1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for maintaining information about logical memory blocks. 4 * 5 * Peter Bergner, IBM Corp. June 2001. 6 * Copyright (C) 2001 Peter Bergner. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/init.h> 12 #include <linux/bitops.h> 13 #include <linux/poison.h> 14 #include <linux/pfn.h> 15 #include <linux/debugfs.h> 16 #include <linux/kmemleak.h> 17 #include <linux/seq_file.h> 18 #include <linux/memblock.h> 19 20 #include <asm/sections.h> 21 #include <linux/io.h> 22 23 #include "internal.h" 24 25 #define INIT_MEMBLOCK_REGIONS 128 26 #define INIT_PHYSMEM_REGIONS 4 27 28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 30 #endif 31 32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS 33 #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS 34 #endif 35 36 /** 37 * DOC: memblock overview 38 * 39 * Memblock is a method of managing memory regions during the early 40 * boot period when the usual kernel memory allocators are not up and 41 * running. 42 * 43 * Memblock views the system memory as collections of contiguous 44 * regions. There are several types of these collections: 45 * 46 * * ``memory`` - describes the physical memory available to the 47 * kernel; this may differ from the actual physical memory installed 48 * in the system, for instance when the memory is restricted with 49 * ``mem=`` command line parameter 50 * * ``reserved`` - describes the regions that were allocated 51 * * ``physmem`` - describes the actual physical memory available during 52 * boot regardless of the possible restrictions and memory hot(un)plug; 53 * the ``physmem`` type is only available on some architectures. 54 * 55 * Each region is represented by struct memblock_region that 56 * defines the region extents, its attributes and NUMA node id on NUMA 57 * systems. Every memory type is described by the struct memblock_type 58 * which contains an array of memory regions along with 59 * the allocator metadata. The "memory" and "reserved" types are nicely 60 * wrapped with struct memblock. This structure is statically 61 * initialized at build time. The region arrays are initially sized to 62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and 63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array 64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS. 65 * The memblock_allow_resize() enables automatic resizing of the region 66 * arrays during addition of new regions. This feature should be used 67 * with care so that memory allocated for the region array will not 68 * overlap with areas that should be reserved, for example initrd. 69 * 70 * The early architecture setup should tell memblock what the physical 71 * memory layout is by using memblock_add() or memblock_add_node() 72 * functions. The first function does not assign the region to a NUMA 73 * node and it is appropriate for UMA systems. Yet, it is possible to 74 * use it on NUMA systems as well and assign the region to a NUMA node 75 * later in the setup process using memblock_set_node(). The 76 * memblock_add_node() performs such an assignment directly. 77 * 78 * Once memblock is setup the memory can be allocated using one of the 79 * API variants: 80 * 81 * * memblock_phys_alloc*() - these functions return the **physical** 82 * address of the allocated memory 83 * * memblock_alloc*() - these functions return the **virtual** address 84 * of the allocated memory. 85 * 86 * Note, that both API variants use implicit assumptions about allowed 87 * memory ranges and the fallback methods. Consult the documentation 88 * of memblock_alloc_internal() and memblock_alloc_range_nid() 89 * functions for more elaborate description. 90 * 91 * As the system boot progresses, the architecture specific mem_init() 92 * function frees all the memory to the buddy page allocator. 93 * 94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 95 * memblock data structures (except "physmem") will be discarded after the 96 * system initialization completes. 97 */ 98 99 #ifndef CONFIG_NUMA 100 struct pglist_data __refdata contig_page_data; 101 EXPORT_SYMBOL(contig_page_data); 102 #endif 103 104 unsigned long max_low_pfn; 105 unsigned long min_low_pfn; 106 unsigned long max_pfn; 107 unsigned long long max_possible_pfn; 108 109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock; 110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; 113 #endif 114 115 struct memblock memblock __initdata_memblock = { 116 .memory.regions = memblock_memory_init_regions, 117 .memory.cnt = 1, /* empty dummy entry */ 118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS, 119 .memory.name = "memory", 120 121 .reserved.regions = memblock_reserved_init_regions, 122 .reserved.cnt = 1, /* empty dummy entry */ 123 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 124 .reserved.name = "reserved", 125 126 .bottom_up = false, 127 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 128 }; 129 130 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 131 struct memblock_type physmem = { 132 .regions = memblock_physmem_init_regions, 133 .cnt = 1, /* empty dummy entry */ 134 .max = INIT_PHYSMEM_REGIONS, 135 .name = "physmem", 136 }; 137 #endif 138 139 /* 140 * keep a pointer to &memblock.memory in the text section to use it in 141 * __next_mem_range() and its helpers. 142 * For architectures that do not keep memblock data after init, this 143 * pointer will be reset to NULL at memblock_discard() 144 */ 145 static __refdata struct memblock_type *memblock_memory = &memblock.memory; 146 147 #define for_each_memblock_type(i, memblock_type, rgn) \ 148 for (i = 0, rgn = &memblock_type->regions[0]; \ 149 i < memblock_type->cnt; \ 150 i++, rgn = &memblock_type->regions[i]) 151 152 #define memblock_dbg(fmt, ...) \ 153 do { \ 154 if (memblock_debug) \ 155 pr_info(fmt, ##__VA_ARGS__); \ 156 } while (0) 157 158 static int memblock_debug __initdata_memblock; 159 static bool system_has_some_mirror __initdata_memblock; 160 static int memblock_can_resize __initdata_memblock; 161 static int memblock_memory_in_slab __initdata_memblock; 162 static int memblock_reserved_in_slab __initdata_memblock; 163 164 bool __init_memblock memblock_has_mirror(void) 165 { 166 return system_has_some_mirror; 167 } 168 169 static enum memblock_flags __init_memblock choose_memblock_flags(void) 170 { 171 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 172 } 173 174 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 175 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 176 { 177 return *size = min(*size, PHYS_ADDR_MAX - base); 178 } 179 180 /* 181 * Address comparison utilities 182 */ 183 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 184 phys_addr_t base2, phys_addr_t size2) 185 { 186 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 187 } 188 189 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 190 phys_addr_t base, phys_addr_t size) 191 { 192 unsigned long i; 193 194 memblock_cap_size(base, &size); 195 196 for (i = 0; i < type->cnt; i++) 197 if (memblock_addrs_overlap(base, size, type->regions[i].base, 198 type->regions[i].size)) 199 break; 200 return i < type->cnt; 201 } 202 203 /** 204 * __memblock_find_range_bottom_up - find free area utility in bottom-up 205 * @start: start of candidate range 206 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 207 * %MEMBLOCK_ALLOC_ACCESSIBLE 208 * @size: size of free area to find 209 * @align: alignment of free area to find 210 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 211 * @flags: pick from blocks based on memory attributes 212 * 213 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 214 * 215 * Return: 216 * Found address on success, 0 on failure. 217 */ 218 static phys_addr_t __init_memblock 219 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 220 phys_addr_t size, phys_addr_t align, int nid, 221 enum memblock_flags flags) 222 { 223 phys_addr_t this_start, this_end, cand; 224 u64 i; 225 226 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 227 this_start = clamp(this_start, start, end); 228 this_end = clamp(this_end, start, end); 229 230 cand = round_up(this_start, align); 231 if (cand < this_end && this_end - cand >= size) 232 return cand; 233 } 234 235 return 0; 236 } 237 238 /** 239 * __memblock_find_range_top_down - find free area utility, in top-down 240 * @start: start of candidate range 241 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 242 * %MEMBLOCK_ALLOC_ACCESSIBLE 243 * @size: size of free area to find 244 * @align: alignment of free area to find 245 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 246 * @flags: pick from blocks based on memory attributes 247 * 248 * Utility called from memblock_find_in_range_node(), find free area top-down. 249 * 250 * Return: 251 * Found address on success, 0 on failure. 