1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 #include <linux/memblock.h> 22 23 #include <asm-generic/sections.h> 24 #include <linux/io.h> 25 26 #include "internal.h" 27 28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; 32 #endif 33 34 struct memblock memblock __initdata_memblock = { 35 .memory.regions = memblock_memory_init_regions, 36 .memory.cnt = 1, /* empty dummy entry */ 37 .memory.max = INIT_MEMBLOCK_REGIONS, 38 39 .reserved.regions = memblock_reserved_init_regions, 40 .reserved.cnt = 1, /* empty dummy entry */ 41 .reserved.max = INIT_MEMBLOCK_REGIONS, 42 43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 44 .physmem.regions = memblock_physmem_init_regions, 45 .physmem.cnt = 1, /* empty dummy entry */ 46 .physmem.max = INIT_PHYSMEM_REGIONS, 47 #endif 48 49 .bottom_up = false, 50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 51 }; 52 53 int memblock_debug __initdata_memblock; 54 #ifdef CONFIG_MOVABLE_NODE 55 bool movable_node_enabled __initdata_memblock = false; 56 #endif 57 static bool system_has_some_mirror __initdata_memblock = false; 58 static int memblock_can_resize __initdata_memblock; 59 static int memblock_memory_in_slab __initdata_memblock = 0; 60 static int memblock_reserved_in_slab __initdata_memblock = 0; 61 62 ulong __init_memblock choose_memblock_flags(void) 63 { 64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 65 } 66 67 /* inline so we don't get a warning when pr_debug is compiled out */ 68 static __init_memblock const char * 69 memblock_type_name(struct memblock_type *type) 70 { 71 if (type == &memblock.memory) 72 return "memory"; 73 else if (type == &memblock.reserved) 74 return "reserved"; 75 else 76 return "unknown"; 77 } 78 79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 81 { 82 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); 83 } 84 85 /* 86 * Address comparison utilities 87 */ 88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 89 phys_addr_t base2, phys_addr_t size2) 90 { 91 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 92 } 93 94 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 95 phys_addr_t base, phys_addr_t size) 96 { 97 unsigned long i; 98 99 for (i = 0; i < type->cnt; i++) 100 if (memblock_addrs_overlap(base, size, type->regions[i].base, 101 type->regions[i].size)) 102 break; 103 return i < type->cnt; 104 } 105 106 /* 107 * __memblock_find_range_bottom_up - find free area utility in bottom-up 108 * @start: start of candidate range 109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 110 * @size: size of free area to find 111 * @align: alignment of free area to find 112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 113 * @flags: pick from blocks based on memory attributes 114 * 115 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 116 * 117 * RETURNS: 118 * Found address on success, 0 on failure. 119 */ 120 static phys_addr_t __init_memblock 121 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 122 phys_addr_t size, phys_addr_t align, int nid, 123 ulong flags) 124 { 125 phys_addr_t this_start, this_end, cand; 126 u64 i; 127 128 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 129 this_start = clamp(this_start, start, end); 130 this_end = clamp(this_end, start, end); 131 132 cand = round_up(this_start, align); 133 if (cand < this_end && this_end - cand >= size) 134 return cand; 135 } 136 137 return 0; 138 } 139 140 /** 141 * __memblock_find_range_top_down - find free area utility, in top-down 142 * @start: start of candidate range 143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 144 * @size: size of free area to find 145 * @align: alignment of free area to find 146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 147 * @flags: pick from blocks based on memory attributes 148 * 149 * Utility called from memblock_find_in_range_node(), find free area top-down. 150 * 151 * RETURNS: 152 * Found address on success, 0 on failure. 153 */ 154 static phys_addr_t __init_memblock 155 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 156 phys_addr_t size, phys_addr_t align, int nid, 157 ulong flags) 158 { 159 phys_addr_t this_start, this_end, cand; 160 u64 i; 161 162 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 163 NULL) { 164 this_start = clamp(this_start, start, end); 165 this_end = clamp(this_end, start, end); 166 167 if (this_end < size) 168 continue; 169 170 cand = round_down(this_end - size, align); 171 if (cand >= this_start) 172 return cand; 173 } 174 175 return 0; 176 } 177 178 /** 179 * memblock_find_in_range_node - find free area in given range and node 180 * @size: size of free area to find 181 * @align: alignment of free area to find 182 * @start: start of candidate range 183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 185 * @flags: pick from blocks based on memory attributes 186 * 187 * Find @size free area aligned to @align in the specified range and node. 188 * 189 * When allocation direction is bottom-up, the @start should be greater 190 * than the end of the kernel image. Otherwise, it will be trimmed. The 191 * reason is that we want the bottom-up allocation just near the kernel 192 * image so it is highly likely that the allocated memory and the kernel 193 * will reside in the same node. 194 * 195 * If bottom-up allocation failed, will try to allocate memory top-down. 196 * 197 * RETURNS: 198 * Found address on success, 0 on failure. 199 */ 200 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 201 phys_addr_t align, phys_addr_t start, 202 phys_addr_t end, int nid, ulong flags) 203 { 204 phys_addr_t kernel_end, ret; 205 206 /* pump up @end */ 207 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 208 end = memblock.current_limit; 209 210 /* avoid allocating the first page */ 211 start = max_t(phys_addr_t, start, PAGE_SIZE); 212 end = max(start, end); 213 kernel_end = __pa_symbol(_end); 214 215 /* 216 * try bottom-up allocation only when bottom-up mode 217 * is set and @end is above the kernel image. 218 */ 219 if (memblock_bottom_up() && end > kernel_end) { 220 phys_addr_t bottom_up_start; 221 222 /* make sure we will allocate above the kernel */ 223 bottom_up_start = max(start, kernel_end); 224 225 /* ok, try bottom-up allocation first */ 226 ret = __memblock_find_range_bottom_up(bottom_up_start, end, 227 size, align, nid, flags); 228 if (ret) 229 return ret; 230 231 /* 232 * we always limit bottom-up allocation above the kernel, 233 * but top-down allocation doesn't have the limit, so 234 * retrying top-down allocation may succeed when bottom-up 235 * allocation failed. 