278 279 this->size += next->size; 280 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next)); 281 type->cnt--; 282 } 283 } 284 285 /** 286 * memblock_insert_region - insert new memblock region 287 * @type: memblock type to insert into 288 * @idx: index for the insertion point 289 * @base: base address of the new region 290 * @size: size of the new region 291 * 292 * Insert new memblock region [@base,@base+@size) into @type at @idx. 293 * @type must already have extra room to accomodate the new region. 294 */ 295 static void __init_memblock memblock_insert_region(struct memblock_type *type, 296 int idx, phys_addr_t base, 297 phys_addr_t size, int nid) 298 { 299 struct memblock_region *rgn = &type->regions[idx]; 300 301 BUG_ON(type->cnt >= type->max); 302 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 303 rgn->base = base; 304 rgn->size = size; 305 memblock_set_region_node(rgn, nid); 306 type->cnt++; 307 type->total_size += size; 308 } 309 310 /** 311 * memblock_add_region - add new memblock region 312 * @type: memblock type to add new region into 313 * @base: base address of the new region 314 * @size: size of the new region 315 * @nid: nid of the new region 316 * 317 * Add new memblock region [@base,@base+@size) into @type. The new region 318 * is allowed to overlap with existing ones - overlaps don't affect already 319 * existing regions. @type is guaranteed to be minimal (all neighbouring 320 * compatible regions are merged) after the addition. 321 * 322 * RETURNS: 323 * 0 on success, -errno on failure. 324 */ 325 static int __init_memblock memblock_add_region(struct memblock_type *type, 326 phys_addr_t base, phys_addr_t size, int nid) 327 { 328 bool insert = false; 329 phys_addr_t obase = base; 330 phys_addr_t end = base + memblock_cap_size(base, &size); 331 int i, nr_new; 332 333 /* special case for empty array */ 334 if (type->regions[0].size == 0) { 335 WARN_ON(type->cnt != 1 || type->total_size); 336 type->regions[0].base = base; 337 type->regions[0].size = size; 338 memblock_set_region_node(&type->regions[0], nid); 339 type->total_size = size; 340 return 0; 341 } 342 repeat: 343 /* 344 * The following is executed twice. Once with %false @insert and 345 * then with %true. The first counts the number of regions needed 346 * to accomodate the new area. The second actually inserts them. 347 */ 348 base = obase; 349 nr_new = 0; 350 351 for (i = 0; i < type->cnt; i++) { 352 struct memblock_region *rgn = &type->regions[i]; 353 phys_addr_t rbase = rgn->base; 354 phys_addr_t rend = rbase + rgn->size; 355 356 if (rbase >= end) 357 break; 358 if (rend <= base) 359 continue; 360 /* 361 * @rgn overlaps. If it separates the lower part of new 362 * area, insert that portion. 363 */ 364 if (rbase > base) { 365 nr_new++; 366 if (insert) 367 memblock_insert_region(type, i++, base, 368 rbase - base, nid); 369 } 370 /* area below @rend is dealt with, forget about it */ 371 base = min(rend, end); 372 } 373 374 /* insert the remaining portion */ 375 if (base < end) { 376 nr_new++; 377 if (insert) 378 memblock_insert_region(type, i, base, end - base, nid); 379 } 380 381 /* 382 * If this was the first round, resize array and repeat for actual 383 * insertions; otherwise, merge and return. 384 */ 385 if (!insert) { 386 while (type->cnt + nr_new > type->max) 387 if (memblock_double_array(type) < 0) 388 return -ENOMEM; 389 insert = true; 390 goto repeat; 391 } else { 392 memblock_merge_regions(type); 393 return 0; 394 } 395 } 396 397 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 398 int nid) 399 { 400 return memblock_add_region(&memblock.memory, base, size, nid); 401 } 402 403 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 404 { 405 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES); 406 } 407 408 /** 409 * memblock_isolate_range - isolate given range into disjoint memblocks 410 * @type: memblock type to isolate range for 411 * @base: base of range to isolate 412 * @size: size of range to isolate 413 * @start_rgn: out parameter for the start of isolated region 414 * @end_rgn: out parameter for the end of isolated region 415 * 416 * Walk @type and ensure that regions don't cross the boundaries defined by 417 * [@base,@base+@size). Crossing regions are split at the boundaries, 418 * which may create at most two more regions. The index of the first 419 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 420 * 421 * RETURNS: 422 * 0 on success, -errno on failure. 