252 */ 253 static phys_addr_t __init_memblock 254 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 255 phys_addr_t size, phys_addr_t align, int nid, 256 enum memblock_flags flags) 257 { 258 phys_addr_t this_start, this_end, cand; 259 u64 i; 260 261 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 262 NULL) { 263 this_start = clamp(this_start, start, end); 264 this_end = clamp(this_end, start, end); 265 266 if (this_end < size) 267 continue; 268 269 cand = round_down(this_end - size, align); 270 if (cand >= this_start) 271 return cand; 272 } 273 274 return 0; 275 } 276 277 /** 278 * memblock_find_in_range_node - find free area in given range and node 279 * @size: size of free area to find 280 * @align: alignment of free area to find 281 * @start: start of candidate range 282 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 283 * %MEMBLOCK_ALLOC_ACCESSIBLE 284 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 285 * @flags: pick from blocks based on memory attributes 286 * 287 * Find @size free area aligned to @align in the specified range and node. 288 * 289 * Return: 290 * Found address on success, 0 on failure. 291 */ 292 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 293 phys_addr_t align, phys_addr_t start, 294 phys_addr_t end, int nid, 295 enum memblock_flags flags) 296 { 297 /* pump up @end */ 298 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 299 end == MEMBLOCK_ALLOC_NOLEAKTRACE) 300 end = memblock.current_limit; 301 302 /* avoid allocating the first page */ 303 start = max_t(phys_addr_t, start, PAGE_SIZE); 304 end = max(start, end); 305 306 if (memblock_bottom_up()) 307 return __memblock_find_range_bottom_up(start, end, size, align, 308 nid, flags); 309 else 310 return __memblock_find_range_top_down(start, end, size, align, 311 nid, flags); 312 } 313 314 /** 315 * memblock_find_in_range - find free area in given range 316 * @start: start of candidate range 317 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 318 * %MEMBLOCK_ALLOC_ACCESSIBLE 319 * @size: size of free area to find 320 * @align: alignment of free area to find 321 * 322 * Find @size free area aligned to @align in the specified range. 323 * 324 * Return: 325 * Found address on success, 0 on failure. 326 */ 327 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 328 phys_addr_t end, phys_addr_t size, 329 phys_addr_t align) 330 { 331 phys_addr_t ret; 332 enum memblock_flags flags = choose_memblock_flags(); 333 334 again: 335 ret = memblock_find_in_range_node(size, align, start, end, 336 NUMA_NO_NODE, flags); 337 338 if (!ret && (flags & MEMBLOCK_MIRROR)) { 339 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", 340 &size); 341 flags &= ~MEMBLOCK_MIRROR; 342 goto again; 343 } 344 345 return ret; 346 } 347 348 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 349 { 350 type->total_size -= type->regions[r].size; 351 memmove(&type->regions[r], &type->regions[r + 1], 352 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 353 type->cnt--; 354 355 /* Special case for empty arrays */ 356 if (type->cnt == 0) { 357 WARN_ON(type->total_size != 0); 358 type->cnt = 1; 359 type->regions[0].base = 0; 360 type->regions[0].size = 0; 361 type->regions[0].flags = 0; 362 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 363 } 364 } 365 366 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 367 /** 368 * memblock_discard - discard memory and reserved arrays if they were allocated 369 */ 370 void __init memblock_discard(void) 371 { 372 phys_addr_t addr, size; 373 374 if (memblock.reserved.regions != memblock_reserved_init_regions) { 375 addr = __pa(memblock.reserved.regions); 376 size = PAGE_ALIGN(sizeof(struct memblock_region) * 377 memblock.reserved.max); 378 if (memblock_reserved_in_slab) 379 kfree(memblock.reserved.regions); 380 else 381 memblock_free_late(addr, size); 382 } 383 384 if (memblock.memory.regions != memblock_memory_init_regions) { 385 addr = __pa(memblock.memory.regions); 386 size = PAGE_ALIGN(sizeof(struct memblock_region) * 387 memblock.memory.max); 388 if (memblock_memory_in_slab) 389 kfree(memblock.memory.regions); 390 else 391 memblock_free_late(addr, size); 392 } 393 394 memblock_memory = NULL; 395 } 396 #endif 397 398 /** 399 * memblock_double_array - double the size of the memblock regions array 400 * @type: memblock type of the regions array being doubled 401 * @new_area_start: starting address of memory range to avoid overlap with 402 * @new_area_size: size of memory range to avoid overlap with 403 * 404 * Double the size of the @type regions array. If memblock is being used to 405 * allocate memory for a new reserved regions array and there is a previously 406 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 407 * waiting to be reserved, ensure the memory used by the new array does 408 * not overlap. 409 * 410 * Return: 411 * 0 on success, -1 on failure. 412 */ 413 static int __init_memblock memblock_double_array(struct memblock_type *type, 414 phys_addr_t new_area_start, 415 phys_addr_t new_area_size) 416 { 417 struct memblock_region *new_array, *old_array; 418 phys_addr_t old_alloc_size, new_alloc_size; 419 phys_addr_t old_size, new_size, addr, new_end; 420 int use_slab = slab_is_available(); 421 int *in_slab; 422 423 /* We don't allow resizing until we know about the reserved regions 424 * of memory that aren't suitable for allocation 425 */ 426 if (!memblock_can_resize) 427 panic("memblock: cannot resize %s array\n", type->name); 428 429 /* Calculate new doubled size */ 430 old_size = type->max * sizeof(struct memblock_region); 431 new_size = old_size << 1; 432 /* 433 * We need to allocated new one align to PAGE_SIZE, 434 * so we can free them completely later. 435 */ 436 old_alloc_size = PAGE_ALIGN(old_size); 437 new_alloc_size = PAGE_ALIGN(new_size); 438 439 /* Retrieve the slab flag */ 440 if (type == &memblock.memory) 441 in_slab = &memblock_memory_in_slab; 442 else 443 in_slab = &memblock_reserved_in_slab; 444 445 /* Try to find some space for it */ 446 if (use_slab) { 447 new_array = kmalloc(new_size, GFP_KERNEL); 448 addr = new_array ? __pa(new_array) : 0; 449 } else { 450 /* only exclude range when trying to double reserved.regions */ 451 if (type != &memblock.reserved) 452 new_area_start = new_area_size = 0; 453 454 addr = memblock_find_in_range(new_area_start + new_area_size, 455 memblock.current_limit, 456 new_alloc_size, PAGE_SIZE); 457 if (!addr && new_area_size) 458 addr = memblock_find_in_range(0, 459 min(new_area_start, memblock.current_limit), 460 new_alloc_size, PAGE_SIZE); 461 462 new_array = addr ? __va(addr) : NULL; 463 } 464 if (!addr) { 465 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 466 type->name, type->max, type->max * 2); 467 return -1; 468 } 469 470 new_end = addr + new_size - 1; 471 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 472 type->name, type->max * 2, &addr, &new_end); 473 474 /* 475 * Found space, we now need to move the array over before we add the 476 * reserved region since it may be our reserved array itself that is 477 * full. 478 */ 479 memcpy(new_array, type->regions, old_size); 480 memset(new_array + type->max, 0, old_size); 481 old_array = type->regions; 482 type->regions = new_array; 483 type->max <<= 1; 484 485 /* Free old array. We needn't free it if the array is the static one */ 486 if (*in_slab) 487 kfree(old_array); 488 else if (old_array != memblock_memory_init_regions && 489 old_array != memblock_reserved_init_regions) 490 memblock_free(old_array, old_alloc_size); 491 492 /* 493 * Reserve the new array if that comes from the memblock. Otherwise, we 494 * needn't do it 495 */ 496 if (!use_slab) 497 BUG_ON(memblock_reserve(addr, new_alloc_size)); 498 499 /* Update slab flag */ 500 *in_slab = use_slab; 501 502 return 0; 503 } 504 505 /** 506 * memblock_merge_regions - merge neighboring compatible regions 507 * @type: memblock type to scan 508 * @start_rgn: start scanning from (@start_rgn - 1) 509 * @end_rgn: end scanning at (@end_rgn - 1) 510 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn) 511 */ 512 static void __init_memblock memblock_merge_regions(struct memblock_type *type, 513 unsigned long start_rgn, 514 unsigned long end_rgn) 515 { 516 int i = 0; 517 if (start_rgn) 518 i = start_rgn - 1; 519 end_rgn = min(end_rgn, type->cnt - 1); 520 while (i < end_rgn) { 521 struct memblock_region *this = &type->regions[i]; 522 struct memblock_region *next = &type->regions[i + 1]; 523 524 if (this->base + this->size != next->base || 525 memblock_get_region_node(this) != 526 memblock_get_region_node(next) || 527 this->flags != next->flags) { 528 BUG_ON(this->base + this->size > next->base); 529 i++; 530 continue; 531 } 532 533 this->size += next->size; 534 /* move forward from next + 1, index of which is i + 2 */ 535 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 536 type->cnt--; 537 end_rgn--; 538 } 539 } 540 541 /** 542 * memblock_insert_region - insert new memblock region 543 * @type: memblock type to insert into 544 * @idx: index for the insertion point 545 * @base: base address of the new region 546 * @size: size of the new region 547 * @nid: node id of the new region 548 * @flags: flags of the new region 549 * 550 * Insert new memblock region [@base, @base + @size) into @type at @idx. 551 * @type must already have extra room to accommodate the new region. 