1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 #include <linux/memblock.h> 22 23 #include <asm/sections.h> 24 #include <linux/io.h> 25 26 #include "internal.h" 27 28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; 32 #endif 33 34 struct memblock memblock __initdata_memblock = { 35 .memory.regions = memblock_memory_init_regions, 36 .memory.cnt = 1, /* empty dummy entry */ 37 .memory.max = INIT_MEMBLOCK_REGIONS, 38 39 .reserved.regions = memblock_reserved_init_regions, 40 .reserved.cnt = 1, /* empty dummy entry */ 41 .reserved.max = INIT_MEMBLOCK_REGIONS, 42 43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 44 .physmem.regions = memblock_physmem_init_regions, 45 .physmem.cnt = 1, /* empty dummy entry */ 46 .physmem.max = INIT_PHYSMEM_REGIONS, 47 #endif 48 49 .bottom_up = false, 50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 51 }; 52 53 int memblock_debug __initdata_memblock; 54 #ifdef CONFIG_MOVABLE_NODE 55 bool movable_node_enabled __initdata_memblock = false; 56 #endif 57 static bool system_has_some_mirror __initdata_memblock = false; 58 static int memblock_can_resize __initdata_memblock; 59 static int memblock_memory_in_slab __initdata_memblock = 0; 60 static int memblock_reserved_in_slab __initdata_memblock = 0; 61 62 ulong __init_memblock choose_memblock_flags(void) 63 { 64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 65 } 66 67 /* inline so we don't get a warning when pr_debug is compiled out */ 68 static __init_memblock const char * 69 memblock_type_name(struct memblock_type *type) 70 { 71 if (type == &memblock.memory) 72 return "memory"; 73 else if (type == &memblock.reserved) 74 return "reserved"; 75 else 76 return "unknown"; 77 } 78 79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 81 { 82 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); 83 } 84 85 /* 86 * Address comparison utilities 87 */ 88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 89 phys_addr_t base2, phys_addr_t size2) 90 { 91 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 92 } 93 94 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 95 phys_addr_t base, phys_addr_t size) 96 { 97 unsigned long i; 98 99 for (i = 0; i < type->cnt; i++) 100 if (memblock_addrs_overlap(base, size, type->regions[i].base, 101 type->regions[i].size)) 102 break; 103 return i < type->cnt; 104 } 105 106 /* 107 * __memblock_find_range_bottom_up - find free area utility in bottom-up 108 * @start: start of candidate range 109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 110 * @size: size of free area to find 111 * @align: alignment of free area to find 112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 113 * @flags: pick from blocks based on memory attributes 114 * 115 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 116 * 117 * RETURNS: 118 * Found address on success, 0 on failure. 119 */ 120 static phys_addr_t __init_memblock 121 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 122 phys_addr_t size, phys_addr_t align, int nid, 123 ulong flags) 124 { 125 phys_addr_t this_start, this_end, cand; 126 u64 i; 127 128 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 129 this_start = clamp(this_start, start, end); 130 this_end = clamp(this_end, start, end); 131 132 cand = round_up(this_start, align); 133 if (cand < this_end && this_end - cand >= size) 134 return cand; 135 } 136 137 return 0; 138 } 139 140 /** 141 * __memblock_find_range_top_down - find free area utility, in top-down 142 * @start: start of candidate range 143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 144 * @size: size of free area to find 145 * @align: alignment of free area to find 146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 147 * @flags: pick from blocks based on memory attributes 148 * 149 * Utility called from memblock_find_in_range_node(), find free area top-down. 150 * 151 * RETURNS: 152 * Found address on success, 0 on failure. 153 */ 154 static phys_addr_t __init_memblock 155 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 156 phys_addr_t size, phys_addr_t align, int nid, 157 ulong flags) 158 { 159 phys_addr_t this_start, this_end, cand; 160 u64 i; 161 162 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 163 NULL) { 164 this_start = clamp(this_start, start, end); 165 this_end = clamp(this_end, start, end); 166 167 if (this_end < size) 168 continue; 169 170 cand = round_down(this_end - size, align); 171 if (cand >= this_start) 172 return cand; 173 } 174 175 return 0; 176 } 177 178 /** 179 * memblock_find_in_range_node - find free area in given range and node 180 * @size: size of free area to find 181 * @align: alignment of free area to find 182 * @start: start of candidate range 183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 185 * @flags: pick from blocks based on memory attributes 186 * 187 * Find @size free area aligned to @align in the specified range and node. 188 * 189 * When allocation direction is bottom-up, the @start should be greater 190 * than the end of the kernel image. Otherwise, it will be trimmed. The 191 * reason is that we want the bottom-up allocation just near the kernel 192 * image so it is highly likely that the allocated memory and the kernel 193 * will reside in the same node. 194 * 195 * If bottom-up allocation failed, will try to allocate memory top-down. 196 * 197 * RETURNS: 198 * Found address on success, 0 on failure. 199 */ 200 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 201 phys_addr_t align, phys_addr_t start, 202 phys_addr_t end, int nid, ulong flags) 203 { 204 phys_addr_t kernel_end, ret; 205 206 /* pump up @end */ 207 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 208 end = memblock.current_limit; 209 210 /* avoid allocating the first page */ 211 start = max_t(phys_addr_t, start, PAGE_SIZE); 212 end = max(start, end); 213 kernel_end = __pa_symbol(_end); 214 215 /* 216 * try bottom-up allocation only when bottom-up mode 217 * is set and @end is above the kernel image. 218 */ 219 if (memblock_bottom_up() && end > kernel_end) { 220 phys_addr_t bottom_up_start; 221 222 /* make sure we will allocate above the kernel */ 223 bottom_up_start = max(start, kernel_end); 224 225 /* ok, try bottom-up allocation first */ 226 ret = __memblock_find_range_bottom_up(bottom_up_start, end, 227 size, align, nid, flags); 228 if (ret) 229 return ret; 230 231 /* 232 * we always limit bottom-up allocation above the kernel, 233 * but top-down allocation doesn't have the limit, so 234 * retrying top-down allocation may succeed when bottom-up 235 * allocation failed. 