xref: /linux/mm/memblock.c (revision 7a9b709e7cc5ce1ffb84ce07bf6d157e1de758df)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 #include <linux/mutex.h>
20 
21 #include <asm/sections.h>
22 #include <linux/io.h>
23 
24 #include "internal.h"
25 
26 #define INIT_MEMBLOCK_REGIONS			128
27 #define INIT_PHYSMEM_REGIONS			4
28 
29 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
30 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
31 #endif
32 
33 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
34 #define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
35 #endif
36 
37 /**
38  * DOC: memblock overview
39  *
40  * Memblock is a method of managing memory regions during the early
41  * boot period when the usual kernel memory allocators are not up and
42  * running.
43  *
44  * Memblock views the system memory as collections of contiguous
45  * regions. There are several types of these collections:
46  *
47  * * ``memory`` - describes the physical memory available to the
48  *   kernel; this may differ from the actual physical memory installed
49  *   in the system, for instance when the memory is restricted with
50  *   ``mem=`` command line parameter
51  * * ``reserved`` - describes the regions that were allocated
52  * * ``physmem`` - describes the actual physical memory available during
53  *   boot regardless of the possible restrictions and memory hot(un)plug;
54  *   the ``physmem`` type is only available on some architectures.
55  *
56  * Each region is represented by struct memblock_region that
57  * defines the region extents, its attributes and NUMA node id on NUMA
58  * systems. Every memory type is described by the struct memblock_type
59  * which contains an array of memory regions along with
60  * the allocator metadata. The "memory" and "reserved" types are nicely
61  * wrapped with struct memblock. This structure is statically
62  * initialized at build time. The region arrays are initially sized to
63  * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
64  * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
65  * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
66  * The memblock_allow_resize() enables automatic resizing of the region
67  * arrays during addition of new regions. This feature should be used
68  * with care so that memory allocated for the region array will not
69  * overlap with areas that should be reserved, for example initrd.
70  *
71  * The early architecture setup should tell memblock what the physical
72  * memory layout is by using memblock_add() or memblock_add_node()
73  * functions. The first function does not assign the region to a NUMA
74  * node and it is appropriate for UMA systems. Yet, it is possible to
75  * use it on NUMA systems as well and assign the region to a NUMA node
76  * later in the setup process using memblock_set_node(). The
77  * memblock_add_node() performs such an assignment directly.
78  *
79  * Once memblock is setup the memory can be allocated using one of the
80  * API variants:
81  *
82  * * memblock_phys_alloc*() - these functions return the **physical**
83  *   address of the allocated memory
84  * * memblock_alloc*() - these functions return the **virtual** address
85  *   of the allocated memory.
86  *
87  * Note, that both API variants use implicit assumptions about allowed
88  * memory ranges and the fallback methods. Consult the documentation
89  * of memblock_alloc_internal() and memblock_alloc_range_nid()
90  * functions for more elaborate description.
91  *
92  * As the system boot progresses, the architecture specific mem_init()
93  * function frees all the memory to the buddy page allocator.
94  *
95  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
96  * memblock data structures (except "physmem") will be discarded after the
97  * system initialization completes.
98  */
99 
100 #ifndef CONFIG_NUMA
101 struct pglist_data __refdata contig_page_data;
102 EXPORT_SYMBOL(contig_page_data);
103 #endif
104 
105 unsigned long max_low_pfn;
106 unsigned long min_low_pfn;
107 unsigned long max_pfn;
108 unsigned long long max_possible_pfn;
109 
110 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
111 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
112 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
113 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
114 #endif
115 
116 struct memblock memblock __initdata_memblock = {
117 	.memory.regions		= memblock_memory_init_regions,
118 	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
119 	.memory.name		= "memory",
120 
121 	.reserved.regions	= memblock_reserved_init_regions,
122 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
123 	.reserved.name		= "reserved",
124 
125 	.bottom_up		= false,
126 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
127 };
128 
129 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
130 struct memblock_type physmem = {
131 	.regions		= memblock_physmem_init_regions,
132 	.max			= INIT_PHYSMEM_REGIONS,
133 	.name			= "physmem",
134 };
135 #endif
136 
137 /*
138  * keep a pointer to &memblock.memory in the text section to use it in
139  * __next_mem_range() and its helpers.
140  *  For architectures that do not keep memblock data after init, this
141  * pointer will be reset to NULL at memblock_discard()
142  */
143 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
144 
145 #define for_each_memblock_type(i, memblock_type, rgn)			\
146 	for (i = 0, rgn = &memblock_type->regions[0];			\
147 	     i < memblock_type->cnt;					\
148 	     i++, rgn = &memblock_type->regions[i])
149 
150 #define memblock_dbg(fmt, ...)						\
151 	do {								\
152 		if (memblock_debug)					\
153 			pr_info(fmt, ##__VA_ARGS__);			\
154 	} while (0)
155 
156 static int memblock_debug __initdata_memblock;
157 static bool system_has_some_mirror __initdata_memblock;
158 static int memblock_can_resize __initdata_memblock;
159 static int memblock_memory_in_slab __initdata_memblock;
160 static int memblock_reserved_in_slab __initdata_memblock;
161 
162 bool __init_memblock memblock_has_mirror(void)
163 {
164 	return system_has_some_mirror;
165 }
166 
167 static enum memblock_flags __init_memblock choose_memblock_flags(void)
168 {
169 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
170 }
171 
172 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
173 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
174 {
175 	return *size = min(*size, PHYS_ADDR_MAX - base);
176 }
177 
178 /*
179  * Address comparison utilities
180  */
181 unsigned long __init_memblock
182 memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
183 		       phys_addr_t size2)
184 {
185 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
186 }
187 
188 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
189 					phys_addr_t base, phys_addr_t size)
190 {
191 	unsigned long i;
192 
193 	memblock_cap_size(base, &size);
194 
195 	for (i = 0; i < type->cnt; i++)
196 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
197 					   type->regions[i].size))
198 			return true;
199 	return false;
200 }
201 
202 /**
203  * __memblock_find_range_bottom_up - find free area utility in bottom-up
204  * @start: start of candidate range
205  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
206  *       %MEMBLOCK_ALLOC_ACCESSIBLE
207  * @size: size of free area to find
208  * @align: alignment of free area to find
209  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
210  * @flags: pick from blocks based on memory attributes
211  *
212  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
213  *
214  * Return:
215  * Found address on success, 0 on failure.
216  */
217 static phys_addr_t __init_memblock
218 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
219 				phys_addr_t size, phys_addr_t align, int nid,
220 				enum memblock_flags flags)
221 {
222 	phys_addr_t this_start, this_end, cand;
223 	u64 i;
224 
225 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
226 		this_start = clamp(this_start, start, end);
227 		this_end = clamp(this_end, start, end);
228 
229 		cand = round_up(this_start, align);
230 		if (cand < this_end && this_end - cand >= size)
231 			return cand;
232 	}
233 
234 	return 0;
235 }
236 
237 /**
238  * __memblock_find_range_top_down - find free area utility, in top-down
239  * @start: start of candidate range
240  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
241  *       %MEMBLOCK_ALLOC_ACCESSIBLE
242  * @size: size of free area to find
243  * @align: alignment of free area to find
244  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
245  * @flags: pick from blocks based on memory attributes
246  *
247  * Utility called from memblock_find_in_range_node(), find free area top-down.
248  *
249  * Return:
250  * Found address on success, 0 on failure.
251  */
252 static phys_addr_t __init_memblock
253 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
254 			       phys_addr_t size, phys_addr_t align, int nid,
255 			       enum memblock_flags flags)
256 {
257 	phys_addr_t this_start, this_end, cand;
258 	u64 i;
259 
260 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
261 					NULL) {
262 		this_start = clamp(this_start, start, end);
263 		this_end = clamp(this_end, start, end);
264 
265 		if (this_end < size)
266 			continue;
267 
268 		cand = round_down(this_end - size, align);
269 		if (cand >= this_start)
270 			return cand;
271 	}
272 
273 	return 0;
274 }
275 
276 /**
277  * memblock_find_in_range_node - find free area in given range and node
278  * @size: size of free area to find
279  * @align: alignment of free area to find
280  * @start: start of candidate range
281  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
282  *       %MEMBLOCK_ALLOC_ACCESSIBLE
283  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
284  * @flags: pick from blocks based on memory attributes
285  *
286  * Find @size free area aligned to @align in the specified range and node.
287  *
288  * Return:
289  * Found address on success, 0 on failure.
290  */
291 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
292 					phys_addr_t align, phys_addr_t start,
293 					phys_addr_t end, int nid,
294 					enum memblock_flags flags)
295 {
296 	/* pump up @end */
297 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
298 	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
299 		end = memblock.current_limit;
300 
301 	/* avoid allocating the first page */
302 	start = max_t(phys_addr_t, start, PAGE_SIZE);
303 	end = max(start, end);
304 
305 	if (memblock_bottom_up())
306 		return __memblock_find_range_bottom_up(start, end, size, align,
307 						       nid, flags);
308 	else
309 		return __memblock_find_range_top_down(start, end, size, align,
310 						      nid, flags);
311 }
312 
313 /**
314  * memblock_find_in_range - find free area in given range
315  * @start: start of candidate range
316  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
317  *       %MEMBLOCK_ALLOC_ACCESSIBLE
318  * @size: size of free area to find
319  * @align: alignment of free area to find
320  *
321  * Find @size free area aligned to @align in the specified range.
322  *
323  * Return:
324  * Found address on success, 0 on failure.