552 */ 553 static void __init_memblock memblock_insert_region(struct memblock_type *type, 554 int idx, phys_addr_t base, 555 phys_addr_t size, 556 int nid, 557 enum memblock_flags flags) 558 { 559 struct memblock_region *rgn = &type->regions[idx]; 560 561 BUG_ON(type->cnt >= type->max); 562 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 563 rgn->base = base; 564 rgn->size = size; 565 rgn->flags = flags; 566 memblock_set_region_node(rgn, nid); 567 type->cnt++; 568 type->total_size += size; 569 } 570 571 /** 572 * memblock_add_range - add new memblock region 573 * @type: memblock type to add new region into 574 * @base: base address of the new region 575 * @size: size of the new region 576 * @nid: nid of the new region 577 * @flags: flags of the new region 578 * 579 * Add new memblock region [@base, @base + @size) into @type. The new region 580 * is allowed to overlap with existing ones - overlaps don't affect already 581 * existing regions. @type is guaranteed to be minimal (all neighbouring 582 * compatible regions are merged) after the addition. 583 * 584 * Return: 585 * 0 on success, -errno on failure. 586 */ 587 static int __init_memblock memblock_add_range(struct memblock_type *type, 588 phys_addr_t base, phys_addr_t size, 589 int nid, enum memblock_flags flags) 590 { 591 bool insert = false; 592 phys_addr_t obase = base; 593 phys_addr_t end = base + memblock_cap_size(base, &size); 594 int idx, nr_new, start_rgn = -1, end_rgn; 595 struct memblock_region *rgn; 596 597 if (!size) 598 return 0; 599 600 /* special case for empty array */ 601 if (type->regions[0].size == 0) { 602 WARN_ON(type->cnt != 1 || type->total_size); 603 type->regions[0].base = base; 604 type->regions[0].size = size; 605 type->regions[0].flags = flags; 606 memblock_set_region_node(&type->regions[0], nid); 607 type->total_size = size; 608 return 0; 609 } 610 611 /* 612 * The worst case is when new range overlaps all existing regions, 613 * then we'll need type->cnt + 1 empty regions in @type. So if 614 * type->cnt * 2 + 1 is less than or equal to type->max, we know 615 * that there is enough empty regions in @type, and we can insert 616 * regions directly. 617 */ 618 if (type->cnt * 2 + 1 <= type->max) 619 insert = true; 620 621 repeat: 622 /* 623 * The following is executed twice. Once with %false @insert and 624 * then with %true. The first counts the number of regions needed 625 * to accommodate the new area. The second actually inserts them. 626 */ 627 base = obase; 628 nr_new = 0; 629 630 for_each_memblock_type(idx, type, rgn) { 631 phys_addr_t rbase = rgn->base; 632 phys_addr_t rend = rbase + rgn->size; 633 634 if (rbase >= end) 635 break; 636 if (rend <= base) 637 continue; 638 /* 639 * @rgn overlaps. If it separates the lower part of new 640 * area, insert that portion. 641 */ 642 if (rbase > base) { 643 #ifdef CONFIG_NUMA 644 WARN_ON(nid != memblock_get_region_node(rgn)); 645 #endif 646 WARN_ON(flags != rgn->flags); 647 nr_new++; 648 if (insert) { 649 if (start_rgn == -1) 650 start_rgn = idx; 651 end_rgn = idx + 1; 652 memblock_insert_region(type, idx++, base, 653 rbase - base, nid, 654 flags); 655 } 656 } 657 /* area below @rend is dealt with, forget about it */ 658 base = min(rend, end); 659 } 660 661 /* insert the remaining portion */ 662 if (base < end) { 663 nr_new++; 664 if (insert) { 665 if (start_rgn == -1) 666 start_rgn = idx; 667 end_rgn = idx + 1; 668 memblock_insert_region(type, idx, base, end - base, 669 nid, flags); 670 } 671 } 672 673 if (!nr_new) 674 return 0; 675 676 /* 677 * If this was the first round, resize array and repeat for actual 678 * insertions; otherwise, merge and return. 679 */ 680 if (!insert) { 681 while (type->cnt + nr_new > type->max) 682 if (memblock_double_array(type, obase, size) < 0) 683 return -ENOMEM; 684 insert = true; 685 goto repeat; 686 } else { 687 memblock_merge_regions(type, start_rgn, end_rgn); 688 return 0; 689 } 690 } 691 692 /** 693 * memblock_add_node - add new memblock region within a NUMA node 694 * @base: base address of the new region 695 * @size: size of the new region 696 * @nid: nid of the new region 697 * @flags: flags of the new region 698 * 699 * Add new memblock region [@base, @base + @size) to the "memory" 700 * type. See memblock_add_range() description for mode details 701 * 702 * Return: 703 * 0 on success, -errno on failure. 704 */ 705 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 706 int nid, enum memblock_flags flags) 707 { 708 phys_addr_t end = base + size - 1; 709 710 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__, 711 &base, &end, nid, flags, (void *)_RET_IP_); 712 713 return memblock_add_range(&memblock.memory, base, size, nid, flags); 714 } 715 716 /** 717 * memblock_add - add new memblock region 718 * @base: base address of the new region 719 * @size: size of the new region 720 * 721 * Add new memblock region [@base, @base + @size) to the "memory" 722 * type. See memblock_add_range() description for mode details 723 * 724 * Return: 725 * 0 on success, -errno on failure. 726 */ 727 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 728 { 729 phys_addr_t end = base + size - 1; 730 731 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 732 &base, &end, (void *)_RET_IP_); 733 734 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 735 } 736 737 /** 738 * memblock_isolate_range - isolate given range into disjoint memblocks 739 * @type: memblock type to isolate range for 740 * @base: base of range to isolate 741 * @size: size of range to isolate 742 * @start_rgn: out parameter for the start of isolated region 743 * @end_rgn: out parameter for the end of isolated region 744 * 745 * Walk @type and ensure that regions don't cross the boundaries defined by 746 * [@base, @base + @size). Crossing regions are split at the boundaries, 747 * which may create at most two more regions. The index of the first 748 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 749 * 750 * Return: 751 * 0 on success, -errno on failure. 752 */ 753 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 754 phys_addr_t base, phys_addr_t size, 755 int *start_rgn, int *end_rgn) 756 { 757 phys_addr_t end = base + memblock_cap_size(base, &size); 758 int idx; 759 struct memblock_region *rgn; 760 761 *start_rgn = *end_rgn = 0; 762 763 if (!size) 764 return 0; 765 766 /* we'll create at most two more regions */ 767 while (type->cnt + 2 > type->max) 768 if (memblock_double_array(type, base, size) < 0) 769 return -ENOMEM; 770 771 for_each_memblock_type(idx, type, rgn) { 772 phys_addr_t rbase = rgn->base; 773 phys_addr_t rend = rbase + rgn->size; 774 775 if (rbase >= end) 776 break; 777 if (rend <= base) 778 continue; 779 780 if (rbase < base) { 781 /* 782 * @rgn intersects from below. Split and continue 783 * to process the next region - the new top half. 784 */ 785 rgn->base = base; 786 rgn->size -= base - rbase; 787 type->total_size -= base - rbase; 788 memblock_insert_region(type, idx, rbase, base - rbase, 789 memblock_get_region_node(rgn), 790 rgn->flags); 791 } else if (rend > end) { 792 /* 793 * @rgn intersects from above. Split and redo the 794 * current region - the new bottom half. 795 */ 796 rgn->base = end; 797 rgn->size -= end - rbase; 798 type->total_size -= end - rbase; 799 memblock_insert_region(type, idx--, rbase, end - rbase, 800 memblock_get_region_node(rgn), 801 rgn->flags); 802 } else { 803 /* @rgn is fully contained, record it */ 804 if (!