xref: /linux/mm/memblock.c (revision 76f623d2d4283cc36a9c8a5b585df74638f1efa5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 
20 #include <asm/sections.h>
21 #include <linux/io.h>
22 
23 #include "internal.h"
24 
25 #define INIT_MEMBLOCK_REGIONS			128
26 #define INIT_PHYSMEM_REGIONS			4
27 
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30 #endif
31 
32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33 #define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
34 #endif
35 
36 /**
37  * DOC: memblock overview
38  *
39  * Memblock is a method of managing memory regions during the early
40  * boot period when the usual kernel memory allocators are not up and
41  * running.
42  *
43  * Memblock views the system memory as collections of contiguous
44  * regions. There are several types of these collections:
45  *
46  * * ``memory`` - describes the physical memory available to the
47  *   kernel; this may differ from the actual physical memory installed
48  *   in the system, for instance when the memory is restricted with
49  *   ``mem=`` command line parameter
50  * * ``reserved`` - describes the regions that were allocated
51  * * ``physmem`` - describes the actual physical memory available during
52  *   boot regardless of the possible restrictions and memory hot(un)plug;
53  *   the ``physmem`` type is only available on some architectures.
54  *
55  * Each region is represented by struct memblock_region that
56  * defines the region extents, its attributes and NUMA node id on NUMA
57  * systems. Every memory type is described by the struct memblock_type
58  * which contains an array of memory regions along with
59  * the allocator metadata. The "memory" and "reserved" types are nicely
60  * wrapped with struct memblock. This structure is statically
61  * initialized at build time. The region arrays are initially sized to
62  * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63  * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64  * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65  * The memblock_allow_resize() enables automatic resizing of the region
66  * arrays during addition of new regions. This feature should be used
67  * with care so that memory allocated for the region array will not
68  * overlap with areas that should be reserved, for example initrd.
69  *
70  * The early architecture setup should tell memblock what the physical
71  * memory layout is by using memblock_add() or memblock_add_node()
72  * functions. The first function does not assign the region to a NUMA
73  * node and it is appropriate for UMA systems. Yet, it is possible to
74  * use it on NUMA systems as well and assign the region to a NUMA node
75  * later in the setup process using memblock_set_node(). The
76  * memblock_add_node() performs such an assignment directly.
77  *
78  * Once memblock is setup the memory can be allocated using one of the
79  * API variants:
80  *
81  * * memblock_phys_alloc*() - these functions return the **physical**
82  *   address of the allocated memory
83  * * memblock_alloc*() - these functions return the **virtual** address
84  *   of the allocated memory.
85  *
86  * Note, that both API variants use implicit assumptions about allowed
87  * memory ranges and the fallback methods. Consult the documentation
88  * of memblock_alloc_internal() and memblock_alloc_range_nid()
89  * functions for more elaborate description.
90  *
91  * As the system boot progresses, the architecture specific mem_init()
92  * function frees all the memory to the buddy page allocator.
93  *
94  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95  * memblock data structures (except "physmem") will be discarded after the
96  * system initialization completes.
97  */
98 
99 #ifndef CONFIG_NUMA
100 struct pglist_data __refdata contig_page_data;
101 EXPORT_SYMBOL(contig_page_data);
102 #endif
103 
104 unsigned long max_low_pfn;
105 unsigned long min_low_pfn;
106 unsigned long max_pfn;
107 unsigned long long max_possible_pfn;
108 
109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113 #endif
114 
115 struct memblock memblock __initdata_memblock = {
116 	.memory.regions		= memblock_memory_init_regions,
117 	.memory.cnt		= 1,	/* empty dummy entry */
118 	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
119 	.memory.name		= "memory",
120 
121 	.reserved.regions	= memblock_reserved_init_regions,
122 	.reserved.cnt		= 1,	/* empty dummy entry */
123 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
124 	.reserved.name		= "reserved",
125 
126 	.bottom_up		= false,
127 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
128 };
129 
130 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131 struct memblock_type physmem = {
132 	.regions		= memblock_physmem_init_regions,
133 	.cnt			= 1,	/* empty dummy entry */
134 	.max			= INIT_PHYSMEM_REGIONS,
135 	.name			= "physmem",
136 };
137 #endif
138 
139 /*
140  * keep a pointer to &memblock.memory in the text section to use it in
141  * __next_mem_range() and its helpers.
142  *  For architectures that do not keep memblock data after init, this
143  * pointer will be reset to NULL at memblock_discard()
144  */
145 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146 
147 #define for_each_memblock_type(i, memblock_type, rgn)			\
148 	for (i = 0, rgn = &memblock_type->regions[0];			\
149 	     i < memblock_type->cnt;					\
150 	     i++, rgn = &memblock_type->regions[i])
151 
152 #define memblock_dbg(fmt, ...)						\
153 	do {								\
154 		if (memblock_debug)					\
155 			pr_info(fmt, ##__VA_ARGS__);			\
156 	} while (0)
157 
158 static int memblock_debug __initdata_memblock;
159 static bool system_has_some_mirror __initdata_memblock;
160 static int memblock_can_resize __initdata_memblock;
161 static int memblock_memory_in_slab __initdata_memblock;
162 static int memblock_reserved_in_slab __initdata_memblock;
163 
164 bool __init_memblock memblock_has_mirror(void)
165 {
166 	return system_has_some_mirror;
167 }
168 
169 static enum memblock_flags __init_memblock choose_memblock_flags(void)
170 {
171 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
172 }
173 
174 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
175 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
176 {
177 	return *size = min(*size, PHYS_ADDR_MAX - base);
178 }
179 
180 /*
181  * Address comparison utilities
182  */
183 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
184 				       phys_addr_t base2, phys_addr_t size2)
185 {
186 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
187 }
188 
189 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
190 					phys_addr_t base, phys_addr_t size)
191 {
192 	unsigned long i;
193 
194 	memblock_cap_size(base, &size);
195 
196 	for (i = 0; i < type->cnt; i++)
197 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
198 					   type->regions[i].size))
199 			break;
200 	return i < type->cnt;
201 }
202 
203 /**
204  * __memblock_find_range_bottom_up - find free area utility in bottom-up
205  * @start: start of candidate range
206  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
207  *       %MEMBLOCK_ALLOC_ACCESSIBLE
208  * @size: size of free area to find
209  * @align: alignment of free area to find
210  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
211  * @flags: pick from blocks based on memory attributes
212  *
213  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
214  *
215  * Return:
216  * Found address on success, 0 on failure.
217  */
218 static phys_addr_t __init_memblock
219 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
220 				phys_addr_t size, phys_addr_t align, int nid,
221 				enum memblock_flags flags)
222 {
223 	phys_addr_t this_start, this_end, cand;
224 	u64 i;
225 
226 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
227 		this_start = clamp(this_start, start, end);
228 		this_end = clamp(this_end, start, end);
229 
230 		cand = round_up(this_start, align);
231 		if (cand < this_end && this_end - cand >= size)
232 			return cand;
233 	}
234 
235 	return 0;
236 }
237 
238 /**
239  * __memblock_find_range_top_down - find free area utility, in top-down
240  * @start: start of candidate range
241  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
242  *       %MEMBLOCK_ALLOC_ACCESSIBLE
243  * @size: size of free area to find
244  * @align: alignment of free area to find
245  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
246  * @flags: pick from blocks based on memory attributes
247  *
248  * Utility called from memblock_find_in_range_node(), find free area top-down.
249  *
250  * Return:
251  * Found address on success, 0 on failure.
252  */
253 static phys_addr_t __init_memblock
254 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
255 			       phys_addr_t size, phys_addr_t align, int nid,
256 			       enum memblock_flags flags)
257 {
258 	phys_addr_t this_start, this_end, cand;
259 	u64 i;
260 
261 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
262 					NULL) {
263 		this_start = clamp(this_start, start, end);
264 		this_end = clamp(this_end, start, end);
265 
266 		if (this_end < size)
267 			continue;
268 
269 		cand = round_down(this_end - size, align);
270 		if (cand >= this_start)
271 			return cand;
272 	}
273 
274 	return 0;
275 }
276 
277 /**
278  * memblock_find_in_range_node - find free area in given range and node
279  * @size: size of free area to find
280  * @align: alignment of free area to find
281  * @start: start of candidate range
282  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
283  *       %MEMBLOCK_ALLOC_ACCESSIBLE
284  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
285  * @flags: pick from blocks based on memory attributes
286  *
287  * Find @size free area aligned to @align in the specified range and node.
288  *
289  * Return:
290  * Found address on success, 0 on failure.