325  */
326 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
327 					phys_addr_t end, phys_addr_t size,
328 					phys_addr_t align)
329 {
330 	phys_addr_t ret;
331 	enum memblock_flags flags = choose_memblock_flags();
332 
333 again:
334 	ret = memblock_find_in_range_node(size, align, start, end,
335 					    NUMA_NO_NODE, flags);
336 
337 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
338 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
339 			&size);
340 		flags &= ~MEMBLOCK_MIRROR;
341 		goto again;
342 	}
343 
344 	return ret;
345 }
346 
347 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
348 {
349 	type->total_size -= type->regions[r].size;
350 	memmove(&type->regions[r], &type->regions[r + 1],
351 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
352 	type->cnt--;
353 
354 	/* Special case for empty arrays */
355 	if (type->cnt == 0) {
356 		WARN_ON(type->total_size != 0);
357 		type->regions[0].base = 0;
358 		type->regions[0].size = 0;
359 		type->regions[0].flags = 0;
360 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
361 	}
362 }
363 
364 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
365 /**
366  * memblock_discard - discard memory and reserved arrays if they were allocated
367  */
368 void __init memblock_discard(void)
369 {
370 	phys_addr_t addr, size;
371 
372 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
373 		addr = __pa(memblock.reserved.regions);
374 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
375 				  memblock.reserved.max);
376 		if (memblock_reserved_in_slab)
377 			kfree(memblock.reserved.regions);
378 		else
379 			memblock_free_late(addr, size);
380 	}
381 
382 	if (memblock.memory.regions != memblock_memory_init_regions) {
383 		addr = __pa(memblock.memory.regions);
384 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
385 				  memblock.memory.max);
386 		if (memblock_memory_in_slab)
387 			kfree(memblock.memory.regions);
388 		else
389 			memblock_free_late(addr, size);
390 	}
391 
392 	memblock_memory = NULL;
393 }
394 #endif
395 
396 /**
397  * memblock_double_array - double the size of the memblock regions array
398  * @type: memblock type of the regions array being doubled
399  * @new_area_start: starting address of memory range to avoid overlap with
400  * @new_area_size: size of memory range to avoid overlap with
401  *
402  * Double the size of the @type regions array. If memblock is being used to
403  * allocate memory for a new reserved regions array and there is a previously
404  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
405  * waiting to be reserved, ensure the memory used by the new array does
406  * not overlap.
407  *
408  * Return:
409  * 0 on success, -1 on failure.
410  */
411 static int __init_memblock memblock_double_array(struct memblock_type *type,
412 						phys_addr_t new_area_start,
413 						phys_addr_t new_area_size)
414 {
415 	struct memblock_region *new_array, *old_array;
416 	phys_addr_t old_alloc_size, new_alloc_size;
417 	phys_addr_t old_size, new_size, addr, new_end;
418 	int use_slab = slab_is_available();
419 	int *in_slab;
420 
421 	/* We don't allow resizing until we know about the reserved regions
422 	 * of memory that aren't suitable for allocation
423 	 */
424 	if (!memblock_can_resize)
425 		panic("memblock: cannot resize %s array\n", type->name);
426 
427 	/* Calculate new doubled size */
428 	old_size = type->max * sizeof(struct memblock_region);
429 	new_size = old_size << 1;
430 	/*
431 	 * We need to allocated new one align to PAGE_SIZE,
432 	 *   so we can free them completely later.
433 	 */
434 	old_alloc_size = PAGE_ALIGN(old_size);
435 	new_alloc_size = PAGE_ALIGN(new_size);
436 
437 	/* Retrieve the slab flag */
438 	if (type == &memblock.memory)
439 		in_slab = &memblock_memory_in_slab;
440 	else
441 		in_slab = &memblock_reserved_in_slab;
442 
443 	/* Try to find some space for it */
444 	if (use_slab) {
445 		new_array = kmalloc(new_size, GFP_KERNEL);
446 		addr = new_array ? __pa(new_array) : 0;
447 	} else {
448 		/* only exclude range when trying to double reserved.regions */
449 		if (type != &memblock.reserved)
450 			new_area_start = new_area_size = 0;
451 
452 		addr = memblock_find_in_range(new_area_start + new_area_size,
453 						memblock.current_limit,
454 						new_alloc_size, PAGE_SIZE);
455 		if (!addr && new_area_size)
456 			addr = memblock_find_in_range(0,
457 				min(new_area_start, memblock.current_limit),
458 				new_alloc_size, PAGE_SIZE);
459 
460 		new_array = addr ? __va(addr) : NULL;
461 	}
462 	if (!addr) {
463 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
464 		       type->name, type->max, type->max * 2);
465 		return -1;
466 	}
467 
468 	new_end = addr + new_size - 1;
469 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
470 			type->name, type->max * 2, &addr, &new_end);
471 
472 	/*
473 	 * Found space, we now need to move the array over before we add the
474 	 * reserved region since it may be our reserved array itself that is
475 	 * full.
476 	 */
477 	memcpy(new_array, type->regions, old_size);
478 	memset(new_array + type->max, 0, old_size);
479 	old_array = type->regions;
480 	type->regions = new_array;
481 	type->max <<= 1;
482 
483 	/* Free old array. We needn't free it if the array is the static one */
484 	if (*in_slab)
485 		kfree(old_array);
486 	else if (old_array != memblock_memory_init_regions &&
487 		 old_array != memblock_reserved_init_regions)
488 		memblock_free(old_array, old_alloc_size);
489 
490 	/*
491 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
492 	 * needn't do it
493 	 */
494 	if (!use_slab)
495 		BUG_ON(memblock_reserve(addr, new_alloc_size));
496 
497 	/* Update slab flag */
498 	*in_slab = use_slab;
499 
500 	return 0;
501 }
502 
503 /**
504  * memblock_merge_regions - merge neighboring compatible regions
505  * @type: memblock type to scan
506  * @start_rgn: start scanning from (@start_rgn - 1)
507  * @end_rgn: end scanning at (@end_rgn - 1)
508  * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
509  */
510 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
511 						   unsigned long start_rgn,
512 						   unsigned long end_rgn)
513 {
514 	int i = 0;
515 	if (start_rgn)
516 		i = start_rgn - 1;
517 	end_rgn = min(end_rgn, type->cnt - 1);
518 	while (i < end_rgn) {
519 		struct memblock_region *this = &type->regions[i];
520 		struct memblock_region *next = &type->regions[i + 1];
521 
522 		if (this->base + this->size != next->base ||
523 		    memblock_get_region_node(this) !=
524 		    memblock_get_region_node(next) ||
525 		    this->flags != next->flags) {
526 			BUG_ON(this->base + this->size > next->base);
527 			i++;
528 			continue;
529 		}
530 
531 		this->size += next->size;
532 		/* move forward from next + 1, index of which is i + 2 */
533 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
534 		type->cnt--;
535 		end_rgn--;
536 	}
537 }
538 
539 /**
540  * memblock_insert_region - insert new memblock region
541  * @type:	memblock type to insert into
542  * @idx:	index for the insertion point
543  * @base:	base address of the new region
544  * @size:	size of the new region
545  * @nid:	node id of the new region
546  * @flags:	flags of the new region
547  *
548  * Insert new memblock region [@base, @base + @size) into @type at @idx.
549  * @type must already have extra room to accommodate the new region.
550  */
551 static void __init_memblock memblock_insert_region(struct memblock_type *type,
552 						   int idx, phys_addr_t base,
553 						   phys_addr_t size,
554 						   int nid,
555 						   enum memblock_flags flags)
556 {
557 	struct memblock_region *rgn = &type->regions[idx];
558 
559 	BUG_ON(type->cnt >= type->max);
560 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
561 	rgn->base = base;
562 	rgn->size = size;
563 	rgn->flags = flags;
564 	memblock_set_region_node(rgn, nid);
565 	type->cnt++;
566 	type->total_size += size;
567 }
568 
569 /**
570  * memblock_add_range - add new memblock region
571  * @type: memblock type to add new region into
572  * @base: base address of the new region
573  * @size: size of the new region
574  * @nid: nid of the new region
575  * @flags: flags of the new region
576  *
577  * Add new memblock region [@base, @base + @size) into @type.  The new region
578  * is allowed to overlap with existing ones - overlaps don't affect already
579  * existing regions.  @type is guaranteed to be minimal (all neighbouring
580  * compatible regions are merged) after the addition.
581  *
582  * Return:
583  * 0 on success, -errno on failure.
584  */
585 static int __init_memblock memblock_add_range(struct memblock_type *type,
586 				phys_addr_t base, phys_addr_t size,
587 				int nid, enum memblock_flags flags)
588 {
589 	bool insert = false;
590 	phys_addr_t obase = base;
591 	phys_addr_t end = base + memblock_cap_size(base, &size);
592 	int idx, nr_new, start_rgn = -1, end_rgn;
593 	struct memblock_region *rgn;
594 
595 	if (!size)
596 		return 0;
597 
598 	/* special case for empty array */
599 	if (type->regions[0].size == 0) {
600 		WARN_ON(type->cnt != 0 || type->total_size);
601 		type->regions[0].base = base;
602 		type->regions[0].size = size;
603 		type->regions[0].flags = flags;
604 		memblock_set_region_node(&type->regions[0], nid);
605 		type->total_size = size;
606 		type->cnt = 1;
607 		return 0;
608 	}
609 
610 	/*
611 	 * The worst case is when new range overlaps all existing regions,
612 	 * then we'll need type->cnt + 1 empty regions in @type. So if
613 	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
614 	 * that there is enough empty regions in @type, and we can insert
615 	 * regions directly.
616 	 */
617 	if (type->cnt * 2 + 1 <= type->max)
618 		insert = true;
619 
620 repeat:
621 	/*
622 	 * The following is executed twice.  Once with %false @insert and
623 	 * then with %true.  The first counts the number of regions needed
624 	 * to accommodate the new area.  The second actually inserts them.