*end_rgn) 805 *start_rgn = idx; 806 *end_rgn = idx + 1; 807 } 808 } 809 810 return 0; 811 } 812 813 static int __init_memblock memblock_remove_range(struct memblock_type *type, 814 phys_addr_t base, phys_addr_t size) 815 { 816 int start_rgn, end_rgn; 817 int i, ret; 818 819 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 820 if (ret) 821 return ret; 822 823 for (i = end_rgn - 1; i >= start_rgn; i--) 824 memblock_remove_region(type, i); 825 return 0; 826 } 827 828 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 829 { 830 phys_addr_t end = base + size - 1; 831 832 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 833 &base, &end, (void *)_RET_IP_); 834 835 return memblock_remove_range(&memblock.memory, base, size); 836 } 837 838 /** 839 * memblock_free - free boot memory allocation 840 * @ptr: starting address of the boot memory allocation 841 * @size: size of the boot memory block in bytes 842 * 843 * Free boot memory block previously allocated by memblock_alloc_xx() API. 844 * The freeing memory will not be released to the buddy allocator. 845 */ 846 void __init_memblock memblock_free(void *ptr, size_t size) 847 { 848 if (ptr) 849 memblock_phys_free(__pa(ptr), size); 850 } 851 852 /** 853 * memblock_phys_free - free boot memory block 854 * @base: phys starting address of the boot memory block 855 * @size: size of the boot memory block in bytes 856 * 857 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API. 858 * The freeing memory will not be released to the buddy allocator. 859 */ 860 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size) 861 { 862 phys_addr_t end = base + size - 1; 863 864 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 865 &base, &end, (void *)_RET_IP_); 866 867 kmemleak_free_part_phys(base, size); 868 return memblock_remove_range(&memblock.reserved, base, size); 869 } 870 871 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 872 { 873 phys_addr_t end = base + size - 1; 874 875 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 876 &base, &end, (void *)_RET_IP_); 877 878 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 879 } 880 881 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 882 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) 883 { 884 phys_addr_t end = base + size - 1; 885 886 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 887 &base, &end, (void *)_RET_IP_); 888 889 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); 890 } 891 #endif 892 893 /** 894 * memblock_setclr_flag - set or clear flag for a memory region 895 * @type: memblock type to set/clear flag for 896 * @base: base address of the region 897 * @size: size of the region 898 * @set: set or clear the flag 899 * @flag: the flag to update 900 * 901 * This function isolates region [@base, @base + @size), and sets/clears flag 902 * 903 * Return: 0 on success, -errno on failure. 904 */ 905 static int __init_memblock memblock_setclr_flag(struct memblock_type *type, 906 phys_addr_t base, phys_addr_t size, int set, int flag) 907 { 908 int i, ret, start_rgn, end_rgn; 909 910 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 911 if (ret) 912 return ret; 913 914 for (i = start_rgn; i < end_rgn; i++) { 915 struct memblock_region *r = &type->regions[i]; 916 917 if (set) 918 r->flags |= flag; 919 else 920 r->flags &= ~flag; 921 } 922 923 memblock_merge_regions(type, start_rgn, end_rgn); 924 return 0; 925 } 926 927 /** 928 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 929 * @base: the base phys addr of the region 930 * @size: the size of the region 931 * 932 * Return: 0 on success, -errno on failure. 933 */ 934 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 935 { 936 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG); 937 } 938 939 /** 940 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 941 * @base: the base phys addr of the region 942 * @size: the size of the region 943 * 944 * Return: 0 on success, -errno on failure. 945 */ 946 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 947 { 948 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG); 949 } 950 951 /** 952 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 953 * @base: the base phys addr of the region 954 * @size: the size of the region 955 * 956 * Return: 0 on success, -errno on failure. 957 */ 958 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 959 { 960 if (!mirrored_kernelcore) 961 return 0; 962 963 system_has_some_mirror = true; 964 965 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR); 966 } 967 968 /** 969 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 970 * @base: the base phys addr of the region 971 * @size: the size of the region 972 * 973 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the 974 * direct mapping of the physical memory. These regions will still be 975 * covered by the memory map. The struct page representing NOMAP memory 976 * frames in the memory map will be PageReserved() 977 * 978 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from 979 * memblock, the caller must inform kmemleak to ignore that memory 980 * 981 * Return: 0 on success, -errno on failure. 982 */ 983 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 984 { 985 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP); 986 } 987 988 /** 989 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 990 * @base: the base phys addr of the region 991 * @size: the size of the region 992 * 993 * Return: 0 on success, -errno on failure. 994 */ 995 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 996 { 997 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP); 998 } 999 1000 /** 1001 * memblock_reserved_mark_noinit - Mark a reserved memory region with flag 1002 * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized 1003 * for this region. 1004 * @base: the base phys addr of the region 1005 * @size: the size of the region 1006 * 1007 * struct pages will not be initialized for reserved memory regions marked with 1008 * %MEMBLOCK_RSRV_NOINIT. 1009 * 1010 * Return: 0 on success, -errno on failure. 1011 */ 1012 int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size) 1013 { 1014 return memblock_setclr_flag(&memblock.reserved, base, size, 1, 1015 MEMBLOCK_RSRV_NOINIT); 1016 } 1017 1018 static bool should_skip_region(struct memblock_type *type, 1019 struct memblock_region *m, 1020 int nid, int flags) 1021 { 1022 int m_nid = memblock_get_region_node(m); 1023 1024 /* we never skip regions when iterating memblock.reserved or physmem */ 1025 if (type != memblock_memory) 1026 return false; 1027 1028 /* only memory regions are associated with nodes, check it */ 1029 if (nid != NUMA_NO_NODE && nid != m_nid) 1030 return true; 1031 1032 /* skip hotpluggable memory regions if needed */ 1033 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) && 1034 !(flags & MEMBLOCK_HOTPLUG)) 1035 return true; 1036 1037 /* if we want mirror memory skip non-mirror memory regions */ 1038 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 1039 return true; 1040 1041 /* skip nomap memory unless we were asked for it explicitly */ 1042 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 1043 return true; 1044 1045 /* skip driver-managed memory unless we were asked for it explicitly */ 1046 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m)) 1047 return true; 1048 1049 return false; 1050 } 1051 1052 /** 1053 * __next_mem_range - next function for for_each_free_mem_range() etc. 1054 * @idx: pointer to u64 loop variable 1055 * @nid: node selector, %NUMA_NO_NODE for all nodes 1056 * @flags: pick from blocks based on memory attributes 1057 * @type_a: pointer to memblock_type from where the range is taken 1058 * @type_b: pointer to memblock_type which excludes memory from being taken 1059 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1060 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1061 * @out_nid: ptr to int for nid of the range, can be %NULL 1062 * 1063 * Find the first area from *@idx which matches @nid, fill the out 1064 * parameters, and update *@idx for the next iteration. The lower 32bit of 1065 * *@idx contains index into type_a and the upper 32bit indexes the 1066 * areas before each region in type_b. For example, if type_b regions 1067 * look like the following, 1068 * 1069 * 0:[0-16), 1:[32-48), 2:[128-130) 1070 * 1071 * The upper 32bit indexes the following regions. 1072 * 1073 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 1074 * 1075 * As both region arrays are sorted, the function advances the two indices 1076 * in lockstep and returns each intersection. 