236 * 237 * bottom-up allocation is expected to be fail very rarely, 238 * so we use WARN_ONCE() here to see the stack trace if 239 * fail happens. 240 */ 241 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n"); 242 } 243 244 return __memblock_find_range_top_down(start, end, size, align, nid, 245 flags); 246 } 247 248 /** 249 * memblock_find_in_range - find free area in given range 250 * @start: start of candidate range 251 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 252 * @size: size of free area to find 253 * @align: alignment of free area to find 254 * 255 * Find @size free area aligned to @align in the specified range. 256 * 257 * RETURNS: 258 * Found address on success, 0 on failure. 259 */ 260 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 261 phys_addr_t end, phys_addr_t size, 262 phys_addr_t align) 263 { 264 phys_addr_t ret; 265 ulong flags = choose_memblock_flags(); 266 267 again: 268 ret = memblock_find_in_range_node(size, align, start, end, 269 NUMA_NO_NODE, flags); 270 271 if (!ret && (flags & MEMBLOCK_MIRROR)) { 272 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 273 &size); 274 flags &= ~MEMBLOCK_MIRROR; 275 goto again; 276 } 277 278 return ret; 279 } 280 281 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 282 { 283 type->total_size -= type->regions[r].size; 284 memmove(&type->regions[r], &type->regions[r + 1], 285 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 286 type->cnt--; 287 288 /* Special case for empty arrays */ 289 if (type->cnt == 0) { 290 WARN_ON(type->total_size != 0); 291 type->cnt = 1; 292 type->regions[0].base = 0; 293 type->regions[0].size = 0; 294 type->regions[0].flags = 0; 295 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 296 } 297 } 298 299 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 300 301 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( 302 phys_addr_t *addr) 303 { 304 if (memblock.reserved.regions == memblock_reserved_init_regions) 305 return 0; 306 307 *addr = __pa(memblock.reserved.regions); 308 309 return PAGE_ALIGN(sizeof(struct memblock_region) * 310 memblock.reserved.max); 311 } 312 313 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info( 314 phys_addr_t *addr) 315 { 316 if (memblock.memory.regions == memblock_memory_init_regions) 317 return 0; 318 319 *addr = __pa(memblock.memory.regions); 320 321 return PAGE_ALIGN(sizeof(struct memblock_region) * 322 memblock.memory.max); 323 } 324 325 #endif 326 327 /** 328 * memblock_double_array - double the size of the memblock regions array 329 * @type: memblock type of the regions array being doubled 330 * @new_area_start: starting address of memory range to avoid overlap with 331 * @new_area_size: size of memory range to avoid overlap with 332 * 333 * Double the size of the @type regions array. If memblock is being used to 334 * allocate memory for a new reserved regions array and there is a previously 335 * allocated memory range [@new_area_start,@new_area_start+@new_area_size] 336 * waiting to be reserved, ensure the memory used by the new array does 337 * not overlap. 338 * 339 * RETURNS: 340 * 0 on success, -1 on failure. 341 */ 342 static int __init_memblock memblock_double_array(struct memblock_type *type, 343 phys_addr_t new_area_start, 344 phys_addr_t new_area_size) 345 { 346 struct memblock_region *new_array, *old_array; 347 phys_addr_t old_alloc_size, new_alloc_size; 348 phys_addr_t old_size, new_size, addr; 349 int use_slab = slab_is_available(); 350 int *in_slab; 351 352 /* We don't allow resizing until we know about the reserved regions 353 * of memory that aren't suitable for allocation 354 */ 355 if (!memblock_can_resize) 356 return -1; 357 358 /* Calculate new doubled size */ 359 old_size = type->max * sizeof(struct memblock_region); 360 new_size = old_size << 1; 361 /* 362 * We need to allocated new one align to PAGE_SIZE, 363 * so we can free them completely later. 364 */ 365 old_alloc_size = PAGE_ALIGN(old_size); 366 new_alloc_size = PAGE_ALIGN(new_size); 367 368 /* Retrieve the slab flag */ 369 if (type == &memblock.memory) 370 in_slab = &memblock_memory_in_slab; 371 else 372 in_slab = &memblock_reserved_in_slab; 373 374 /* Try to find some space for it. 375 * 376 * WARNING: We assume that either slab_is_available() and we use it or 377 * we use MEMBLOCK for allocations. That means that this is unsafe to 378 * use when bootmem is currently active (unless bootmem itself is 379 * implemented on top of MEMBLOCK which isn't the case yet) 380 * 381 * This should however not be an issue for now, as we currently only 382 * call into MEMBLOCK while it's still active, or much later when slab 383 * is active for memory hotplug operations 384 */ 385 if (use_slab) { 386 new_array = kmalloc(new_size, GFP_KERNEL); 387 addr = new_array ? __pa(new_array) : 0; 388 } else { 389 /* only exclude range when trying to double reserved.regions */ 390 if (type != &memblock.reserved) 391 new_area_start = new_area_size = 0; 392 393 addr = memblock_find_in_range(new_area_start + new_area_size, 394 memblock.current_limit, 395 new_alloc_size, PAGE_SIZE); 396 if (!addr && new_area_size) 397 addr = memblock_find_in_range(0, 398 min(new_area_start, memblock.current_limit), 399 new_alloc_size, PAGE_SIZE); 400 401 new_array = addr ? __va(addr) : NULL; 402 } 403 if (!addr) { 404 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 405 memblock_type_name(type), type->max, type->max * 2); 406 return -1; 407 } 408 409 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", 410 memblock_type_name(type), type->max * 2, (u64)addr, 411 (u64)addr + new_size - 1); 412 413 /* 414 * Found space, we now need to move the array over before we add the 415 * reserved region since it may be our reserved array itself that is 416 * full. 417 */ 418 memcpy(new_array, type->regions, old_size); 419 memset(new_array + type->max, 0, old_size); 420 old_array = type->regions; 421 type->regions = new_array; 422 type->max <<= 1; 423 424 /* Free old array. We needn't free it if the array is the static one */ 425 if (*in_slab) 426 kfree(old_array); 427 else if (old_array != memblock_memory_init_regions && 428 old_array != memblock_reserved_init_regions) 429 memblock_free(__pa(old_array), old_alloc_size); 430 431 /* 432 * Reserve the new array if that comes from the memblock. Otherwise, we 433 * needn't do it 434 */ 435 if (!use_slab) 436 BUG_ON(memblock_reserve(addr, new_alloc_size)); 437 438 /* Update slab flag */ 439 *in_slab = use_slab; 440 441 return 0; 442 } 443 444 /** 445 * memblock_merge_regions - merge neighboring compatible regions 446 * @type: memblock type to scan 447 * 448 * Scan @type and merge neighboring compatible regions. 