625 	 */
626 	base = obase;
627 	nr_new = 0;
628 
629 	for_each_memblock_type(idx, type, rgn) {
630 		phys_addr_t rbase = rgn->base;
631 		phys_addr_t rend = rbase + rgn->size;
632 
633 		if (rbase >= end)
634 			break;
635 		if (rend <= base)
636 			continue;
637 		/*
638 		 * @rgn overlaps.  If it separates the lower part of new
639 		 * area, insert that portion.
640 		 */
641 		if (rbase > base) {
642 #ifdef CONFIG_NUMA
643 			WARN_ON(nid != memblock_get_region_node(rgn));
644 #endif
645 			WARN_ON(flags != rgn->flags);
646 			nr_new++;
647 			if (insert) {
648 				if (start_rgn == -1)
649 					start_rgn = idx;
650 				end_rgn = idx + 1;
651 				memblock_insert_region(type, idx++, base,
652 						       rbase - base, nid,
653 						       flags);
654 			}
655 		}
656 		/* area below @rend is dealt with, forget about it */
657 		base = min(rend, end);
658 	}
659 
660 	/* insert the remaining portion */
661 	if (base < end) {
662 		nr_new++;
663 		if (insert) {
664 			if (start_rgn == -1)
665 				start_rgn = idx;
666 			end_rgn = idx + 1;
667 			memblock_insert_region(type, idx, base, end - base,
668 					       nid, flags);
669 		}
670 	}
671 
672 	if (!nr_new)
673 		return 0;
674 
675 	/*
676 	 * If this was the first round, resize array and repeat for actual
677 	 * insertions; otherwise, merge and return.
678 	 */
679 	if (!insert) {
680 		while (type->cnt + nr_new > type->max)
681 			if (memblock_double_array(type, obase, size) < 0)
682 				return -ENOMEM;
683 		insert = true;
684 		goto repeat;
685 	} else {
686 		memblock_merge_regions(type, start_rgn, end_rgn);
687 		return 0;
688 	}
689 }
690 
691 /**
692  * memblock_add_node - add new memblock region within a NUMA node
693  * @base: base address of the new region
694  * @size: size of the new region
695  * @nid: nid of the new region
696  * @flags: flags of the new region
697  *
698  * Add new memblock region [@base, @base + @size) to the "memory"
699  * type. See memblock_add_range() description for mode details
700  *
701  * Return:
702  * 0 on success, -errno on failure.
703  */
704 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
705 				      int nid, enum memblock_flags flags)
706 {
707 	phys_addr_t end = base + size - 1;
708 
709 	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
710 		     &base, &end, nid, flags, (void *)_RET_IP_);
711 
712 	return memblock_add_range(&memblock.memory, base, size, nid, flags);
713 }
714 
715 /**
716  * memblock_add - add new memblock region
717  * @base: base address of the new region
718  * @size: size of the new region
719  *
720  * Add new memblock region [@base, @base + @size) to the "memory"
721  * type. See memblock_add_range() description for mode details
722  *
723  * Return:
724  * 0 on success, -errno on failure.
725  */
726 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
727 {
728 	phys_addr_t end = base + size - 1;
729 
730 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
731 		     &base, &end, (void *)_RET_IP_);
732 
733 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
734 }
735 
736 /**
737  * memblock_validate_numa_coverage - check if amount of memory with
738  * no node ID assigned is less than a threshold
739  * @threshold_bytes: maximal memory size that can have unassigned node
740  * ID (in bytes).
741  *
742  * A buggy firmware may report memory that does not belong to any node.
743  * Check if amount of such memory is below @threshold_bytes.
744  *
745  * Return: true on success, false on failure.
746  */
747 bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
748 {
749 	unsigned long nr_pages = 0;
750 	unsigned long start_pfn, end_pfn, mem_size_mb;
751 	int nid, i;
752 
753 	/* calculate lose page */
754 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
755 		if (!numa_valid_node(nid))
756 			nr_pages += end_pfn - start_pfn;
757 	}
758 
759 	if ((nr_pages << PAGE_SHIFT) > threshold_bytes) {
760 		mem_size_mb = memblock_phys_mem_size() >> 20;
761 		pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
762 		       (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
763 		return false;
764 	}
765 
766 	return true;
767 }
768 
769 
770 /**
771  * memblock_isolate_range - isolate given range into disjoint memblocks
772  * @type: memblock type to isolate range for
773  * @base: base of range to isolate
774  * @size: size of range to isolate
775  * @start_rgn: out parameter for the start of isolated region
776  * @end_rgn: out parameter for the end of isolated region
777  *
778  * Walk @type and ensure that regions don't cross the boundaries defined by
779  * [@base, @base + @size).  Crossing regions are split at the boundaries,
780  * which may create at most two more regions.  The index of the first
781  * region inside the range is returned in *@start_rgn and the index of the
782  * first region after the range is returned in *@end_rgn.
783  *
784  * Return:
785  * 0 on success, -errno on failure.
786  */
787 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
788 					phys_addr_t base, phys_addr_t size,
789 					int *start_rgn, int *end_rgn)
790 {
791 	phys_addr_t end = base + memblock_cap_size(base, &size);
792 	int idx;
793 	struct memblock_region *rgn;
794 
795 	*start_rgn = *end_rgn = 0;
796 
797 	if (!size)
798 		return 0;
799 
800 	/* we'll create at most two more regions */
801 	while (type->cnt + 2 > type->max)
802 		if (memblock_double_array(type, base, size) < 0)
803 			return -ENOMEM;
804 
805 	for_each_memblock_type(idx, type, rgn) {
806 		phys_addr_t rbase = rgn->base;
807 		phys_addr_t rend = rbase + rgn->size;
808 
809 		if (rbase >= end)
810 			break;
811 		if (rend <= base)
812 			continue;
813 
814 		if (rbase < base) {
815 			/*
816 			 * @rgn intersects from below.  Split and continue
817 			 * to process the next region - the new top half.
818 			 */
819 			rgn->base = base;
820 			rgn->size -= base - rbase;
821 			type->total_size -= base - rbase;
822 			memblock_insert_region(type, idx, rbase, base - rbase,
823 					       memblock_get_region_node(rgn),
824 					       rgn->flags);
825 		} else if (rend > end) {
826 			/*
827 			 * @rgn intersects from above.  Split and redo the
828 			 * current region - the new bottom half.
829 			 */
830 			rgn->base = end;
831 			rgn->size -= end - rbase;
832 			type->total_size -= end - rbase;
833 			memblock_insert_region(type, idx--, rbase, end - rbase,
834 					       memblock_get_region_node(rgn),
835 					       rgn->flags);
836 		} else {
837 			/* @rgn is fully contained, record it */
838 			if (!*end_rgn)
839 				*start_rgn = idx;
840 			*end_rgn = idx + 1;
841 		}
842 	}
843 
844 	return 0;
845 }
846 
847 static int __init_memblock memblock_remove_range(struct memblock_type *type,
848 					  phys_addr_t base, phys_addr_t size)
849 {
850 	int start_rgn, end_rgn;
851 	int i, ret;
852 
853 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
854 	if (ret)
855 		return ret;
856 
857 	for (i = end_rgn - 1; i >= start_rgn; i--)
858 		memblock_remove_region(type, i);
859 	return 0;
860 }
861 
862 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
863 {
864 	phys_addr_t end = base + size - 1;
865 
866 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
867 		     &base, &end, (void *)_RET_IP_);
868 
869 	return memblock_remove_range(&memblock.memory, base, size);
870 }
871 
872 /**
873  * memblock_free - free boot memory allocation
874  * @ptr: starting address of the  boot memory allocation
875  * @size: size of the boot memory block in bytes
876  *
877  * Free boot memory block previously allocated by memblock_alloc_xx() API.
878  * The freeing memory will not be released to the buddy allocator.
879  */
880 void __init_memblock memblock_free(void *ptr, size_t size)
881 {
882 	if (ptr)
883 		memblock_phys_free(__pa(ptr), size);
884 }
885 
886 /**
887  * memblock_phys_free - free boot memory block
888  * @base: phys starting address of the  boot memory block
889  * @size: size of the boot memory block in bytes
890  *
891  * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
892  * The freeing memory will not be released to the buddy allocator.
893  */
894 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
895 {
896 	phys_addr_t end = base + size - 1;
897 
898 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
899 		     &base, &end, (void *)_RET_IP_);
900 
901 	kmemleak_free_part_phys(base, size);
902 	return memblock_remove_range(&memblock.reserved, base, size);
903 }
904 
905 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
906 {
907 	phys_addr_t end = base + size - 1;
908 
909 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
910 		     &base, &end, (void *)_RET_IP_);
911 
912 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
913 }
914 
915 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
916 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
917 {
918 	phys_addr_t end = base + size - 1;
919 
920 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
921 		     &base, &end, (void *)_RET_IP_);
922 
923 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
924 }
925 #endif
926 
927 /**
928  * memblock_setclr_flag - set or clear flag for a memory region
929  * @type: memblock type to set/clear flag for
930  * @base: base address of the region
931  * @size: size of the region
932  * @set: set or clear the flag
933  * @flag: the flag to update
934  *
935  * This function isolates region [@base, @base + @size), and sets/clears flag
936  *
937  * Return: 0 on success, -errno on failure.
938  */
939 static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
940 				phys_addr_t base, phys_addr_t size, int set, int flag)
941 {
942 	int i, ret, start_rgn, end_rgn;
943 
944 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
945 	if (ret)
946 		return ret;
947 
948 	for (i = start_rgn; i < end_rgn; i++) {
949 		struct memblock_region *r = &type->regions[i];
950 
951 		if (set)
952 			r->flags |= flag;
953 		else
954 			r->flags &= ~flag;
955 	}
956 
957 	memblock_merge_regions(type, start_rgn, end_rgn);
958 	return 0;
959 }
960 
961 /**
962  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
963  * @base: the base phys addr of the region
964  * @size: the size of the region
965  *
966  * Return: 0 on success, -errno on failure.