291  */
292 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
293 					phys_addr_t align, phys_addr_t start,
294 					phys_addr_t end, int nid,
295 					enum memblock_flags flags)
296 {
297 	/* pump up @end */
298 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
299 	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
300 		end = memblock.current_limit;
301 
302 	/* avoid allocating the first page */
303 	start = max_t(phys_addr_t, start, PAGE_SIZE);
304 	end = max(start, end);
305 
306 	if (memblock_bottom_up())
307 		return __memblock_find_range_bottom_up(start, end, size, align,
308 						       nid, flags);
309 	else
310 		return __memblock_find_range_top_down(start, end, size, align,
311 						      nid, flags);
312 }
313 
314 /**
315  * memblock_find_in_range - find free area in given range
316  * @start: start of candidate range
317  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
318  *       %MEMBLOCK_ALLOC_ACCESSIBLE
319  * @size: size of free area to find
320  * @align: alignment of free area to find
321  *
322  * Find @size free area aligned to @align in the specified range.
323  *
324  * Return:
325  * Found address on success, 0 on failure.
326  */
327 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
328 					phys_addr_t end, phys_addr_t size,
329 					phys_addr_t align)
330 {
331 	phys_addr_t ret;
332 	enum memblock_flags flags = choose_memblock_flags();
333 
334 again:
335 	ret = memblock_find_in_range_node(size, align, start, end,
336 					    NUMA_NO_NODE, flags);
337 
338 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
339 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
340 			&size);
341 		flags &= ~MEMBLOCK_MIRROR;
342 		goto again;
343 	}
344 
345 	return ret;
346 }
347 
348 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
349 {
350 	type->total_size -= type->regions[r].size;
351 	memmove(&type->regions[r], &type->regions[r + 1],
352 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
353 	type->cnt--;
354 
355 	/* Special case for empty arrays */
356 	if (type->cnt == 0) {
357 		WARN_ON(type->total_size != 0);
358 		type->cnt = 1;
359 		type->regions[0].base = 0;
360 		type->regions[0].size = 0;
361 		type->regions[0].flags = 0;
362 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
363 	}
364 }
365 
366 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
367 /**
368  * memblock_discard - discard memory and reserved arrays if they were allocated
369  */
370 void __init memblock_discard(void)
371 {
372 	phys_addr_t addr, size;
373 
374 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
375 		addr = __pa(memblock.reserved.regions);
376 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
377 				  memblock.reserved.max);
378 		if (memblock_reserved_in_slab)
379 			kfree(memblock.reserved.regions);
380 		else
381 			memblock_free_late(addr, size);
382 	}
383 
384 	if (memblock.memory.regions != memblock_memory_init_regions) {
385 		addr = __pa(memblock.memory.regions);
386 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
387 				  memblock.memory.max);
388 		if (memblock_memory_in_slab)
389 			kfree(memblock.memory.regions);
390 		else
391 			memblock_free_late(addr, size);
392 	}
393 
394 	memblock_memory = NULL;
395 }
396 #endif
397 
398 /**
399  * memblock_double_array - double the size of the memblock regions array
400  * @type: memblock type of the regions array being doubled
401  * @new_area_start: starting address of memory range to avoid overlap with
402  * @new_area_size: size of memory range to avoid overlap with
403  *
404  * Double the size of the @type regions array. If memblock is being used to
405  * allocate memory for a new reserved regions array and there is a previously
406  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
407  * waiting to be reserved, ensure the memory used by the new array does
408  * not overlap.
409  *
410  * Return:
411  * 0 on success, -1 on failure.
412  */
413 static int __init_memblock memblock_double_array(struct memblock_type *type,
414 						phys_addr_t new_area_start,
415 						phys_addr_t new_area_size)
416 {
417 	struct memblock_region *new_array, *old_array;
418 	phys_addr_t old_alloc_size, new_alloc_size;
419 	phys_addr_t old_size, new_size, addr, new_end;
420 	int use_slab = slab_is_available();
421 	int *in_slab;
422 
423 	/* We don't allow resizing until we know about the reserved regions
424 	 * of memory that aren't suitable for allocation
425 	 */
426 	if (!memblock_can_resize)
427 		panic("memblock: cannot resize %s array\n", type->name);
428 
429 	/* Calculate new doubled size */
430 	old_size = type->max * sizeof(struct memblock_region);
431 	new_size = old_size << 1;
432 	/*
433 	 * We need to allocated new one align to PAGE_SIZE,
434 	 *   so we can free them completely later.
435 	 */
436 	old_alloc_size = PAGE_ALIGN(old_size);
437 	new_alloc_size = PAGE_ALIGN(new_size);
438 
439 	/* Retrieve the slab flag */
440 	if (type == &memblock.memory)
441 		in_slab = &memblock_memory_in_slab;
442 	else
443 		in_slab = &memblock_reserved_in_slab;
444 
445 	/* Try to find some space for it */
446 	if (use_slab) {
447 		new_array = kmalloc(new_size, GFP_KERNEL);
448 		addr = new_array ? __pa(new_array) : 0;
449 	} else {
450 		/* only exclude range when trying to double reserved.regions */
451 		if (type != &memblock.reserved)
452 			new_area_start = new_area_size = 0;
453 
454 		addr = memblock_find_in_range(new_area_start + new_area_size,
455 						memblock.current_limit,
456 						new_alloc_size, PAGE_SIZE);
457 		if (!addr && new_area_size)
458 			addr = memblock_find_in_range(0,
459 				min(new_area_start, memblock.current_limit),
460 				new_alloc_size, PAGE_SIZE);
461 
462 		new_array = addr ? __va(addr) : NULL;
463 	}
464 	if (!addr) {
465 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
466 		       type->name, type->max, type->max * 2);
467 		return -1;
468 	}
469 
470 	new_end = addr + new_size - 1;
471 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
472 			type->name, type->max * 2, &addr, &new_end);
473 
474 	/*
475 	 * Found space, we now need to move the array over before we add the
476 	 * reserved region since it may be our reserved array itself that is
477 	 * full.
478 	 */
479 	memcpy(new_array, type->regions, old_size);
480 	memset(new_array + type->max, 0, old_size);
481 	old_array = type->regions;
482 	type->regions = new_array;
483 	type->max <<= 1;
484 
485 	/* Free old array. We needn't free it if the array is the static one */
486 	if (*in_slab)
487 		kfree(old_array);
488 	else if (old_array != memblock_memory_init_regions &&
489 		 old_array != memblock_reserved_init_regions)
490 		memblock_free(old_array, old_alloc_size);
491 
492 	/*
493 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
494 	 * needn't do it
495 	 */
496 	if (!use_slab)
497 		BUG_ON(memblock_reserve(addr, new_alloc_size));
498 
499 	/* Update slab flag */
500 	*in_slab = use_slab;
501 
502 	return 0;
503 }
504 
505 /**
506  * memblock_merge_regions - merge neighboring compatible regions
507  * @type: memblock type to scan
508  * @start_rgn: start scanning from (@start_rgn - 1)
509  * @end_rgn: end scanning at (@end_rgn - 1)
510  * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
511  */
512 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
513 						   unsigned long start_rgn,
514 						   unsigned long end_rgn)
515 {
516 	int i = 0;
517 	if (start_rgn)
518 		i = start_rgn - 1;
519 	end_rgn = min(end_rgn, type->cnt - 1);
520 	while (i < end_rgn) {
521 		struct memblock_region *this = &type->regions[i];
522 		struct memblock_region *next = &type->regions[i + 1];
523 
524 		if (this->base + this->size != next->base ||
525 		    memblock_get_region_node(this) !=
526 		    memblock_get_region_node(next) ||
527 		    this->flags != next->flags) {
528 			BUG_ON(this->base + this->size > next->base);
529 			i++;
530 			continue;
531 		}
532 
533 		this->size += next->size;
534 		/* move forward from next + 1, index of which is i + 2 */
535 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
536 		type->cnt--;
537 		end_rgn--;
538 	}
539 }
540 
541 /**
542  * memblock_insert_region - insert new memblock region
543  * @type:	memblock type to insert into
544  * @idx:	index for the insertion point
545  * @base:	base address of the new region
546  * @size:	size of the new region
547  * @nid:	node id of the new region
548  * @flags:	flags of the new region
549  *
550  * Insert new memblock region [@base, @base + @size) into @type at @idx.
551  * @type must already have extra room to accommodate the new region.
552  */
553 static void __init_memblock memblock_insert_region(struct memblock_type *type,
554 						   int idx, phys_addr_t base,
555 						   phys_addr_t size,
556 						   int nid,
557 						   enum memblock_flags flags)
558 {
559 	struct memblock_region *rgn = &type->regions[idx];
560 
561 	BUG_ON(type->cnt >= type->max);
562 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
563 	rgn->base = base;
564 	rgn->size = size;
565 	rgn->flags = flags;
566 	memblock_set_region_node(rgn, nid);
567 	type->cnt++;
568 	type->total_size += size;
569 }
570 
571 /**
572  * memblock_add_range - add new memblock region
573  * @type: memblock type to add new region into
574  * @base: base address of the new region
575  * @size: size of the new region
576  * @nid: nid of the new region
577  * @flags: flags of the new region
578  *
579  * Add new memblock region [@base, @base + @size) into @type.  The new region
580  * is allowed to overlap with existing ones - overlaps don't affect already
581  * existing regions.  @type is guaranteed to be minimal (all neighbouring
582  * compatible regions are merged) after the addition.