449 */ 450 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 451 { 452 int i = 0; 453 454 /* cnt never goes below 1 */ 455 while (i < type->cnt - 1) { 456 struct memblock_region *this = &type->regions[i]; 457 struct memblock_region *next = &type->regions[i + 1]; 458 459 if (this->base + this->size != next->base || 460 memblock_get_region_node(this) != 461 memblock_get_region_node(next) || 462 this->flags != next->flags) { 463 BUG_ON(this->base + this->size > next->base); 464 i++; 465 continue; 466 } 467 468 this->size += next->size; 469 /* move forward from next + 1, index of which is i + 2 */ 470 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 471 type->cnt--; 472 } 473 } 474 475 /** 476 * memblock_insert_region - insert new memblock region 477 * @type: memblock type to insert into 478 * @idx: index for the insertion point 479 * @base: base address of the new region 480 * @size: size of the new region 481 * @nid: node id of the new region 482 * @flags: flags of the new region 483 * 484 * Insert new memblock region [@base,@base+@size) into @type at @idx. 485 * @type must already have extra room to accommodate the new region. 486 */ 487 static void __init_memblock memblock_insert_region(struct memblock_type *type, 488 int idx, phys_addr_t base, 489 phys_addr_t size, 490 int nid, unsigned long flags) 491 { 492 struct memblock_region *rgn = &type->regions[idx]; 493 494 BUG_ON(type->cnt >= type->max); 495 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 496 rgn->base = base; 497 rgn->size = size; 498 rgn->flags = flags; 499 memblock_set_region_node(rgn, nid); 500 type->cnt++; 501 type->total_size += size; 502 } 503 504 /** 505 * memblock_add_range - add new memblock region 506 * @type: memblock type to add new region into 507 * @base: base address of the new region 508 * @size: size of the new region 509 * @nid: nid of the new region 510 * @flags: flags of the new region 511 * 512 * Add new memblock region [@base,@base+@size) into @type. The new region 513 * is allowed to overlap with existing ones - overlaps don't affect already 514 * existing regions. @type is guaranteed to be minimal (all neighbouring 515 * compatible regions are merged) after the addition. 516 * 517 * RETURNS: 518 * 0 on success, -errno on failure. 519 */ 520 int __init_memblock memblock_add_range(struct memblock_type *type, 521 phys_addr_t base, phys_addr_t size, 522 int nid, unsigned long flags) 523 { 524 bool insert = false; 525 phys_addr_t obase = base; 526 phys_addr_t end = base + memblock_cap_size(base, &size); 527 int idx, nr_new; 528 struct memblock_region *rgn; 529 530 if (!size) 531 return 0; 532 533 /* special case for empty array */ 534 if (type->regions[0].size == 0) { 535 WARN_ON(type->cnt != 1 || type->total_size); 536 type->regions[0].base = base; 537 type->regions[0].size = size; 538 type->regions[0].flags = flags; 539 memblock_set_region_node(&type->regions[0], nid); 540 type->total_size = size; 541 return 0; 542 } 543 repeat: 544 /* 545 * The following is executed twice. Once with %false @insert and 546 * then with %true. The first counts the number of regions needed 547 * to accommodate the new area. The second actually inserts them. 548 */ 549 base = obase; 550 nr_new = 0; 551 552 for_each_memblock_type(type, rgn) { 553 phys_addr_t rbase = rgn->base; 554 phys_addr_t rend = rbase + rgn->size; 555 556 if (rbase >= end) 557 break; 558 if (rend <= base) 559 continue; 560 /* 561 * @rgn overlaps. If it separates the lower part of new 562 * area, insert that portion. 563 */ 564 if (rbase > base) { 565 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 566 WARN_ON(nid != memblock_get_region_node(rgn)); 567 #endif 568 WARN_ON(flags != rgn->flags); 569 nr_new++; 570 if (insert) 571 memblock_insert_region(type, idx++, base, 572 rbase - base, nid, 573 flags); 574 } 575 /* area below @rend is dealt with, forget about it */ 576 base = min(rend, end); 577 } 578 579 /* insert the remaining portion */ 580 if (base < end) { 581 nr_new++; 582 if (insert) 583 memblock_insert_region(type, idx, base, end - base, 584 nid, flags); 585 } 586 587 if (!nr_new) 588 return 0; 589 590 /* 591 * If this was the first round, resize array and repeat for actual 592 * insertions; otherwise, merge and return. 593 */ 594 if (!insert) { 595 while (type->cnt + nr_new > type->max) 596 if (memblock_double_array(type, obase, size) < 0) 597 return -ENOMEM; 598 insert = true; 599 goto repeat; 600 } else { 601 memblock_merge_regions(type); 602 return 0; 603 } 604 } 605 606 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 607 int nid) 608 { 609 return memblock_add_range(&memblock.memory, base, size, nid, 0); 610 } 611 612 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 613 { 614 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n", 615 (unsigned long long)base, 616 (unsigned long long)base + size - 1, 617 0UL, (void *)_RET_IP_); 618 619 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 620 } 621 622 /** 623 * memblock_isolate_range - isolate given range into disjoint memblocks 624 * @type: memblock type to isolate range for 625 * @base: base of range to isolate 626 * @size: size of range to isolate 627 * @start_rgn: out parameter for the start of isolated region 628 * @end_rgn: out parameter for the end of isolated region 629 * 630 * Walk @type and ensure that regions don't cross the boundaries defined by 631 * [@base,@base+@size). Crossing regions are split at the boundaries, 632 * which may create at most two more regions. The index of the first 633 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 634 * 635 * RETURNS: 636 * 0 on success, -errno on failure. 