236 * 237 * bottom-up allocation is expected to be fail very rarely, 238 * so we use WARN_ONCE() here to see the stack trace if 239 * fail happens. 240 */ 241 WARN_ONCE(1, "memblock: bottom-up allocation failed, " 242 "memory hotunplug may be affected\n"); 243 } 244 245 return __memblock_find_range_top_down(start, end, size, align, nid, 246 flags); 247 } 248 249 /** 250 * memblock_find_in_range - find free area in given range 251 * @start: start of candidate range 252 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 253 * @size: size of free area to find 254 * @align: alignment of free area to find 255 * 256 * Find @size free area aligned to @align in the specified range. 257 * 258 * RETURNS: 259 * Found address on success, 0 on failure. 260 */ 261 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 262 phys_addr_t end, phys_addr_t size, 263 phys_addr_t align) 264 { 265 phys_addr_t ret; 266 ulong flags = choose_memblock_flags(); 267 268 again: 269 ret = memblock_find_in_range_node(size, align, start, end, 270 NUMA_NO_NODE, flags); 271 272 if (!ret && (flags & MEMBLOCK_MIRROR)) { 273 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 274 &size); 275 flags &= ~MEMBLOCK_MIRROR; 276 goto again; 277 } 278 279 return ret; 280 } 281 282 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 283 { 284 type->total_size -= type->regions[r].size; 285 memmove(&type->regions[r], &type->regions[r + 1], 286 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 287 type->cnt--; 288 289 /* Special case for empty arrays */ 290 if (type->cnt == 0) { 291 WARN_ON(type->total_size != 0); 292 type->cnt = 1; 293 type->regions[0].base = 0; 294 type->regions[0].size = 0; 295 type->regions[0].flags = 0; 296 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 297 } 298 } 299 300 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 301 302 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( 303 phys_addr_t *addr) 304 { 305 if (memblock.reserved.regions == memblock_reserved_init_regions) 306 return 0; 307 308 *addr = __pa(memblock.reserved.regions); 309 310 return PAGE_ALIGN(sizeof(struct memblock_region) * 311 memblock.reserved.max); 312 } 313 314 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info( 315 phys_addr_t *addr) 316 { 317 if (memblock.memory.regions == memblock_memory_init_regions) 318 return 0; 319 320 *addr = __pa(memblock.memory.regions); 321 322 return PAGE_ALIGN(sizeof(struct memblock_region) * 323 memblock.memory.max); 324 } 325 326 #endif 327 328 /** 329 * memblock_double_array - double the size of the memblock regions array 330 * @type: memblock type of the regions array being doubled 331 * @new_area_start: starting address of memory range to avoid overlap with 332 * @new_area_size: size of memory range to avoid overlap with 333 * 334 * Double the size of the @type regions array. If memblock is being used to 335 * allocate memory for a new reserved regions array and there is a previously 336 * allocated memory range [@new_area_start,@new_area_start+@new_area_size] 337 * waiting to be reserved, ensure the memory used by the new array does 338 * not overlap. 339 * 340 * RETURNS: 341 * 0 on success, -1 on failure. 342 */ 343 static int __init_memblock memblock_double_array(struct memblock_type *type, 344 phys_addr_t new_area_start, 345 phys_addr_t new_area_size) 346 { 347 struct memblock_region *new_array, *old_array; 348 phys_addr_t old_alloc_size, new_alloc_size; 349 phys_addr_t old_size, new_size, addr; 350 int use_slab = slab_is_available(); 351 int *in_slab; 352 353 /* We don't allow resizing until we know about the reserved regions 354 * of memory that aren't suitable for allocation 355 */ 356 if (!memblock_can_resize) 357 return -1; 358 359 /* Calculate new doubled size */ 360 old_size = type->max * sizeof(struct memblock_region); 361 new_size = old_size << 1; 362 /* 363 * We need to allocated new one align to PAGE_SIZE, 364 * so we can free them completely later. 365 */ 366 old_alloc_size = PAGE_ALIGN(old_size); 367 new_alloc_size = PAGE_ALIGN(new_size); 368 369 /* Retrieve the slab flag */ 370 if (type == &memblock.memory) 371 in_slab = &memblock_memory_in_slab; 372 else 373 in_slab = &memblock_reserved_in_slab; 374 375 /* Try to find some space for it. 376 * 377 * WARNING: We assume that either slab_is_available() and we use it or 378 * we use MEMBLOCK for allocations. That means that this is unsafe to 379 * use when bootmem is currently active (unless bootmem itself is 380 * implemented on top of MEMBLOCK which isn't the case yet) 381 * 382 * This should however not be an issue for now, as we currently only 383 * call into MEMBLOCK while it's still active, or much later when slab 384 * is active for memory hotplug operations 385 */ 386 if (use_slab) { 387 new_array = kmalloc(new_size, GFP_KERNEL); 388 addr = new_array ? __pa(new_array) : 0; 389 } else { 390 /* only exclude range when trying to double reserved.regions */ 391 if (type != &memblock.reserved) 392 new_area_start = new_area_size = 0; 393 394 addr = memblock_find_in_range(new_area_start + new_area_size, 395 memblock.current_limit, 396 new_alloc_size, PAGE_SIZE); 397 if (!addr && new_area_size) 398 addr = memblock_find_in_range(0, 399 min(new_area_start, memblock.current_limit), 400 new_alloc_size, PAGE_SIZE); 401 402 new_array = addr ? __va(addr) : NULL; 403 } 404 if (!addr) { 405 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 406 memblock_type_name(type), type->max, type->max * 2); 407 return -1; 408 } 409 410 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", 411 memblock_type_name(type), type->max * 2, (u64)addr, 412 (u64)addr + new_size - 1); 413 414 /* 415 * Found space, we now need to move the array over before we add the 416 * reserved region since it may be our reserved array itself that is 417 * full. 418 */ 419 memcpy(new_array, type->regions, old_size); 420 memset(new_array + type->max, 0, old_size); 421 old_array = type->regions; 422 type->regions = new_array; 423 type->max <<= 1; 424 425 /* Free old array. We needn't free it if the array is the static one */ 426 if (*in_slab) 427 kfree(old_array); 428 else if (old_array != memblock_memory_init_regions && 429 old_array != memblock_reserved_init_regions) 430 memblock_free(__pa(old_array), old_alloc_size); 431 432 /* 433 * Reserve the new array if that comes from the memblock. Otherwise, we 434 * needn't do it 435 */ 436 if (!use_slab) 437 BUG_ON(memblock_reserve(addr, new_alloc_size)); 438 439 /* Update slab flag */ 440 *in_slab = use_slab; 441 442 return 0; 443 } 444 445 /** 446 * memblock_merge_regions - merge neighboring compatible regions 447 * @type: memblock type to scan 448 * 449 * Scan @type and merge neighboring compatible regions. 