583  *
584  * Return:
585  * 0 on success, -errno on failure.
586  */
587 static int __init_memblock memblock_add_range(struct memblock_type *type,
588 				phys_addr_t base, phys_addr_t size,
589 				int nid, enum memblock_flags flags)
590 {
591 	bool insert = false;
592 	phys_addr_t obase = base;
593 	phys_addr_t end = base + memblock_cap_size(base, &size);
594 	int idx, nr_new, start_rgn = -1, end_rgn;
595 	struct memblock_region *rgn;
596 
597 	if (!size)
598 		return 0;
599 
600 	/* special case for empty array */
601 	if (type->regions[0].size == 0) {
602 		WARN_ON(type->cnt != 1 || type->total_size);
603 		type->regions[0].base = base;
604 		type->regions[0].size = size;
605 		type->regions[0].flags = flags;
606 		memblock_set_region_node(&type->regions[0], nid);
607 		type->total_size = size;
608 		return 0;
609 	}
610 
611 	/*
612 	 * The worst case is when new range overlaps all existing regions,
613 	 * then we'll need type->cnt + 1 empty regions in @type. So if
614 	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
615 	 * that there is enough empty regions in @type, and we can insert
616 	 * regions directly.
617 	 */
618 	if (type->cnt * 2 + 1 <= type->max)
619 		insert = true;
620 
621 repeat:
622 	/*
623 	 * The following is executed twice.  Once with %false @insert and
624 	 * then with %true.  The first counts the number of regions needed
625 	 * to accommodate the new area.  The second actually inserts them.
626 	 */
627 	base = obase;
628 	nr_new = 0;
629 
630 	for_each_memblock_type(idx, type, rgn) {
631 		phys_addr_t rbase = rgn->base;
632 		phys_addr_t rend = rbase + rgn->size;
633 
634 		if (rbase >= end)
635 			break;
636 		if (rend <= base)
637 			continue;
638 		/*
639 		 * @rgn overlaps.  If it separates the lower part of new
640 		 * area, insert that portion.
641 		 */
642 		if (rbase > base) {
643 #ifdef CONFIG_NUMA
644 			WARN_ON(nid != memblock_get_region_node(rgn));
645 #endif
646 			WARN_ON(flags != rgn->flags);
647 			nr_new++;
648 			if (insert) {
649 				if (start_rgn == -1)
650 					start_rgn = idx;
651 				end_rgn = idx + 1;
652 				memblock_insert_region(type, idx++, base,
653 						       rbase - base, nid,
654 						       flags);
655 			}
656 		}
657 		/* area below @rend is dealt with, forget about it */
658 		base = min(rend, end);
659 	}
660 
661 	/* insert the remaining portion */
662 	if (base < end) {
663 		nr_new++;
664 		if (insert) {
665 			if (start_rgn == -1)
666 				start_rgn = idx;
667 			end_rgn = idx + 1;
668 			memblock_insert_region(type, idx, base, end - base,
669 					       nid, flags);
670 		}
671 	}
672 
673 	if (!nr_new)
674 		return 0;
675 
676 	/*
677 	 * If this was the first round, resize array and repeat for actual
678 	 * insertions; otherwise, merge and return.
679 	 */
680 	if (!insert) {
681 		while (type->cnt + nr_new > type->max)
682 			if (memblock_double_array(type, obase, size) < 0)
683 				return -ENOMEM;
684 		insert = true;
685 		goto repeat;
686 	} else {
687 		memblock_merge_regions(type, start_rgn, end_rgn);
688 		return 0;
689 	}
690 }
691 
692 /**
693  * memblock_add_node - add new memblock region within a NUMA node
694  * @base: base address of the new region
695  * @size: size of the new region
696  * @nid: nid of the new region
697  * @flags: flags of the new region
698  *
699  * Add new memblock region [@base, @base + @size) to the "memory"
700  * type. See memblock_add_range() description for mode details
701  *
702  * Return:
703  * 0 on success, -errno on failure.
704  */
705 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
706 				      int nid, enum memblock_flags flags)
707 {
708 	phys_addr_t end = base + size - 1;
709 
710 	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
711 		     &base, &end, nid, flags, (void *)_RET_IP_);
712 
713 	return memblock_add_range(&memblock.memory, base, size, nid, flags);
714 }
715 
716 /**
717  * memblock_add - add new memblock region
718  * @base: base address of the new region
719  * @size: size of the new region
720  *
721  * Add new memblock region [@base, @base + @size) to the "memory"
722  * type. See memblock_add_range() description for mode details
723  *
724  * Return:
725  * 0 on success, -errno on failure.
726  */
727 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
728 {
729 	phys_addr_t end = base + size - 1;
730 
731 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
732 		     &base, &end, (void *)_RET_IP_);
733 
734 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
735 }
736 
737 /**
738  * memblock_validate_numa_coverage - check if amount of memory with
739  * no node ID assigned is less than a threshold
740  * @threshold_bytes: maximal number of pages that can have unassigned node
741  * ID (in bytes).
742  *
743  * A buggy firmware may report memory that does not belong to any node.
744  * Check if amount of such memory is below @threshold_bytes.
745  *
746  * Return: true on success, false on failure.
747  */
748 bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
749 {
750 	unsigned long nr_pages = 0;
751 	unsigned long start_pfn, end_pfn, mem_size_mb;
752 	int nid, i;
753 
754 	/* calculate lose page */
755 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
756 		if (nid == NUMA_NO_NODE)
757 			nr_pages += end_pfn - start_pfn;
758 	}
759 
760 	if ((nr_pages << PAGE_SHIFT) >= threshold_bytes) {
761 		mem_size_mb = memblock_phys_mem_size() >> 20;
762 		pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
763 		       (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
764 		return false;
765 	}
766 
767 	return true;
768 }
769 
770 
771 /**
772  * memblock_isolate_range - isolate given range into disjoint memblocks
773  * @type: memblock type to isolate range for
774  * @base: base of range to isolate
775  * @size: size of range to isolate
776  * @start_rgn: out parameter for the start of isolated region
777  * @end_rgn: out parameter for the end of isolated region
778  *
779  * Walk @type and ensure that regions don't cross the boundaries defined by
780  * [@base, @base + @size).  Crossing regions are split at the boundaries,
781  * which may create at most two more regions.  The index of the first
782  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
783  *
784  * Return:
785  * 0 on success, -errno on failure.
786  */
787 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
788 					phys_addr_t base, phys_addr_t size,
789 					int *start_rgn, int *end_rgn)
790 {
791 	phys_addr_t end = base + memblock_cap_size(base, &size);
792 	int idx;
793 	struct memblock_region *rgn;
794 
795 	*start_rgn = *end_rgn = 0;
796 
797 	if (!size)
798 		return 0;
799 
800 	/* we'll create at most two more regions */
801 	while (type->cnt + 2 > type->max)
802 		if (memblock_double_array(type, base, size) < 0)
803 			return -ENOMEM;
804 
805 	for_each_memblock_type(idx, type, rgn) {
806 		phys_addr_t rbase = rgn->base;
807 		phys_addr_t rend = rbase + rgn->size;
808 
809 		if (rbase >= end)
810 			break;
811 		if (rend <= base)
812 			continue;
813 
814 		if (rbase < base) {
815 			/*
816 			 * @rgn intersects from below.  Split and continue
817 			 * to process the next region - the new top half.
818 			 */
819 			rgn->base = base;
820 			rgn->size -= base - rbase;
821 			type->total_size -= base - rbase;
822 			memblock_insert_region(type, idx, rbase, base - rbase,
823 					       memblock_get_region_node(rgn),
824 					       rgn->flags);
825 		} else if (rend > end) {
826 			/*
827 			 * @rgn intersects from above.  Split and redo the
828 			 * current region - the new bottom half.
829 			 */
830 			rgn->base = end;
831 			rgn->size -= end - rbase;
832 			type->total_size -= end - rbase;
833 			memblock_insert_region(type, idx--, rbase, end - rbase,
834 					       memblock_get_region_node(rgn),
835 					       rgn->flags);
836 		} else {
837 			/* @rgn is fully contained, record it */
838 			if (!*end_rgn)
839 				*start_rgn = idx;
840 			*end_rgn = idx + 1;
841 		}
842 	}
843 
844 	return 0;
845 }
846 
847 static int __init_memblock memblock_remove_range(struct memblock_type *type,
848 					  phys_addr_t base, phys_addr_t size)
849 {
850 	int start_rgn, end_rgn;
851 	int i, ret;
852 
853 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
854 	if (ret)
855 		return ret;
856 
857 	for (i = end_rgn - 1; i >= start_rgn; i--)
858 		memblock_remove_region(type, i);
859 	return 0;
860 }
861 
862 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
863 {
864 	phys_addr_t end = base + size - 1;
865 
866 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
867 		     &base, &end, (void *)_RET_IP_);
868 
869 	return memblock_remove_range(&memblock.memory, base, size);
870 }
871 
872 /**
873  * memblock_free - free boot memory allocation
874  * @ptr: starting address of the  boot memory allocation
875  * @size: size of the boot memory block in bytes
876  *
877  * Free boot memory block previously allocated by memblock_alloc_xx() API.