637 */ 638 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 639 phys_addr_t base, phys_addr_t size, 640 int *start_rgn, int *end_rgn) 641 { 642 phys_addr_t end = base + memblock_cap_size(base, &size); 643 int idx; 644 struct memblock_region *rgn; 645 646 *start_rgn = *end_rgn = 0; 647 648 if (!size) 649 return 0; 650 651 /* we'll create at most two more regions */ 652 while (type->cnt + 2 > type->max) 653 if (memblock_double_array(type, base, size) < 0) 654 return -ENOMEM; 655 656 for_each_memblock_type(type, rgn) { 657 phys_addr_t rbase = rgn->base; 658 phys_addr_t rend = rbase + rgn->size; 659 660 if (rbase >= end) 661 break; 662 if (rend <= base) 663 continue; 664 665 if (rbase < base) { 666 /* 667 * @rgn intersects from below. Split and continue 668 * to process the next region - the new top half. 669 */ 670 rgn->base = base; 671 rgn->size -= base - rbase; 672 type->total_size -= base - rbase; 673 memblock_insert_region(type, idx, rbase, base - rbase, 674 memblock_get_region_node(rgn), 675 rgn->flags); 676 } else if (rend > end) { 677 /* 678 * @rgn intersects from above. Split and redo the 679 * current region - the new bottom half. 680 */ 681 rgn->base = end; 682 rgn->size -= end - rbase; 683 type->total_size -= end - rbase; 684 memblock_insert_region(type, idx--, rbase, end - rbase, 685 memblock_get_region_node(rgn), 686 rgn->flags); 687 } else { 688 /* @rgn is fully contained, record it */ 689 if (!*end_rgn) 690 *start_rgn = idx; 691 *end_rgn = idx + 1; 692 } 693 } 694 695 return 0; 696 } 697 698 static int __init_memblock memblock_remove_range(struct memblock_type *type, 699 phys_addr_t base, phys_addr_t size) 700 { 701 int start_rgn, end_rgn; 702 int i, ret; 703 704 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 705 if (ret) 706 return ret; 707 708 for (i = end_rgn - 1; i >= start_rgn; i--) 709 memblock_remove_region(type, i); 710 return 0; 711 } 712 713 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 714 { 715 return memblock_remove_range(&memblock.memory, base, size); 716 } 717 718 719 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 720 { 721 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", 722 (unsigned long long)base, 723 (unsigned long long)base + size - 1, 724 (void *)_RET_IP_); 725 726 kmemleak_free_part_phys(base, size); 727 return memblock_remove_range(&memblock.reserved, base, size); 728 } 729 730 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 731 { 732 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n", 733 (unsigned long long)base, 734 (unsigned long long)base + size - 1, 735 0UL, (void *)_RET_IP_); 736 737 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 738 } 739 740 /** 741 * 742 * This function isolates region [@base, @base + @size), and sets/clears flag 743 * 744 * Return 0 on success, -errno on failure. 745 */ 746 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 747 phys_addr_t size, int set, int flag) 748 { 749 struct memblock_type *type = &memblock.memory; 750 int i, ret, start_rgn, end_rgn; 751 752 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 753 if (ret) 754 return ret; 755 756 for (i = start_rgn; i < end_rgn; i++) 757 if (set) 758 memblock_set_region_flags(&type->regions[i], flag); 759 else 760 memblock_clear_region_flags(&type->regions[i], flag); 761 762 memblock_merge_regions(type); 763 return 0; 764 } 765 766 /** 767 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 768 * @base: the base phys addr of the region 769 * @size: the size of the region 770 * 771 * Return 0 on success, -errno on failure. 772 */ 773 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 774 { 775 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 776 } 777 778 /** 779 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 780 * @base: the base phys addr of the region 781 * @size: the size of the region 782 * 783 * Return 0 on success, -errno on failure. 784 */ 785 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 786 { 787 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 788 } 789 790 /** 791 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 792 * @base: the base phys addr of the region 793 * @size: the size of the region 794 * 795 * Return 0 on success, -errno on failure. 796 */ 797 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 798 { 799 system_has_some_mirror = true; 800 801 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 802 } 803 804 /** 805 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 806 * @base: the base phys addr of the region 807 * @size: the size of the region 808 * 809 * Return 0 on success, -errno on failure. 810 */ 811 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 812 { 813 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 814 } 815 816 /** 817 * __next_reserved_mem_region - next function for for_each_reserved_region() 818 * @idx: pointer to u64 loop variable 819 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL 820 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL 821 * 822 * Iterate over all reserved memory regions. 823 */ 824 void __init_memblock __next_reserved_mem_region(u64 *idx, 825 phys_addr_t *out_start, 826 phys_addr_t *out_end) 827 { 828 struct memblock_type *type = &memblock.reserved; 829 830 if (*idx < type->cnt) { 831 struct memblock_region *r = &type->regions[*idx]; 832 phys_addr_t base = r->base; 833 phys_addr_t size = r->size; 834 835 if (out_start) 836 *out_start = base; 837 if (out_end) 838 *out_end = base + size - 1; 839 840 *idx += 1; 841 return; 842 } 843 844 /* signal end of iteration */ 845 *idx = ULLONG_MAX; 846 } 847 848 /** 849 * __next__mem_range - next function for for_each_free_mem_range() etc. 850 * @idx: pointer to u64 loop variable 851 * @nid: node selector, %NUMA_NO_NODE for all nodes 852 * @flags: pick from blocks based on memory attributes 853 * @type_a: pointer to memblock_type from where the range is taken 854 * @type_b: pointer to memblock_type which excludes memory from being taken 855 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 856 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 857 * @out_nid: ptr to int for nid of the range, can be %NULL 858 * 859 * Find the first area from *@idx which matches @nid, fill the out 860 * parameters, and update *@idx for the next iteration. The lower 32bit of 861 * *@idx contains index into type_a and the upper 32bit indexes the 862 * areas before each region in type_b. For example, if type_b regions 863 * look like the following, 864 * 865 * 0:[0-16), 1:[32-48), 2:[128-130) 866 * 867 * The upper 32bit indexes the following regions. 868 * 869 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 870 * 871 * As both region arrays are sorted, the function advances the two indices 872 * in lockstep and returns each intersection. 