1077 */ 1078 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 1079 struct memblock_type *type_a, 1080 struct memblock_type *type_b, phys_addr_t *out_start, 1081 phys_addr_t *out_end, int *out_nid) 1082 { 1083 int idx_a = *idx & 0xffffffff; 1084 int idx_b = *idx >> 32; 1085 1086 if (WARN_ONCE(nid == MAX_NUMNODES, 1087 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1088 nid = NUMA_NO_NODE; 1089 1090 for (; idx_a < type_a->cnt; idx_a++) { 1091 struct memblock_region *m = &type_a->regions[idx_a]; 1092 1093 phys_addr_t m_start = m->base; 1094 phys_addr_t m_end = m->base + m->size; 1095 int m_nid = memblock_get_region_node(m); 1096 1097 if (should_skip_region(type_a, m, nid, flags)) 1098 continue; 1099 1100 if (!type_b) { 1101 if (out_start) 1102 *out_start = m_start; 1103 if (out_end) 1104 *out_end = m_end; 1105 if (out_nid) 1106 *out_nid = m_nid; 1107 idx_a++; 1108 *idx = (u32)idx_a | (u64)idx_b << 32; 1109 return; 1110 } 1111 1112 /* scan areas before each reservation */ 1113 for (; idx_b < type_b->cnt + 1; idx_b++) { 1114 struct memblock_region *r; 1115 phys_addr_t r_start; 1116 phys_addr_t r_end; 1117 1118 r = &type_b->regions[idx_b]; 1119 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1120 r_end = idx_b < type_b->cnt ? 1121 r->base : PHYS_ADDR_MAX; 1122 1123 /* 1124 * if idx_b advanced past idx_a, 1125 * break out to advance idx_a 1126 */ 1127 if (r_start >= m_end) 1128 break; 1129 /* if the two regions intersect, we're done */ 1130 if (m_start < r_end) { 1131 if (out_start) 1132 *out_start = 1133 max(m_start, r_start); 1134 if (out_end) 1135 *out_end = min(m_end, r_end); 1136 if (out_nid) 1137 *out_nid = m_nid; 1138 /* 1139 * The region which ends first is 1140 * advanced for the next iteration. 1141 */ 1142 if (m_end <= r_end) 1143 idx_a++; 1144 else 1145 idx_b++; 1146 *idx = (u32)idx_a | (u64)idx_b << 32; 1147 return; 1148 } 1149 } 1150 } 1151 1152 /* signal end of iteration */ 1153 *idx = ULLONG_MAX; 1154 } 1155 1156 /** 1157 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1158 * 1159 * @idx: pointer to u64 loop variable 1160 * @nid: node selector, %NUMA_NO_NODE for all nodes 1161 * @flags: pick from blocks based on memory attributes 1162 * @type_a: pointer to memblock_type from where the range is taken 1163 * @type_b: pointer to memblock_type which excludes memory from being taken 1164 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1165 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1166 * @out_nid: ptr to int for nid of the range, can be %NULL 1167 * 1168 * Finds the next range from type_a which is not marked as unsuitable 1169 * in type_b. 1170 * 1171 * Reverse of __next_mem_range(). 1172 */ 1173 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1174 enum memblock_flags flags, 1175 struct memblock_type *type_a, 1176 struct memblock_type *type_b, 1177 phys_addr_t *out_start, 1178 phys_addr_t *out_end, int *out_nid) 1179 { 1180 int idx_a = *idx & 0xffffffff; 1181 int idx_b = *idx >> 32; 1182 1183 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1184 nid = NUMA_NO_NODE; 1185 1186 if (*idx == (u64)ULLONG_MAX) { 1187 idx_a = type_a->cnt - 1; 1188 if (type_b != NULL) 1189 idx_b = type_b->cnt; 1190 else 1191 idx_b = 0; 1192 } 1193 1194 for (; idx_a >= 0; idx_a--) { 1195 struct memblock_region *m = &type_a->regions[idx_a]; 1196 1197 phys_addr_t m_start = m->base; 1198 phys_addr_t m_end = m->base + m->size; 1199 int m_nid = memblock_get_region_node(m); 1200 1201 if (should_skip_region(type_a, m, nid, flags)) 1202 continue; 1203 1204 if (!type_b) { 1205 if (out_start) 1206 *out_start = m_start; 1207 if (out_end) 1208 *out_end = m_end; 1209 if (out_nid) 1210 *out_nid = m_nid; 1211 idx_a--; 1212 *idx = (u32)idx_a | (u64)idx_b << 32; 1213 return; 1214 } 1215 1216 /* scan areas before each reservation */ 1217 for (; idx_b >= 0; idx_b--) { 1218 struct memblock_region *r; 1219 phys_addr_t r_start; 1220 phys_addr_t r_end; 1221 1222 r = &type_b->regions[idx_b]; 1223 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1224 r_end = idx_b < type_b->cnt ? 1225 r->base : PHYS_ADDR_MAX; 1226 /* 1227 * if idx_b advanced past idx_a, 1228 * break out to advance idx_a 1229 */ 1230 1231 if (r_end <= m_start) 1232 break; 1233 /* if the two regions intersect, we're done */ 1234 if (m_end > r_start) { 1235 if (out_start) 1236 *out_start = max(m_start, r_start); 1237 if (out_end) 1238 *out_end = min(m_end, r_end); 1239 if (out_nid) 1240 *out_nid = m_nid; 1241 if (m_start >= r_start) 1242 idx_a--; 1243 else 1244 idx_b--; 1245 *idx = (u32)idx_a | (u64)idx_b << 32; 1246 return; 1247 } 1248 } 1249 } 1250 /* signal end of iteration */ 1251 *idx = ULLONG_MAX; 1252 } 1253 1254 /* 1255 * Common iterator interface used to define for_each_mem_pfn_range(). 1256 */ 1257 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1258 unsigned long *out_start_pfn, 1259 unsigned long *out_end_pfn, int *out_nid) 1260 { 1261 struct memblock_type *type = &memblock.memory; 1262 struct memblock_region *r; 1263 int r_nid; 1264 1265 while (++*idx < type->cnt) { 1266 r = &type->regions[*idx]; 1267 r_nid = memblock_get_region_node(r); 1268 1269 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1270 continue; 1271 if (nid == MAX_NUMNODES || nid == r_nid) 1272 break; 1273 } 1274 if (*idx >= type->cnt) { 1275 *idx = -1; 1276 return; 1277 } 1278 1279 if (out_start_pfn) 1280 *out_start_pfn = PFN_UP(r->base); 1281 if (out_end_pfn) 1282 *out_end_pfn = PFN_DOWN(r->base + r->size); 1283 if (out_nid) 1284 *out_nid = r_nid; 1285 } 1286 1287 /** 1288 * memblock_set_node - set node ID on memblock regions 1289 * @base: base of area to set node ID for 1290 * @size: size of area to set node ID for 1291 * @type: memblock type to set node ID for 1292 * @nid: node ID to set 1293 * 1294 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1295 * Regions which cross the area boundaries are split as necessary. 1296 * 1297 * Return: 1298 * 0 on success, -errno on failure. 1299 */ 1300 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1301 struct memblock_type *type, int nid) 1302 { 1303 #ifdef CONFIG_NUMA 1304 int start_rgn, end_rgn; 1305 int i, ret; 1306 1307 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1308 if (ret) 1309 return ret; 1310 1311 for (i = start_rgn; i < end_rgn; i++) 1312 memblock_set_region_node(&type->regions[i], nid); 1313 1314 memblock_merge_regions(type, start_rgn, end_rgn); 1315 #endif 1316 return 0; 1317 } 1318 1319 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1320 /** 1321 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() 1322 * 1323 * @idx: pointer to u64 loop variable 1324 * @zone: zone in which all of the memory blocks reside 1325 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL 1326 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL 1327 * 1328 * This function is meant to be a zone/pfn specific wrapper for the 1329 * for_each_mem_range type iterators. Specifically they are used in the 1330 * deferred memory init routines and as such we were duplicating much of 1331 * this logic throughout the code. So instead of having it in multiple 1332 * locations it seemed like it would make more sense to centralize this to 1333 * one new iterator that does everything they need. 1334 */ 1335 void __init_memblock 1336 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 1337 unsigned long *out_spfn, unsigned long *out_epfn) 1338 { 1339 int zone_nid = zone_to_nid(zone); 1340 phys_addr_t spa, epa; 1341 1342 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1343 &memblock.memory, &memblock.reserved, 1344 &spa, &epa, NULL); 1345 1346 while (*idx != U64_MAX) { 1347 unsigned long epfn = PFN_DOWN(epa); 1348 unsigned long spfn = PFN_UP(spa); 1349 1350 /* 1351 * Verify the end is at least past the start of the zone and 1352 * that we have at least one PFN to initialize. 1353 */ 1354 if (zone->zone_start_pfn < epfn && spfn < epfn) { 1355 /* if we went too far just stop searching */ 1356 if (zone_end_pfn(zone) <= spfn) { 1357 *idx = U64_MAX; 1358 break; 1359 } 1360 1361 if (out_spfn) 1362 *out_spfn = max(zone->zone_start_pfn, spfn); 1363 if (out_epfn) 1364 *out_epfn = min(zone_end_pfn(zone), epfn); 1365 1366 return; 1367 } 1368 1369 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1370 &memblock.memory, &memblock.reserved, 1371 &spa, &epa, NULL); 1372 } 1373 1374 /* signal end of iteration */ 1375 if (out_spfn) 1376 *out_spfn = ULONG_MAX; 1377 if (out_epfn) 1378 *out_epfn = 0; 1379 } 1380 1381 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1382 1383 /** 1384 * memblock_alloc_range_nid - allocate boot memory block 1385 * @size: size of memory block to be allocated in bytes 1386 * @align: alignment of the region and block's size 1387 * @start: the lower bound of the memory region to allocate (phys address) 1388 * @end: the upper bound of the memory region to allocate (phys address) 1389 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1390 * @exact_nid: control the allocation fall back to other nodes 1391 * 1392 * The allocation is performed from memory region limited by 1393 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. 1394 * 1395 * If the specified node can not hold the requested memory and @exact_nid 1396 * is false, the allocation falls back to any node in the system. 