967  */
968 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
969 {
970 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
971 }
972 
973 /**
974  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
975  * @base: the base phys addr of the region
976  * @size: the size of the region
977  *
978  * Return: 0 on success, -errno on failure.
979  */
980 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
981 {
982 	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
983 }
984 
985 /**
986  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
987  * @base: the base phys addr of the region
988  * @size: the size of the region
989  *
990  * Return: 0 on success, -errno on failure.
991  */
992 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
993 {
994 	if (!mirrored_kernelcore)
995 		return 0;
996 
997 	system_has_some_mirror = true;
998 
999 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
1000 }
1001 
1002 /**
1003  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1004  * @base: the base phys addr of the region
1005  * @size: the size of the region
1006  *
1007  * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1008  * direct mapping of the physical memory. These regions will still be
1009  * covered by the memory map. The struct page representing NOMAP memory
1010  * frames in the memory map will be PageReserved()
1011  *
1012  * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1013  * memblock, the caller must inform kmemleak to ignore that memory
1014  *
1015  * Return: 0 on success, -errno on failure.
1016  */
1017 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1018 {
1019 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1020 }
1021 
1022 /**
1023  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1024  * @base: the base phys addr of the region
1025  * @size: the size of the region
1026  *
1027  * Return: 0 on success, -errno on failure.
1028  */
1029 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1030 {
1031 	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1032 }
1033 
1034 /**
1035  * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1036  * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1037  * for this region.
1038  * @base: the base phys addr of the region
1039  * @size: the size of the region
1040  *
1041  * struct pages will not be initialized for reserved memory regions marked with
1042  * %MEMBLOCK_RSRV_NOINIT.
1043  *
1044  * Return: 0 on success, -errno on failure.
1045  */
1046 int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1047 {
1048 	return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1049 				    MEMBLOCK_RSRV_NOINIT);
1050 }
1051 
1052 static bool should_skip_region(struct memblock_type *type,
1053 			       struct memblock_region *m,
1054 			       int nid, int flags)
1055 {
1056 	int m_nid = memblock_get_region_node(m);
1057 
1058 	/* we never skip regions when iterating memblock.reserved or physmem */
1059 	if (type != memblock_memory)
1060 		return false;
1061 
1062 	/* only memory regions are associated with nodes, check it */
1063 	if (numa_valid_node(nid) && nid != m_nid)
1064 		return true;
1065 
1066 	/* skip hotpluggable memory regions if needed */
1067 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1068 	    !(flags & MEMBLOCK_HOTPLUG))
1069 		return true;
1070 
1071 	/* if we want mirror memory skip non-mirror memory regions */
1072 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1073 		return true;
1074 
1075 	/* skip nomap memory unless we were asked for it explicitly */
1076 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1077 		return true;
1078 
1079 	/* skip driver-managed memory unless we were asked for it explicitly */
1080 	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1081 		return true;
1082 
1083 	return false;
1084 }
1085 
1086 /**
1087  * __next_mem_range - next function for for_each_free_mem_range() etc.
1088  * @idx: pointer to u64 loop variable
1089  * @nid: node selector, %NUMA_NO_NODE for all nodes
1090  * @flags: pick from blocks based on memory attributes
1091  * @type_a: pointer to memblock_type from where the range is taken
1092  * @type_b: pointer to memblock_type which excludes memory from being taken
1093  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1094  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1095  * @out_nid: ptr to int for nid of the range, can be %NULL
1096  *
1097  * Find the first area from *@idx which matches @nid, fill the out
1098  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1099  * *@idx contains index into type_a and the upper 32bit indexes the
1100  * areas before each region in type_b.	For example, if type_b regions
1101  * look like the following,
1102  *
1103  *	0:[0-16), 1:[32-48), 2:[128-130)
1104  *
1105  * The upper 32bit indexes the following regions.
1106  *
1107  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1108  *
1109  * As both region arrays are sorted, the function advances the two indices
1110  * in lockstep and returns each intersection.
1111  */
1112 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1113 		      struct memblock_type *type_a,
1114 		      struct memblock_type *type_b, phys_addr_t *out_start,
1115 		      phys_addr_t *out_end, int *out_nid)
1116 {
1117 	int idx_a = *idx & 0xffffffff;
1118 	int idx_b = *idx >> 32;
1119 
1120 	for (; idx_a < type_a->cnt; idx_a++) {
1121 		struct memblock_region *m = &type_a->regions[idx_a];
1122 
1123 		phys_addr_t m_start = m->base;
1124 		phys_addr_t m_end = m->base + m->size;
1125 		int	    m_nid = memblock_get_region_node(m);
1126 
1127 		if (should_skip_region(type_a, m, nid, flags))
1128 			continue;
1129 
1130 		if (!type_b) {
1131 			if (out_start)
1132 				*out_start = m_start;
1133 			if (out_end)
1134 				*out_end = m_end;
1135 			if (out_nid)
1136 				*out_nid = m_nid;
1137 			idx_a++;
1138 			*idx = (u32)idx_a | (u64)idx_b << 32;
1139 			return;
1140 		}
1141 
1142 		/* scan areas before each reservation */
1143 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1144 			struct memblock_region *r;
1145 			phys_addr_t r_start;
1146 			phys_addr_t r_end;
1147 
1148 			r = &type_b->regions[idx_b];
1149 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1150 			r_end = idx_b < type_b->cnt ?
1151 				r->base : PHYS_ADDR_MAX;
1152 
1153 			/*
1154 			 * if idx_b advanced past idx_a,
1155 			 * break out to advance idx_a
1156 			 */
1157 			if (r_start >= m_end)
1158 				break;
1159 			/* if the two regions intersect, we're done */
1160 			if (m_start < r_end) {
1161 				if (out_start)
1162 					*out_start =
1163 						max(m_start, r_start);
1164 				if (out_end)
1165 					*out_end = min(m_end, r_end);
1166 				if (out_nid)
1167 					*out_nid = m_nid;
1168 				/*
1169 				 * The region which ends first is
1170 				 * advanced for the next iteration.
1171 				 */
1172 				if (m_end <= r_end)
1173 					idx_a++;
1174 				else
1175 					idx_b++;
1176 				*idx = (u32)idx_a | (u64)idx_b << 32;
1177 				return;
1178 			}
1179 		}
1180 	}
1181 
1182 	/* signal end of iteration */
1183 	*idx = ULLONG_MAX;
1184 }
1185 
1186 /**
1187  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1188  *
1189  * @idx: pointer to u64 loop variable
1190  * @nid: node selector, %NUMA_NO_NODE for all nodes
1191  * @flags: pick from blocks based on memory attributes
1192  * @type_a: pointer to memblock_type from where the range is taken
1193  * @type_b: pointer to memblock_type which excludes memory from being taken
1194  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1195  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1196  * @out_nid: ptr to int for nid of the range, can be %NULL
1197  *
1198  * Finds the next range from type_a which is not marked as unsuitable
1199  * in type_b.
1200  *
1201  * Reverse of __next_mem_range().
1202  */
1203 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1204 					  enum memblock_flags flags,
1205 					  struct memblock_type *type_a,
1206 					  struct memblock_type *type_b,
1207 					  phys_addr_t *out_start,
1208 					  phys_addr_t *out_end, int *out_nid)
1209 {
1210 	int idx_a = *idx & 0xffffffff;
1211 	int idx_b = *idx >> 32;
1212 
1213 	if (*idx == (u64)ULLONG_MAX) {
1214 		idx_a = type_a->cnt - 1;
1215 		if (type_b != NULL)
1216 			idx_b = type_b->cnt;
1217 		else
1218 			idx_b = 0;
1219 	}
1220 
1221 	for (; idx_a >= 0; idx_a--) {
1222 		struct memblock_region *m = &type_a->regions[idx_a];
1223 
1224 		phys_addr_t m_start = m->base;
1225 		phys_addr_t m_end = m->base + m->size;
1226 		int m_nid = memblock_get_region_node(m);
1227 
1228 		if (should_skip_region(type_a, m, nid, flags))
1229 			continue;
1230 
1231 		if (!type_b) {
1232 			if (out_start)
1233 				*out_start = m_start;
1234 			if (out_end)
1235 				*out_end = m_end;
1236 			if (out_nid)
1237 				*out_nid = m_nid;
1238 			idx_a--;
1239 			*idx = (u32)idx_a | (u64)idx_b << 32;
1240 			return;
1241 		}
1242 
1243 		/* scan areas before each reservation */
1244 		for (; idx_b >= 0; idx_b--) {
1245 			struct memblock_region *r;
1246 			phys_addr_t r_start;
1247 			phys_addr_t r_end;
1248 
1249 			r = &type_b->regions[idx_b];
1250 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1251 			r_end = idx_b < type_b->cnt ?
1252 				r->base : PHYS_ADDR_MAX;
1253 			/*
1254 			 * if idx_b advanced past idx_a,
1255 			 * break out to advance idx_a
1256 			 */
1257 
1258 			if (r_end <= m_start)
1259 				break;
1260 			/* if the two regions intersect, we're done */
1261 			if (m_end > r_start) {
1262 				if (out_start)
1263 					*out_start = max(m_start, r_start);
1264 				if (out_end)
1265 					*out_end = min(m_end, r_end);
1266 				if (out_nid)
1267 					*out_nid = m_nid;
1268 				if (m_start >= r_start)
1269 					idx_a--;
1270 				else
1271 					idx_b--;
1272 				*idx = (u32)idx_a | (u64)idx_b << 32;
1273 				return;
1274 			}
1275 		}
1276 	}
1277 	/* signal end of iteration */
1278 	*idx = ULLONG_MAX;
1279 }
1280 
1281 /*
1282  * Common iterator interface used to define for_each_mem_pfn_range().