423 */ 424 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 425 phys_addr_t base, phys_addr_t size, 426 int *start_rgn, int *end_rgn) 427 { 428 phys_addr_t end = base + memblock_cap_size(base, &size); 429 int i; 430 431 *start_rgn = *end_rgn = 0; 432 433 /* we'll create at most two more regions */ 434 while (type->cnt + 2 > type->max) 435 if (memblock_double_array(type) < 0) 436 return -ENOMEM; 437 438 for (i = 0; i < type->cnt; i++) { 439 struct memblock_region *rgn = &type->regions[i]; 440 phys_addr_t rbase = rgn->base; 441 phys_addr_t rend = rbase + rgn->size; 442 443 if (rbase >= end) 444 break; 445 if (rend <= base) 446 continue; 447 448 if (rbase < base) { 449 /* 450 * @rgn intersects from below. Split and continue 451 * to process the next region - the new top half. 452 */ 453 rgn->base = base; 454 rgn->size -= base - rbase; 455 type->total_size -= base - rbase; 456 memblock_insert_region(type, i, rbase, base - rbase, 457 memblock_get_region_node(rgn)); 458 } else if (rend > end) { 459 /* 460 * @rgn intersects from above. Split and redo the 461 * current region - the new bottom half. 462 */ 463 rgn->base = end; 464 rgn->size -= end - rbase; 465 type->total_size -= end - rbase; 466 memblock_insert_region(type, i--, rbase, end - rbase, 467 memblock_get_region_node(rgn)); 468 } else { 469 /* @rgn is fully contained, record it */ 470 if (!*end_rgn) 471 *start_rgn = i; 472 *end_rgn = i + 1; 473 } 474 } 475 476 return 0; 477 } 478 479 static int __init_memblock __memblock_remove(struct memblock_type *type, 480 phys_addr_t base, phys_addr_t size) 481 { 482 int start_rgn, end_rgn; 483 int i, ret; 484 485 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 486 if (ret) 487 return ret; 488 489 for (i = end_rgn - 1; i >= start_rgn; i--) 490 memblock_remove_region(type, i); 491 return 0; 492 } 493 494 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 495 { 496 return __memblock_remove(&memblock.memory, base, size); 497 } 498 499 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 500 { 501 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", 502 (unsigned long long)base, 503 (unsigned long long)base + size, 504 (void *)_RET_IP_); 505 506 return __memblock_remove(&memblock.reserved, base, size); 507 } 508 509 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 510 { 511 struct memblock_type *_rgn = &memblock.reserved; 512 513 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n", 514 (unsigned long long)base, 515 (unsigned long long)base + size, 516 (void *)_RET_IP_); 517 BUG_ON(0 == size); 518 519 return memblock_add_region(_rgn, base, size, MAX_NUMNODES); 520 } 521 522 /** 523 * __next_free_mem_range - next function for for_each_free_mem_range() 524 * @idx: pointer to u64 loop variable 525 * @nid: nid: node selector, %MAX_NUMNODES for all nodes 526 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 527 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 528 * @p_nid: ptr to int for nid of the range, can be %NULL 529 * 530 * Find the first free area from *@idx which matches @nid, fill the out 531 * parameters, and update *@idx for the next iteration. The lower 32bit of 532 * *@idx contains index into memory region and the upper 32bit indexes the 533 * areas before each reserved region. For example, if reserved regions 534 * look like the following, 535 * 536 * 0:[0-16), 1:[32-48), 2:[128-130) 537 * 538 * The upper 32bit indexes the following regions. 