1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for maintaining information about logical memory blocks. 4 * 5 * Peter Bergner, IBM Corp. June 2001. 6 * Copyright (C) 2001 Peter Bergner. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/init.h> 12 #include <linux/bitops.h> 13 #include <linux/poison.h> 14 #include <linux/pfn.h> 15 #include <linux/debugfs.h> 16 #include <linux/kmemleak.h> 17 #include <linux/seq_file.h> 18 #include <linux/memblock.h> 19 20 #include <asm/sections.h> 21 #include <linux/io.h> 22 23 #include "internal.h" 24 25 #define INIT_MEMBLOCK_REGIONS 128 26 #define INIT_PHYSMEM_REGIONS 4 27 28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 30 #endif 31 32 /** 33 * DOC: memblock overview 34 * 35 * Memblock is a method of managing memory regions during the early 36 * boot period when the usual kernel memory allocators are not up and 37 * running. 38 * 39 * Memblock views the system memory as collections of contiguous 40 * regions. There are several types of these collections: 41 * 42 * * ``memory`` - describes the physical memory available to the 43 * kernel; this may differ from the actual physical memory installed 44 * in the system, for instance when the memory is restricted with 45 * ``mem=`` command line parameter 46 * * ``reserved`` - describes the regions that were allocated 47 * * ``physmem`` - describes the actual physical memory available during 48 * boot regardless of the possible restrictions and memory hot(un)plug; 49 * the ``physmem`` type is only available on some architectures. 50 * 51 * Each region is represented by struct memblock_region that 52 * defines the region extents, its attributes and NUMA node id on NUMA 53 * systems. Every memory type is described by the struct memblock_type 54 * which contains an array of memory regions along with 55 * the allocator metadata. The "memory" and "reserved" types are nicely 56 * wrapped with struct memblock. This structure is statically 57 * initialized at build time. The region arrays are initially sized to 58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS 59 * for "reserved". The region array for "physmem" is initially sized to 60 * %INIT_PHYSMEM_REGIONS. 61 * The memblock_allow_resize() enables automatic resizing of the region 62 * arrays during addition of new regions. This feature should be used 63 * with care so that memory allocated for the region array will not 64 * overlap with areas that should be reserved, for example initrd. 65 * 66 * The early architecture setup should tell memblock what the physical 67 * memory layout is by using memblock_add() or memblock_add_node() 68 * functions. The first function does not assign the region to a NUMA 69 * node and it is appropriate for UMA systems. Yet, it is possible to 70 * use it on NUMA systems as well and assign the region to a NUMA node 71 * later in the setup process using memblock_set_node(). The 72 * memblock_add_node() performs such an assignment directly. 73 * 74 * Once memblock is setup the memory can be allocated using one of the 75 * API variants: 76 * 77 * * memblock_phys_alloc*() - these functions return the **physical** 78 * address of the allocated memory 79 * * memblock_alloc*() - these functions return the **virtual** address 80 * of the allocated memory. 81 * 82 * Note, that both API variants use implicit assumptions about allowed 83 * memory ranges and the fallback methods. Consult the documentation 84 * of memblock_alloc_internal() and memblock_alloc_range_nid() 85 * functions for more elaborate description. 86 * 87 * As the system boot progresses, the architecture specific mem_init() 88 * function frees all the memory to the buddy page allocator. 89 * 90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 91 * memblock data structures (except "physmem") will be discarded after the 92 * system initialization completes. 93 */ 94 95 #ifndef CONFIG_NUMA 96 struct pglist_data __refdata contig_page_data; 97 EXPORT_SYMBOL(contig_page_data); 98 #endif 99 100 unsigned long max_low_pfn; 101 unsigned long min_low_pfn; 102 unsigned long max_pfn; 103 unsigned long long max_possible_pfn; 104 105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; 109 #endif 110 111 struct memblock memblock __initdata_memblock = { 112 .memory.regions = memblock_memory_init_regions, 113 .memory.cnt = 1, /* empty dummy entry */ 114 .memory.max = INIT_MEMBLOCK_REGIONS, 115 .memory.name = "memory", 116 117 .reserved.regions = memblock_reserved_init_regions, 118 .reserved.cnt = 1, /* empty dummy entry */ 119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 120 .reserved.name = "reserved", 121 122 .bottom_up = false, 123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 124 }; 125 126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 127 struct memblock_type physmem = { 128 .regions = memblock_physmem_init_regions, 129 .cnt = 1, /* empty dummy entry */ 130 .max = INIT_PHYSMEM_REGIONS, 131 .name = "physmem", 132 }; 133 #endif 134 135 /* 136 * keep a pointer to &memblock.memory in the text section to use it in 137 * __next_mem_range() and its helpers. 