450 */ 451 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 452 { 453 int i = 0; 454 455 /* cnt never goes below 1 */ 456 while (i < type->cnt - 1) { 457 struct memblock_region *this = &type->regions[i]; 458 struct memblock_region *next = &type->regions[i + 1]; 459 460 if (this->base + this->size != next->base || 461 memblock_get_region_node(this) != 462 memblock_get_region_node(next) || 463 this->flags != next->flags) { 464 BUG_ON(this->base + this->size > next->base); 465 i++; 466 continue; 467 } 468 469 this->size += next->size; 470 /* move forward from next + 1, index of which is i + 2 */ 471 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 472 type->cnt--; 473 } 474 } 475 476 /** 477 * memblock_insert_region - insert new memblock region 478 * @type: memblock type to insert into 479 * @idx: index for the insertion point 480 * @base: base address of the new region 481 * @size: size of the new region 482 * @nid: node id of the new region 483 * @flags: flags of the new region 484 * 485 * Insert new memblock region [@base,@base+@size) into @type at @idx. 486 * @type must already have extra room to accomodate the new region. 487 */ 488 static void __init_memblock memblock_insert_region(struct memblock_type *type, 489 int idx, phys_addr_t base, 490 phys_addr_t size, 491 int nid, unsigned long flags) 492 { 493 struct memblock_region *rgn = &type->regions[idx]; 494 495 BUG_ON(type->cnt >= type->max); 496 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 497 rgn->base = base; 498 rgn->size = size; 499 rgn->flags = flags; 500 memblock_set_region_node(rgn, nid); 501 type->cnt++; 502 type->total_size += size; 503 } 504 505 /** 506 * memblock_add_range - add new memblock region 507 * @type: memblock type to add new region into 508 * @base: base address of the new region 509 * @size: size of the new region 510 * @nid: nid of the new region 511 * @flags: flags of the new region 512 * 513 * Add new memblock region [@base,@base+@size) into @type. The new region 514 * is allowed to overlap with existing ones - overlaps don't affect already 515 * existing regions. @type is guaranteed to be minimal (all neighbouring 516 * compatible regions are merged) after the addition. 517 * 518 * RETURNS: 519 * 0 on success, -errno on failure. 520 */ 521 int __init_memblock memblock_add_range(struct memblock_type *type, 522 phys_addr_t base, phys_addr_t size, 523 int nid, unsigned long flags) 524 { 525 bool insert = false; 526 phys_addr_t obase = base; 527 phys_addr_t end = base + memblock_cap_size(base, &size); 528 int idx, nr_new; 529 struct memblock_region *rgn; 530 531 if (!size) 532 return 0; 533 534 /* special case for empty array */ 535 if (type->regions[0].size == 0) { 536 WARN_ON(type->cnt != 1 || type->total_size); 537 type->regions[0].base = base; 538 type->regions[0].size = size; 539 type->regions[0].flags = flags; 540 memblock_set_region_node(&type->regions[0], nid); 541 type->total_size = size; 542 return 0; 543 } 544 repeat: 545 /* 546 * The following is executed twice. Once with %false @insert and 547 * then with %true. The first counts the number of regions needed 548 * to accomodate the new area. The second actually inserts them. 549 */ 550 base = obase; 551 nr_new = 0; 552 553 for_each_memblock_type(type, rgn) { 554 phys_addr_t rbase = rgn->base; 555 phys_addr_t rend = rbase + rgn->size; 556 557 if (rbase >= end) 558 break; 559 if (rend <= base) 560 continue; 561 /* 562 * @rgn overlaps. If it separates the lower part of new 563 * area, insert that portion. 564 */ 565 if (rbase > base) { 566 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 567 WARN_ON(nid != memblock_get_region_node(rgn)); 568 #endif 569 WARN_ON(flags != rgn->flags); 570 nr_new++; 571 if (insert) 572 memblock_insert_region(type, idx++, base, 573 rbase - base, nid, 574 flags); 575 } 576 /* area below @rend is dealt with, forget about it */ 577 base = min(rend, end); 578 } 579 580 /* insert the remaining portion */ 581 if (base < end) { 582 nr_new++; 583 if (insert) 584 memblock_insert_region(type, idx, base, end - base, 585 nid, flags); 586 } 587 588 /* 589 * If this was the first round, resize array and repeat for actual 590 * insertions; otherwise, merge and return. 591 */ 592 if (!insert) { 593 while (type->cnt + nr_new > type->max) 594 if (memblock_double_array(type, obase, size) < 0) 595 return -ENOMEM; 596 insert = true; 597 goto repeat; 598 } else { 599 memblock_merge_regions(type); 600 return 0; 601 } 602 } 603 604 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 605 int nid) 606 { 607 return memblock_add_range(&memblock.memory, base, size, nid, 0); 608 } 609 610 static int __init_memblock memblock_add_region(phys_addr_t base, 611 phys_addr_t size, 612 int nid, 613 unsigned long flags) 614 { 615 struct memblock_type *type = &memblock.memory; 616 617 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n", 618 (unsigned long long)base, 619 (unsigned long long)base + size - 1, 620 flags, (void *)_RET_IP_); 621 622 return memblock_add_range(type, base, size, nid, flags); 623 } 624 625 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 626 { 627 return memblock_add_region(base, size, MAX_NUMNODES, 0); 628 } 629 630 /** 631 * memblock_isolate_range - isolate given range into disjoint memblocks 632 * @type: memblock type to isolate range for 633 * @base: base of range to isolate 634 * @size: size of range to isolate 635 * @start_rgn: out parameter for the start of isolated region 636 * @end_rgn: out parameter for the end of isolated region 637 * 638 * Walk @type and ensure that regions don't cross the boundaries defined by 639 * [@base,@base+@size). Crossing regions are split at the boundaries, 640 * which may create at most two more regions. The index of the first 641 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 642 * 643 * RETURNS: 644 * 0 on success, -errno on failure. 