873 */ 874 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags, 875 struct memblock_type *type_a, 876 struct memblock_type *type_b, 877 phys_addr_t *out_start, 878 phys_addr_t *out_end, int *out_nid) 879 { 880 int idx_a = *idx & 0xffffffff; 881 int idx_b = *idx >> 32; 882 883 if (WARN_ONCE(nid == MAX_NUMNODES, 884 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 885 nid = NUMA_NO_NODE; 886 887 for (; idx_a < type_a->cnt; idx_a++) { 888 struct memblock_region *m = &type_a->regions[idx_a]; 889 890 phys_addr_t m_start = m->base; 891 phys_addr_t m_end = m->base + m->size; 892 int m_nid = memblock_get_region_node(m); 893 894 /* only memory regions are associated with nodes, check it */ 895 if (nid != NUMA_NO_NODE && nid != m_nid) 896 continue; 897 898 /* skip hotpluggable memory regions if needed */ 899 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 900 continue; 901 902 /* if we want mirror memory skip non-mirror memory regions */ 903 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 904 continue; 905 906 /* skip nomap memory unless we were asked for it explicitly */ 907 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 908 continue; 909 910 if (!type_b) { 911 if (out_start) 912 *out_start = m_start; 913 if (out_end) 914 *out_end = m_end; 915 if (out_nid) 916 *out_nid = m_nid; 917 idx_a++; 918 *idx = (u32)idx_a | (u64)idx_b << 32; 919 return; 920 } 921 922 /* scan areas before each reservation */ 923 for (; idx_b < type_b->cnt + 1; idx_b++) { 924 struct memblock_region *r; 925 phys_addr_t r_start; 926 phys_addr_t r_end; 927 928 r = &type_b->regions[idx_b]; 929 r_start = idx_b ? r[-1].base + r[-1].size : 0; 930 r_end = idx_b < type_b->cnt ? 931 r->base : ULLONG_MAX; 932 933 /* 934 * if idx_b advanced past idx_a, 935 * break out to advance idx_a 936 */ 937 if (r_start >= m_end) 938 break; 939 /* if the two regions intersect, we're done */ 940 if (m_start < r_end) { 941 if (out_start) 942 *out_start = 943 max(m_start, r_start); 944 if (out_end) 945 *out_end = min(m_end, r_end); 946 if (out_nid) 947 *out_nid = m_nid; 948 /* 949 * The region which ends first is 950 * advanced for the next iteration. 951 */ 952 if (m_end <= r_end) 953 idx_a++; 954 else 955 idx_b++; 956 *idx = (u32)idx_a | (u64)idx_b << 32; 957 return; 958 } 959 } 960 } 961 962 /* signal end of iteration */ 963 *idx = ULLONG_MAX; 964 } 965 966 /** 967 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 968 * 969 * Finds the next range from type_a which is not marked as unsuitable 970 * in type_b. 971 * 972 * @idx: pointer to u64 loop variable 973 * @nid: node selector, %NUMA_NO_NODE for all nodes 974 * @flags: pick from blocks based on memory attributes 975 * @type_a: pointer to memblock_type from where the range is taken 976 * @type_b: pointer to memblock_type which excludes memory from being taken 977 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 978 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 979 * @out_nid: ptr to int for nid of the range, can be %NULL 980 * 981 * Reverse of __next_mem_range(). 982 */ 983 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags, 984 struct memblock_type *type_a, 985 struct memblock_type *type_b, 986 phys_addr_t *out_start, 987 phys_addr_t *out_end, int *out_nid) 988 { 989 int idx_a = *idx & 0xffffffff; 990 int idx_b = *idx >> 32; 991 992 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 993 nid = NUMA_NO_NODE; 994 995 if (*idx == (u64)ULLONG_MAX) { 996 idx_a = type_a->cnt - 1; 997 if (type_b != NULL) 998 idx_b = type_b->cnt; 999 else 1000 idx_b = 0; 1001 } 1002 1003 for (; idx_a >= 0; idx_a--) { 1004 struct memblock_region *m = &type_a->regions[idx_a]; 1005 1006 phys_addr_t m_start = m->base; 1007 phys_addr_t m_end = m->base + m->size; 1008 int m_nid = memblock_get_region_node(m); 1009 1010 /* only memory regions are associated with nodes, check it */ 1011 if (nid != NUMA_NO_NODE && nid != m_nid) 1012 continue; 1013 1014 /* skip hotpluggable memory regions if needed */ 1015 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 1016 continue; 1017 1018 /* if we want mirror memory skip non-mirror memory regions */ 1019 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 1020 continue; 1021 1022 /* skip nomap memory unless we were asked for it explicitly */ 1023 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 1024 continue; 1025 1026 if (!type_b) { 1027 if (out_start) 1028 *out_start = m_start; 1029 if (out_end) 1030 *out_end = m_end; 1031 if (out_nid) 1032 *out_nid = m_nid; 1033 idx_a--; 1034 *idx = (u32)idx_a | (u64)idx_b << 32; 1035 return; 1036 } 1037 1038 /* scan areas before each reservation */ 1039 for (; idx_b >= 0; idx_b--) { 1040 struct memblock_region *r; 1041 phys_addr_t r_start; 1042 phys_addr_t r_end; 1043 1044 r = &type_b->regions[idx_b]; 1045 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1046 r_end = idx_b < type_b->cnt ? 1047 r->base : ULLONG_MAX; 1048 /* 1049 * if idx_b advanced past idx_a, 1050 * break out to advance idx_a 1051 */ 1052 1053 if (r_end <= m_start) 1054 break; 1055 /* if the two regions intersect, we're done */ 1056 if (m_end > r_start) { 1057 if (out_start) 1058 *out_start = max(m_start, r_start); 1059 if (out_end) 1060 *out_end = min(m_end, r_end); 1061 if (out_nid) 1062 *out_nid = m_nid; 1063 if (m_start >= r_start) 1064 idx_a--; 1065 else 1066 idx_b--; 1067 *idx = (u32)idx_a | (u64)idx_b << 32; 1068 return; 1069 } 1070 } 1071 } 1072 /* signal end of iteration */ 1073 *idx = ULLONG_MAX; 1074 } 1075 1076 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1077 /* 1078 * Common iterator interface used to define for_each_mem_range(). 1079 */ 1080 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1081 unsigned long *out_start_pfn, 1082 unsigned long *out_end_pfn, int *out_nid) 1083 { 1084 struct memblock_type *type = &memblock.memory; 1085 struct memblock_region *r; 1086 1087 while (++*idx < type->cnt) { 1088 r = &type->regions[*idx]; 1089 1090 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1091 continue; 1092 if (nid == MAX_NUMNODES || nid == r->nid) 1093 break; 1094 } 1095 if (*idx >= type->cnt) { 1096 *idx = -1; 1097 return; 1098 } 1099 1100 if (out_start_pfn) 1101 *out_start_pfn = PFN_UP(r->base); 1102 if (out_end_pfn) 1103 *out_end_pfn = PFN_DOWN(r->base + r->size); 1104 if (out_nid) 1105 *out_nid = r->nid; 1106 } 1107 1108 /** 1109 * memblock_set_node - set node ID on memblock regions 1110 * @base: base of area to set node ID for 1111 * @size: size of area to set node ID for 1112 * @type: memblock type to set node ID for 1113 * @nid: node ID to set 1114 * 1115 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid. 1116 * Regions which cross the area boundaries are split as necessary. 1117 * 1118 * RETURNS: 1119 * 0 on success, -errno on failure. 