1283  */
1284 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1285 				unsigned long *out_start_pfn,
1286 				unsigned long *out_end_pfn, int *out_nid)
1287 {
1288 	struct memblock_type *type = &memblock.memory;
1289 	struct memblock_region *r;
1290 	int r_nid;
1291 
1292 	while (++*idx < type->cnt) {
1293 		r = &type->regions[*idx];
1294 		r_nid = memblock_get_region_node(r);
1295 
1296 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1297 			continue;
1298 		if (!numa_valid_node(nid) || nid == r_nid)
1299 			break;
1300 	}
1301 	if (*idx >= type->cnt) {
1302 		*idx = -1;
1303 		return;
1304 	}
1305 
1306 	if (out_start_pfn)
1307 		*out_start_pfn = PFN_UP(r->base);
1308 	if (out_end_pfn)
1309 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1310 	if (out_nid)
1311 		*out_nid = r_nid;
1312 }
1313 
1314 /**
1315  * memblock_set_node - set node ID on memblock regions
1316  * @base: base of area to set node ID for
1317  * @size: size of area to set node ID for
1318  * @type: memblock type to set node ID for
1319  * @nid: node ID to set
1320  *
1321  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1322  * Regions which cross the area boundaries are split as necessary.
1323  *
1324  * Return:
1325  * 0 on success, -errno on failure.
1326  */
1327 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1328 				      struct memblock_type *type, int nid)
1329 {
1330 #ifdef CONFIG_NUMA
1331 	int start_rgn, end_rgn;
1332 	int i, ret;
1333 
1334 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1335 	if (ret)
1336 		return ret;
1337 
1338 	for (i = start_rgn; i < end_rgn; i++)
1339 		memblock_set_region_node(&type->regions[i], nid);
1340 
1341 	memblock_merge_regions(type, start_rgn, end_rgn);
1342 #endif
1343 	return 0;
1344 }
1345 
1346 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1347 /**
1348  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1349  *
1350  * @idx: pointer to u64 loop variable
1351  * @zone: zone in which all of the memory blocks reside
1352  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1353  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1354  *
1355  * This function is meant to be a zone/pfn specific wrapper for the
1356  * for_each_mem_range type iterators. Specifically they are used in the
1357  * deferred memory init routines and as such we were duplicating much of
1358  * this logic throughout the code. So instead of having it in multiple
1359  * locations it seemed like it would make more sense to centralize this to
1360  * one new iterator that does everything they need.
1361  */
1362 void __init_memblock
1363 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1364 			     unsigned long *out_spfn, unsigned long *out_epfn)
1365 {
1366 	int zone_nid = zone_to_nid(zone);
1367 	phys_addr_t spa, epa;
1368 
1369 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1370 			 &memblock.memory, &memblock.reserved,
1371 			 &spa, &epa, NULL);
1372 
1373 	while (*idx != U64_MAX) {
1374 		unsigned long epfn = PFN_DOWN(epa);
1375 		unsigned long spfn = PFN_UP(spa);
1376 
1377 		/*
1378 		 * Verify the end is at least past the start of the zone and
1379 		 * that we have at least one PFN to initialize.
1380 		 */
1381 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1382 			/* if we went too far just stop searching */
1383 			if (zone_end_pfn(zone) <= spfn) {
1384 				*idx = U64_MAX;
1385 				break;
1386 			}
1387 
1388 			if (out_spfn)
1389 				*out_spfn = max(zone->zone_start_pfn, spfn);
1390 			if (out_epfn)
1391 				*out_epfn = min(zone_end_pfn(zone), epfn);
1392 
1393 			return;
1394 		}
1395 
1396 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1397 				 &memblock.memory, &memblock.reserved,
1398 				 &spa, &epa, NULL);
1399 	}
1400 
1401 	/* signal end of iteration */
1402 	if (out_spfn)
1403 		*out_spfn = ULONG_MAX;
1404 	if (out_epfn)
1405 		*out_epfn = 0;
1406 }
1407 
1408 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1409 
1410 /**
1411  * memblock_alloc_range_nid - allocate boot memory block
1412  * @size: size of memory block to be allocated in bytes
1413  * @align: alignment of the region and block's size
1414  * @start: the lower bound of the memory region to allocate (phys address)
1415  * @end: the upper bound of the memory region to allocate (phys address)
1416  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1417  * @exact_nid: control the allocation fall back to other nodes
1418  *
1419  * The allocation is performed from memory region limited by
1420  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1421  *
1422  * If the specified node can not hold the requested memory and @exact_nid
1423  * is false, the allocation falls back to any node in the system.
1424  *
1425  * For systems with memory mirroring, the allocation is attempted first
1426  * from the regions with mirroring enabled and then retried from any
1427  * memory region.
1428  *
1429  * In addition, function using kmemleak_alloc_phys for allocated boot
1430  * memory block, it is never reported as leaks.
1431  *
1432  * Return:
1433  * Physical address of allocated memory block on success, %0 on failure.
1434  */
1435 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1436 					phys_addr_t align, phys_addr_t start,
1437 					phys_addr_t end, int nid,
1438 					bool exact_nid)
1439 {
1440 	enum memblock_flags flags = choose_memblock_flags();
1441 	phys_addr_t found;
1442 
1443 	/*
1444 	 * Detect any accidental use of these APIs after slab is ready, as at
1445 	 * this moment memblock may be deinitialized already and its
1446 	 * internal data may be destroyed (after execution of memblock_free_all)
1447 	 */
1448 	if (WARN_ON_ONCE(slab_is_available())) {
1449 		void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid);
1450 
1451 		return vaddr ? virt_to_phys(vaddr) : 0;
1452 	}
1453 
1454 	if (!align) {
1455 		/* Can't use WARNs this early in boot on powerpc */
1456 		dump_stack();
1457 		align = SMP_CACHE_BYTES;
1458 	}
1459 
1460 again:
1461 	found = memblock_find_in_range_node(size, align, start, end, nid,
1462 					    flags);
1463 	if (found && !memblock_reserve(found, size))
1464 		goto done;
1465 
1466 	if (numa_valid_node(nid) && !exact_nid) {
1467 		found = memblock_find_in_range_node(size, align, start,
1468 						    end, NUMA_NO_NODE,
1469 						    flags);
1470 		if (found && !memblock_reserve(found, size))
1471 			goto done;
1472 	}
1473 
1474 	if (flags & MEMBLOCK_MIRROR) {
1475 		flags &= ~MEMBLOCK_MIRROR;
1476 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1477 			&size);
1478 		goto again;
1479 	}
1480 
1481 	return 0;
1482 
1483 done:
1484 	/*
1485 	 * Skip kmemleak for those places like kasan_init() and
1486 	 * early_pgtable_alloc() due to high volume.
1487 	 */
1488 	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1489 		/*
1490 		 * Memblock allocated blocks are never reported as
1491 		 * leaks. This is because many of these blocks are
1492 		 * only referred via the physical address which is
1493 		 * not looked up by kmemleak.
1494 		 */
1495 		kmemleak_alloc_phys(found, size, 0);
1496 
1497 	/*
1498 	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1499 	 * require memory to be accepted before it can be used by the
1500 	 * guest.
1501 	 *
1502 	 * Accept the memory of the allocated buffer.
1503 	 */
1504 	accept_memory(found, size);
1505 
1506 	return found;
1507 }
1508 
1509 /**
1510  * memblock_phys_alloc_range - allocate a memory block inside specified range
1511  * @size: size of memory block to be allocated in bytes
1512  * @align: alignment of the region and block's size
1513  * @start: the lower bound of the memory region to allocate (physical address)
1514  * @end: the upper bound of the memory region to allocate (physical address)
1515  *
1516  * Allocate @size bytes in the between @start and @end.
1517  *
1518  * Return: physical address of the allocated memory block on success,
1519  * %0 on failure.
1520  */
1521 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1522 					     phys_addr_t align,
1523 					     phys_addr_t start,
1524 					     phys_addr_t end)
1525 {
1526 	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1527 		     __func__, (u64)size, (u64)align, &start, &end,
1528 		     (void *)_RET_IP_);
1529 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1530 					false);
1531 }
1532 
1533 /**
1534  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1535  * @size: size of memory block to be allocated in bytes
1536  * @align: alignment of the region and block's size
1537  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1538  *
1539  * Allocates memory block from the specified NUMA node. If the node
1540  * has no available memory, attempts to allocated from any node in the
1541  * system.
1542  *
1543  * Return: physical address of the allocated memory block on success,
1544  * %0 on failure.
1545  */
1546 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1547 {
1548 	return memblock_alloc_range_nid(size, align, 0,
1549 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1550 }
1551 
1552 /**
1553  * memblock_alloc_internal - allocate boot memory block
1554  * @size: size of memory block to be allocated in bytes
1555  * @align: alignment of the region and block's size
1556  * @min_addr: the lower bound of the memory region to allocate (phys address)
1557  * @max_addr: the upper bound of the memory region to allocate (phys address)
1558  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1559  * @exact_nid: control the allocation fall back to other nodes
1560  *
1561  * Allocates memory block using memblock_alloc_range_nid() and
1562  * converts the returned physical address to virtual.
1563  *
1564  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1565  * will fall back to memory below @min_addr. Other constraints, such
1566  * as node and mirrored memory will be handled again in
1567  * memblock_alloc_range_nid().
1568  *
1569  * Return:
1570  * Virtual address of allocated memory block on success, NULL on failure.