138 * For architectures that do not keep memblock data after init, this 139 * pointer will be reset to NULL at memblock_discard() 140 */ 141 static __refdata struct memblock_type *memblock_memory = &memblock.memory; 142 143 #define for_each_memblock_type(i, memblock_type, rgn) \ 144 for (i = 0, rgn = &memblock_type->regions[0]; \ 145 i < memblock_type->cnt; \ 146 i++, rgn = &memblock_type->regions[i]) 147 148 #define memblock_dbg(fmt, ...) \ 149 do { \ 150 if (memblock_debug) \ 151 pr_info(fmt, ##__VA_ARGS__); \ 152 } while (0) 153 154 static int memblock_debug __initdata_memblock; 155 static bool system_has_some_mirror __initdata_memblock = false; 156 static int memblock_can_resize __initdata_memblock; 157 static int memblock_memory_in_slab __initdata_memblock = 0; 158 static int memblock_reserved_in_slab __initdata_memblock = 0; 159 160 static enum memblock_flags __init_memblock choose_memblock_flags(void) 161 { 162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 163 } 164 165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 167 { 168 return *size = min(*size, PHYS_ADDR_MAX - base); 169 } 170 171 /* 172 * Address comparison utilities 173 */ 174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 175 phys_addr_t base2, phys_addr_t size2) 176 { 177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 178 } 179 180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 181 phys_addr_t base, phys_addr_t size) 182 { 183 unsigned long i; 184 185 memblock_cap_size(base, &size); 186 187 for (i = 0; i < type->cnt; i++) 188 if (memblock_addrs_overlap(base, size, type->regions[i].base, 189 type->regions[i].size)) 190 break; 191 return i < type->cnt; 192 } 193 194 /** 195 * __memblock_find_range_bottom_up - find free area utility in bottom-up 196 * @start: start of candidate range 197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 198 * %MEMBLOCK_ALLOC_ACCESSIBLE 199 * @size: size of free area to find 200 * @align: alignment of free area to find 201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 202 * @flags: pick from blocks based on memory attributes 203 * 204 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 205 * 206 * Return: 207 * Found address on success, 0 on failure. 208 */ 209 static phys_addr_t __init_memblock 210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 211 phys_addr_t size, phys_addr_t align, int nid, 212 enum memblock_flags flags) 213 { 214 phys_addr_t this_start, this_end, cand; 215 u64 i; 216 217 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 218 this_start = clamp(this_start, start, end); 219 this_end = clamp(this_end, start, end); 220 221 cand = round_up(this_start, align); 222 if (cand < this_end && this_end - cand >= size) 223 return cand; 224 } 225 226 return 0; 227 } 228 229 /** 230 * __memblock_find_range_top_down - find free area utility, in top-down 231 * @start: start of candidate range 232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 233 * %MEMBLOCK_ALLOC_ACCESSIBLE 234 * @size: size of free area to find 235 * @align: alignment of free area to find 236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 237 * @flags: pick from blocks based on memory attributes 238 * 239 * Utility called from memblock_find_in_range_node(), find free area top-down. 240 * 241 * Return: 242 * Found address on success, 0 on failure. 243 */ 244 static phys_addr_t __init_memblock 245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 246 phys_addr_t size, phys_addr_t align, int nid, 247 enum memblock_flags flags) 248 { 249 phys_addr_t this_start, this_end, cand; 250 u64 i; 251 252 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 253 NULL) { 254 this_start = clamp(this_start, start, end); 255 this_end = clamp(this_end, start, end); 256 257 if (this_end < size) 258 continue; 259 260 cand = round_down(this_end - size, align); 261 if (cand >= this_start) 262 return cand; 263 } 264 265 return 0; 266 } 267 268 /** 269 * memblock_find_in_range_node - find free area in given range and node 270 * @size: size of free area to find 271 * @align: alignment of free area to find 272 * @start: start of candidate range 273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 274 * %MEMBLOCK_ALLOC_ACCESSIBLE 275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 276 * @flags: pick from blocks based on memory attributes 277 * 278 * Find @size free area aligned to @align in the specified range and node. 279 * 280 * Return: 281 * Found address on success, 0 on failure. 282 */ 283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 284 phys_addr_t align, phys_addr_t start, 285 phys_addr_t end, int nid, 286 enum memblock_flags flags) 287 { 288 /* pump up @end */ 289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 290 end == MEMBLOCK_ALLOC_KASAN) 291 end = memblock.current_limit; 292 293 /* avoid allocating the first page */ 294 start = max_t(phys_addr_t, start, PAGE_SIZE); 295 end = max(start, end); 296 297 if (memblock_bottom_up()) 298 return __memblock_find_range_bottom_up(start, end, size, align, 299 nid, flags); 300 else 301 return __memblock_find_range_top_down(start, end, size, align, 302 nid, flags); 303 } 304 305 /** 306 * memblock_find_in_range - find free area in given range 307 * @start: start of candidate range 308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 309 * %MEMBLOCK_ALLOC_ACCESSIBLE 310 * @size: size of free area to find 311 * @align: alignment of free area to find 312 * 313 * Find @size free area aligned to @align in the specified range. 