1397 * 1398 * For systems with memory mirroring, the allocation is attempted first 1399 * from the regions with mirroring enabled and then retried from any 1400 * memory region. 1401 * 1402 * In addition, function using kmemleak_alloc_phys for allocated boot 1403 * memory block, it is never reported as leaks. 1404 * 1405 * Return: 1406 * Physical address of allocated memory block on success, %0 on failure. 1407 */ 1408 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1409 phys_addr_t align, phys_addr_t start, 1410 phys_addr_t end, int nid, 1411 bool exact_nid) 1412 { 1413 enum memblock_flags flags = choose_memblock_flags(); 1414 phys_addr_t found; 1415 1416 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1417 nid = NUMA_NO_NODE; 1418 1419 if (!align) { 1420 /* Can't use WARNs this early in boot on powerpc */ 1421 dump_stack(); 1422 align = SMP_CACHE_BYTES; 1423 } 1424 1425 again: 1426 found = memblock_find_in_range_node(size, align, start, end, nid, 1427 flags); 1428 if (found && !memblock_reserve(found, size)) 1429 goto done; 1430 1431 if (nid != NUMA_NO_NODE && !exact_nid) { 1432 found = memblock_find_in_range_node(size, align, start, 1433 end, NUMA_NO_NODE, 1434 flags); 1435 if (found && !memblock_reserve(found, size)) 1436 goto done; 1437 } 1438 1439 if (flags & MEMBLOCK_MIRROR) { 1440 flags &= ~MEMBLOCK_MIRROR; 1441 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", 1442 &size); 1443 goto again; 1444 } 1445 1446 return 0; 1447 1448 done: 1449 /* 1450 * Skip kmemleak for those places like kasan_init() and 1451 * early_pgtable_alloc() due to high volume. 1452 */ 1453 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE) 1454 /* 1455 * Memblock allocated blocks are never reported as 1456 * leaks. This is because many of these blocks are 1457 * only referred via the physical address which is 1458 * not looked up by kmemleak. 1459 */ 1460 kmemleak_alloc_phys(found, size, 0); 1461 1462 /* 1463 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP, 1464 * require memory to be accepted before it can be used by the 1465 * guest. 1466 * 1467 * Accept the memory of the allocated buffer. 1468 */ 1469 accept_memory(found, found + size); 1470 1471 return found; 1472 } 1473 1474 /** 1475 * memblock_phys_alloc_range - allocate a memory block inside specified range 1476 * @size: size of memory block to be allocated in bytes 1477 * @align: alignment of the region and block's size 1478 * @start: the lower bound of the memory region to allocate (physical address) 1479 * @end: the upper bound of the memory region to allocate (physical address) 1480 * 1481 * Allocate @size bytes in the between @start and @end. 1482 * 1483 * Return: physical address of the allocated memory block on success, 1484 * %0 on failure. 1485 */ 1486 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1487 phys_addr_t align, 1488 phys_addr_t start, 1489 phys_addr_t end) 1490 { 1491 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", 1492 __func__, (u64)size, (u64)align, &start, &end, 1493 (void *)_RET_IP_); 1494 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1495 false); 1496 } 1497 1498 /** 1499 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node 1500 * @size: size of memory block to be allocated in bytes 1501 * @align: alignment of the region and block's size 1502 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1503 * 1504 * Allocates memory block from the specified NUMA node. If the node 1505 * has no available memory, attempts to allocated from any node in the 1506 * system. 1507 * 1508 * Return: physical address of the allocated memory block on success, 1509 * %0 on failure. 1510 */ 1511 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1512 { 1513 return memblock_alloc_range_nid(size, align, 0, 1514 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); 1515 } 1516 1517 /** 1518 * memblock_alloc_internal - allocate boot memory block 1519 * @size: size of memory block to be allocated in bytes 1520 * @align: alignment of the region and block's size 1521 * @min_addr: the lower bound of the memory region to allocate (phys address) 1522 * @max_addr: the upper bound of the memory region to allocate (phys address) 1523 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1524 * @exact_nid: control the allocation fall back to other nodes 1525 * 1526 * Allocates memory block using memblock_alloc_range_nid() and 1527 * converts the returned physical address to virtual. 1528 * 1529 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1530 * will fall back to memory below @min_addr. Other constraints, such 1531 * as node and mirrored memory will be handled again in 1532 * memblock_alloc_range_nid(). 1533 * 1534 * Return: 1535 * Virtual address of allocated memory block on success, NULL on failure. 1536 */ 1537 static void * __init memblock_alloc_internal( 1538 phys_addr_t size, phys_addr_t align, 1539 phys_addr_t min_addr, phys_addr_t max_addr, 1540 int nid, bool exact_nid) 1541 { 1542 phys_addr_t alloc; 1543 1544 /* 1545 * Detect any accidental use of these APIs after slab is ready, as at 1546 * this moment memblock may be deinitialized already and its 1547 * internal data may be destroyed (after execution of memblock_free_all) 1548 */ 1549 if (WARN_ON_ONCE(slab_is_available())) 1550 return kzalloc_node(size, GFP_NOWAIT, nid); 1551 1552 if (max_addr > memblock.current_limit) 1553 max_addr = memblock.current_limit; 1554 1555 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, 1556 exact_nid); 1557 1558 /* retry allocation without lower limit */ 1559 if (!alloc && min_addr) 1560 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, 1561 exact_nid); 1562 1563 if (!alloc) 1564 return NULL; 1565 1566 return phys_to_virt(alloc); 1567 } 1568 1569 /** 1570 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node 1571 * without zeroing memory 1572 * @size: size of memory block to be allocated in bytes 1573 * @align: alignment of the region and block's size 1574 * @min_addr: the lower bound of the memory region from where the allocation 1575 * is preferred (phys address) 1576 * @max_addr: the upper bound of the memory region from where the allocation 1577 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1578 * allocate only from memory limited by memblock.current_limit value 1579 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1580 * 1581 * Public function, provides additional debug information (including caller 1582 * info), if enabled. Does not zero allocated memory. 1583 * 1584 * Return: 1585 * Virtual address of allocated memory block on success, NULL on failure. 1586 */ 1587 void * __init memblock_alloc_exact_nid_raw( 1588 phys_addr_t size, phys_addr_t align, 1589 phys_addr_t min_addr, phys_addr_t max_addr, 1590 int nid) 1591 { 1592 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1593 __func__, (u64)size, (u64)align, nid, &min_addr, 1594 &max_addr, (void *)_RET_IP_); 1595 1596 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1597 true); 1598 } 1599 1600 /** 1601 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1602 * memory and without panicking 1603 * @size: size of memory block to be allocated in bytes 1604 * @align: alignment of the region and block's size 1605 * @min_addr: the lower bound of the memory region from where the allocation 1606 * is preferred (phys address) 1607 * @max_addr: the upper bound of the memory region from where the allocation 1608 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1609 * allocate only from memory limited by memblock.current_limit value 1610 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1611 * 1612 * Public function, provides additional debug information (including caller 1613 * info), if enabled. Does not zero allocated memory, does not panic if request 1614 * cannot be satisfied. 1615 * 1616 * Return: 1617 * Virtual address of allocated memory block on success, NULL on failure. 1618 */ 1619 void * __init memblock_alloc_try_nid_raw( 1620 phys_addr_t size, phys_addr_t align, 1621 phys_addr_t min_addr, phys_addr_t max_addr, 1622 int nid) 1623 { 1624 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1625 __func__, (u64)size, (u64)align, nid, &min_addr, 1626 &max_addr, (void *)_RET_IP_); 1627 1628 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1629 false); 1630 } 1631 1632 /** 1633 * memblock_alloc_try_nid - allocate boot memory block 1634 * @size: size of memory block to be allocated in bytes 1635 * @align: alignment of the region and block's size 1636 * @min_addr: the lower bound of the memory region from where the allocation 1637 * is preferred (phys address) 1638 * @max_addr: the upper bound of the memory region from where the allocation 1639 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1640 * allocate only from memory limited by memblock.current_limit value 1641 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1642 * 1643 * Public function, provides additional debug information (including caller 1644 * info), if enabled. This function zeroes the allocated memory. 