539 * 540 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 541 * 542 * As both region arrays are sorted, the function advances the two indices 543 * in lockstep and returns each intersection. 544 */ 545 void __init_memblock __next_free_mem_range(u64 *idx, int nid, 546 phys_addr_t *out_start, 547 phys_addr_t *out_end, int *out_nid) 548 { 549 struct memblock_type *mem = &memblock.memory; 550 struct memblock_type *rsv = &memblock.reserved; 551 int mi = *idx & 0xffffffff; 552 int ri = *idx >> 32; 553 554 for ( ; mi < mem->cnt; mi++) { 555 struct memblock_region *m = &mem->regions[mi]; 556 phys_addr_t m_start = m->base; 557 phys_addr_t m_end = m->base + m->size; 558 559 /* only memory regions are associated with nodes, check it */ 560 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) 561 continue; 562 563 /* scan areas before each reservation for intersection */ 564 for ( ; ri < rsv->cnt + 1; ri++) { 565 struct memblock_region *r = &rsv->regions[ri]; 566 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; 567 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; 568 569 /* if ri advanced past mi, break out to advance mi */ 570 if (r_start >= m_end) 571 break; 572 /* if the two regions intersect, we're done */ 573 if (m_start < r_end) { 574 if (out_start) 575 *out_start = max(m_start, r_start); 576 if (out_end) 577 *out_end = min(m_end, r_end); 578 if (out_nid) 579 *out_nid = memblock_get_region_node(m); 580 /* 581 * The region which ends first is advanced 582 * for the next iteration. 583 */ 584 if (m_end <= r_end) 585 mi++; 586 else 587 ri++; 588 *idx = (u32)mi | (u64)ri << 32; 589 return; 590 } 591 } 592 } 593 594 /* signal end of iteration */ 595 *idx = ULLONG_MAX; 596 } 597 598 /** 599 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse() 600 * @idx: pointer to u64 loop variable 601 * @nid: nid: node selector, %MAX_NUMNODES for all nodes 602 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 603 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 604 * @p_nid: ptr to int for nid of the range, can be %NULL 605 * 606 * Reverse of __next_free_mem_range(). 607 */ 608 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid, 609 phys_addr_t *out_start, 610 phys_addr_t *out_end, int *out_nid) 611 { 612 struct memblock_type *mem = &memblock.memory; 613 struct memblock_type *rsv = &memblock.reserved; 614 int mi = *idx & 0xffffffff; 615 int ri = *idx >> 32; 616 617 if (*idx == (u64)ULLONG_MAX) { 618 mi = mem->cnt - 1; 619 ri = rsv->cnt; 620 } 621 622 for ( ; mi >= 0; mi--) { 623 struct memblock_region *m = &mem->regions[mi]; 624 phys_addr_t m_start = m->base; 625 phys_addr_t m_end = m->base + m->size; 626 627 /* only memory regions are associated with nodes, check it */ 628 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) 629 continue; 630 631 /* scan areas before each reservation for intersection */ 632 for ( ; ri >= 0; ri--) { 633 struct memblock_region *r = &rsv->regions[ri]; 634 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; 635 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; 636 637 /* if ri advanced past mi, break out to advance mi */ 638 if (r_end <= m_start) 639 break; 640 /* if the two regions intersect, we're done */ 641 if (m_end > r_start) { 642 if (out_start) 643 *out_start = max(m_start, r_start); 644 if (out_end) 645 *out_end = min(m_end, r_end); 646 if (out_nid) 647 *out_nid = memblock_get_region_node(m); 648 649 if (m_start >= r_start) 650 mi--; 651 else 652 ri--; 653 *idx = (u32)mi | (u64)ri << 32; 654 return; 655 } 656 } 657 } 658 659 *idx = ULLONG_MAX; 660 } 661 662 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 663 /* 664 * Common iterator interface used to define for_each_mem_range(). 