1571  */
1572 static void * __init memblock_alloc_internal(
1573 				phys_addr_t size, phys_addr_t align,
1574 				phys_addr_t min_addr, phys_addr_t max_addr,
1575 				int nid, bool exact_nid)
1576 {
1577 	phys_addr_t alloc;
1578 
1579 
1580 	if (max_addr > memblock.current_limit)
1581 		max_addr = memblock.current_limit;
1582 
1583 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1584 					exact_nid);
1585 
1586 	/* retry allocation without lower limit */
1587 	if (!alloc && min_addr)
1588 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1589 						exact_nid);
1590 
1591 	if (!alloc)
1592 		return NULL;
1593 
1594 	return phys_to_virt(alloc);
1595 }
1596 
1597 /**
1598  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1599  * without zeroing memory
1600  * @size: size of memory block to be allocated in bytes
1601  * @align: alignment of the region and block's size
1602  * @min_addr: the lower bound of the memory region from where the allocation
1603  *	  is preferred (phys address)
1604  * @max_addr: the upper bound of the memory region from where the allocation
1605  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1606  *	      allocate only from memory limited by memblock.current_limit value
1607  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1608  *
1609  * Public function, provides additional debug information (including caller
1610  * info), if enabled. Does not zero allocated memory.
1611  *
1612  * Return:
1613  * Virtual address of allocated memory block on success, NULL on failure.
1614  */
1615 void * __init memblock_alloc_exact_nid_raw(
1616 			phys_addr_t size, phys_addr_t align,
1617 			phys_addr_t min_addr, phys_addr_t max_addr,
1618 			int nid)
1619 {
1620 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1621 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1622 		     &max_addr, (void *)_RET_IP_);
1623 
1624 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1625 				       true);
1626 }
1627 
1628 /**
1629  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1630  * memory and without panicking
1631  * @size: size of memory block to be allocated in bytes
1632  * @align: alignment of the region and block's size
1633  * @min_addr: the lower bound of the memory region from where the allocation
1634  *	  is preferred (phys address)
1635  * @max_addr: the upper bound of the memory region from where the allocation
1636  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1637  *	      allocate only from memory limited by memblock.current_limit value
1638  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1639  *
1640  * Public function, provides additional debug information (including caller
1641  * info), if enabled. Does not zero allocated memory, does not panic if request
1642  * cannot be satisfied.
1643  *
1644  * Return:
1645  * Virtual address of allocated memory block on success, NULL on failure.
1646  */
1647 void * __init memblock_alloc_try_nid_raw(
1648 			phys_addr_t size, phys_addr_t align,
1649 			phys_addr_t min_addr, phys_addr_t max_addr,
1650 			int nid)
1651 {
1652 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1653 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1654 		     &max_addr, (void *)_RET_IP_);
1655 
1656 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1657 				       false);
1658 }
1659 
1660 /**
1661  * memblock_alloc_try_nid - allocate boot memory block
1662  * @size: size of memory block to be allocated in bytes
1663  * @align: alignment of the region and block's size
1664  * @min_addr: the lower bound of the memory region from where the allocation
1665  *	  is preferred (phys address)
1666  * @max_addr: the upper bound of the memory region from where the allocation
1667  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1668  *	      allocate only from memory limited by memblock.current_limit value
1669  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1670  *
1671  * Public function, provides additional debug information (including caller
1672  * info), if enabled. This function zeroes the allocated memory.
1673  *
1674  * Return:
1675  * Virtual address of allocated memory block on success, NULL on failure.
1676  */
1677 void * __init memblock_alloc_try_nid(
1678 			phys_addr_t size, phys_addr_t align,
1679 			phys_addr_t min_addr, phys_addr_t max_addr,
1680 			int nid)
1681 {
1682 	void *ptr;
1683 
1684 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1685 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1686 		     &max_addr, (void *)_RET_IP_);
1687 	ptr = memblock_alloc_internal(size, align,
1688 					   min_addr, max_addr, nid, false);
1689 	if (ptr)
1690 		memset(ptr, 0, size);
1691 
1692 	return ptr;
1693 }
1694 
1695 /**
1696  * __memblock_alloc_or_panic - Try to allocate memory and panic on failure
1697  * @size: size of memory block to be allocated in bytes
1698  * @align: alignment of the region and block's size
1699  * @func: caller func name
1700  *
1701  * This function attempts to allocate memory using memblock_alloc,
1702  * and in case of failure, it calls panic with the formatted message.
1703  * This function should not be used directly, please use the macro memblock_alloc_or_panic.
1704  */
1705 void *__init __memblock_alloc_or_panic(phys_addr_t size, phys_addr_t align,
1706 				       const char *func)
1707 {
1708 	void *addr = memblock_alloc(size, align);
1709 
1710 	if (unlikely(!addr))
1711 		panic("%s: Failed to allocate %pap bytes\n", func, &size);
1712 	return addr;
1713 }
1714 
1715 /**
1716  * memblock_free_late - free pages directly to buddy allocator
1717  * @base: phys starting address of the  boot memory block
1718  * @size: size of the boot memory block in bytes
1719  *
1720  * This is only useful when the memblock allocator has already been torn
1721  * down, but we are still initializing the system.  Pages are released directly
1722  * to the buddy allocator.
1723  */
1724 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1725 {
1726 	phys_addr_t cursor, end;
1727 
1728 	end = base + size - 1;
1729 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1730 		     __func__, &base, &end, (void *)_RET_IP_);
1731 	kmemleak_free_part_phys(base, size);
1732 	cursor = PFN_UP(base);
1733 	end = PFN_DOWN(base + size);
1734 
1735 	for (; cursor < end; cursor++) {
1736 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1737 		totalram_pages_inc();
1738 	}
1739 }
1740 
1741 /*
1742  * Remaining API functions
1743  */
1744 
1745 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1746 {
1747 	return memblock.memory.total_size;
1748 }
1749 
1750 phys_addr_t __init_memblock memblock_reserved_size(void)
1751 {
1752 	return memblock.reserved.total_size;
1753 }
1754 
1755 /**
1756  * memblock_estimated_nr_free_pages - return estimated number of free pages
1757  * from memblock point of view
1758  *
1759  * During bootup, subsystems might need a rough estimate of the number of free
1760  * pages in the whole system, before precise numbers are available from the
1761  * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers
1762  * obtained from the buddy might be very imprecise during bootup.
1763  *
1764  * Return:
1765  * An estimated number of free pages from memblock point of view.
1766  */
1767 unsigned long __init memblock_estimated_nr_free_pages(void)
1768 {
1769 	return PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size());
1770 }
1771 
1772 /* lowest address */
1773 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1774 {
1775 	return memblock.memory.regions[0].base;
1776 }
1777 
1778 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1779 {
1780 	int idx = memblock.memory.cnt - 1;
1781 
1782 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1783 }
1784 
1785 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1786 {
1787 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1788 	struct memblock_region *r;
1789 
1790 	/*
1791 	 * translate the memory @limit size into the max address within one of
1792 	 * the memory memblock regions, if the @limit exceeds the total size
1793 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1794 	 */
1795 	for_each_mem_region(r) {
1796 		if (limit <= r->size) {
1797 			max_addr = r->base + limit;
1798 			break;
1799 		}
1800 		limit -= r->size;
1801 	}
1802 
1803 	return max_addr;
1804 }
1805 
1806 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1807 {
1808 	phys_addr_t max_addr;
1809 
1810 	if (!limit)
1811 		return;
1812 
1813 	max_addr = __find_max_addr(limit);
1814 
1815 	/* @limit exceeds the total size of the memory, do nothing */
1816 	if (max_addr == PHYS_ADDR_MAX)
1817 		return;
1818 
1819 	/* truncate both memory and reserved regions */
1820 	memblock_remove_range(&memblock.memory, max_addr,
1821 			      PHYS_ADDR_MAX);
1822 	memblock_remove_range(&memblock.reserved, max_addr,
1823 			      PHYS_ADDR_MAX);
1824 }
1825 
1826 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1827 {
1828 	int start_rgn, end_rgn;
1829 	int i, ret;
1830 
1831 	if (!size)
1832 		return;
1833 
1834 	if (!memblock_memory->total_size) {
1835 		pr_warn("%s: No memory registered yet\n", __func__);
1836 		return;
1837 	}
1838 
1839 	ret = memblock_isolate_range(&memblock.memory, base, size,
1840 						&start_rgn, &end_rgn);
1841 	if (ret)
1842 		return;
1843 
1844 	/* remove all the MAP regions */
1845 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1846 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1847 			memblock_remove_region(&memblock.memory, i);
1848 
1849 	for (i = start_rgn - 1; i >= 0; i--)
1850 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1851 			memblock_remove_region(&memblock.memory, i);
1852 
1853 	/* truncate the reserved regions */
1854 	memblock_remove_range(&memblock.reserved, 0, base);
1855 	memblock_remove_range(&memblock.reserved,
1856 			base + size, PHYS_ADDR_MAX);
1857 }
1858 
1859 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1860 {
1861 	phys_addr_t max_addr;
1862 
1863 	if (!limit)
1864 		return;
1865 
1866 	max_addr = __find_max_addr(limit);
1867 
1868 	/* @limit exceeds the total size of the memory, do nothing */
1869 	if (max_addr == PHYS_ADDR_MAX)
1870 		return;
1871 
1872 	memblock_cap_memory_range(0, max_addr);
1873 }
1874 
1875 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1876 {
1877 	unsigned int left = 0, right = type->cnt;
1878 
1879 	do {
1880 		unsigned int mid = (right + left) / 2;
1881 
1882 		if (addr < type->regions[mid].base)
1883 			right = mid;
1884 		else if (addr >= (type->regions[mid].base +
1885 				  type->regions[mid].size))
1886 			left = mid + 1;
1887 		else
1888 			return mid;
1889 	} while (left < right);
1890 	return -1;
1891 }
1892 
1893 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1894 {
1895 	return memblock_search(&memblock.reserved, addr) != -1;
1896 }
1897 
1898 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1899 {
1900 	return memblock_search(&memblock.memory, addr) != -1;
1901 }
1902 
1903 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1904 {
1905 	int i = memblock_search(&memblock.memory, addr);
1906 
1907 	if (i == -1)
1908 		return false;
1909 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1910 }
1911 
1912 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1913 			 unsigned long *start_pfn, unsigned long *end_pfn)
1914 {
1915 	struct memblock_type *type = &memblock.memory;
1916 	int mid = memblock_search(type, PFN_PHYS(pfn));
1917 
1918 	if (mid == -1)
1919 		return NUMA_NO_NODE;
1920 
1921 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1922 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1923 
1924 	return memblock_get_region_node(&type->regions[mid]);
1925 }
1926 
1927 /**
1928  * memblock_is_region_memory - check if a region is a subset of memory
1929  * @base: base of region to check
1930  * @size: size of region to check
1931  *
1932  * Check if the region [@base, @base + @size) is a subset of a memory block.