878  * The freeing memory will not be released to the buddy allocator.
879  */
880 void __init_memblock memblock_free(void *ptr, size_t size)
881 {
882 	if (ptr)
883 		memblock_phys_free(__pa(ptr), size);
884 }
885 
886 /**
887  * memblock_phys_free - free boot memory block
888  * @base: phys starting address of the  boot memory block
889  * @size: size of the boot memory block in bytes
890  *
891  * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
892  * The freeing memory will not be released to the buddy allocator.
893  */
894 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
895 {
896 	phys_addr_t end = base + size - 1;
897 
898 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
899 		     &base, &end, (void *)_RET_IP_);
900 
901 	kmemleak_free_part_phys(base, size);
902 	return memblock_remove_range(&memblock.reserved, base, size);
903 }
904 
905 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
906 {
907 	phys_addr_t end = base + size - 1;
908 
909 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
910 		     &base, &end, (void *)_RET_IP_);
911 
912 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
913 }
914 
915 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
916 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
917 {
918 	phys_addr_t end = base + size - 1;
919 
920 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
921 		     &base, &end, (void *)_RET_IP_);
922 
923 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
924 }
925 #endif
926 
927 /**
928  * memblock_setclr_flag - set or clear flag for a memory region
929  * @type: memblock type to set/clear flag for
930  * @base: base address of the region
931  * @size: size of the region
932  * @set: set or clear the flag
933  * @flag: the flag to update
934  *
935  * This function isolates region [@base, @base + @size), and sets/clears flag
936  *
937  * Return: 0 on success, -errno on failure.
938  */
939 static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
940 				phys_addr_t base, phys_addr_t size, int set, int flag)
941 {
942 	int i, ret, start_rgn, end_rgn;
943 
944 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
945 	if (ret)
946 		return ret;
947 
948 	for (i = start_rgn; i < end_rgn; i++) {
949 		struct memblock_region *r = &type->regions[i];
950 
951 		if (set)
952 			r->flags |= flag;
953 		else
954 			r->flags &= ~flag;
955 	}
956 
957 	memblock_merge_regions(type, start_rgn, end_rgn);
958 	return 0;
959 }
960 
961 /**
962  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
963  * @base: the base phys addr of the region
964  * @size: the size of the region
965  *
966  * Return: 0 on success, -errno on failure.
967  */
968 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
969 {
970 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
971 }
972 
973 /**
974  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
975  * @base: the base phys addr of the region
976  * @size: the size of the region
977  *
978  * Return: 0 on success, -errno on failure.
979  */
980 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
981 {
982 	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
983 }
984 
985 /**
986  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
987  * @base: the base phys addr of the region
988  * @size: the size of the region
989  *
990  * Return: 0 on success, -errno on failure.
991  */
992 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
993 {
994 	if (!mirrored_kernelcore)
995 		return 0;
996 
997 	system_has_some_mirror = true;
998 
999 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
1000 }
1001 
1002 /**
1003  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1004  * @base: the base phys addr of the region
1005  * @size: the size of the region
1006  *
1007  * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1008  * direct mapping of the physical memory. These regions will still be
1009  * covered by the memory map. The struct page representing NOMAP memory
1010  * frames in the memory map will be PageReserved()
1011  *
1012  * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1013  * memblock, the caller must inform kmemleak to ignore that memory
1014  *
1015  * Return: 0 on success, -errno on failure.
1016  */
1017 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1018 {
1019 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1020 }
1021 
1022 /**
1023  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1024  * @base: the base phys addr of the region
1025  * @size: the size of the region
1026  *
1027  * Return: 0 on success, -errno on failure.
1028  */
1029 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1030 {
1031 	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1032 }
1033 
1034 /**
1035  * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1036  * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1037  * for this region.
1038  * @base: the base phys addr of the region
1039  * @size: the size of the region
1040  *
1041  * struct pages will not be initialized for reserved memory regions marked with
1042  * %MEMBLOCK_RSRV_NOINIT.
1043  *
1044  * Return: 0 on success, -errno on failure.
1045  */
1046 int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1047 {
1048 	return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1049 				    MEMBLOCK_RSRV_NOINIT);
1050 }
1051 
1052 static bool should_skip_region(struct memblock_type *type,
1053 			       struct memblock_region *m,
1054 			       int nid, int flags)
1055 {
1056 	int m_nid = memblock_get_region_node(m);
1057 
1058 	/* we never skip regions when iterating memblock.reserved or physmem */
1059 	if (type != memblock_memory)
1060 		return false;
1061 
1062 	/* only memory regions are associated with nodes, check it */
1063 	if (nid != NUMA_NO_NODE && nid != m_nid)
1064 		return true;
1065 
1066 	/* skip hotpluggable memory regions if needed */
1067 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1068 	    !(flags & MEMBLOCK_HOTPLUG))
1069 		return true;
1070 
1071 	/* if we want mirror memory skip non-mirror memory regions */
1072 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1073 		return true;
1074 
1075 	/* skip nomap memory unless we were asked for it explicitly */
1076 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1077 		return true;
1078 
1079 	/* skip driver-managed memory unless we were asked for it explicitly */
1080 	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1081 		return true;
1082 
1083 	return false;
1084 }
1085 
1086 /**
1087  * __next_mem_range - next function for for_each_free_mem_range() etc.
1088  * @idx: pointer to u64 loop variable
1089  * @nid: node selector, %NUMA_NO_NODE for all nodes
1090  * @flags: pick from blocks based on memory attributes
1091  * @type_a: pointer to memblock_type from where the range is taken
1092  * @type_b: pointer to memblock_type which excludes memory from being taken
1093  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1094  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1095  * @out_nid: ptr to int for nid of the range, can be %NULL
1096  *
1097  * Find the first area from *@idx which matches @nid, fill the out
1098  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1099  * *@idx contains index into type_a and the upper 32bit indexes the
1100  * areas before each region in type_b.	For example, if type_b regions
1101  * look like the following,
1102  *
1103  *	0:[0-16), 1:[32-48), 2:[128-130)
1104  *
1105  * The upper 32bit indexes the following regions.
1106  *
1107  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1108  *
1109  * As both region arrays are sorted, the function advances the two indices
1110  * in lockstep and returns each intersection.
1111  */
1112 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1113 		      struct memblock_type *type_a,
1114 		      struct memblock_type *type_b, phys_addr_t *out_start,
1115 		      phys_addr_t *out_end, int *out_nid)
1116 {
1117 	int idx_a = *idx & 0xffffffff;
1118 	int idx_b = *idx >> 32;
1119 
1120 	if (WARN_ONCE(nid == MAX_NUMNODES,
1121 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1122 		nid = NUMA_NO_NODE;
1123 
1124 	for (; idx_a < type_a->cnt; idx_a++) {
1125 		struct memblock_region *m = &type_a->regions[idx_a];
1126 
1127 		phys_addr_t m_start = m->base;
1128 		phys_addr_t m_end = m->base + m->size;
1129 		int	    m_nid = memblock_get_region_node(m);
1130 
1131 		if (should_skip_region(type_a, m, nid, flags))
1132 			continue;
1133 
1134 		if (!type_b) {
1135 			if (out_start)
1136 				*out_start = m_start;
1137 			if (out_end)
1138 				*out_end = m_end;
1139 			if (out_nid)
1140 				*out_nid = m_nid;
1141 			idx_a++;
1142 			*idx = (u32)idx_a | (u64)idx_b << 32;
1143 			return;
1144 		}
1145 
1146 		/* scan areas before each reservation */
1147 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1148 			struct memblock_region *r;
1149 			phys_addr_t r_start;
1150 			phys_addr_t r_end;
1151 
1152 			r = &type_b->regions[idx_b];
1153 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1154 			r_end = idx_b < type_b->cnt ?
1155 				r->base : PHYS_ADDR_MAX;
1156 
1157 			/*
1158 			 * if idx_b advanced past idx_a,
1159 			 * break out to advance idx_a
1160 			 */
1161 			if (r_start >= m_end)
1162 				break;
1163 			/* if the two regions intersect, we're done */
1164 			if (m_start < r_end) {
1165 				if (out_start)
1166 					*out_start =
1167 						max(m_start, r_start);
1168 				if (out_end)
1169 					*out_end = min(m_end, r_end);
1170 				if (out_nid)
1171 					*out_nid = m_nid;
1172 				/*
1173 				 * The region which ends first is
1174 				 * advanced for the next iteration.