1645 * 1646 * Return: 1647 * Virtual address of allocated memory block on success, NULL on failure. 1648 */ 1649 void * __init memblock_alloc_try_nid( 1650 phys_addr_t size, phys_addr_t align, 1651 phys_addr_t min_addr, phys_addr_t max_addr, 1652 int nid) 1653 { 1654 void *ptr; 1655 1656 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1657 __func__, (u64)size, (u64)align, nid, &min_addr, 1658 &max_addr, (void *)_RET_IP_); 1659 ptr = memblock_alloc_internal(size, align, 1660 min_addr, max_addr, nid, false); 1661 if (ptr) 1662 memset(ptr, 0, size); 1663 1664 return ptr; 1665 } 1666 1667 /** 1668 * memblock_free_late - free pages directly to buddy allocator 1669 * @base: phys starting address of the boot memory block 1670 * @size: size of the boot memory block in bytes 1671 * 1672 * This is only useful when the memblock allocator has already been torn 1673 * down, but we are still initializing the system. Pages are released directly 1674 * to the buddy allocator. 1675 */ 1676 void __init memblock_free_late(phys_addr_t base, phys_addr_t size) 1677 { 1678 phys_addr_t cursor, end; 1679 1680 end = base + size - 1; 1681 memblock_dbg("%s: [%pa-%pa] %pS\n", 1682 __func__, &base, &end, (void *)_RET_IP_); 1683 kmemleak_free_part_phys(base, size); 1684 cursor = PFN_UP(base); 1685 end = PFN_DOWN(base + size); 1686 1687 for (; cursor < end; cursor++) { 1688 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1689 totalram_pages_inc(); 1690 } 1691 } 1692 1693 /* 1694 * Remaining API functions 1695 */ 1696 1697 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1698 { 1699 return memblock.memory.total_size; 1700 } 1701 1702 phys_addr_t __init_memblock memblock_reserved_size(void) 1703 { 1704 return memblock.reserved.total_size; 1705 } 1706 1707 /* lowest address */ 1708 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1709 { 1710 return memblock.memory.regions[0].base; 1711 } 1712 1713 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1714 { 1715 int idx = memblock.memory.cnt - 1; 1716 1717 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1718 } 1719 1720 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1721 { 1722 phys_addr_t max_addr = PHYS_ADDR_MAX; 1723 struct memblock_region *r; 1724 1725 /* 1726 * translate the memory @limit size into the max address within one of 1727 * the memory memblock regions, if the @limit exceeds the total size 1728 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1729 */ 1730 for_each_mem_region(r) { 1731 if (limit <= r->size) { 1732 max_addr = r->base + limit; 1733 break; 1734 } 1735 limit -= r->size; 1736 } 1737 1738 return max_addr; 1739 } 1740 1741 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1742 { 1743 phys_addr_t max_addr; 1744 1745 if (!limit) 1746 return; 1747 1748 max_addr = __find_max_addr(limit); 1749 1750 /* @limit exceeds the total size of the memory, do nothing */ 1751 if (max_addr == PHYS_ADDR_MAX) 1752 return; 1753 1754 /* truncate both memory and reserved regions */ 1755 memblock_remove_range(&memblock.memory, max_addr, 1756 PHYS_ADDR_MAX); 1757 memblock_remove_range(&memblock.reserved, max_addr, 1758 PHYS_ADDR_MAX); 1759 } 1760 1761 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1762 { 1763 int start_rgn, end_rgn; 1764 int i, ret; 1765 1766 if (!size) 1767 return; 1768 1769 if (!memblock_memory->total_size) { 1770 pr_warn("%s: No memory registered yet\n", __func__); 1771 return; 1772 } 1773 1774 ret = memblock_isolate_range(&memblock.memory, base, size, 1775 &start_rgn, &end_rgn); 1776 if (ret) 1777 return; 1778 1779 /* remove all the MAP regions */ 1780 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1781 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1782 memblock_remove_region(&memblock.memory, i); 1783 1784 for (i = start_rgn - 1; i >= 0; i--) 1785 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1786 memblock_remove_region(&memblock.memory, i); 1787 1788 /* truncate the reserved regions */ 1789 memblock_remove_range(&memblock.reserved, 0, base); 1790 memblock_remove_range(&memblock.reserved, 1791 base + size, PHYS_ADDR_MAX); 1792 } 1793 1794 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1795 { 1796 phys_addr_t max_addr; 1797 1798 if (!limit) 1799 return; 1800 1801 max_addr = __find_max_addr(limit); 1802 1803 /* @limit exceeds the total size of the memory, do nothing */ 1804 if (max_addr == PHYS_ADDR_MAX) 1805 return; 1806 1807 memblock_cap_memory_range(0, max_addr); 1808 } 1809 1810 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1811 { 1812 unsigned int left = 0, right = type->cnt; 1813 1814 do { 1815 unsigned int mid = (right + left) / 2; 1816 1817 if (addr < type->regions[mid].base) 1818 right = mid; 1819 else if (addr >= (type->regions[mid].base + 1820 type->regions[mid].size)) 1821 left = mid + 1; 1822 else 1823 return mid; 1824 } while (left < right); 1825 return -1; 1826 } 1827 1828 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1829 { 1830 return memblock_search(&memblock.reserved, addr) != -1; 1831 } 1832 1833 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1834 { 1835 return memblock_search(&memblock.memory, addr) != -1; 1836 } 1837 1838 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1839 { 1840 int i = memblock_search(&memblock.memory, addr); 1841 1842 if (i == -1) 1843 return false; 1844 return !memblock_is_nomap(&memblock.memory.regions[i]); 1845 } 1846 1847 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1848 unsigned long *start_pfn, unsigned long *end_pfn) 1849 { 1850 struct memblock_type *type = &memblock.memory; 1851 int mid = memblock_search(type, PFN_PHYS(pfn)); 1852 1853 if (mid == -1) 1854 return -1; 1855 1856 *start_pfn = PFN_DOWN(type->regions[mid].base); 1857 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1858 1859 return memblock_get_region_node(&type->regions[mid]); 1860 } 1861 1862 /** 1863 * memblock_is_region_memory - check if a region is a subset of memory 1864 * @base: base of region to check 1865 * @size: size of region to check 1866 * 1867 * Check if the region [@base, @base + @size) is a subset of a memory block. 1868 * 1869 * Return: 1870 * 0 if false, non-zero if true 1871 */ 1872 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1873 { 1874 int idx = memblock_search(&memblock.memory, base); 1875 phys_addr_t end = base + memblock_cap_size(base, &size); 1876 1877 if (idx == -1) 1878 return false; 1879 return (memblock.memory.regions[idx].base + 1880 memblock.memory.regions[idx].size) >= end; 1881 } 1882 1883 /** 1884 * memblock_is_region_reserved - check if a region intersects reserved memory 1885 * @base: base of region to check 1886 * @size: size of region to check 1887 * 1888 * Check if the region [@base, @base + @size) intersects a reserved 1889 * memory block. 1890 * 1891 * Return: 1892 * True if they intersect, false if not. 1893 */ 1894 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1895 { 1896 return memblock_overlaps_region(&memblock.reserved, base, size); 1897 } 1898 1899 void __init_memblock memblock_trim_memory(phys_addr_t align) 1900 { 1901 phys_addr_t start, end, orig_start, orig_end; 1902 struct memblock_region *r; 1903 1904 for_each_mem_region(r) { 1905 orig_start = r->base; 1906 orig_end = r->base + r->size; 1907 start = round_up(orig_start, align); 1908 end = round_down(orig_end, align); 1909 1910 if (start == orig_start && end == orig_end) 1911 continue; 1912 1913 if (start < end) { 1914 r->base = start; 1915 r->size = end - start; 1916 } else { 1917 memblock_remove_region(&memblock.memory, 1918 r - memblock.memory.regions); 1919 r--; 1920 } 1921 } 1922 } 1923 1924 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1925 { 1926 memblock.current_limit = limit; 1927 } 1928 1929 phys_addr_t __init_memblock memblock_get_current_limit(void) 1930 { 1931 return memblock.current_limit; 1932 } 1933 1934 static void __init_memblock memblock_dump(struct memblock_type *type) 1935 { 1936 phys_addr_t base, end, size; 1937 enum memblock_flags flags; 1938 int idx; 1939 struct memblock_region *rgn; 1940 1941 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1942 1943 for_each_memblock_type(idx, type, rgn) { 1944 char nid_buf[32] = ""; 1945 1946 base = rgn->base; 1947 size = rgn->size; 1948 end = base + size - 1; 1949 flags = rgn->flags; 1950 #ifdef CONFIG_NUMA 1951 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1952 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1953 memblock_get_region_node(rgn)); 1954 #endif 1955 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1956 type->name, idx, &base, &end, &size, nid_buf, flags); 1957 } 1958 } 1959 1960 static void __init_memblock __memblock_dump_all(void) 1961 { 1962 pr_info("MEMBLOCK configuration:\n"); 1963 pr_info(" memory size = %pa reserved size = %pa\n", 1964 &memblock.memory.total_size, 1965 &memblock.reserved.total_size); 1966 1967 memblock_dump(&memblock.memory); 1968 memblock_dump(&memblock.reserved); 1969 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1970 memblock_dump(&physmem); 1971 #endif 1972 } 1973 1974 void __init_memblock memblock_dump_all(void) 1975 { 1976 if (memblock_debug) 1977 __memblock_dump_all(); 1978 } 1979 1980 void __init memblock_allow_resize(void) 1981 { 1982 memblock_can_resize = 1; 1983 } 1984 1985 static int __init early_memblock(char *p) 1986 { 1987 if (p && strstr(p, "debug")) 1988 memblock_debug = 1; 1989 return 0; 1990 } 1991 early_param("memblock", early_memblock); 1992 1993 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) 1994 { 1995 struct page *start_pg, *end_pg; 1996 phys_addr_t pg, pgend; 1997 1998 /* 1999 * Convert start_pfn/end_pfn to a struct page pointer. 