314 * 315 * Return: 316 * Found address on success, 0 on failure. 317 */ 318 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 319 phys_addr_t end, phys_addr_t size, 320 phys_addr_t align) 321 { 322 phys_addr_t ret; 323 enum memblock_flags flags = choose_memblock_flags(); 324 325 again: 326 ret = memblock_find_in_range_node(size, align, start, end, 327 NUMA_NO_NODE, flags); 328 329 if (!ret && (flags & MEMBLOCK_MIRROR)) { 330 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 331 &size); 332 flags &= ~MEMBLOCK_MIRROR; 333 goto again; 334 } 335 336 return ret; 337 } 338 339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 340 { 341 type->total_size -= type->regions[r].size; 342 memmove(&type->regions[r], &type->regions[r + 1], 343 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 344 type->cnt--; 345 346 /* Special case for empty arrays */ 347 if (type->cnt == 0) { 348 WARN_ON(type->total_size != 0); 349 type->cnt = 1; 350 type->regions[0].base = 0; 351 type->regions[0].size = 0; 352 type->regions[0].flags = 0; 353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 354 } 355 } 356 357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 358 /** 359 * memblock_discard - discard memory and reserved arrays if they were allocated 360 */ 361 void __init memblock_discard(void) 362 { 363 phys_addr_t addr, size; 364 365 if (memblock.reserved.regions != memblock_reserved_init_regions) { 366 addr = __pa(memblock.reserved.regions); 367 size = PAGE_ALIGN(sizeof(struct memblock_region) * 368 memblock.reserved.max); 369 __memblock_free_late(addr, size); 370 } 371 372 if (memblock.memory.regions != memblock_memory_init_regions) { 373 addr = __pa(memblock.memory.regions); 374 size = PAGE_ALIGN(sizeof(struct memblock_region) * 375 memblock.memory.max); 376 __memblock_free_late(addr, size); 377 } 378 379 memblock_memory = NULL; 380 } 381 #endif 382 383 /** 384 * memblock_double_array - double the size of the memblock regions array 385 * @type: memblock type of the regions array being doubled 386 * @new_area_start: starting address of memory range to avoid overlap with 387 * @new_area_size: size of memory range to avoid overlap with 388 * 389 * Double the size of the @type regions array. If memblock is being used to 390 * allocate memory for a new reserved regions array and there is a previously 391 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 392 * waiting to be reserved, ensure the memory used by the new array does 393 * not overlap. 394 * 395 * Return: 396 * 0 on success, -1 on failure. 397 */ 398 static int __init_memblock memblock_double_array(struct memblock_type *type, 399 phys_addr_t new_area_start, 400 phys_addr_t new_area_size) 401 { 402 struct memblock_region *new_array, *old_array; 403 phys_addr_t old_alloc_size, new_alloc_size; 404 phys_addr_t old_size, new_size, addr, new_end; 405 int use_slab = slab_is_available(); 406 int *in_slab; 407 408 /* We don't allow resizing until we know about the reserved regions 409 * of memory that aren't suitable for allocation 410 */ 411 if (!memblock_can_resize) 412 return -1; 413 414 /* Calculate new doubled size */ 415 old_size = type->max * sizeof(struct memblock_region); 416 new_size = old_size << 1; 417 /* 418 * We need to allocated new one align to PAGE_SIZE, 419 * so we can free them completely later. 420 */ 421 old_alloc_size = PAGE_ALIGN(old_size); 422 new_alloc_size = PAGE_ALIGN(new_size); 423 424 /* Retrieve the slab flag */ 425 if (type == &memblock.memory) 426 in_slab = &memblock_memory_in_slab; 427 else 428 in_slab = &memblock_reserved_in_slab; 429 430 /* Try to find some space for it */ 431 if (use_slab) { 432 new_array = kmalloc(new_size, GFP_KERNEL); 433 addr = new_array ? __pa(new_array) : 0; 434 } else { 435 /* only exclude range when trying to double reserved.regions */ 436 if (type != &memblock.reserved) 437 new_area_start = new_area_size = 0; 438 439 addr = memblock_find_in_range(new_area_start + new_area_size, 440 memblock.current_limit, 441 new_alloc_size, PAGE_SIZE); 442 if (!addr && new_area_size) 443 addr = memblock_find_in_range(0, 444 min(new_area_start, memblock.current_limit), 445 new_alloc_size, PAGE_SIZE); 446 447 new_array = addr ? __va(addr) : NULL; 448 } 449 if (!addr) { 450 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 451 type->name, type->max, type->max * 2); 452 return -1; 453 } 454 455 new_end = addr + new_size - 1; 456 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 457 type->name, type->max * 2, &addr, &new_end); 458 459 /* 460 * Found space, we now need to move the array over before we add the 461 * reserved region since it may be our reserved array itself that is 462 * full. 463 */ 464 memcpy(new_array, type->regions, old_size); 465 memset(new_array + type->max, 0, old_size); 466 old_array = type->regions; 467 type->regions = new_array; 468 type->max <<= 1; 469 470 /* Free old array. We needn't free it if the array is the static one */ 471 if (*in_slab) 472 kfree(old_array); 473 else if (old_array != memblock_memory_init_regions && 474 old_array != memblock_reserved_init_regions) 475 memblock_free(__pa(old_array), old_alloc_size); 476 477 /* 478 * Reserve the new array if that comes from the memblock. Otherwise, we 479 * needn't do it 480 */ 481 if (!use_slab) 482 BUG_ON(memblock_reserve(addr, new_alloc_size)); 483 484 /* Update slab flag */ 485 *in_slab = use_slab; 486 487 return 0; 488 } 489 490 /** 491 * memblock_merge_regions - merge neighboring compatible regions 492 * @type: memblock type to scan 493 * 494 * Scan @type and merge neighboring compatible regions. 