1120 */ 1121 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1122 struct memblock_type *type, int nid) 1123 { 1124 int start_rgn, end_rgn; 1125 int i, ret; 1126 1127 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1128 if (ret) 1129 return ret; 1130 1131 for (i = start_rgn; i < end_rgn; i++) 1132 memblock_set_region_node(&type->regions[i], nid); 1133 1134 memblock_merge_regions(type); 1135 return 0; 1136 } 1137 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1138 1139 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1140 phys_addr_t align, phys_addr_t start, 1141 phys_addr_t end, int nid, ulong flags) 1142 { 1143 phys_addr_t found; 1144 1145 if (!align) 1146 align = SMP_CACHE_BYTES; 1147 1148 found = memblock_find_in_range_node(size, align, start, end, nid, 1149 flags); 1150 if (found && !memblock_reserve(found, size)) { 1151 /* 1152 * The min_count is set to 0 so that memblock allocations are 1153 * never reported as leaks. 1154 */ 1155 kmemleak_alloc_phys(found, size, 0, 0); 1156 return found; 1157 } 1158 return 0; 1159 } 1160 1161 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align, 1162 phys_addr_t start, phys_addr_t end, 1163 ulong flags) 1164 { 1165 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1166 flags); 1167 } 1168 1169 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 1170 phys_addr_t align, phys_addr_t max_addr, 1171 int nid, ulong flags) 1172 { 1173 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags); 1174 } 1175 1176 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 1177 { 1178 ulong flags = choose_memblock_flags(); 1179 phys_addr_t ret; 1180 1181 again: 1182 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, 1183 nid, flags); 1184 1185 if (!ret && (flags & MEMBLOCK_MIRROR)) { 1186 flags &= ~MEMBLOCK_MIRROR; 1187 goto again; 1188 } 1189 return ret; 1190 } 1191 1192 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1193 { 1194 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE, 1195 MEMBLOCK_NONE); 1196 } 1197 1198 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1199 { 1200 phys_addr_t alloc; 1201 1202 alloc = __memblock_alloc_base(size, align, max_addr); 1203 1204 if (alloc == 0) 1205 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", 1206 (unsigned long long) size, (unsigned long long) max_addr); 1207 1208 return alloc; 1209 } 1210 1211 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 1212 { 1213 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1214 } 1215 1216 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1217 { 1218 phys_addr_t res = memblock_alloc_nid(size, align, nid); 1219 1220 if (res) 1221 return res; 1222 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1223 } 1224 1225 /** 1226 * memblock_virt_alloc_internal - allocate boot memory block 1227 * @size: size of memory block to be allocated in bytes 1228 * @align: alignment of the region and block's size 1229 * @min_addr: the lower bound of the memory region to allocate (phys address) 1230 * @max_addr: the upper bound of the memory region to allocate (phys address) 1231 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1232 * 1233 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1234 * will fall back to memory below @min_addr. Also, allocation may fall back 1235 * to any node in the system if the specified node can not 1236 * hold the requested memory. 1237 * 1238 * The allocation is performed from memory region limited by 1239 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE. 1240 * 1241 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0. 1242 * 1243 * The phys address of allocated boot memory block is converted to virtual and 1244 * allocated memory is reset to 0. 1245 * 1246 * In addition, function sets the min_count to 0 using kmemleak_alloc for 1247 * allocated boot memory block, so that it is never reported as leaks. 1248 * 1249 * RETURNS: 1250 * Virtual address of allocated memory block on success, NULL on failure. 1251 */ 1252 static void * __init memblock_virt_alloc_internal( 1253 phys_addr_t size, phys_addr_t align, 1254 phys_addr_t min_addr, phys_addr_t max_addr, 1255 int nid) 1256 { 1257 phys_addr_t alloc; 1258 void *ptr; 1259 ulong flags = choose_memblock_flags(); 1260 1261 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1262 nid = NUMA_NO_NODE; 1263 1264 /* 1265 * Detect any accidental use of these APIs after slab is ready, as at 1266 * this moment memblock may be deinitialized already and its 1267 * internal data may be destroyed (after execution of free_all_bootmem) 1268 */ 1269 if (WARN_ON_ONCE(slab_is_available())) 1270 return kzalloc_node(size, GFP_NOWAIT, nid); 1271 1272 if (!align) 1273 align = SMP_CACHE_BYTES; 1274 1275 if (max_addr > memblock.current_limit) 1276 max_addr = memblock.current_limit; 1277 1278 again: 1279 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr, 1280 nid, flags); 1281 if (alloc) 1282 goto done; 1283 1284 if (nid != NUMA_NO_NODE) { 1285 alloc = memblock_find_in_range_node(size, align, min_addr, 1286 max_addr, NUMA_NO_NODE, 1287 flags); 1288 if (alloc) 1289 goto done; 1290 } 1291 1292 if (min_addr) { 1293 min_addr = 0; 1294 goto again; 1295 } 1296 1297 if (flags & MEMBLOCK_MIRROR) { 1298 flags &= ~MEMBLOCK_MIRROR; 1299 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1300 &size); 1301 goto again; 1302 } 1303 1304 return NULL; 1305 done: 1306 memblock_reserve(alloc, size); 1307 ptr = phys_to_virt(alloc); 1308 memset(ptr, 0, size); 1309 1310 /* 1311 * The min_count is set to 0 so that bootmem allocated blocks 1312 * are never reported as leaks. This is because many of these blocks 1313 * are only referred via the physical address which is not 1314 * looked up by kmemleak. 1315 */ 1316 kmemleak_alloc(ptr, size, 0, 0); 1317 1318 return ptr; 1319 } 1320 1321 /** 1322 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block 1323 * @size: size of memory block to be allocated in bytes 1324 * @align: alignment of the region and block's size 1325 * @min_addr: the lower bound of the memory region from where the allocation 1326 * is preferred (phys address) 1327 * @max_addr: the upper bound of the memory region from where the allocation 1328 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1329 * allocate only from memory limited by memblock.current_limit value 1330 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1331 * 1332 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides 1333 * additional debug information (including caller info), if enabled. 1334 * 1335 * RETURNS: 1336 * Virtual address of allocated memory block on success, NULL on failure. 