2000 */ 2001 start_pg = pfn_to_page(start_pfn - 1) + 1; 2002 end_pg = pfn_to_page(end_pfn - 1) + 1; 2003 2004 /* 2005 * Convert to physical addresses, and round start upwards and end 2006 * downwards. 2007 */ 2008 pg = PAGE_ALIGN(__pa(start_pg)); 2009 pgend = __pa(end_pg) & PAGE_MASK; 2010 2011 /* 2012 * If there are free pages between these, free the section of the 2013 * memmap array. 2014 */ 2015 if (pg < pgend) 2016 memblock_phys_free(pg, pgend - pg); 2017 } 2018 2019 /* 2020 * The mem_map array can get very big. Free the unused area of the memory map. 2021 */ 2022 static void __init free_unused_memmap(void) 2023 { 2024 unsigned long start, end, prev_end = 0; 2025 int i; 2026 2027 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || 2028 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 2029 return; 2030 2031 /* 2032 * This relies on each bank being in address order. 2033 * The banks are sorted previously in bootmem_init(). 2034 */ 2035 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { 2036 #ifdef CONFIG_SPARSEMEM 2037 /* 2038 * Take care not to free memmap entries that don't exist 2039 * due to SPARSEMEM sections which aren't present. 2040 */ 2041 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 2042 #endif 2043 /* 2044 * Align down here since many operations in VM subsystem 2045 * presume that there are no holes in the memory map inside 2046 * a pageblock 2047 */ 2048 start = pageblock_start_pfn(start); 2049 2050 /* 2051 * If we had a previous bank, and there is a space 2052 * between the current bank and the previous, free it. 2053 */ 2054 if (prev_end && prev_end < start) 2055 free_memmap(prev_end, start); 2056 2057 /* 2058 * Align up here since many operations in VM subsystem 2059 * presume that there are no holes in the memory map inside 2060 * a pageblock 2061 */ 2062 prev_end = pageblock_align(end); 2063 } 2064 2065 #ifdef CONFIG_SPARSEMEM 2066 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) { 2067 prev_end = pageblock_align(end); 2068 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 2069 } 2070 #endif 2071 } 2072 2073 static void __init __free_pages_memory(unsigned long start, unsigned long end) 2074 { 2075 int order; 2076 2077 while (start < end) { 2078 /* 2079 * Free the pages in the largest chunks alignment allows. 2080 * 2081 * __ffs() behaviour is undefined for 0. start == 0 is 2082 * MAX_ORDER-aligned, set order to MAX_ORDER for the case. 2083 */ 2084 if (start) 2085 order = min_t(int, MAX_ORDER, __ffs(start)); 2086 else 2087 order = MAX_ORDER; 2088 2089 while (start + (1UL << order) > end) 2090 order--; 2091 2092 memblock_free_pages(pfn_to_page(start), start, order); 2093 2094 start += (1UL << order); 2095 } 2096 } 2097 2098 static unsigned long __init __free_memory_core(phys_addr_t start, 2099 phys_addr_t end) 2100 { 2101 unsigned long start_pfn = PFN_UP(start); 2102 unsigned long end_pfn = min_t(unsigned long, 2103 PFN_DOWN(end), max_low_pfn); 2104 2105 if (start_pfn >= end_pfn) 2106 return 0; 2107 2108 __free_pages_memory(start_pfn, end_pfn); 2109 2110 return end_pfn - start_pfn; 2111 } 2112 2113 static void __init memmap_init_reserved_pages(void) 2114 { 2115 struct memblock_region *region; 2116 phys_addr_t start, end; 2117 int nid; 2118 2119 /* 2120 * set nid on all reserved pages and also treat struct 2121 * pages for the NOMAP regions as PageReserved 2122 */ 2123 for_each_mem_region(region) { 2124 nid = memblock_get_region_node(region); 2125 start = region->base; 2126 end = start + region->size; 2127 2128 if (memblock_is_nomap(region)) 2129 reserve_bootmem_region(start, end, nid); 2130 2131 memblock_set_node(start, end, &memblock.reserved, nid); 2132 } 2133 2134 /* 2135 * initialize struct pages for reserved regions that don't have 2136 * the MEMBLOCK_RSRV_NOINIT flag set 2137 */ 2138 for_each_reserved_mem_region(region) { 2139 if (!memblock_is_reserved_noinit(region)) { 2140 nid = memblock_get_region_node(region); 2141 start = region->base; 2142 end = start + region->size; 2143 2144 reserve_bootmem_region(start, end, nid); 2145 } 2146 } 2147 } 2148 2149 static unsigned long __init free_low_memory_core_early(void) 2150 { 2151 unsigned long count = 0; 2152 phys_addr_t start, end; 2153 u64 i; 2154 2155 memblock_clear_hotplug(0, -1); 2156 2157 memmap_init_reserved_pages(); 2158 2159 /* 2160 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 2161 * because in some case like Node0 doesn't have RAM installed 2162 * low ram will be on Node1 2163 */ 2164 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 2165 NULL) 2166 count += __free_memory_core(start, end); 2167 2168 return count; 2169 } 2170 2171 static int reset_managed_pages_done __initdata; 2172 2173 static void __init reset_node_managed_pages(pg_data_t *pgdat) 2174 { 2175 struct zone *z; 2176 2177 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 2178 atomic_long_set(&z->managed_pages, 0); 2179 } 2180 2181 void __init reset_all_zones_managed_pages(void) 2182 { 2183 struct pglist_data *pgdat; 2184 2185 if (reset_managed_pages_done) 2186 return; 2187 2188 for_each_online_pgdat(pgdat) 2189 reset_node_managed_pages(pgdat); 2190 2191 reset_managed_pages_done = 1; 2192 } 2193 2194 /** 2195 * memblock_free_all - release free pages to the buddy allocator 2196 */ 2197 void __init memblock_free_all(void) 2198 { 2199 unsigned long pages; 2200 2201 free_unused_memmap(); 2202 reset_all_zones_managed_pages(); 2203 2204 pages = free_low_memory_core_early(); 2205 totalram_pages_add(pages); 2206 } 2207 2208 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 2209 static const char * const flagname[] = { 2210 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG", 2211 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR", 2212 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP", 2213 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG", 2214 }; 2215 2216 static int memblock_debug_show(struct seq_file *m, void *private) 2217 { 2218 struct memblock_type *type = m->private; 2219 struct memblock_region *reg; 2220 int i, j, nid; 2221 unsigned int count = ARRAY_SIZE(flagname); 2222 phys_addr_t end; 2223 2224 for (i = 0; i < type->cnt; i++) { 2225 reg = &type->regions[i]; 2226 end = reg->base + reg->size - 1; 2227 nid = memblock_get_region_node(reg); 2228 2229 seq_printf(m, "%4d: ", i); 2230 seq_printf(m, "%pa..%pa ", ®->base, &end); 2231 if (nid != MAX_NUMNODES) 2232 seq_printf(m, "%4d ", nid); 2233 else 2234 seq_printf(m, "%4c ", 'x'); 2235 if (reg->flags) { 2236 for (j = 0; j < count; j++) { 2237 if (reg->flags & (1U << j)) { 2238 seq_printf(m, "%s\n", flagname[j]); 2239 break; 2240 } 2241 } 2242 if (j == count) 2243 seq_printf(m, "%s\n", "UNKNOWN"); 2244 } else { 2245 seq_printf(m, "%s\n", "NONE"); 2246 } 2247 } 2248 return 0; 2249 } 2250 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2251 2252 static int __init memblock_init_debugfs(void) 2253 { 2254 struct dentry *root = debugfs_create_dir("memblock", NULL); 2255 2256 debugfs_create_file("memory", 0444, root, 2257 &memblock.memory, &memblock_debug_fops); 2258 debugfs_create_file("reserved", 0444, root, 2259 &memblock.reserved, &memblock_debug_fops); 2260 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2261 debugfs_create_file("physmem", 0444, root, &physmem, 2262 &memblock_debug_fops); 2263 #endif 2264 2265 return 0; 2266 } 2267 __initcall(memblock_init_debugfs); 2268 2269 #endif /* CONFIG_DEBUG_FS */ 2270