645 */ 646 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 647 phys_addr_t base, phys_addr_t size, 648 int *start_rgn, int *end_rgn) 649 { 650 phys_addr_t end = base + memblock_cap_size(base, &size); 651 int idx; 652 struct memblock_region *rgn; 653 654 *start_rgn = *end_rgn = 0; 655 656 if (!size) 657 return 0; 658 659 /* we'll create at most two more regions */ 660 while (type->cnt + 2 > type->max) 661 if (memblock_double_array(type, base, size) < 0) 662 return -ENOMEM; 663 664 for_each_memblock_type(type, rgn) { 665 phys_addr_t rbase = rgn->base; 666 phys_addr_t rend = rbase + rgn->size; 667 668 if (rbase >= end) 669 break; 670 if (rend <= base) 671 continue; 672 673 if (rbase < base) { 674 /* 675 * @rgn intersects from below. Split and continue 676 * to process the next region - the new top half. 677 */ 678 rgn->base = base; 679 rgn->size -= base - rbase; 680 type->total_size -= base - rbase; 681 memblock_insert_region(type, idx, rbase, base - rbase, 682 memblock_get_region_node(rgn), 683 rgn->flags); 684 } else if (rend > end) { 685 /* 686 * @rgn intersects from above. Split and redo the 687 * current region - the new bottom half. 688 */ 689 rgn->base = end; 690 rgn->size -= end - rbase; 691 type->total_size -= end - rbase; 692 memblock_insert_region(type, idx--, rbase, end - rbase, 693 memblock_get_region_node(rgn), 694 rgn->flags); 695 } else { 696 /* @rgn is fully contained, record it */ 697 if (!*end_rgn) 698 *start_rgn = idx; 699 *end_rgn = idx + 1; 700 } 701 } 702 703 return 0; 704 } 705 706 static int __init_memblock memblock_remove_range(struct memblock_type *type, 707 phys_addr_t base, phys_addr_t size) 708 { 709 int start_rgn, end_rgn; 710 int i, ret; 711 712 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 713 if (ret) 714 return ret; 715 716 for (i = end_rgn - 1; i >= start_rgn; i--) 717 memblock_remove_region(type, i); 718 return 0; 719 } 720 721 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 722 { 723 return memblock_remove_range(&memblock.memory, base, size); 724 } 725 726 727 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 728 { 729 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", 730 (unsigned long long)base, 731 (unsigned long long)base + size - 1, 732 (void *)_RET_IP_); 733 734 kmemleak_free_part(__va(base), size); 735 return memblock_remove_range(&memblock.reserved, base, size); 736 } 737 738 static int __init_memblock memblock_reserve_region(phys_addr_t base, 739 phys_addr_t size, 740 int nid, 741 unsigned long flags) 742 { 743 struct memblock_type *type = &memblock.reserved; 744 745 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n", 746 (unsigned long long)base, 747 (unsigned long long)base + size - 1, 748 flags, (void *)_RET_IP_); 749 750 return memblock_add_range(type, base, size, nid, flags); 751 } 752 753 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 754 { 755 return memblock_reserve_region(base, size, MAX_NUMNODES, 0); 756 } 757 758 /** 759 * 760 * This function isolates region [@base, @base + @size), and sets/clears flag 761 * 762 * Return 0 on success, -errno on failure. 763 */ 764 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 765 phys_addr_t size, int set, int flag) 766 { 767 struct memblock_type *type = &memblock.memory; 768 int i, ret, start_rgn, end_rgn; 769 770 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 771 if (ret) 772 return ret; 773 774 for (i = start_rgn; i < end_rgn; i++) 775 if (set) 776 memblock_set_region_flags(&type->regions[i], flag); 777 else 778 memblock_clear_region_flags(&type->regions[i], flag); 779 780 memblock_merge_regions(type); 781 return 0; 782 } 783 784 /** 785 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 786 * @base: the base phys addr of the region 787 * @size: the size of the region 788 * 789 * Return 0 on success, -errno on failure. 790 */ 791 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 792 { 793 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 794 } 795 796 /** 797 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 798 * @base: the base phys addr of the region 799 * @size: the size of the region 800 * 801 * Return 0 on success, -errno on failure. 802 */ 803 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 804 { 805 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 806 } 807 808 /** 809 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 810 * @base: the base phys addr of the region 811 * @size: the size of the region 812 * 813 * Return 0 on success, -errno on failure. 814 */ 815 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 816 { 817 system_has_some_mirror = true; 818 819 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 820 } 821 822 /** 823 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 824 * @base: the base phys addr of the region 825 * @size: the size of the region 826 * 827 * Return 0 on success, -errno on failure. 828 */ 829 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 830 { 831 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 832 } 833 834 /** 835 * __next_reserved_mem_region - next function for for_each_reserved_region() 836 * @idx: pointer to u64 loop variable 837 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL 838 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL 839 * 840 * Iterate over all reserved memory regions. 841 */ 842 void __init_memblock __next_reserved_mem_region(u64 *idx, 843 phys_addr_t *out_start, 844 phys_addr_t *out_end) 845 { 846 struct memblock_type *type = &memblock.reserved; 847 848 if (*idx >= 0 && *idx < type->cnt) { 849 struct memblock_region *r = &type->regions[*idx]; 850 phys_addr_t base = r->base; 851 phys_addr_t size = r->size; 852 853 if (out_start) 854 *out_start = base; 855 if (out_end) 856 *out_end = base + size - 1; 857 858 *idx += 1; 859 return; 860 } 861 862 /* signal end of iteration */ 863 *idx = ULLONG_MAX; 864 } 865 866 /** 867 * __next__mem_range - next function for for_each_free_mem_range() etc. 868 * @idx: pointer to u64 loop variable 869 * @nid: node selector, %NUMA_NO_NODE for all nodes 870 * @flags: pick from blocks based on memory attributes 871 * @type_a: pointer to memblock_type from where the range is taken 872 * @type_b: pointer to memblock_type which excludes memory from being taken 873 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 874 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 875 * @out_nid: ptr to int for nid of the range, can be %NULL 876 * 877 * Find the first area from *@idx which matches @nid, fill the out 878 * parameters, and update *@idx for the next iteration. The lower 32bit of 879 * *@idx contains index into type_a and the upper 32bit indexes the 880 * areas before each region in type_b. For example, if type_b regions 881 * look like the following, 882 * 883 * 0:[0-16), 1:[32-48), 2:[128-130) 884 * 885 * The upper 32bit indexes the following regions. 