495 */ 496 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 497 { 498 int i = 0; 499 500 /* cnt never goes below 1 */ 501 while (i < type->cnt - 1) { 502 struct memblock_region *this = &type->regions[i]; 503 struct memblock_region *next = &type->regions[i + 1]; 504 505 if (this->base + this->size != next->base || 506 memblock_get_region_node(this) != 507 memblock_get_region_node(next) || 508 this->flags != next->flags) { 509 BUG_ON(this->base + this->size > next->base); 510 i++; 511 continue; 512 } 513 514 this->size += next->size; 515 /* move forward from next + 1, index of which is i + 2 */ 516 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 517 type->cnt--; 518 } 519 } 520 521 /** 522 * memblock_insert_region - insert new memblock region 523 * @type: memblock type to insert into 524 * @idx: index for the insertion point 525 * @base: base address of the new region 526 * @size: size of the new region 527 * @nid: node id of the new region 528 * @flags: flags of the new region 529 * 530 * Insert new memblock region [@base, @base + @size) into @type at @idx. 531 * @type must already have extra room to accommodate the new region. 532 */ 533 static void __init_memblock memblock_insert_region(struct memblock_type *type, 534 int idx, phys_addr_t base, 535 phys_addr_t size, 536 int nid, 537 enum memblock_flags flags) 538 { 539 struct memblock_region *rgn = &type->regions[idx]; 540 541 BUG_ON(type->cnt >= type->max); 542 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 543 rgn->base = base; 544 rgn->size = size; 545 rgn->flags = flags; 546 memblock_set_region_node(rgn, nid); 547 type->cnt++; 548 type->total_size += size; 549 } 550 551 /** 552 * memblock_add_range - add new memblock region 553 * @type: memblock type to add new region into 554 * @base: base address of the new region 555 * @size: size of the new region 556 * @nid: nid of the new region 557 * @flags: flags of the new region 558 * 559 * Add new memblock region [@base, @base + @size) into @type. The new region 560 * is allowed to overlap with existing ones - overlaps don't affect already 561 * existing regions. @type is guaranteed to be minimal (all neighbouring 562 * compatible regions are merged) after the addition. 563 * 564 * Return: 565 * 0 on success, -errno on failure. 566 */ 567 static int __init_memblock memblock_add_range(struct memblock_type *type, 568 phys_addr_t base, phys_addr_t size, 569 int nid, enum memblock_flags flags) 570 { 571 bool insert = false; 572 phys_addr_t obase = base; 573 phys_addr_t end = base + memblock_cap_size(base, &size); 574 int idx, nr_new; 575 struct memblock_region *rgn; 576 577 if (!size) 578 return 0; 579 580 /* special case for empty array */ 581 if (type->regions[0].size == 0) { 582 WARN_ON(type->cnt != 1 || type->total_size); 583 type->regions[0].base = base; 584 type->regions[0].size = size; 585 type->regions[0].flags = flags; 586 memblock_set_region_node(&type->regions[0], nid); 587 type->total_size = size; 588 return 0; 589 } 590 repeat: 591 /* 592 * The following is executed twice. Once with %false @insert and 593 * then with %true. The first counts the number of regions needed 594 * to accommodate the new area. The second actually inserts them. 595 */ 596 base = obase; 597 nr_new = 0; 598 599 for_each_memblock_type(idx, type, rgn) { 600 phys_addr_t rbase = rgn->base; 601 phys_addr_t rend = rbase + rgn->size; 602 603 if (rbase >= end) 604 break; 605 if (rend <= base) 606 continue; 607 /* 608 * @rgn overlaps. If it separates the lower part of new 609 * area, insert that portion. 610 */ 611 if (rbase > base) { 612 #ifdef CONFIG_NUMA 613 WARN_ON(nid != memblock_get_region_node(rgn)); 614 #endif 615 WARN_ON(flags != rgn->flags); 616 nr_new++; 617 if (insert) 618 memblock_insert_region(type, idx++, base, 619 rbase - base, nid, 620 flags); 621 } 622 /* area below @rend is dealt with, forget about it */ 623 base = min(rend, end); 624 } 625 626 /* insert the remaining portion */ 627 if (base < end) { 628 nr_new++; 629 if (insert) 630 memblock_insert_region(type, idx, base, end - base, 631 nid, flags); 632 } 633 634 if (!nr_new) 635 return 0; 636 637 /* 638 * If this was the first round, resize array and repeat for actual 639 * insertions; otherwise, merge and return. 