1175 				 */
1176 				if (m_end <= r_end)
1177 					idx_a++;
1178 				else
1179 					idx_b++;
1180 				*idx = (u32)idx_a | (u64)idx_b << 32;
1181 				return;
1182 			}
1183 		}
1184 	}
1185 
1186 	/* signal end of iteration */
1187 	*idx = ULLONG_MAX;
1188 }
1189 
1190 /**
1191  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1192  *
1193  * @idx: pointer to u64 loop variable
1194  * @nid: node selector, %NUMA_NO_NODE for all nodes
1195  * @flags: pick from blocks based on memory attributes
1196  * @type_a: pointer to memblock_type from where the range is taken
1197  * @type_b: pointer to memblock_type which excludes memory from being taken
1198  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1199  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1200  * @out_nid: ptr to int for nid of the range, can be %NULL
1201  *
1202  * Finds the next range from type_a which is not marked as unsuitable
1203  * in type_b.
1204  *
1205  * Reverse of __next_mem_range().
1206  */
1207 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1208 					  enum memblock_flags flags,
1209 					  struct memblock_type *type_a,
1210 					  struct memblock_type *type_b,
1211 					  phys_addr_t *out_start,
1212 					  phys_addr_t *out_end, int *out_nid)
1213 {
1214 	int idx_a = *idx & 0xffffffff;
1215 	int idx_b = *idx >> 32;
1216 
1217 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1218 		nid = NUMA_NO_NODE;
1219 
1220 	if (*idx == (u64)ULLONG_MAX) {
1221 		idx_a = type_a->cnt - 1;
1222 		if (type_b != NULL)
1223 			idx_b = type_b->cnt;
1224 		else
1225 			idx_b = 0;
1226 	}
1227 
1228 	for (; idx_a >= 0; idx_a--) {
1229 		struct memblock_region *m = &type_a->regions[idx_a];
1230 
1231 		phys_addr_t m_start = m->base;
1232 		phys_addr_t m_end = m->base + m->size;
1233 		int m_nid = memblock_get_region_node(m);
1234 
1235 		if (should_skip_region(type_a, m, nid, flags))
1236 			continue;
1237 
1238 		if (!type_b) {
1239 			if (out_start)
1240 				*out_start = m_start;
1241 			if (out_end)
1242 				*out_end = m_end;
1243 			if (out_nid)
1244 				*out_nid = m_nid;
1245 			idx_a--;
1246 			*idx = (u32)idx_a | (u64)idx_b << 32;
1247 			return;
1248 		}
1249 
1250 		/* scan areas before each reservation */
1251 		for (; idx_b >= 0; idx_b--) {
1252 			struct memblock_region *r;
1253 			phys_addr_t r_start;
1254 			phys_addr_t r_end;
1255 
1256 			r = &type_b->regions[idx_b];
1257 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1258 			r_end = idx_b < type_b->cnt ?
1259 				r->base : PHYS_ADDR_MAX;
1260 			/*
1261 			 * if idx_b advanced past idx_a,
1262 			 * break out to advance idx_a
1263 			 */
1264 
1265 			if (r_end <= m_start)
1266 				break;
1267 			/* if the two regions intersect, we're done */
1268 			if (m_end > r_start) {
1269 				if (out_start)
1270 					*out_start = max(m_start, r_start);
1271 				if (out_end)
1272 					*out_end = min(m_end, r_end);
1273 				if (out_nid)
1274 					*out_nid = m_nid;
1275 				if (m_start >= r_start)
1276 					idx_a--;
1277 				else
1278 					idx_b--;
1279 				*idx = (u32)idx_a | (u64)idx_b << 32;
1280 				return;
1281 			}
1282 		}
1283 	}
1284 	/* signal end of iteration */
1285 	*idx = ULLONG_MAX;
1286 }
1287 
1288 /*
1289  * Common iterator interface used to define for_each_mem_pfn_range().
1290  */
1291 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1292 				unsigned long *out_start_pfn,
1293 				unsigned long *out_end_pfn, int *out_nid)
1294 {
1295 	struct memblock_type *type = &memblock.memory;
1296 	struct memblock_region *r;
1297 	int r_nid;
1298 
1299 	while (++*idx < type->cnt) {
1300 		r = &type->regions[*idx];
1301 		r_nid = memblock_get_region_node(r);
1302 
1303 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1304 			continue;
1305 		if (nid == MAX_NUMNODES || nid == r_nid)
1306 			break;
1307 	}
1308 	if (*idx >= type->cnt) {
1309 		*idx = -1;
1310 		return;
1311 	}
1312 
1313 	if (out_start_pfn)
1314 		*out_start_pfn = PFN_UP(r->base);
1315 	if (out_end_pfn)
1316 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1317 	if (out_nid)
1318 		*out_nid = r_nid;
1319 }
1320 
1321 /**
1322  * memblock_set_node - set node ID on memblock regions
1323  * @base: base of area to set node ID for
1324  * @size: size of area to set node ID for
1325  * @type: memblock type to set node ID for
1326  * @nid: node ID to set
1327  *
1328  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1329  * Regions which cross the area boundaries are split as necessary.
1330  *
1331  * Return:
1332  * 0 on success, -errno on failure.
1333  */
1334 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1335 				      struct memblock_type *type, int nid)
1336 {
1337 #ifdef CONFIG_NUMA
1338 	int start_rgn, end_rgn;
1339 	int i, ret;
1340 
1341 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1342 	if (ret)
1343 		return ret;
1344 
1345 	for (i = start_rgn; i < end_rgn; i++)
1346 		memblock_set_region_node(&type->regions[i], nid);
1347 
1348 	memblock_merge_regions(type, start_rgn, end_rgn);
1349 #endif
1350 	return 0;
1351 }
1352 
1353 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1354 /**
1355  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1356  *
1357  * @idx: pointer to u64 loop variable
1358  * @zone: zone in which all of the memory blocks reside
1359  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1360  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1361  *
1362  * This function is meant to be a zone/pfn specific wrapper for the
1363  * for_each_mem_range type iterators. Specifically they are used in the
1364  * deferred memory init routines and as such we were duplicating much of
1365  * this logic throughout the code. So instead of having it in multiple
1366  * locations it seemed like it would make more sense to centralize this to
1367  * one new iterator that does everything they need.
1368  */
1369 void __init_memblock
1370 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1371 			     unsigned long *out_spfn, unsigned long *out_epfn)
1372 {
1373 	int zone_nid = zone_to_nid(zone);
1374 	phys_addr_t spa, epa;
1375 
1376 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1377 			 &memblock.memory, &memblock.reserved,
1378 			 &spa, &epa, NULL);
1379 
1380 	while (*idx != U64_MAX) {
1381 		unsigned long epfn = PFN_DOWN(epa);
1382 		unsigned long spfn = PFN_UP(spa);
1383 
1384 		/*
1385 		 * Verify the end is at least past the start of the zone and
1386 		 * that we have at least one PFN to initialize.
1387 		 */
1388 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1389 			/* if we went too far just stop searching */
1390 			if (zone_end_pfn(zone) <= spfn) {
1391 				*idx = U64_MAX;
1392 				break;
1393 			}
1394 
1395 			if (out_spfn)
1396 				*out_spfn = max(zone->zone_start_pfn, spfn);
1397 			if (out_epfn)
1398 				*out_epfn = min(zone_end_pfn(zone), epfn);
1399 
1400 			return;
1401 		}
1402 
1403 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1404 				 &memblock.memory, &memblock.reserved,
1405 				 &spa, &epa, NULL);
1406 	}
1407 
1408 	/* signal end of iteration */
1409 	if (out_spfn)
1410 		*out_spfn = ULONG_MAX;
1411 	if (out_epfn)
1412 		*out_epfn = 0;
1413 }
1414 
1415 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1416 
1417 /**
1418  * memblock_alloc_range_nid - allocate boot memory block
1419  * @size: size of memory block to be allocated in bytes
1420  * @align: alignment of the region and block's size
1421  * @start: the lower bound of the memory region to allocate (phys address)
1422  * @end: the upper bound of the memory region to allocate (phys address)
1423  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1424  * @exact_nid: control the allocation fall back to other nodes
1425  *
1426  * The allocation is performed from memory region limited by
1427  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1428  *
1429  * If the specified node can not hold the requested memory and @exact_nid
1430  * is false, the allocation falls back to any node in the system.
1431  *
1432  * For systems with memory mirroring, the allocation is attempted first
1433  * from the regions with mirroring enabled and then retried from any
1434  * memory region.
1435  *
1436  * In addition, function using kmemleak_alloc_phys for allocated boot
1437  * memory block, it is never reported as leaks.
1438  *
1439  * Return:
1440  * Physical address of allocated memory block on success, %0 on failure.