1933  *
1934  * Return:
1935  * 0 if false, non-zero if true
1936  */
1937 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1938 {
1939 	int idx = memblock_search(&memblock.memory, base);
1940 	phys_addr_t end = base + memblock_cap_size(base, &size);
1941 
1942 	if (idx == -1)
1943 		return false;
1944 	return (memblock.memory.regions[idx].base +
1945 		 memblock.memory.regions[idx].size) >= end;
1946 }
1947 
1948 /**
1949  * memblock_is_region_reserved - check if a region intersects reserved memory
1950  * @base: base of region to check
1951  * @size: size of region to check
1952  *
1953  * Check if the region [@base, @base + @size) intersects a reserved
1954  * memory block.
1955  *
1956  * Return:
1957  * True if they intersect, false if not.
1958  */
1959 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1960 {
1961 	return memblock_overlaps_region(&memblock.reserved, base, size);
1962 }
1963 
1964 void __init_memblock memblock_trim_memory(phys_addr_t align)
1965 {
1966 	phys_addr_t start, end, orig_start, orig_end;
1967 	struct memblock_region *r;
1968 
1969 	for_each_mem_region(r) {
1970 		orig_start = r->base;
1971 		orig_end = r->base + r->size;
1972 		start = round_up(orig_start, align);
1973 		end = round_down(orig_end, align);
1974 
1975 		if (start == orig_start && end == orig_end)
1976 			continue;
1977 
1978 		if (start < end) {
1979 			r->base = start;
1980 			r->size = end - start;
1981 		} else {
1982 			memblock_remove_region(&memblock.memory,
1983 					       r - memblock.memory.regions);
1984 			r--;
1985 		}
1986 	}
1987 }
1988 
1989 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1990 {
1991 	memblock.current_limit = limit;
1992 }
1993 
1994 phys_addr_t __init_memblock memblock_get_current_limit(void)
1995 {
1996 	return memblock.current_limit;
1997 }
1998 
1999 static void __init_memblock memblock_dump(struct memblock_type *type)
2000 {
2001 	phys_addr_t base, end, size;
2002 	enum memblock_flags flags;
2003 	int idx;
2004 	struct memblock_region *rgn;
2005 
2006 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
2007 
2008 	for_each_memblock_type(idx, type, rgn) {
2009 		char nid_buf[32] = "";
2010 
2011 		base = rgn->base;
2012 		size = rgn->size;
2013 		end = base + size - 1;
2014 		flags = rgn->flags;
2015 #ifdef CONFIG_NUMA
2016 		if (numa_valid_node(memblock_get_region_node(rgn)))
2017 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
2018 				 memblock_get_region_node(rgn));
2019 #endif
2020 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
2021 			type->name, idx, &base, &end, &size, nid_buf, flags);
2022 	}
2023 }
2024 
2025 static void __init_memblock __memblock_dump_all(void)
2026 {
2027 	pr_info("MEMBLOCK configuration:\n");
2028 	pr_info(" memory size = %pa reserved size = %pa\n",
2029 		&memblock.memory.total_size,
2030 		&memblock.reserved.total_size);
2031 
2032 	memblock_dump(&memblock.memory);
2033 	memblock_dump(&memblock.reserved);
2034 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2035 	memblock_dump(&physmem);
2036 #endif
2037 }
2038 
2039 void __init_memblock memblock_dump_all(void)
2040 {
2041 	if (memblock_debug)
2042 		__memblock_dump_all();
2043 }
2044 
2045 void __init memblock_allow_resize(void)
2046 {
2047 	memblock_can_resize = 1;
2048 }
2049 
2050 static int __init early_memblock(char *p)
2051 {
2052 	if (p && strstr(p, "debug"))
2053 		memblock_debug = 1;
2054 	return 0;
2055 }
2056 early_param("memblock", early_memblock);
2057 
2058 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2059 {
2060 	struct page *start_pg, *end_pg;
2061 	phys_addr_t pg, pgend;
2062 
2063 	/*
2064 	 * Convert start_pfn/end_pfn to a struct page pointer.
2065 	 */
2066 	start_pg = pfn_to_page(start_pfn - 1) + 1;
2067 	end_pg = pfn_to_page(end_pfn - 1) + 1;
2068 
2069 	/*
2070 	 * Convert to physical addresses, and round start upwards and end
2071 	 * downwards.
2072 	 */
2073 	pg = PAGE_ALIGN(__pa(start_pg));
2074 	pgend = PAGE_ALIGN_DOWN(__pa(end_pg));
2075 
2076 	/*
2077 	 * If there are free pages between these, free the section of the
2078 	 * memmap array.
2079 	 */
2080 	if (pg < pgend)
2081 		memblock_phys_free(pg, pgend - pg);
2082 }
2083 
2084 /*
2085  * The mem_map array can get very big.  Free the unused area of the memory map.
2086  */
2087 static void __init free_unused_memmap(void)
2088 {
2089 	unsigned long start, end, prev_end = 0;
2090 	int i;
2091 
2092 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2093 	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2094 		return;
2095 
2096 	/*
2097 	 * This relies on each bank being in address order.
2098 	 * The banks are sorted previously in bootmem_init().
2099 	 */
2100 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2101 #ifdef CONFIG_SPARSEMEM
2102 		/*
2103 		 * Take care not to free memmap entries that don't exist
2104 		 * due to SPARSEMEM sections which aren't present.
2105 		 */
2106 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2107 #endif
2108 		/*
2109 		 * Align down here since many operations in VM subsystem
2110 		 * presume that there are no holes in the memory map inside
2111 		 * a pageblock
2112 		 */
2113 		start = pageblock_start_pfn(start);
2114 
2115 		/*
2116 		 * If we had a previous bank, and there is a space
2117 		 * between the current bank and the previous, free it.
2118 		 */
2119 		if (prev_end && prev_end < start)
2120 			free_memmap(prev_end, start);
2121 
2122 		/*
2123 		 * Align up here since many operations in VM subsystem
2124 		 * presume that there are no holes in the memory map inside
2125 		 * a pageblock
2126 		 */
2127 		prev_end = pageblock_align(end);
2128 	}
2129 
2130 #ifdef CONFIG_SPARSEMEM
2131 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2132 		prev_end = pageblock_align(end);
2133 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2134 	}
2135 #endif
2136 }
2137 
2138 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2139 {
2140 	int order;
2141 
2142 	while (start < end) {
2143 		/*
2144 		 * Free the pages in the largest chunks alignment allows.
2145 		 *
2146 		 * __ffs() behaviour is undefined for 0. start == 0 is
2147 		 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2148 		 * the case.
2149 		 */
2150 		if (start)
2151 			order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2152 		else
2153 			order = MAX_PAGE_ORDER;
2154 
2155 		while (start + (1UL << order) > end)
2156 			order--;
2157 
2158 		memblock_free_pages(pfn_to_page(start), start, order);
2159 
2160 		start += (1UL << order);
2161 	}
2162 }
2163 
2164 static unsigned long __init __free_memory_core(phys_addr_t start,
2165 				 phys_addr_t end)
2166 {
2167 	unsigned long start_pfn = PFN_UP(start);
2168 	unsigned long end_pfn = PFN_DOWN(end);
2169 
2170 	if (!IS_ENABLED(CONFIG_HIGHMEM) && end_pfn > max_low_pfn)
2171 		end_pfn = max_low_pfn;
2172 
2173 	if (start_pfn >= end_pfn)
2174 		return 0;
2175 
2176 	__free_pages_memory(start_pfn, end_pfn);
2177 
2178 	return end_pfn - start_pfn;
2179 }
2180 
2181 static void __init memmap_init_reserved_pages(void)
2182 {
2183 	struct memblock_region *region;
2184 	phys_addr_t start, end;
2185 	int nid;
2186 	unsigned long max_reserved;
2187 
2188 	/*
2189 	 * set nid on all reserved pages and also treat struct
2190 	 * pages for the NOMAP regions as PageReserved
2191 	 */
2192 repeat:
2193 	max_reserved = memblock.reserved.max;
2194 	for_each_mem_region(region) {
2195 		nid = memblock_get_region_node(region);
2196 		start = region->base;
2197 		end = start + region->size;
2198 
2199 		if (memblock_is_nomap(region))
2200 			reserve_bootmem_region(start, end, nid);
2201 
2202 		memblock_set_node(start, region->size, &memblock.reserved, nid);
2203 	}
2204 	/*
2205 	 * 'max' is changed means memblock.reserved has been doubled its
2206 	 * array, which may result a new reserved region before current
2207 	 * 'start'. Now we should repeat the procedure to set its node id.