886 * 887 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 888 * 889 * As both region arrays are sorted, the function advances the two indices 890 * in lockstep and returns each intersection. 891 */ 892 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags, 893 struct memblock_type *type_a, 894 struct memblock_type *type_b, 895 phys_addr_t *out_start, 896 phys_addr_t *out_end, int *out_nid) 897 { 898 int idx_a = *idx & 0xffffffff; 899 int idx_b = *idx >> 32; 900 901 if (WARN_ONCE(nid == MAX_NUMNODES, 902 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 903 nid = NUMA_NO_NODE; 904 905 for (; idx_a < type_a->cnt; idx_a++) { 906 struct memblock_region *m = &type_a->regions[idx_a]; 907 908 phys_addr_t m_start = m->base; 909 phys_addr_t m_end = m->base + m->size; 910 int m_nid = memblock_get_region_node(m); 911 912 /* only memory regions are associated with nodes, check it */ 913 if (nid != NUMA_NO_NODE && nid != m_nid) 914 continue; 915 916 /* skip hotpluggable memory regions if needed */ 917 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 918 continue; 919 920 /* if we want mirror memory skip non-mirror memory regions */ 921 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 922 continue; 923 924 /* skip nomap memory unless we were asked for it explicitly */ 925 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 926 continue; 927 928 if (!type_b) { 929 if (out_start) 930 *out_start = m_start; 931 if (out_end) 932 *out_end = m_end; 933 if (out_nid) 934 *out_nid = m_nid; 935 idx_a++; 936 *idx = (u32)idx_a | (u64)idx_b << 32; 937 return; 938 } 939 940 /* scan areas before each reservation */ 941 for (; idx_b < type_b->cnt + 1; idx_b++) { 942 struct memblock_region *r; 943 phys_addr_t r_start; 944 phys_addr_t r_end; 945 946 r = &type_b->regions[idx_b]; 947 r_start = idx_b ? r[-1].base + r[-1].size : 0; 948 r_end = idx_b < type_b->cnt ? 949 r->base : ULLONG_MAX; 950 951 /* 952 * if idx_b advanced past idx_a, 953 * break out to advance idx_a 954 */ 955 if (r_start >= m_end) 956 break; 957 /* if the two regions intersect, we're done */ 958 if (m_start < r_end) { 959 if (out_start) 960 *out_start = 961 max(m_start, r_start); 962 if (out_end) 963 *out_end = min(m_end, r_end); 964 if (out_nid) 965 *out_nid = m_nid; 966 /* 967 * The region which ends first is 968 * advanced for the next iteration. 969 */ 970 if (m_end <= r_end) 971 idx_a++; 972 else 973 idx_b++; 974 *idx = (u32)idx_a | (u64)idx_b << 32; 975 return; 976 } 977 } 978 } 979 980 /* signal end of iteration */ 981 *idx = ULLONG_MAX; 982 } 983 984 /** 985 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 986 * 987 * Finds the next range from type_a which is not marked as unsuitable 988 * in type_b. 989 * 990 * @idx: pointer to u64 loop variable 991 * @nid: node selector, %NUMA_NO_NODE for all nodes 992 * @flags: pick from blocks based on memory attributes 993 * @type_a: pointer to memblock_type from where the range is taken 994 * @type_b: pointer to memblock_type which excludes memory from being taken 995 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 996 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 997 * @out_nid: ptr to int for nid of the range, can be %NULL 998 * 999 * Reverse of __next_mem_range(). 1000 */ 1001 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags, 1002 struct memblock_type *type_a, 1003 struct memblock_type *type_b, 1004 phys_addr_t *out_start, 1005 phys_addr_t *out_end, int *out_nid) 1006 { 1007 int idx_a = *idx & 0xffffffff; 1008 int idx_b = *idx >> 32; 1009 1010 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1011 nid = NUMA_NO_NODE; 1012 1013 if (*idx == (u64)ULLONG_MAX) { 1014 idx_a = type_a->cnt - 1; 1015 idx_b = type_b->cnt; 1016 } 1017 1018 for (; idx_a >= 0; idx_a--) { 1019 struct memblock_region *m = &type_a->regions[idx_a]; 1020 1021 phys_addr_t m_start = m->base; 1022 phys_addr_t m_end = m->base + m->size; 1023 int m_nid = memblock_get_region_node(m); 1024 1025 /* only memory regions are associated with nodes, check it */ 1026 if (nid != NUMA_NO_NODE && nid != m_nid) 1027 continue; 1028 1029 /* skip hotpluggable memory regions if needed */ 1030 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 1031 continue; 1032 1033 /* if we want mirror memory skip non-mirror memory regions */ 1034 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 1035 continue; 1036 1037 /* skip nomap memory unless we were asked for it explicitly */ 1038 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 1039 continue; 1040 1041 if (!type_b) { 1042 if (out_start) 1043 *out_start = m_start; 1044 if (out_end) 1045 *out_end = m_end; 1046 if (out_nid) 1047 *out_nid = m_nid; 1048 idx_a++; 1049 *idx = (u32)idx_a | (u64)idx_b << 32; 1050 return; 1051 } 1052 1053 /* scan areas before each reservation */ 1054 for (; idx_b >= 0; idx_b--) { 1055 struct memblock_region *r; 1056 phys_addr_t r_start; 1057 phys_addr_t r_end; 1058 1059 r = &type_b->regions[idx_b]; 1060 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1061 r_end = idx_b < type_b->cnt ? 1062 r->base : ULLONG_MAX; 1063 /* 1064 * if idx_b advanced past idx_a, 1065 * break out to advance idx_a 1066 */ 1067 1068 if (r_end <= m_start) 1069 break; 1070 /* if the two regions intersect, we're done */ 1071 if (m_end > r_start) { 1072 if (out_start) 1073 *out_start = max(m_start, r_start); 1074 if (out_end) 1075 *out_end = min(m_end, r_end); 1076 if (out_nid) 1077 *out_nid = m_nid; 1078 if (m_start >= r_start) 1079 idx_a--; 1080 else 1081 idx_b--; 1082 *idx = (u32)idx_a | (u64)idx_b << 32; 1083 return; 1084 } 1085 } 1086 } 1087 /* signal end of iteration */ 1088 *idx = ULLONG_MAX; 1089 } 1090 1091 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1092 /* 1093 * Common iterator interface used to define for_each_mem_range(). 