1441  */
1442 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1443 					phys_addr_t align, phys_addr_t start,
1444 					phys_addr_t end, int nid,
1445 					bool exact_nid)
1446 {
1447 	enum memblock_flags flags = choose_memblock_flags();
1448 	phys_addr_t found;
1449 
1450 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1451 		nid = NUMA_NO_NODE;
1452 
1453 	if (!align) {
1454 		/* Can't use WARNs this early in boot on powerpc */
1455 		dump_stack();
1456 		align = SMP_CACHE_BYTES;
1457 	}
1458 
1459 again:
1460 	found = memblock_find_in_range_node(size, align, start, end, nid,
1461 					    flags);
1462 	if (found && !memblock_reserve(found, size))
1463 		goto done;
1464 
1465 	if (nid != NUMA_NO_NODE && !exact_nid) {
1466 		found = memblock_find_in_range_node(size, align, start,
1467 						    end, NUMA_NO_NODE,
1468 						    flags);
1469 		if (found && !memblock_reserve(found, size))
1470 			goto done;
1471 	}
1472 
1473 	if (flags & MEMBLOCK_MIRROR) {
1474 		flags &= ~MEMBLOCK_MIRROR;
1475 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1476 			&size);
1477 		goto again;
1478 	}
1479 
1480 	return 0;
1481 
1482 done:
1483 	/*
1484 	 * Skip kmemleak for those places like kasan_init() and
1485 	 * early_pgtable_alloc() due to high volume.
1486 	 */
1487 	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1488 		/*
1489 		 * Memblock allocated blocks are never reported as
1490 		 * leaks. This is because many of these blocks are
1491 		 * only referred via the physical address which is
1492 		 * not looked up by kmemleak.
1493 		 */
1494 		kmemleak_alloc_phys(found, size, 0);
1495 
1496 	/*
1497 	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1498 	 * require memory to be accepted before it can be used by the
1499 	 * guest.
1500 	 *
1501 	 * Accept the memory of the allocated buffer.
1502 	 */
1503 	accept_memory(found, found + size);
1504 
1505 	return found;
1506 }
1507 
1508 /**
1509  * memblock_phys_alloc_range - allocate a memory block inside specified range
1510  * @size: size of memory block to be allocated in bytes
1511  * @align: alignment of the region and block's size
1512  * @start: the lower bound of the memory region to allocate (physical address)
1513  * @end: the upper bound of the memory region to allocate (physical address)
1514  *
1515  * Allocate @size bytes in the between @start and @end.
1516  *
1517  * Return: physical address of the allocated memory block on success,
1518  * %0 on failure.
1519  */
1520 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1521 					     phys_addr_t align,
1522 					     phys_addr_t start,
1523 					     phys_addr_t end)
1524 {
1525 	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1526 		     __func__, (u64)size, (u64)align, &start, &end,
1527 		     (void *)_RET_IP_);
1528 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1529 					false);
1530 }
1531 
1532 /**
1533  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1534  * @size: size of memory block to be allocated in bytes
1535  * @align: alignment of the region and block's size
1536  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1537  *
1538  * Allocates memory block from the specified NUMA node. If the node
1539  * has no available memory, attempts to allocated from any node in the
1540  * system.
1541  *
1542  * Return: physical address of the allocated memory block on success,
1543  * %0 on failure.
1544  */
1545 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1546 {
1547 	return memblock_alloc_range_nid(size, align, 0,
1548 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1549 }
1550 
1551 /**
1552  * memblock_alloc_internal - allocate boot memory block
1553  * @size: size of memory block to be allocated in bytes
1554  * @align: alignment of the region and block's size
1555  * @min_addr: the lower bound of the memory region to allocate (phys address)
1556  * @max_addr: the upper bound of the memory region to allocate (phys address)
1557  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1558  * @exact_nid: control the allocation fall back to other nodes
1559  *
1560  * Allocates memory block using memblock_alloc_range_nid() and
1561  * converts the returned physical address to virtual.
1562  *
1563  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1564  * will fall back to memory below @min_addr. Other constraints, such
1565  * as node and mirrored memory will be handled again in
1566  * memblock_alloc_range_nid().
1567  *
1568  * Return:
1569  * Virtual address of allocated memory block on success, NULL on failure.
1570  */
1571 static void * __init memblock_alloc_internal(
1572 				phys_addr_t size, phys_addr_t align,
1573 				phys_addr_t min_addr, phys_addr_t max_addr,
1574 				int nid, bool exact_nid)
1575 {
1576 	phys_addr_t alloc;
1577 
1578 	/*
1579 	 * Detect any accidental use of these APIs after slab is ready, as at
1580 	 * this moment memblock may be deinitialized already and its
1581 	 * internal data may be destroyed (after execution of memblock_free_all)
1582 	 */
1583 	if (WARN_ON_ONCE(slab_is_available()))
1584 		return kzalloc_node(size, GFP_NOWAIT, nid);
1585 
1586 	if (max_addr > memblock.current_limit)
1587 		max_addr = memblock.current_limit;
1588 
1589 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1590 					exact_nid);
1591 
1592 	/* retry allocation without lower limit */
1593 	if (!alloc && min_addr)
1594 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1595 						exact_nid);
1596 
1597 	if (!alloc)
1598 		return NULL;
1599 
1600 	return phys_to_virt(alloc);
1601 }
1602 
1603 /**
1604  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1605  * without zeroing memory
1606  * @size: size of memory block to be allocated in bytes
1607  * @align: alignment of the region and block's size
1608  * @min_addr: the lower bound of the memory region from where the allocation
1609  *	  is preferred (phys address)
1610  * @max_addr: the upper bound of the memory region from where the allocation
1611  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1612  *	      allocate only from memory limited by memblock.current_limit value
1613  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1614  *
1615  * Public function, provides additional debug information (including caller
1616  * info), if enabled. Does not zero allocated memory.
1617  *
1618  * Return:
1619  * Virtual address of allocated memory block on success, NULL on failure.
1620  */
1621 void * __init memblock_alloc_exact_nid_raw(
1622 			phys_addr_t size, phys_addr_t align,
1623 			phys_addr_t min_addr, phys_addr_t max_addr,
1624 			int nid)
1625 {
1626 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1627 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1628 		     &max_addr, (void *)_RET_IP_);
1629 
1630 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1631 				       true);
1632 }
1633 
1634 /**
1635  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1636  * memory and without panicking
1637  * @size: size of memory block to be allocated in bytes
1638  * @align: alignment of the region and block's size
1639  * @min_addr: the lower bound of the memory region from where the allocation
1640  *	  is preferred (phys address)
1641  * @max_addr: the upper bound of the memory region from where the allocation
1642  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1643  *	      allocate only from memory limited by memblock.current_limit value
1644  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1645  *
1646  * Public function, provides additional debug information (including caller
1647  * info), if enabled. Does not zero allocated memory, does not panic if request
1648  * cannot be satisfied.
1649  *
1650  * Return:
1651  * Virtual address of allocated memory block on success, NULL on failure.
1652  */
1653 void * __init memblock_alloc_try_nid_raw(
1654 			phys_addr_t size, phys_addr_t align,
1655 			phys_addr_t min_addr, phys_addr_t max_addr,
1656 			int nid)
1657 {
1658 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1659 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1660 		     &max_addr, (void *)_RET_IP_);
1661 
1662 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1663 				       false);
1664 }
1665 
1666 /**
1667  * memblock_alloc_try_nid - allocate boot memory block
1668  * @size: size of memory block to be allocated in bytes
1669  * @align: alignment of the region and block's size
1670  * @min_addr: the lower bound of the memory region from where the allocation
1671  *	  is preferred (phys address)
1672  * @max_addr: the upper bound of the memory region from where the allocation
1673  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1674  *	      allocate only from memory limited by memblock.current_limit value
1675  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1676  *
1677  * Public function, provides additional debug information (including caller
1678  * info), if enabled. This function zeroes the allocated memory.
1679  *
1680  * Return:
1681  * Virtual address of allocated memory block on success, NULL on failure.
1682  */
1683 void * __init memblock_alloc_try_nid(
1684 			phys_addr_t size, phys_addr_t align,
1685 			phys_addr_t min_addr, phys_addr_t max_addr,
1686 			int nid)
1687 {
1688 	void *ptr;
1689 
1690 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1691 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1692 		     &max_addr, (void *)_RET_IP_);
1693 	ptr = memblock_alloc_internal(size, align,
1694 					   min_addr, max_addr, nid, false);
1695 	if (ptr)
1696 		memset(ptr, 0, size);
1697 
1698 	return ptr;
1699 }
1700 
1701 /**
1702  * memblock_free_late - free pages directly to buddy allocator
1703  * @base: phys starting address of the  boot memory block
1704  * @size: size of the boot memory block in bytes
1705  *
1706  * This is only useful when the memblock allocator has already been torn
1707  * down, but we are still initializing the system.  Pages are released directly
1708  * to the buddy allocator.