640 */ 641 if (!insert) { 642 while (type->cnt + nr_new > type->max) 643 if (memblock_double_array(type, obase, size) < 0) 644 return -ENOMEM; 645 insert = true; 646 goto repeat; 647 } else { 648 memblock_merge_regions(type); 649 return 0; 650 } 651 } 652 653 /** 654 * memblock_add_node - add new memblock region within a NUMA node 655 * @base: base address of the new region 656 * @size: size of the new region 657 * @nid: nid of the new region 658 * 659 * Add new memblock region [@base, @base + @size) to the "memory" 660 * type. See memblock_add_range() description for mode details 661 * 662 * Return: 663 * 0 on success, -errno on failure. 664 */ 665 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 666 int nid) 667 { 668 return memblock_add_range(&memblock.memory, base, size, nid, 0); 669 } 670 671 /** 672 * memblock_add - add new memblock region 673 * @base: base address of the new region 674 * @size: size of the new region 675 * 676 * Add new memblock region [@base, @base + @size) to the "memory" 677 * type. See memblock_add_range() description for mode details 678 * 679 * Return: 680 * 0 on success, -errno on failure. 681 */ 682 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 683 { 684 phys_addr_t end = base + size - 1; 685 686 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 687 &base, &end, (void *)_RET_IP_); 688 689 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 690 } 691 692 /** 693 * memblock_isolate_range - isolate given range into disjoint memblocks 694 * @type: memblock type to isolate range for 695 * @base: base of range to isolate 696 * @size: size of range to isolate 697 * @start_rgn: out parameter for the start of isolated region 698 * @end_rgn: out parameter for the end of isolated region 699 * 700 * Walk @type and ensure that regions don't cross the boundaries defined by 701 * [@base, @base + @size). Crossing regions are split at the boundaries, 702 * which may create at most two more regions. The index of the first 703 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 704 * 705 * Return: 706 * 0 on success, -errno on failure. 707 */ 708 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 709 phys_addr_t base, phys_addr_t size, 710 int *start_rgn, int *end_rgn) 711 { 712 phys_addr_t end = base + memblock_cap_size(base, &size); 713 int idx; 714 struct memblock_region *rgn; 715 716 *start_rgn = *end_rgn = 0; 717 718 if (!size) 719 return 0; 720 721 /* we'll create at most two more regions */ 722 while (type->cnt + 2 > type->max) 723 if (memblock_double_array(type, base, size) < 0) 724 return -ENOMEM; 725 726 for_each_memblock_type(idx, type, rgn) { 727 phys_addr_t rbase = rgn->base; 728 phys_addr_t rend = rbase + rgn->size; 729 730 if (rbase >= end) 731 break; 732 if (rend <= base) 733 continue; 734 735 if (rbase < base) { 736 /* 737 * @rgn intersects from below. Split and continue 738 * to process the next region - the new top half. 739 */ 740 rgn->base = base; 741 rgn->size -= base - rbase; 742 type->total_size -= base - rbase; 743 memblock_insert_region(type, idx, rbase, base - rbase, 744 memblock_get_region_node(rgn), 745 rgn->flags); 746 } else if (rend > end) { 747 /* 748 * @rgn intersects from above. Split and redo the 749 * current region - the new bottom half. 750 */ 751 rgn->base = end; 752 rgn->size -= end - rbase; 753 type->total_size -= end - rbase; 754 memblock_insert_region(type, idx--, rbase, end - rbase, 755 memblock_get_region_node(rgn), 756 rgn->flags); 757 } else { 758 /* @rgn is fully contained, record it */ 759 if (!*end_rgn) 760 *start_rgn = idx; 761 *end_rgn = idx + 1; 762 } 763 } 764 765 return 0; 766 } 767 768 static int __init_memblock memblock_remove_range(struct memblock_type *type, 769 phys_addr_t base, phys_addr_t size) 770 { 771 int start_rgn, end_rgn; 772 int i, ret; 773 774 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 775 if (ret) 776 return ret; 777 778 for (i = end_rgn - 1; i >= start_rgn; i--) 779 memblock_remove_region(type, i); 780 return 0; 781 } 782 783 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 784 { 785 phys_addr_t end = base + size - 1; 786 787 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 788 &base, &end, (void *)_RET_IP_); 789 790 return memblock_remove_range(&memblock.memory, base, size); 791 } 792 793 /** 794 * memblock_free - free boot memory block 795 * @base: phys starting address of the boot memory block 796 * @size: size of the boot memory block in bytes 797 * 798 * Free boot memory block previously allocated by memblock_alloc_xx() API. 799 * The freeing memory will not be released to the buddy allocator. 800 */ 801 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 802 { 803 phys_addr_t end = base + size - 1; 804 805 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 806 &base, &end, (void *)_RET_IP_); 807 808 kmemleak_free_part_phys(base, size); 809 return memblock_remove_range(&memblock.reserved, base, size); 810 } 811 812 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 813 { 814 phys_addr_t end = base + size - 1; 815 816 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 817 &base, &end, (void *)_RET_IP_); 818 819 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 820 } 821 822 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 823 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) 824 { 825 phys_addr_t end = base + size - 1; 826 827 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 828 &base, &end, (void *)_RET_IP_); 829 830 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); 831 } 832 #endif 833 834 /** 835 * memblock_setclr_flag - set or clear flag for a memory region 836 * @base: base address of the region 837 * @size: size of the region 838 * @set: set or clear the flag 839 * @flag: the flag to update 840 * 841 * This function isolates region [@base, @base + @size), and sets/clears flag 842 * 843 * Return: 0 on success, -errno on failure. 