2208 	 */
2209 	if (max_reserved != memblock.reserved.max)
2210 		goto repeat;
2211 
2212 	/*
2213 	 * initialize struct pages for reserved regions that don't have
2214 	 * the MEMBLOCK_RSRV_NOINIT flag set
2215 	 */
2216 	for_each_reserved_mem_region(region) {
2217 		if (!memblock_is_reserved_noinit(region)) {
2218 			nid = memblock_get_region_node(region);
2219 			start = region->base;
2220 			end = start + region->size;
2221 
2222 			if (!numa_valid_node(nid))
2223 				nid = early_pfn_to_nid(PFN_DOWN(start));
2224 
2225 			reserve_bootmem_region(start, end, nid);
2226 		}
2227 	}
2228 }
2229 
2230 static unsigned long __init free_low_memory_core_early(void)
2231 {
2232 	unsigned long count = 0;
2233 	phys_addr_t start, end;
2234 	u64 i;
2235 
2236 	memblock_clear_hotplug(0, -1);
2237 
2238 	memmap_init_reserved_pages();
2239 
2240 	/*
2241 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2242 	 *  because in some case like Node0 doesn't have RAM installed
2243 	 *  low ram will be on Node1
2244 	 */
2245 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2246 				NULL)
2247 		count += __free_memory_core(start, end);
2248 
2249 	return count;
2250 }
2251 
2252 static int reset_managed_pages_done __initdata;
2253 
2254 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2255 {
2256 	struct zone *z;
2257 
2258 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2259 		atomic_long_set(&z->managed_pages, 0);
2260 }
2261 
2262 void __init reset_all_zones_managed_pages(void)
2263 {
2264 	struct pglist_data *pgdat;
2265 
2266 	if (reset_managed_pages_done)
2267 		return;
2268 
2269 	for_each_online_pgdat(pgdat)
2270 		reset_node_managed_pages(pgdat);
2271 
2272 	reset_managed_pages_done = 1;
2273 }
2274 
2275 /**
2276  * memblock_free_all - release free pages to the buddy allocator
2277  */
2278 void __init memblock_free_all(void)
2279 {
2280 	unsigned long pages;
2281 
2282 	free_unused_memmap();
2283 	reset_all_zones_managed_pages();
2284 
2285 	pages = free_low_memory_core_early();
2286 	totalram_pages_add(pages);
2287 }
2288 
2289 /* Keep a table to reserve named memory */
2290 #define RESERVE_MEM_MAX_ENTRIES		8
2291 #define RESERVE_MEM_NAME_SIZE		16
2292 struct reserve_mem_table {
2293 	char			name[RESERVE_MEM_NAME_SIZE];
2294 	phys_addr_t		start;
2295 	phys_addr_t		size;
2296 };
2297 static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES];
2298 static int reserved_mem_count;
2299 static DEFINE_MUTEX(reserve_mem_lock);
2300 
2301 /* Add wildcard region with a lookup name */
2302 static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size,
2303 				   const char *name)
2304 {
2305 	struct reserve_mem_table *map;
2306 
2307 	map = &reserved_mem_table[reserved_mem_count++];
2308 	map->start = start;
2309 	map->size = size;
2310 	strscpy(map->name, name);
2311 }
2312 
2313 static struct reserve_mem_table *reserve_mem_find_by_name_nolock(const char *name)
2314 {
2315 	struct reserve_mem_table *map;
2316 	int i;
2317 
2318 	for (i = 0; i < reserved_mem_count; i++) {
2319 		map = &reserved_mem_table[i];
2320 		if (!map->size)
2321 			continue;
2322 		if (strcmp(name, map->name) == 0)
2323 			return map;
2324 	}
2325 	return NULL;
2326 }
2327 
2328 /**
2329  * reserve_mem_find_by_name - Find reserved memory region with a given name
2330  * @name: The name that is attached to a reserved memory region
2331  * @start: If found, holds the start address
2332  * @size: If found, holds the size of the address.
2333  *
2334  * @start and @size are only updated if @name is found.
2335  *
2336  * Returns: 1 if found or 0 if not found.
2337  */
2338 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size)
2339 {
2340 	struct reserve_mem_table *map;
2341 
2342 	guard(mutex)(&reserve_mem_lock);
2343 	map = reserve_mem_find_by_name_nolock(name);
2344 	if (!map)
2345 		return 0;
2346 
2347 	*start = map->start;
2348 	*size = map->size;
2349 	return 1;
2350 }
2351 EXPORT_SYMBOL_GPL(reserve_mem_find_by_name);
2352 
2353 /**
2354  * reserve_mem_release_by_name - Release reserved memory region with a given name
2355  * @name: The name that is attatched to a reserved memory region
2356  *
2357  * Forcibly release the pages in the reserved memory region so that those memory
2358  * can be used as free memory. After released the reserved region size becomes 0.
2359  *
2360  * Returns: 1 if released or 0 if not found.
2361  */
2362 int reserve_mem_release_by_name(const char *name)
2363 {
2364 	char buf[RESERVE_MEM_NAME_SIZE + 12];
2365 	struct reserve_mem_table *map;
2366 	void *start, *end;
2367 
2368 	guard(mutex)(&reserve_mem_lock);
2369 	map = reserve_mem_find_by_name_nolock(name);
2370 	if (!map)
2371 		return 0;
2372 
2373 	start = phys_to_virt(map->start);
2374 	end = start + map->size - 1;
2375 	snprintf(buf, sizeof(buf), "reserve_mem:%s", name);
2376 	free_reserved_area(start, end, 0, buf);
2377 	map->size = 0;
2378 
2379 	return 1;
2380 }
2381 
2382 /*
2383  * Parse reserve_mem=nn:align:name
2384  */
2385 static int __init reserve_mem(char *p)
2386 {
2387 	phys_addr_t start, size, align, tmp;
2388 	char *name;
2389 	char *oldp;
2390 	int len;
2391 
2392 	if (!p)
2393 		return -EINVAL;
2394 
2395 	/* Check if there's room for more reserved memory */
2396 	if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES)
2397 		return -EBUSY;
2398 
2399 	oldp = p;
2400 	size = memparse(p, &p);
2401 	if (!size || p == oldp)
2402 		return -EINVAL;
2403 
2404 	if (*p != ':')
2405 		return -EINVAL;
2406 
2407 	align = memparse(p+1, &p);
2408 	if (*p != ':')
2409 		return -EINVAL;
2410 
2411 	/*
2412 	 * memblock_phys_alloc() doesn't like a zero size align,
2413 	 * but it is OK for this command to have it.
2414 	 */
2415 	if (align < SMP_CACHE_BYTES)
2416 		align = SMP_CACHE_BYTES;
2417 
2418 	name = p + 1;
2419 	len = strlen(name);
2420 
2421 	/* name needs to have length but not too big */
2422 	if (!len || len >= RESERVE_MEM_NAME_SIZE)
2423 		return -EINVAL;
2424 
2425 	/* Make sure that name has text */
2426 	for (p = name; *p; p++) {
2427 		if (!isspace(*p))
2428 			break;
2429 	}
2430 	if (!*p)
2431 		return -EINVAL;
2432 
2433 	/* Make sure the name is not already used */
2434 	if (reserve_mem_find_by_name(name, &start, &tmp))
2435 		return -EBUSY;
2436 
2437 	start = memblock_phys_alloc(size, align);
2438 	if (!start)
2439 		return -ENOMEM;
2440 
2441 	reserved_mem_add(start, size, name);
2442 
2443 	return 1;
2444 }
2445 __setup("reserve_mem=", reserve_mem);
2446 
2447 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2448 static const char * const flagname[] = {
2449 	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2450 	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2451 	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2452 	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2453 	[ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2454 };
2455 
2456 static int memblock_debug_show(struct seq_file *m, void *private)
2457 {
2458 	struct memblock_type *type = m->private;
2459 	struct memblock_region *reg;
2460 	int i, j, nid;
2461 	unsigned int count = ARRAY_SIZE(flagname);
2462 	phys_addr_t end;
2463 
2464 	for (i = 0; i < type->cnt; i++) {
2465 		reg = &type->regions[i];
2466 		end = reg->base + reg->size - 1;
2467 		nid = memblock_get_region_node(reg);
2468 
2469 		seq_printf(m, "%4d: ", i);
2470 		seq_printf(m, "%pa..%pa ", &reg->base, &end);
2471 		if (numa_valid_node(nid))
2472 			seq_printf(m, "%4d ", nid);
2473 		else
2474 			seq_printf(m, "%4c ", 'x');
2475 		if (reg->flags) {
2476 			for (j = 0; j < count; j++) {
2477 				if (reg->flags & (1U << j)) {
2478 					seq_printf(m, "%s\n", flagname[j]);
2479 					break;
2480 				}
2481 			}
2482 			if (j == count)
2483 				seq_printf(m, "%s\n", "UNKNOWN");
2484 		} else {
2485 			seq_printf(m, "%s\n", "NONE");
2486 		}
2487 	}
2488 	return 0;
2489 }
2490 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2491 
2492 static int __init memblock_init_debugfs(void)
2493 {
2494 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2495 
2496 	debugfs_create_file("memory", 0444, root,
2497 			    &memblock.memory, &memblock_debug_fops);
2498 	debugfs_create_file("reserved", 0444, root,
2499 			    &memblock.reserved, &memblock_debug_fops);
2500 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2501 	debugfs_create_file("physmem", 0444, root, &physmem,
2502 			    &memblock_debug_fops);
2503 #endif
2504 
2505 	return 0;
2506 }
2507 __initcall(memblock_init_debugfs);
2508 
2509 #endif /* CONFIG_DEBUG_FS */
2510