1709  */
1710 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1711 {
1712 	phys_addr_t cursor, end;
1713 
1714 	end = base + size - 1;
1715 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1716 		     __func__, &base, &end, (void *)_RET_IP_);
1717 	kmemleak_free_part_phys(base, size);
1718 	cursor = PFN_UP(base);
1719 	end = PFN_DOWN(base + size);
1720 
1721 	for (; cursor < end; cursor++) {
1722 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1723 		totalram_pages_inc();
1724 	}
1725 }
1726 
1727 /*
1728  * Remaining API functions
1729  */
1730 
1731 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1732 {
1733 	return memblock.memory.total_size;
1734 }
1735 
1736 phys_addr_t __init_memblock memblock_reserved_size(void)
1737 {
1738 	return memblock.reserved.total_size;
1739 }
1740 
1741 /* lowest address */
1742 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1743 {
1744 	return memblock.memory.regions[0].base;
1745 }
1746 
1747 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1748 {
1749 	int idx = memblock.memory.cnt - 1;
1750 
1751 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1752 }
1753 
1754 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1755 {
1756 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1757 	struct memblock_region *r;
1758 
1759 	/*
1760 	 * translate the memory @limit size into the max address within one of
1761 	 * the memory memblock regions, if the @limit exceeds the total size
1762 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1763 	 */
1764 	for_each_mem_region(r) {
1765 		if (limit <= r->size) {
1766 			max_addr = r->base + limit;
1767 			break;
1768 		}
1769 		limit -= r->size;
1770 	}
1771 
1772 	return max_addr;
1773 }
1774 
1775 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1776 {
1777 	phys_addr_t max_addr;
1778 
1779 	if (!limit)
1780 		return;
1781 
1782 	max_addr = __find_max_addr(limit);
1783 
1784 	/* @limit exceeds the total size of the memory, do nothing */
1785 	if (max_addr == PHYS_ADDR_MAX)
1786 		return;
1787 
1788 	/* truncate both memory and reserved regions */
1789 	memblock_remove_range(&memblock.memory, max_addr,
1790 			      PHYS_ADDR_MAX);
1791 	memblock_remove_range(&memblock.reserved, max_addr,
1792 			      PHYS_ADDR_MAX);
1793 }
1794 
1795 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1796 {
1797 	int start_rgn, end_rgn;
1798 	int i, ret;
1799 
1800 	if (!size)
1801 		return;
1802 
1803 	if (!memblock_memory->total_size) {
1804 		pr_warn("%s: No memory registered yet\n", __func__);
1805 		return;
1806 	}
1807 
1808 	ret = memblock_isolate_range(&memblock.memory, base, size,
1809 						&start_rgn, &end_rgn);
1810 	if (ret)
1811 		return;
1812 
1813 	/* remove all the MAP regions */
1814 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1815 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1816 			memblock_remove_region(&memblock.memory, i);
1817 
1818 	for (i = start_rgn - 1; i >= 0; i--)
1819 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1820 			memblock_remove_region(&memblock.memory, i);
1821 
1822 	/* truncate the reserved regions */
1823 	memblock_remove_range(&memblock.reserved, 0, base);
1824 	memblock_remove_range(&memblock.reserved,
1825 			base + size, PHYS_ADDR_MAX);
1826 }
1827 
1828 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1829 {
1830 	phys_addr_t max_addr;
1831 
1832 	if (!limit)
1833 		return;
1834 
1835 	max_addr = __find_max_addr(limit);
1836 
1837 	/* @limit exceeds the total size of the memory, do nothing */
1838 	if (max_addr == PHYS_ADDR_MAX)
1839 		return;
1840 
1841 	memblock_cap_memory_range(0, max_addr);
1842 }
1843 
1844 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1845 {
1846 	unsigned int left = 0, right = type->cnt;
1847 
1848 	do {
1849 		unsigned int mid = (right + left) / 2;
1850 
1851 		if (addr < type->regions[mid].base)
1852 			right = mid;
1853 		else if (addr >= (type->regions[mid].base +
1854 				  type->regions[mid].size))
1855 			left = mid + 1;
1856 		else
1857 			return mid;
1858 	} while (left < right);
1859 	return -1;
1860 }
1861 
1862 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1863 {
1864 	return memblock_search(&memblock.reserved, addr) != -1;
1865 }
1866 
1867 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1868 {
1869 	return memblock_search(&memblock.memory, addr) != -1;
1870 }
1871 
1872 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1873 {
1874 	int i = memblock_search(&memblock.memory, addr);
1875 
1876 	if (i == -1)
1877 		return false;
1878 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1879 }
1880 
1881 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1882 			 unsigned long *start_pfn, unsigned long *end_pfn)
1883 {
1884 	struct memblock_type *type = &memblock.memory;
1885 	int mid = memblock_search(type, PFN_PHYS(pfn));
1886 
1887 	if (mid == -1)
1888 		return NUMA_NO_NODE;
1889 
1890 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1891 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1892 
1893 	return memblock_get_region_node(&type->regions[mid]);
1894 }
1895 
1896 /**
1897  * memblock_is_region_memory - check if a region is a subset of memory
1898  * @base: base of region to check
1899  * @size: size of region to check
1900  *
1901  * Check if the region [@base, @base + @size) is a subset of a memory block.
1902  *
1903  * Return:
1904  * 0 if false, non-zero if true
1905  */
1906 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1907 {
1908 	int idx = memblock_search(&memblock.memory, base);
1909 	phys_addr_t end = base + memblock_cap_size(base, &size);
1910 
1911 	if (idx == -1)
1912 		return false;
1913 	return (memblock.memory.regions[idx].base +
1914 		 memblock.memory.regions[idx].size) >= end;
1915 }
1916 
1917 /**
1918  * memblock_is_region_reserved - check if a region intersects reserved memory
1919  * @base: base of region to check
1920  * @size: size of region to check
1921  *
1922  * Check if the region [@base, @base + @size) intersects a reserved
1923  * memory block.
1924  *
1925  * Return:
1926  * True if they intersect, false if not.
1927  */
1928 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1929 {
1930 	return memblock_overlaps_region(&memblock.reserved, base, size);
1931 }
1932 
1933 void __init_memblock memblock_trim_memory(phys_addr_t align)
1934 {
1935 	phys_addr_t start, end, orig_start, orig_end;
1936 	struct memblock_region *r;
1937 
1938 	for_each_mem_region(r) {
1939 		orig_start = r->base;
1940 		orig_end = r->base + r->size;
1941 		start = round_up(orig_start, align);
1942 		end = round_down(orig_end, align);
1943 
1944 		if (start == orig_start && end == orig_end)
1945 			continue;
1946 
1947 		if (start < end) {
1948 			r->base = start;
1949 			r->size = end - start;
1950 		} else {
1951 			memblock_remove_region(&memblock.memory,
1952 					       r - memblock.memory.regions);
1953 			r--;
1954 		}
1955 	}
1956 }
1957 
1958 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1959 {
1960 	memblock.current_limit = limit;
1961 }
1962 
1963 phys_addr_t __init_memblock memblock_get_current_limit(void)
1964 {
1965 	return memblock.current_limit;
1966 }
1967 
1968 static void __init_memblock memblock_dump(struct memblock_type *type)
1969 {
1970 	phys_addr_t base, end, size;
1971 	enum memblock_flags flags;
1972 	int idx;
1973 	struct memblock_region *rgn;
1974 
1975 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1976 
1977 	for_each_memblock_type(idx, type, rgn) {
1978 		char nid_buf[32] = "";
1979 
1980 		base = rgn->base;
1981 		size = rgn->size;
1982 		end = base + size - 1;
1983 		flags = rgn->flags;
1984 #ifdef CONFIG_NUMA
1985 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1986 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1987 				 memblock_get_region_node(rgn));
1988 #endif
1989 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1990 			type->name, idx, &base, &end, &size, nid_buf, flags);
1991 	}
1992 }
1993 
1994 static void __init_memblock __memblock_dump_all(void)
1995 {
1996 	pr_info("MEMBLOCK configuration:\n");
1997 	pr_info(" memory size = %pa reserved size = %pa\n",
1998 		&memblock.memory.total_size,
1999 		&memblock.reserved.total_size);
2000 
2001 	memblock_dump(&memblock.memory);
2002 	memblock_dump(&memblock.reserved);
2003 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2004 	memblock_dump(&physmem);
2005 #endif
2006 }
2007 
2008 void __init_memblock memblock_dump_all(void)
2009 {
2010 	if (memblock_debug)
2011 		__memblock_dump_all();
2012 }
2013 
2014 void __init memblock_allow_resize(void)
2015 {
2016 	memblock_can_resize = 1;
2017 }
2018 
2019 static int __init early_memblock(char *p)
2020 {
2021 	if (p && strstr(p, "debug"))
2022 		memblock_debug = 1;
2023 	return 0;
2024 }
2025 early_param("memblock", early_memblock);
2026 
2027 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2028 {
2029 	struct page *start_pg, *end_pg;
2030 	phys_addr_t pg, pgend;
2031 
2032 	/*
2033 	 * Convert start_pfn/end_pfn to a struct page pointer.