844 */ 845 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 846 phys_addr_t size, int set, int flag) 847 { 848 struct memblock_type *type = &memblock.memory; 849 int i, ret, start_rgn, end_rgn; 850 851 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 852 if (ret) 853 return ret; 854 855 for (i = start_rgn; i < end_rgn; i++) { 856 struct memblock_region *r = &type->regions[i]; 857 858 if (set) 859 r->flags |= flag; 860 else 861 r->flags &= ~flag; 862 } 863 864 memblock_merge_regions(type); 865 return 0; 866 } 867 868 /** 869 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 870 * @base: the base phys addr of the region 871 * @size: the size of the region 872 * 873 * Return: 0 on success, -errno on failure. 874 */ 875 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 876 { 877 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 878 } 879 880 /** 881 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 882 * @base: the base phys addr of the region 883 * @size: the size of the region 884 * 885 * Return: 0 on success, -errno on failure. 886 */ 887 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 888 { 889 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 890 } 891 892 /** 893 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 894 * @base: the base phys addr of the region 895 * @size: the size of the region 896 * 897 * Return: 0 on success, -errno on failure. 898 */ 899 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 900 { 901 system_has_some_mirror = true; 902 903 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 904 } 905 906 /** 907 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 908 * @base: the base phys addr of the region 909 * @size: the size of the region 910 * 911 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the 912 * direct mapping of the physical memory. These regions will still be 913 * covered by the memory map. The struct page representing NOMAP memory 914 * frames in the memory map will be PageReserved() 915 * 916 * Return: 0 on success, -errno on failure. 917 */ 918 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 919 { 920 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 921 } 922 923 /** 924 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 925 * @base: the base phys addr of the region 926 * @size: the size of the region 927 * 928 * Return: 0 on success, -errno on failure. 929 */ 930 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 931 { 932 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 933 } 934 935 static bool should_skip_region(struct memblock_type *type, 936 struct memblock_region *m, 937 int nid, int flags) 938 { 939 int m_nid = memblock_get_region_node(m); 940 941 /* we never skip regions when iterating memblock.reserved or physmem */ 942 if (type != memblock_memory) 943 return false; 944 945 /* only memory regions are associated with nodes, check it */ 946 if (nid != NUMA_NO_NODE && nid != m_nid) 947 return true; 948 949 /* skip hotpluggable memory regions if needed */ 950 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 951 return true; 952 953 /* if we want mirror memory skip non-mirror memory regions */ 954 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 955 return true; 956 957 /* skip nomap memory unless we were asked for it explicitly */ 958 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 959 return true; 960 961 return false; 962 } 963 964 /** 965 * __next_mem_range - next function for for_each_free_mem_range() etc. 966 * @idx: pointer to u64 loop variable 967 * @nid: node selector, %NUMA_NO_NODE for all nodes 968 * @flags: pick from blocks based on memory attributes 969 * @type_a: pointer to memblock_type from where the range is taken 970 * @type_b: pointer to memblock_type which excludes memory from being taken 971 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 972 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 973 * @out_nid: ptr to int for nid of the range, can be %NULL 974 * 975 * Find the first area from *@idx which matches @nid, fill the out 976 * parameters, and update *@idx for the next iteration. The lower 32bit of 977 * *@idx contains index into type_a and the upper 32bit indexes the 978 * areas before each region in type_b. For example, if type_b regions 979 * look like the following, 980 * 981 * 0:[0-16), 1:[32-48), 2:[128-130) 982 * 983 * The upper 32bit indexes the following regions. 984 * 985 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 986 * 987 * As both region arrays are sorted, the function advances the two indices 988 * in lockstep and returns each intersection. 