1094 */ 1095 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1096 unsigned long *out_start_pfn, 1097 unsigned long *out_end_pfn, int *out_nid) 1098 { 1099 struct memblock_type *type = &memblock.memory; 1100 struct memblock_region *r; 1101 1102 while (++*idx < type->cnt) { 1103 r = &type->regions[*idx]; 1104 1105 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1106 continue; 1107 if (nid == MAX_NUMNODES || nid == r->nid) 1108 break; 1109 } 1110 if (*idx >= type->cnt) { 1111 *idx = -1; 1112 return; 1113 } 1114 1115 if (out_start_pfn) 1116 *out_start_pfn = PFN_UP(r->base); 1117 if (out_end_pfn) 1118 *out_end_pfn = PFN_DOWN(r->base + r->size); 1119 if (out_nid) 1120 *out_nid = r->nid; 1121 } 1122 1123 /** 1124 * memblock_set_node - set node ID on memblock regions 1125 * @base: base of area to set node ID for 1126 * @size: size of area to set node ID for 1127 * @type: memblock type to set node ID for 1128 * @nid: node ID to set 1129 * 1130 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid. 1131 * Regions which cross the area boundaries are split as necessary. 1132 * 1133 * RETURNS: 1134 * 0 on success, -errno on failure. 1135 */ 1136 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1137 struct memblock_type *type, int nid) 1138 { 1139 int start_rgn, end_rgn; 1140 int i, ret; 1141 1142 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1143 if (ret) 1144 return ret; 1145 1146 for (i = start_rgn; i < end_rgn; i++) 1147 memblock_set_region_node(&type->regions[i], nid); 1148 1149 memblock_merge_regions(type); 1150 return 0; 1151 } 1152 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1153 1154 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1155 phys_addr_t align, phys_addr_t start, 1156 phys_addr_t end, int nid, ulong flags) 1157 { 1158 phys_addr_t found; 1159 1160 if (!align) 1161 align = SMP_CACHE_BYTES; 1162 1163 found = memblock_find_in_range_node(size, align, start, end, nid, 1164 flags); 1165 if (found && !memblock_reserve(found, size)) { 1166 /* 1167 * The min_count is set to 0 so that memblock allocations are 1168 * never reported as leaks. 1169 */ 1170 kmemleak_alloc(__va(found), size, 0, 0); 1171 return found; 1172 } 1173 return 0; 1174 } 1175 1176 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align, 1177 phys_addr_t start, phys_addr_t end, 1178 ulong flags) 1179 { 1180 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1181 flags); 1182 } 1183 1184 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 1185 phys_addr_t align, phys_addr_t max_addr, 1186 int nid, ulong flags) 1187 { 1188 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags); 1189 } 1190 1191 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 1192 { 1193 ulong flags = choose_memblock_flags(); 1194 phys_addr_t ret; 1195 1196 again: 1197 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, 1198 nid, flags); 1199 1200 if (!ret && (flags & MEMBLOCK_MIRROR)) { 1201 flags &= ~MEMBLOCK_MIRROR; 1202 goto again; 1203 } 1204 return ret; 1205 } 1206 1207 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1208 { 1209 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE, 1210 MEMBLOCK_NONE); 1211 } 1212 1213 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1214 { 1215 phys_addr_t alloc; 1216 1217 alloc = __memblock_alloc_base(size, align, max_addr); 1218 1219 if (alloc == 0) 1220 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", 1221 (unsigned long long) size, (unsigned long long) max_addr); 1222 1223 return alloc; 1224 } 1225 1226 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 1227 { 1228 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1229 } 1230 1231 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1232 { 1233 phys_addr_t res = memblock_alloc_nid(size, align, nid); 1234 1235 if (res) 1236 return res; 1237 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1238 } 1239 1240 /** 1241 * memblock_virt_alloc_internal - allocate boot memory block 1242 * @size: size of memory block to be allocated in bytes 1243 * @align: alignment of the region and block's size 1244 * @min_addr: the lower bound of the memory region to allocate (phys address) 1245 * @max_addr: the upper bound of the memory region to allocate (phys address) 1246 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1247 * 1248 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1249 * will fall back to memory below @min_addr. Also, allocation may fall back 1250 * to any node in the system if the specified node can not 1251 * hold the requested memory. 1252 * 1253 * The allocation is performed from memory region limited by 1254 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE. 1255 * 1256 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0. 1257 * 1258 * The phys address of allocated boot memory block is converted to virtual and 1259 * allocated memory is reset to 0. 1260 * 1261 * In addition, function sets the min_count to 0 using kmemleak_alloc for 1262 * allocated boot memory block, so that it is never reported as leaks. 1263 * 1264 * RETURNS: 1265 * Virtual address of allocated memory block on success, NULL on failure. 1266 */ 1267 static void * __init memblock_virt_alloc_internal( 1268 phys_addr_t size, phys_addr_t align, 1269 phys_addr_t min_addr, phys_addr_t max_addr, 1270 int nid) 1271 { 1272 phys_addr_t alloc; 1273 void *ptr; 1274 ulong flags = choose_memblock_flags(); 1275 1276 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1277 nid = NUMA_NO_NODE; 1278 1279 /* 1280 * Detect any accidental use of these APIs after slab is ready, as at 1281 * this moment memblock may be deinitialized already and its 1282 * internal data may be destroyed (after execution of free_all_bootmem) 1283 */ 1284 if (WARN_ON_ONCE(slab_is_available())) 1285 return kzalloc_node(size, GFP_NOWAIT, nid); 1286 1287 if (!align) 1288 align = SMP_CACHE_BYTES; 1289 1290 if (max_addr > memblock.current_limit) 1291 max_addr = memblock.current_limit; 1292 1293 again: 1294 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr, 1295 nid, flags); 1296 if (alloc) 1297 goto done; 1298 1299 if (nid != NUMA_NO_NODE) { 1300 alloc = memblock_find_in_range_node(size, align, min_addr, 1301 max_addr, NUMA_NO_NODE, 1302 flags); 1303 if (alloc) 1304 goto done; 1305 } 1306 1307 if (min_addr) { 1308 min_addr = 0; 1309 goto again; 1310 } 1311 1312 if (flags & MEMBLOCK_MIRROR) { 1313 flags &= ~MEMBLOCK_MIRROR; 1314 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1315 &size); 1316 goto again; 1317 } 1318 1319 return NULL; 1320 done: 1321 memblock_reserve(alloc, size); 1322 ptr = phys_to_virt(alloc); 1323 memset(ptr, 0, size); 1324 1325 /* 1326 * The min_count is set to 0 so that bootmem allocated blocks 1327 * are never reported as leaks. This is because many of these blocks 1328 * are only referred via the physical address which is not 1329 * looked up by kmemleak. 