1337 */ 1338 void * __init memblock_virt_alloc_try_nid_nopanic( 1339 phys_addr_t size, phys_addr_t align, 1340 phys_addr_t min_addr, phys_addr_t max_addr, 1341 int nid) 1342 { 1343 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1344 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1345 (u64)max_addr, (void *)_RET_IP_); 1346 return memblock_virt_alloc_internal(size, align, min_addr, 1347 max_addr, nid); 1348 } 1349 1350 /** 1351 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking 1352 * @size: size of memory block to be allocated in bytes 1353 * @align: alignment of the region and block's size 1354 * @min_addr: the lower bound of the memory region from where the allocation 1355 * is preferred (phys address) 1356 * @max_addr: the upper bound of the memory region from where the allocation 1357 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1358 * allocate only from memory limited by memblock.current_limit value 1359 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1360 * 1361 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic() 1362 * which provides debug information (including caller info), if enabled, 1363 * and panics if the request can not be satisfied. 1364 * 1365 * RETURNS: 1366 * Virtual address of allocated memory block on success, NULL on failure. 1367 */ 1368 void * __init memblock_virt_alloc_try_nid( 1369 phys_addr_t size, phys_addr_t align, 1370 phys_addr_t min_addr, phys_addr_t max_addr, 1371 int nid) 1372 { 1373 void *ptr; 1374 1375 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1376 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1377 (u64)max_addr, (void *)_RET_IP_); 1378 ptr = memblock_virt_alloc_internal(size, align, 1379 min_addr, max_addr, nid); 1380 if (ptr) 1381 return ptr; 1382 1383 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n", 1384 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1385 (u64)max_addr); 1386 return NULL; 1387 } 1388 1389 /** 1390 * __memblock_free_early - free boot memory block 1391 * @base: phys starting address of the boot memory block 1392 * @size: size of the boot memory block in bytes 1393 * 1394 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API. 1395 * The freeing memory will not be released to the buddy allocator. 1396 */ 1397 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size) 1398 { 1399 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1400 __func__, (u64)base, (u64)base + size - 1, 1401 (void *)_RET_IP_); 1402 kmemleak_free_part_phys(base, size); 1403 memblock_remove_range(&memblock.reserved, base, size); 1404 } 1405 1406 /* 1407 * __memblock_free_late - free bootmem block pages directly to buddy allocator 1408 * @addr: phys starting address of the boot memory block 1409 * @size: size of the boot memory block in bytes 1410 * 1411 * This is only useful when the bootmem allocator has already been torn 1412 * down, but we are still initializing the system. Pages are released directly 1413 * to the buddy allocator, no bootmem metadata is updated because it is gone. 1414 */ 1415 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1416 { 1417 u64 cursor, end; 1418 1419 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1420 __func__, (u64)base, (u64)base + size - 1, 1421 (void *)_RET_IP_); 1422 kmemleak_free_part_phys(base, size); 1423 cursor = PFN_UP(base); 1424 end = PFN_DOWN(base + size); 1425 1426 for (; cursor < end; cursor++) { 1427 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0); 1428 totalram_pages++; 1429 } 1430 } 1431 1432 /* 1433 * Remaining API functions 1434 */ 1435 1436 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1437 { 1438 return memblock.memory.total_size; 1439 } 1440 1441 phys_addr_t __init_memblock memblock_reserved_size(void) 1442 { 1443 return memblock.reserved.total_size; 1444 } 1445 1446 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) 1447 { 1448 unsigned long pages = 0; 1449 struct memblock_region *r; 1450 unsigned long start_pfn, end_pfn; 1451 1452 for_each_memblock(memory, r) { 1453 start_pfn = memblock_region_memory_base_pfn(r); 1454 end_pfn = memblock_region_memory_end_pfn(r); 1455 start_pfn = min_t(unsigned long, start_pfn, limit_pfn); 1456 end_pfn = min_t(unsigned long, end_pfn, limit_pfn); 1457 pages += end_pfn - start_pfn; 1458 } 1459 1460 return PFN_PHYS(pages); 1461 } 1462 1463 /* lowest address */ 1464 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1465 { 1466 return memblock.memory.regions[0].base; 1467 } 1468 1469 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1470 { 1471 int idx = memblock.memory.cnt - 1; 1472 1473 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1474 } 1475 1476 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1477 { 1478 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 1479 struct memblock_region *r; 1480 1481 /* 1482 * translate the memory @limit size into the max address within one of 1483 * the memory memblock regions, if the @limit exceeds the total size 1484 * of those regions, max_addr will keep original value ULLONG_MAX 1485 */ 1486 for_each_memblock(memory, r) { 1487 if (limit <= r->size) { 1488 max_addr = r->base + limit; 1489 break; 1490 } 1491 limit -= r->size; 1492 } 1493 1494 return max_addr; 1495 } 1496 1497 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1498 { 1499 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 1500 1501 if (!limit) 1502 return; 1503 1504 max_addr = __find_max_addr(limit); 1505 1506 /* @limit exceeds the total size of the memory, do nothing */ 1507 if (max_addr == (phys_addr_t)ULLONG_MAX) 1508 return; 1509 1510 /* truncate both memory and reserved regions */ 1511 memblock_remove_range(&memblock.memory, max_addr, 1512 (phys_addr_t)ULLONG_MAX); 1513 memblock_remove_range(&memblock.reserved, max_addr, 1514 (phys_addr_t)ULLONG_MAX); 1515 } 1516 1517 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1518 { 1519 struct memblock_type *type = &memblock.memory; 1520 phys_addr_t max_addr; 1521 int i, ret, start_rgn, end_rgn; 1522 1523 if (!limit) 1524 return; 1525 1526 max_addr = __find_max_addr(limit); 1527 1528 /* @limit exceeds the total size of the memory, do nothing */ 1529 if (max_addr == (phys_addr_t)ULLONG_MAX) 1530 return; 1531 1532 ret = memblock_isolate_range(type, max_addr, (phys_addr_t)ULLONG_MAX, 1533 &start_rgn, &end_rgn); 1534 if (ret) 1535 return; 1536 1537 /* remove all the MAP regions above the limit */ 1538 for (i = end_rgn - 1; i >= start_rgn; i--) { 1539 if (!memblock_is_nomap(&type->regions[i])) 1540 memblock_remove_region(type, i); 1541 } 1542 /* truncate the reserved regions */ 1543 memblock_remove_range(&memblock.reserved, max_addr, 1544 (phys_addr_t)ULLONG_MAX); 1545 } 1546 1547 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1548 { 1549 unsigned int left = 0, right = type->cnt; 1550 1551 do { 1552 unsigned int mid = (right + left) / 2; 1553 1554 if (addr < type->regions[mid].base) 1555 right = mid; 1556 else if (addr >= (type->regions[mid].base + 1557 type->regions[mid].size)) 1558 left = mid + 1; 1559 else 1560 return mid; 1561 } while (left < right); 1562 return -1; 1563 } 1564 1565 bool __init memblock_is_reserved(phys_addr_t addr) 1566 { 1567 return memblock_search(&memblock.reserved, addr) != -1; 1568 } 1569 1570 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1571 { 1572 return memblock_search(&memblock.memory, addr) != -1; 1573 } 1574 1575 int __init_memblock memblock_is_map_memory(phys_addr_t addr) 1576 { 1577 int i = memblock_search(&memblock.memory, addr); 1578 1579 if (i == -1) 1580 return false; 1581 return !memblock_is_nomap(&memblock.memory.regions[i]); 1582 } 1583 1584 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1585 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1586 unsigned long *start_pfn, unsigned long *end_pfn) 1587 { 1588 struct memblock_type *type = &memblock.memory; 1589 int mid = memblock_search(type, PFN_PHYS(pfn)); 1590 1591 if (mid == -1) 1592 return -1; 1593 1594 *start_pfn = PFN_DOWN(type->regions[mid].base); 1595 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1596 1597 return type->regions[mid].nid; 1598 } 1599 #endif 1600 1601 /** 1602 * memblock_is_region_memory - check if a region is a subset of memory 1603 * @base: base of region to check 1604 * @size: size of region to check 1605 * 1606 * Check if the region [@base, @base+@size) is a subset of a memory block. 1607 * 1608 * RETURNS: 1609 * 0 if false, non-zero if true 1610 */ 1611 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1612 { 1613 int idx = memblock_search(&memblock.memory, base); 1614 phys_addr_t end = base + memblock_cap_size(base, &size); 1615 1616 if (idx == -1) 1617 return 0; 1618 return memblock.memory.regions[idx].base <= base && 1619 (memblock.memory.regions[idx].base + 1620 memblock.memory.regions[idx].size) >= end; 1621 } 1622 1623 /** 1624 * memblock_is_region_reserved - check if a region intersects reserved memory 1625 * @base: base of region to check 1626 * @size: size of region to check 1627 * 1628 * Check if the region [@base, @base+@size) intersects a reserved memory block. 1629 * 1630 * RETURNS: 1631 * True if they intersect, false if not. 1632 */ 1633 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1634 { 1635 memblock_cap_size(base, &size); 1636 return memblock_overlaps_region(&memblock.reserved, base, size); 1637 } 1638 1639 void __init_memblock memblock_trim_memory(phys_addr_t align) 1640 { 1641 phys_addr_t start, end, orig_start, orig_end; 1642 struct memblock_region *r; 1643 1644 for_each_memblock(memory, r) { 1645 orig_start = r->base; 1646 orig_end = r->base + r->size; 1647 start = round_up(orig_start, align); 1648 end = round_down(orig_end, align); 1649 1650 if (start == orig_start && end == orig_end) 1651 continue; 1652 1653 if (start < end) { 1654 r->base = start; 1655 r->size = end - start; 1656 } else { 1657 memblock_remove_region(&memblock.memory, 1658 r - memblock.memory.regions); 1659 r--; 1660 } 1661 } 1662 } 1663 1664 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1665 { 1666 memblock.current_limit = limit; 1667 } 1668 1669 phys_addr_t __init_memblock memblock_get_current_limit(void) 1670 { 1671 return memblock.current_limit; 1672 } 1673 1674 static void __init_memblock memblock_dump(struct memblock_type *type, char *name) 1675 { 1676 unsigned long long base, size; 1677 unsigned long flags; 1678 int idx; 1679 struct memblock_region *rgn; 1680 1681 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); 1682 1683 for_each_memblock_type(type, rgn) { 1684 char nid_buf[32] = ""; 1685 1686 base = rgn->base; 1687 size = rgn->size; 1688 flags = rgn->flags; 1689 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1690 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1691 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1692 memblock_get_region_node(rgn)); 1693 #endif 1694 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n", 1695 name, idx, base, base + size - 1, size, nid_buf, flags); 1696 } 1697 } 1698 1699 void __init_memblock __memblock_dump_all(void) 1700 { 1701 pr_info("MEMBLOCK configuration:\n"); 1702 pr_info(" memory size = %#llx reserved size = %#llx\n", 1703 (unsigned long long)memblock.memory.total_size, 1704 (unsigned long long)memblock.reserved.total_size); 1705 1706 memblock_dump(&memblock.memory, "memory"); 1707 memblock_dump(&memblock.reserved, "reserved"); 1708 } 1709 1710 void __init memblock_allow_resize(void) 1711 { 1712 memblock_can_resize = 1; 1713 } 1714 1715 static int __init early_memblock(char *p) 1716 { 1717 if (p && strstr(p, "debug")) 1718 memblock_debug = 1; 1719 return 0; 1720 } 1721 early_param("memblock", early_memblock); 1722 1723 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 1724 1725 static int memblock_debug_show(struct seq_file *m, void *private) 1726 { 1727 struct memblock_type *type = m->private; 1728 struct memblock_region *reg; 1729 int i; 1730 1731 for (i = 0; i < type->cnt; i++) { 1732 reg = &type->regions[i]; 1733 seq_printf(m, "%4d: ", i); 1734 if (sizeof(phys_addr_t) == 4) 1735 seq_printf(m, "0x%08lx..0x%08lx\n", 1736 (unsigned long)reg->base, 1737 (unsigned long)(reg->base + reg->size - 1)); 1738 else 1739 seq_printf(m, "0x%016llx..0x%016llx\n", 1740 (unsigned long long)reg->base, 1741 (unsigned long long)(reg->base + reg->size - 1)); 1742 1743 } 1744 return 0; 1745 } 1746 1747 static int memblock_debug_open(struct inode *inode, struct file *file) 1748 { 1749 return single_open(file, memblock_debug_show, inode->i_private); 1750 } 1751 1752 static const struct file_operations memblock_debug_fops = { 1753 .open = memblock_debug_open, 1754 .read = seq_read, 1755 .llseek = seq_lseek, 1756 .release = single_release, 1757 }; 1758 1759 static int __init memblock_init_debugfs(void) 1760 { 1761 struct dentry *root = debugfs_create_dir("memblock", NULL); 1762 if (!root) 1763 return -ENXIO; 1764 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 1765 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 1766 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1767 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops); 1768 #endif 1769 1770 return 0; 1771 } 1772 __initcall(memblock_init_debugfs); 1773 1774 #endif /* CONFIG_DEBUG_FS */ 1775