2034 	 */
2035 	start_pg = pfn_to_page(start_pfn - 1) + 1;
2036 	end_pg = pfn_to_page(end_pfn - 1) + 1;
2037 
2038 	/*
2039 	 * Convert to physical addresses, and round start upwards and end
2040 	 * downwards.
2041 	 */
2042 	pg = PAGE_ALIGN(__pa(start_pg));
2043 	pgend = __pa(end_pg) & PAGE_MASK;
2044 
2045 	/*
2046 	 * If there are free pages between these, free the section of the
2047 	 * memmap array.
2048 	 */
2049 	if (pg < pgend)
2050 		memblock_phys_free(pg, pgend - pg);
2051 }
2052 
2053 /*
2054  * The mem_map array can get very big.  Free the unused area of the memory map.
2055  */
2056 static void __init free_unused_memmap(void)
2057 {
2058 	unsigned long start, end, prev_end = 0;
2059 	int i;
2060 
2061 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2062 	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2063 		return;
2064 
2065 	/*
2066 	 * This relies on each bank being in address order.
2067 	 * The banks are sorted previously in bootmem_init().
2068 	 */
2069 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2070 #ifdef CONFIG_SPARSEMEM
2071 		/*
2072 		 * Take care not to free memmap entries that don't exist
2073 		 * due to SPARSEMEM sections which aren't present.
2074 		 */
2075 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2076 #endif
2077 		/*
2078 		 * Align down here since many operations in VM subsystem
2079 		 * presume that there are no holes in the memory map inside
2080 		 * a pageblock
2081 		 */
2082 		start = pageblock_start_pfn(start);
2083 
2084 		/*
2085 		 * If we had a previous bank, and there is a space
2086 		 * between the current bank and the previous, free it.
2087 		 */
2088 		if (prev_end && prev_end < start)
2089 			free_memmap(prev_end, start);
2090 
2091 		/*
2092 		 * Align up here since many operations in VM subsystem
2093 		 * presume that there are no holes in the memory map inside
2094 		 * a pageblock
2095 		 */
2096 		prev_end = pageblock_align(end);
2097 	}
2098 
2099 #ifdef CONFIG_SPARSEMEM
2100 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2101 		prev_end = pageblock_align(end);
2102 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2103 	}
2104 #endif
2105 }
2106 
2107 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2108 {
2109 	int order;
2110 
2111 	while (start < end) {
2112 		/*
2113 		 * Free the pages in the largest chunks alignment allows.
2114 		 *
2115 		 * __ffs() behaviour is undefined for 0. start == 0 is
2116 		 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2117 		 * the case.
2118 		 */
2119 		if (start)
2120 			order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2121 		else
2122 			order = MAX_PAGE_ORDER;
2123 
2124 		while (start + (1UL << order) > end)
2125 			order--;
2126 
2127 		memblock_free_pages(pfn_to_page(start), start, order);
2128 
2129 		start += (1UL << order);
2130 	}
2131 }
2132 
2133 static unsigned long __init __free_memory_core(phys_addr_t start,
2134 				 phys_addr_t end)
2135 {
2136 	unsigned long start_pfn = PFN_UP(start);
2137 	unsigned long end_pfn = min_t(unsigned long,
2138 				      PFN_DOWN(end), max_low_pfn);
2139 
2140 	if (start_pfn >= end_pfn)
2141 		return 0;
2142 
2143 	__free_pages_memory(start_pfn, end_pfn);
2144 
2145 	return end_pfn - start_pfn;
2146 }
2147 
2148 static void __init memmap_init_reserved_pages(void)
2149 {
2150 	struct memblock_region *region;
2151 	phys_addr_t start, end;
2152 	int nid;
2153 
2154 	/*
2155 	 * set nid on all reserved pages and also treat struct
2156 	 * pages for the NOMAP regions as PageReserved
2157 	 */
2158 	for_each_mem_region(region) {
2159 		nid = memblock_get_region_node(region);
2160 		start = region->base;
2161 		end = start + region->size;
2162 
2163 		if (memblock_is_nomap(region))
2164 			reserve_bootmem_region(start, end, nid);
2165 
2166 		memblock_set_node(start, end, &memblock.reserved, nid);
2167 	}
2168 
2169 	/*
2170 	 * initialize struct pages for reserved regions that don't have
2171 	 * the MEMBLOCK_RSRV_NOINIT flag set
2172 	 */
2173 	for_each_reserved_mem_region(region) {
2174 		if (!memblock_is_reserved_noinit(region)) {
2175 			nid = memblock_get_region_node(region);
2176 			start = region->base;
2177 			end = start + region->size;
2178 
2179 			if (nid == NUMA_NO_NODE || nid >= MAX_NUMNODES)
2180 				nid = early_pfn_to_nid(PFN_DOWN(start));
2181 
2182 			reserve_bootmem_region(start, end, nid);
2183 		}
2184 	}
2185 }
2186 
2187 static unsigned long __init free_low_memory_core_early(void)
2188 {
2189 	unsigned long count = 0;
2190 	phys_addr_t start, end;
2191 	u64 i;
2192 
2193 	memblock_clear_hotplug(0, -1);
2194 
2195 	memmap_init_reserved_pages();
2196 
2197 	/*
2198 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2199 	 *  because in some case like Node0 doesn't have RAM installed
2200 	 *  low ram will be on Node1
2201 	 */
2202 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2203 				NULL)
2204 		count += __free_memory_core(start, end);
2205 
2206 	return count;
2207 }
2208 
2209 static int reset_managed_pages_done __initdata;
2210 
2211 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2212 {
2213 	struct zone *z;
2214 
2215 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2216 		atomic_long_set(&z->managed_pages, 0);
2217 }
2218 
2219 void __init reset_all_zones_managed_pages(void)
2220 {
2221 	struct pglist_data *pgdat;
2222 
2223 	if (reset_managed_pages_done)
2224 		return;
2225 
2226 	for_each_online_pgdat(pgdat)
2227 		reset_node_managed_pages(pgdat);
2228 
2229 	reset_managed_pages_done = 1;
2230 }
2231 
2232 /**
2233  * memblock_free_all - release free pages to the buddy allocator
2234  */
2235 void __init memblock_free_all(void)
2236 {
2237 	unsigned long pages;
2238 
2239 	free_unused_memmap();
2240 	reset_all_zones_managed_pages();
2241 
2242 	pages = free_low_memory_core_early();
2243 	totalram_pages_add(pages);
2244 }
2245 
2246 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2247 static const char * const flagname[] = {
2248 	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2249 	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2250 	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2251 	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2252 };
2253 
2254 static int memblock_debug_show(struct seq_file *m, void *private)
2255 {
2256 	struct memblock_type *type = m->private;
2257 	struct memblock_region *reg;
2258 	int i, j, nid;
2259 	unsigned int count = ARRAY_SIZE(flagname);
2260 	phys_addr_t end;
2261 
2262 	for (i = 0; i < type->cnt; i++) {
2263 		reg = &type->regions[i];
2264 		end = reg->base + reg->size - 1;
2265 		nid = memblock_get_region_node(reg);
2266 
2267 		seq_printf(m, "%4d: ", i);
2268 		seq_printf(m, "%pa..%pa ", &reg->base, &end);
2269 		if (nid != MAX_NUMNODES)
2270 			seq_printf(m, "%4d ", nid);
2271 		else
2272 			seq_printf(m, "%4c ", 'x');
2273 		if (reg->flags) {
2274 			for (j = 0; j < count; j++) {
2275 				if (reg->flags & (1U << j)) {
2276 					seq_printf(m, "%s\n", flagname[j]);
2277 					break;
2278 				}
2279 			}
2280 			if (j == count)
2281 				seq_printf(m, "%s\n", "UNKNOWN");
2282 		} else {
2283 			seq_printf(m, "%s\n", "NONE");
2284 		}
2285 	}
2286 	return 0;
2287 }
2288 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2289 
2290 static int __init memblock_init_debugfs(void)
2291 {
2292 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2293 
2294 	debugfs_create_file("memory", 0444, root,
2295 			    &memblock.memory, &memblock_debug_fops);
2296 	debugfs_create_file("reserved", 0444, root,
2297 			    &memblock.reserved, &memblock_debug_fops);
2298 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2299 	debugfs_create_file("physmem", 0444, root, &physmem,
2300 			    &memblock_debug_fops);
2301 #endif
2302 
2303 	return 0;
2304 }
2305 __initcall(memblock_init_debugfs);
2306 
2307 #endif /* CONFIG_DEBUG_FS */
2308