1330 */ 1331 kmemleak_alloc(ptr, size, 0, 0); 1332 1333 return ptr; 1334 } 1335 1336 /** 1337 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block 1338 * @size: size of memory block to be allocated in bytes 1339 * @align: alignment of the region and block's size 1340 * @min_addr: the lower bound of the memory region from where the allocation 1341 * is preferred (phys address) 1342 * @max_addr: the upper bound of the memory region from where the allocation 1343 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1344 * allocate only from memory limited by memblock.current_limit value 1345 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1346 * 1347 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides 1348 * additional debug information (including caller info), if enabled. 1349 * 1350 * RETURNS: 1351 * Virtual address of allocated memory block on success, NULL on failure. 1352 */ 1353 void * __init memblock_virt_alloc_try_nid_nopanic( 1354 phys_addr_t size, phys_addr_t align, 1355 phys_addr_t min_addr, phys_addr_t max_addr, 1356 int nid) 1357 { 1358 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1359 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1360 (u64)max_addr, (void *)_RET_IP_); 1361 return memblock_virt_alloc_internal(size, align, min_addr, 1362 max_addr, nid); 1363 } 1364 1365 /** 1366 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking 1367 * @size: size of memory block to be allocated in bytes 1368 * @align: alignment of the region and block's size 1369 * @min_addr: the lower bound of the memory region from where the allocation 1370 * is preferred (phys address) 1371 * @max_addr: the upper bound of the memory region from where the allocation 1372 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1373 * allocate only from memory limited by memblock.current_limit value 1374 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1375 * 1376 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic() 1377 * which provides debug information (including caller info), if enabled, 1378 * and panics if the request can not be satisfied. 1379 * 1380 * RETURNS: 1381 * Virtual address of allocated memory block on success, NULL on failure. 1382 */ 1383 void * __init memblock_virt_alloc_try_nid( 1384 phys_addr_t size, phys_addr_t align, 1385 phys_addr_t min_addr, phys_addr_t max_addr, 1386 int nid) 1387 { 1388 void *ptr; 1389 1390 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1391 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1392 (u64)max_addr, (void *)_RET_IP_); 1393 ptr = memblock_virt_alloc_internal(size, align, 1394 min_addr, max_addr, nid); 1395 if (ptr) 1396 return ptr; 1397 1398 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n", 1399 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1400 (u64)max_addr); 1401 return NULL; 1402 } 1403 1404 /** 1405 * __memblock_free_early - free boot memory block 1406 * @base: phys starting address of the boot memory block 1407 * @size: size of the boot memory block in bytes 1408 * 1409 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API. 1410 * The freeing memory will not be released to the buddy allocator. 1411 */ 1412 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size) 1413 { 1414 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1415 __func__, (u64)base, (u64)base + size - 1, 1416 (void *)_RET_IP_); 1417 kmemleak_free_part(__va(base), size); 1418 memblock_remove_range(&memblock.reserved, base, size); 1419 } 1420 1421 /* 1422 * __memblock_free_late - free bootmem block pages directly to buddy allocator 1423 * @addr: phys starting address of the boot memory block 1424 * @size: size of the boot memory block in bytes 1425 * 1426 * This is only useful when the bootmem allocator has already been torn 1427 * down, but we are still initializing the system. Pages are released directly 1428 * to the buddy allocator, no bootmem metadata is updated because it is gone. 1429 */ 1430 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1431 { 1432 u64 cursor, end; 1433 1434 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1435 __func__, (u64)base, (u64)base + size - 1, 1436 (void *)_RET_IP_); 1437 kmemleak_free_part(__va(base), size); 1438 cursor = PFN_UP(base); 1439 end = PFN_DOWN(base + size); 1440 1441 for (; cursor < end; cursor++) { 1442 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0); 1443 totalram_pages++; 1444 } 1445 } 1446 1447 /* 1448 * Remaining API functions 1449 */ 1450 1451 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1452 { 1453 return memblock.memory.total_size; 1454 } 1455 1456 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) 1457 { 1458 unsigned long pages = 0; 1459 struct memblock_region *r; 1460 unsigned long start_pfn, end_pfn; 1461 1462 for_each_memblock(memory, r) { 1463 start_pfn = memblock_region_memory_base_pfn(r); 1464 end_pfn = memblock_region_memory_end_pfn(r); 1465 start_pfn = min_t(unsigned long, start_pfn, limit_pfn); 1466 end_pfn = min_t(unsigned long, end_pfn, limit_pfn); 1467 pages += end_pfn - start_pfn; 1468 } 1469 1470 return PFN_PHYS(pages); 1471 } 1472 1473 /* lowest address */ 1474 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1475 { 1476 return memblock.memory.regions[0].base; 1477 } 1478 1479 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1480 { 1481 int idx = memblock.memory.cnt - 1; 1482 1483 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1484 } 1485 1486 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1487 { 1488 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 1489 struct memblock_region *r; 1490 1491 if (!limit) 1492 return; 1493 1494 /* find out max address */ 1495 for_each_memblock(memory, r) { 1496 if (limit <= r->size) { 1497 max_addr = r->base + limit; 1498 break; 1499 } 1500 limit -= r->size; 1501 } 1502 1503 /* truncate both memory and reserved regions */ 1504 memblock_remove_range(&memblock.memory, max_addr, 1505 (phys_addr_t)ULLONG_MAX); 1506 memblock_remove_range(&memblock.reserved, max_addr, 1507 (phys_addr_t)ULLONG_MAX); 1508 } 1509 1510 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1511 { 1512 unsigned int left = 0, right = type->cnt; 1513 