989 */ 990 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 991 struct memblock_type *type_a, 992 struct memblock_type *type_b, phys_addr_t *out_start, 993 phys_addr_t *out_end, int *out_nid) 994 { 995 int idx_a = *idx & 0xffffffff; 996 int idx_b = *idx >> 32; 997 998 if (WARN_ONCE(nid == MAX_NUMNODES, 999 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1000 nid = NUMA_NO_NODE; 1001 1002 for (; idx_a < type_a->cnt; idx_a++) { 1003 struct memblock_region *m = &type_a->regions[idx_a]; 1004 1005 phys_addr_t m_start = m->base; 1006 phys_addr_t m_end = m->base + m->size; 1007 int m_nid = memblock_get_region_node(m); 1008 1009 if (should_skip_region(type_a, m, nid, flags)) 1010 continue; 1011 1012 if (!type_b) { 1013 if (out_start) 1014 *out_start = m_start; 1015 if (out_end) 1016 *out_end = m_end; 1017 if (out_nid) 1018 *out_nid = m_nid; 1019 idx_a++; 1020 *idx = (u32)idx_a | (u64)idx_b << 32; 1021 return; 1022 } 1023 1024 /* scan areas before each reservation */ 1025 for (; idx_b < type_b->cnt + 1; idx_b++) { 1026 struct memblock_region *r; 1027 phys_addr_t r_start; 1028 phys_addr_t r_end; 1029 1030 r = &type_b->regions[idx_b]; 1031 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1032 r_end = idx_b < type_b->cnt ? 1033 r->base : PHYS_ADDR_MAX; 1034 1035 /* 1036 * if idx_b advanced past idx_a, 1037 * break out to advance idx_a 1038 */ 1039 if (r_start >= m_end) 1040 break; 1041 /* if the two regions intersect, we're done */ 1042 if (m_start < r_end) { 1043 if (out_start) 1044 *out_start = 1045 max(m_start, r_start); 1046 if (out_end) 1047 *out_end = min(m_end, r_end); 1048 if (out_nid) 1049 *out_nid = m_nid; 1050 /* 1051 * The region which ends first is 1052 * advanced for the next iteration. 1053 */ 1054 if (m_end <= r_end) 1055 idx_a++; 1056 else 1057 idx_b++; 1058 *idx = (u32)idx_a | (u64)idx_b << 32; 1059 return; 1060 } 1061 } 1062 } 1063 1064 /* signal end of iteration */ 1065 *idx = ULLONG_MAX; 1066 } 1067 1068 /** 1069 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1070 * 1071 * @idx: pointer to u64 loop variable 1072 * @nid: node selector, %NUMA_NO_NODE for all nodes 1073 * @flags: pick from blocks based on memory attributes 1074 * @type_a: pointer to memblock_type from where the range is taken 1075 * @type_b: pointer to memblock_type which excludes memory from being taken 1076 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1077 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1078 * @out_nid: ptr to int for nid of the range, can be %NULL 1079 * 1080 * Finds the next range from type_a which is not marked as unsuitable 1081 * in type_b. 1082 * 1083 * Reverse of __next_mem_range(). 1084 */ 1085 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1086 enum memblock_flags flags, 1087 struct memblock_type *type_a, 1088 struct memblock_type *type_b, 1089 phys_addr_t *out_start, 1090 phys_addr_t *out_end, int *out_nid) 1091 { 1092 int idx_a = *idx & 0xffffffff; 1093 int idx_b = *idx >> 32; 1094 1095 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1096 nid = NUMA_NO_NODE; 1097 1098 if (*idx == (u64)ULLONG_MAX) { 1099 idx_a = type_a->cnt - 1; 1100 if (type_b != NULL) 1101 idx_b = type_b->cnt; 1102 else 1103 idx_b = 0; 1104 } 1105 1106 for (; idx_a >= 0; idx_a--) { 1107 struct memblock_region *m = &type_a->regions[idx_a]; 1108 1109 phys_addr_t m_start = m->base; 1110 phys_addr_t m_end = m->base + m->size; 1111 int m_nid = memblock_get_region_node(m); 1112 1113 if (should_skip_region(type_a, m, nid, flags)) 1114 continue; 1115 1116 if (!type_b) { 1117 if (out_start) 1118 *out_start = m_start; 1119 if (out_end) 1120 *out_end = m_end; 1121 if (out_nid) 1122 *out_nid = m_nid; 1123 idx_a--; 1124 *idx = (u32)idx_a | (u64)idx_b << 32; 1125 return; 1126 } 1127 1128 /* scan areas before each reservation */ 1129 for (; idx_b >= 0; idx_b--) { 1130 struct memblock_region *r; 1131 phys_addr_t r_start; 1132 phys_addr_t r_end; 1133 1134 r = &type_b->regions[idx_b]; 1135 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1136 r_end = idx_b < type_b->cnt ? 1137 r->base : PHYS_ADDR_MAX; 1138 /* 1139 * if idx_b advanced past idx_a, 1140 * break out to advance idx_a 1141 */ 1142 1143 if (r_end <= m_start) 1144 break; 1145 /* if the two regions intersect, we're done */ 1146 if (m_end > r_start) { 1147 if (out_start) 1148 *out_start = max(m_start, r_start); 1149 if (out_end) 1150 *out_end = min(m_end, r_end); 1151 if (out_nid) 1152 *out_nid = m_nid; 1153 if (m_start >= r_start) 1154 idx_a--; 1155 else 1156 idx_b--; 1157 *idx = (u32)idx_a | (u64)idx_b << 32; 1158 return; 1159 } 1160 } 1161 } 1162 /* signal end of iteration */ 1163 *idx = ULLONG_MAX; 1164 } 1165 1166 /* 1167 * Common iterator interface used to define for_each_mem_pfn_range(). 