665 */ 666 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 667 unsigned long *out_start_pfn, 668 unsigned long *out_end_pfn, int *out_nid) 669 { 670 struct memblock_type *type = &memblock.memory; 671 struct memblock_region *r; 672 673 while (++*idx < type->cnt) { 674 r = &type->regions[*idx]; 675 676 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 677 continue; 678 if (nid == MAX_NUMNODES || nid == r->nid) 679 break; 680 } 681 if (*idx >= type->cnt) { 682 *idx = -1; 683 return; 684 } 685 686 if (out_start_pfn) 687 *out_start_pfn = PFN_UP(r->base); 688 if (out_end_pfn) 689 *out_end_pfn = PFN_DOWN(r->base + r->size); 690 if (out_nid) 691 *out_nid = r->nid; 692 } 693 694 /** 695 * memblock_set_node - set node ID on memblock regions 696 * @base: base of area to set node ID for 697 * @size: size of area to set node ID for 698 * @nid: node ID to set 699 * 700 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid. 701 * Regions which cross the area boundaries are split as necessary. 702 * 703 * RETURNS: 704 * 0 on success, -errno on failure. 705 */ 706 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 707 int nid) 708 { 709 struct memblock_type *type = &memblock.memory; 710 int start_rgn, end_rgn; 711 int i, ret; 712 713 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 714 if (ret) 715 return ret; 716 717 for (i = start_rgn; i < end_rgn; i++) 718 type->regions[i].nid = nid; 719 720 memblock_merge_regions(type); 721 return 0; 722 } 723 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 724 725 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 726 phys_addr_t align, phys_addr_t max_addr, 727 int nid) 728 { 729 phys_addr_t found; 730 731 found = memblock_find_in_range_node(0, max_addr, size, align, nid); 732 if (found && !memblock_reserve(found, size)) 733 return found; 734 735 return 0; 736 } 737 738 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 739 { 740 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 741 } 742 743 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 744 { 745 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES); 746 } 747 748 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 749 { 750 phys_addr_t alloc; 751 752 alloc = __memblock_alloc_base(size, align, max_addr); 753 754 if (alloc == 0) 755 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", 756 (unsigned long long) size, (unsigned long long) max_addr); 757 758 return alloc; 759 } 760 761 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 762 { 763 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 764 } 765 766 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 767 { 768 phys_addr_t res = memblock_alloc_nid(size, align, nid); 769 770 if (res) 771 return res; 772 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 773 } 774 775 776 /* 777 * Remaining API functions 778 */ 779 780 phys_addr_t __init memblock_phys_mem_size(void) 781 { 782 return memblock.memory.total_size; 783 } 784 785 /* lowest address */ 786 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 787 { 788 return memblock.memory.regions[0].base; 789 } 790 791 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 792 { 793 int idx = memblock.memory.cnt - 1; 794 795 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 796 } 797 798 void __init memblock_enforce_memory_limit(phys_addr_t limit) 799 { 800 unsigned long i; 801 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 802 803 if (!limit) 804 return; 805 806 /* find out max address */ 807 for (i = 0; i < memblock.memory.cnt; i++) { 808 struct memblock_region *r = &memblock.memory.regions[i]; 809 810 if (limit <= r->size) { 811 max_addr = r->base + limit; 812 break; 813 } 814 limit -= r->size; 815 } 816 817 /* truncate both memory and reserved regions */ 818 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX); 819 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX); 820 } 821 822 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 823 { 824 unsigned int left = 0, right = type->cnt; 825 826 do { 827 unsigned int mid = (right + left) / 2; 828 829 if (addr < type->regions[mid].base) 830 right = mid; 831 else if (addr >= (type->regions[mid].base + 832 type->regions[mid].size)) 833 left = mid + 1; 834 else 835 return mid; 836 } while (left < right); 837 return -1; 838 } 839 840 int __init memblock_is_reserved(phys_addr_t addr) 841 { 842 return memblock_search(&memblock.reserved, addr) != -1; 843 } 844 845 int __init_memblock memblock_is_memory(phys_addr_t addr) 846 { 847 return memblock_search(&memblock.memory, addr) != -1; 848 } 849 850 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 851 { 852 int idx = memblock_search(&memblock.memory, base); 853 phys_addr_t end = base + memblock_cap_size(base, &size); 854 855 if (idx == -1) 856 return 0; 857 return memblock.memory.regions[idx].base <= base && 858 (memblock.memory.regions[idx].base + 859 memblock.memory.regions[idx].size) >= end; 860 } 861 862 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 863 { 864 memblock_cap_size(base, &size); 865 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; 866 } 867 868 869 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 870 { 871 memblock.current_limit = limit; 872 } 873 874 static void __init_memblock memblock_dump(struct memblock_type *type, char *name) 875 { 876 unsigned long long base, size; 877 int i; 878 879 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); 880 881 for (i = 0; i < type->cnt; i++) { 882 struct memblock_region *rgn = &type->regions[i]; 883 char nid_buf[32] = ""; 884 885 base = rgn->base; 886 size = rgn->size; 887 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 888 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 889 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 890 memblock_get_region_node(rgn)); 891 #endif 892 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n", 893 name, i, base, base + size - 1, size, nid_buf); 894 } 895 } 896 897 void __init_memblock __memblock_dump_all(void) 898 { 899 pr_info("MEMBLOCK configuration:\n"); 900 pr_info(" memory size = %#llx reserved size = %#llx\n", 901 (unsigned long long)memblock.memory.total_size, 902 (unsigned long long)memblock.reserved.total_size); 903 904 memblock_dump(&memblock.memory, "memory"); 905 memblock_dump(&memblock.reserved, "reserved"); 906 } 907 908 void __init memblock_allow_resize(void) 909 { 910 memblock_can_resize = 1; 911 } 912 913 static int __init early_memblock(char *p) 914 { 915 if (p && strstr(p, "debug")) 916 memblock_debug = 1; 917 return 0; 918 } 919 early_param("memblock", early_memblock); 920 921 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 922 923 static int memblock_debug_show(struct seq_file *m, void *private) 924 { 925 struct memblock_type *type = m->private; 926 struct memblock_region *reg; 927 int i; 928 929 for (i = 0; i < type->cnt; i++) { 930 reg = &type->regions[i]; 931 seq_printf(m, "%4d: ", i); 932 if (sizeof(phys_addr_t) == 4) 933 seq_printf(m, "0x%08lx..0x%08lx\n", 934 (unsigned long)reg->base, 935 (unsigned long)(reg->base + reg->size - 1)); 936 else 937 seq_printf(m, "0x%016llx..0x%016llx\n", 938 (unsigned long long)reg->base, 939 (unsigned long long)(reg->base + reg->size - 1)); 940 941 } 942 return 0; 943 } 944 945 static int memblock_debug_open(struct inode *inode, struct file *file) 946 { 947 return single_open(file, memblock_debug_show, inode->i_private); 948 } 949 950 static const struct file_operations memblock_debug_fops = { 951 .open = memblock_debug_open, 952 .read = seq_read, 953 .llseek = seq_lseek, 954 .release = single_release, 955 }; 956 957 static int __init memblock_init_debugfs(void) 958 { 959 struct dentry *root = debugfs_create_dir("memblock", NULL); 960 if (!root) 961 return -ENXIO; 962 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 963 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 964 965 return 0; 966 } 967 __initcall(memblock_init_debugfs); 968 969 #endif /* CONFIG_DEBUG_FS */ 970