1514 do { 1515 unsigned int mid = (right + left) / 2; 1516 1517 if (addr < type->regions[mid].base) 1518 right = mid; 1519 else if (addr >= (type->regions[mid].base + 1520 type->regions[mid].size)) 1521 left = mid + 1; 1522 else 1523 return mid; 1524 } while (left < right); 1525 return -1; 1526 } 1527 1528 bool __init memblock_is_reserved(phys_addr_t addr) 1529 { 1530 return memblock_search(&memblock.reserved, addr) != -1; 1531 } 1532 1533 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1534 { 1535 return memblock_search(&memblock.memory, addr) != -1; 1536 } 1537 1538 int __init_memblock memblock_is_map_memory(phys_addr_t addr) 1539 { 1540 int i = memblock_search(&memblock.memory, addr); 1541 1542 if (i == -1) 1543 return false; 1544 return !memblock_is_nomap(&memblock.memory.regions[i]); 1545 } 1546 1547 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1548 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1549 unsigned long *start_pfn, unsigned long *end_pfn) 1550 { 1551 struct memblock_type *type = &memblock.memory; 1552 int mid = memblock_search(type, PFN_PHYS(pfn)); 1553 1554 if (mid == -1) 1555 return -1; 1556 1557 *start_pfn = PFN_DOWN(type->regions[mid].base); 1558 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1559 1560 return type->regions[mid].nid; 1561 } 1562 #endif 1563 1564 /** 1565 * memblock_is_region_memory - check if a region is a subset of memory 1566 * @base: base of region to check 1567 * @size: size of region to check 1568 * 1569 * Check if the region [@base, @base+@size) is a subset of a memory block. 1570 * 1571 * RETURNS: 1572 * 0 if false, non-zero if true 1573 */ 1574 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1575 { 1576 int idx = memblock_search(&memblock.memory, base); 1577 phys_addr_t end = base + memblock_cap_size(base, &size); 1578 1579 if (idx == -1) 1580 return 0; 1581 return memblock.memory.regions[idx].base <= base && 1582 (memblock.memory.regions[idx].base + 1583 memblock.memory.regions[idx].size) >= end; 1584 } 1585 1586 /** 1587 * memblock_is_region_reserved - check if a region intersects reserved memory 1588 * @base: base of region to check 1589 * @size: size of region to check 1590 * 1591 * Check if the region [@base, @base+@size) intersects a reserved memory block. 1592 * 1593 * RETURNS: 1594 * True if they intersect, false if not. 1595 */ 1596 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1597 { 1598 memblock_cap_size(base, &size); 1599 return memblock_overlaps_region(&memblock.reserved, base, size); 1600 } 1601 1602 void __init_memblock memblock_trim_memory(phys_addr_t align) 1603 { 1604 phys_addr_t start, end, orig_start, orig_end; 1605 struct memblock_region *r; 1606 1607 for_each_memblock(memory, r) { 1608 orig_start = r->base; 1609 orig_end = r->base + r->size; 1610 start = round_up(orig_start, align); 1611 end = round_down(orig_end, align); 1612 1613 if (start == orig_start && end == orig_end) 1614 continue; 1615 1616 if (start < end) { 1617 r->base = start; 1618 r->size = end - start; 1619 } else { 1620 memblock_remove_region(&memblock.memory, 1621 r - memblock.memory.regions); 1622 r--; 1623 } 1624 } 1625 } 1626 1627 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1628 { 1629 memblock.current_limit = limit; 1630 } 1631 1632 phys_addr_t __init_memblock memblock_get_current_limit(void) 1633 { 1634 return memblock.current_limit; 1635 } 1636 1637 static void __init_memblock memblock_dump(struct memblock_type *type, char *name) 1638 { 1639 unsigned long long base, size; 1640 unsigned long flags; 1641 int idx; 1642 struct memblock_region *rgn; 1643 1644 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); 1645 1646 for_each_memblock_type(type, rgn) { 1647 char nid_buf[32] = ""; 1648 1649 base = rgn->base; 1650 size = rgn->size; 1651 flags = rgn->flags; 1652 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1653 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1654 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1655 memblock_get_region_node(rgn)); 1656 #endif 1657 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n", 1658 name, idx, base, base + size - 1, size, nid_buf, flags); 1659 } 1660 } 1661 1662 void __init_memblock __memblock_dump_all(void) 1663 { 1664 pr_info("MEMBLOCK configuration:\n"); 1665 pr_info(" memory size = %#llx reserved size = %#llx\n", 1666 (unsigned long long)memblock.memory.total_size, 1667 (unsigned long long)memblock.reserved.total_size); 1668 1669 memblock_dump(&memblock.memory, "memory"); 1670 memblock_dump(&memblock.reserved, "reserved"); 1671 } 1672 1673 void __init memblock_allow_resize(void) 1674 { 1675 memblock_can_resize = 1; 1676 } 1677 1678 static int __init early_memblock(char *p) 1679 { 1680 if (p && strstr(p, "debug")) 1681 memblock_debug = 1; 1682 return 0; 1683 } 1684 early_param("memblock", early_memblock); 1685 1686 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 1687 1688 static int memblock_debug_show(struct seq_file *m, void *private) 1689 { 1690 struct memblock_type *type = m->private; 1691 struct memblock_region *reg; 1692 int i; 1693 1694 for (i = 0; i < type->cnt; i++) { 1695 reg = &type->regions[i]; 1696 seq_printf(m, "%4d: ", i); 1697 if (sizeof(phys_addr_t) == 4) 1698 seq_printf(m, "0x%08lx..0x%08lx\n", 1699 (unsigned long)reg->base, 1700 (unsigned long)(reg->base + reg->size - 1)); 1701 else 1702 seq_printf(m, "0x%016llx..0x%016llx\n", 1703 (unsigned long long)reg->base, 1704 (unsigned long long)(reg->base + reg->size - 1)); 1705 1706 } 1707 return 0; 1708 } 1709 1710 static int memblock_debug_open(struct inode *inode, struct file *file) 1711 { 1712 return single_open(file, memblock_debug_show, inode->i_private); 1713 } 1714 1715 static const struct file_operations memblock_debug_fops = { 1716 .open = memblock_debug_open, 1717 .read = seq_read, 1718 .llseek = seq_lseek, 1719 .release = single_release, 1720 }; 1721 1722 static int __init memblock_init_debugfs(void) 1723 { 1724 struct dentry *root = debugfs_create_dir("memblock", NULL); 1725 if (!root) 1726 return -ENXIO; 1727 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 1728 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 1729 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1730 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops); 1731 #endif 1732 1733 return 0; 1734 } 1735 __initcall(memblock_init_debugfs); 1736 1737 #endif /* CONFIG_DEBUG_FS */ 1738