1168 */ 1169 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1170 unsigned long *out_start_pfn, 1171 unsigned long *out_end_pfn, int *out_nid) 1172 { 1173 struct memblock_type *type = &memblock.memory; 1174 struct memblock_region *r; 1175 int r_nid; 1176 1177 while (++*idx < type->cnt) { 1178 r = &type->regions[*idx]; 1179 r_nid = memblock_get_region_node(r); 1180 1181 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1182 continue; 1183 if (nid == MAX_NUMNODES || nid == r_nid) 1184 break; 1185 } 1186 if (*idx >= type->cnt) { 1187 *idx = -1; 1188 return; 1189 } 1190 1191 if (out_start_pfn) 1192 *out_start_pfn = PFN_UP(r->base); 1193 if (out_end_pfn) 1194 *out_end_pfn = PFN_DOWN(r->base + r->size); 1195 if (out_nid) 1196 *out_nid = r_nid; 1197 } 1198 1199 /** 1200 * memblock_set_node - set node ID on memblock regions 1201 * @base: base of area to set node ID for 1202 * @size: size of area to set node ID for 1203 * @type: memblock type to set node ID for 1204 * @nid: node ID to set 1205 * 1206 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1207 * Regions which cross the area boundaries are split as necessary. 1208 * 1209 * Return: 1210 * 0 on success, -errno on failure. 1211 */ 1212 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1213 struct memblock_type *type, int nid) 1214 { 1215 #ifdef CONFIG_NUMA 1216 int start_rgn, end_rgn; 1217 int i, ret; 1218 1219 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1220 if (ret) 1221 return ret; 1222 1223 for (i = start_rgn; i < end_rgn; i++) 1224 memblock_set_region_node(&type->regions[i], nid); 1225 1226 memblock_merge_regions(type); 1227 #endif 1228 return 0; 1229 } 1230 1231 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1232 /** 1233 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() 1234 * 1235 * @idx: pointer to u64 loop variable 1236 * @zone: zone in which all of the memory blocks reside 1237 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL 1238 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL 1239 * 1240 * This function is meant to be a zone/pfn specific wrapper for the 1241 * for_each_mem_range type iterators. Specifically they are used in the 1242 * deferred memory init routines and as such we were duplicating much of 1243 * this logic throughout the code. So instead of having it in multiple 1244 * locations it seemed like it would make more sense to centralize this to 1245 * one new iterator that does everything they need. 1246 */ 1247 void __init_memblock 1248 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 1249 unsigned long *out_spfn, unsigned long *out_epfn) 1250 { 1251 int zone_nid = zone_to_nid(zone); 1252 phys_addr_t spa, epa; 1253 int nid; 1254 1255 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1256 &memblock.memory, &memblock.reserved, 1257 &spa, &epa, &nid); 1258 1259 while (*idx != U64_MAX) { 1260 unsigned long epfn = PFN_DOWN(epa); 1261 unsigned long spfn = PFN_UP(spa); 1262 1263 /* 1264 * Verify the end is at least past the start of the zone and 1265 * that we have at least one PFN to initialize. 1266 */ 1267 if (zone->zone_start_pfn < epfn && spfn < epfn) { 1268 /* if we went too far just stop searching */ 1269 if (zone_end_pfn(zone) <= spfn) { 1270 *idx = U64_MAX; 1271 break; 1272 } 1273 1274 if (out_spfn) 1275 *out_spfn = max(zone->zone_start_pfn, spfn); 1276 if (out_epfn) 1277 *out_epfn = min(zone_end_pfn(zone), epfn); 1278 1279 return; 1280 } 1281 1282 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1283 &memblock.memory, &memblock.reserved, 1284 &spa, &epa, &nid); 1285 } 1286 1287 /* signal end of iteration */ 1288 if (out_spfn) 1289 *out_spfn = ULONG_MAX; 1290 if (out_epfn) 1291 *out_epfn = 0; 1292 } 1293 1294 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1295 1296 /** 1297 * memblock_alloc_range_nid - allocate boot memory block 1298 * @size: size of memory block to be allocated in bytes 1299 * @align: alignment of the region and block's size 1300 * @start: the lower bound of the memory region to allocate (phys address) 1301 * @end: the upper bound of the memory region to allocate (phys address) 1302 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1303 * @exact_nid: control the allocation fall back to other nodes 1304 * 1305 * The allocation is performed from memory region limited by 1306 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. 1307 * 1308 * If the specified node can not hold the requested memory and @exact_nid 1309 * is false, the allocation falls back to any node in the system. 1310 * 1311 * For systems with memory mirroring, the allocation is attempted first 1312 * from the regions with mirroring enabled and then retried from any 1313 * memory region. 1314 * 1315 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for 1316 * allocated boot memory block, so that it is never reported as leaks. 1317 * 1318 * Return: 1319 * Physical address of allocated memory block on success, %0 on failure. 1320 */ 1321 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1322 phys_addr_t align, phys_addr_t start, 1323 phys_addr_t end, int nid, 1324 bool exact_nid) 1325 { 1326 enum memblock_flags flags = choose_memblock_flags(); 1327 phys_addr_t found; 1328 1329 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1330 nid = NUMA_NO_NODE; 1331 1332 if (!align) { 1333 /* Can't use WARNs this early in boot on powerpc */ 1334 dump_stack(); 1335 align = SMP_CACHE_BYTES; 1336 } 1337 1338 again: 1339 found = memblock_find_in_range_node(size, align, start, end, nid, 1340 flags); 1341 if (found && !memblock_reserve(found, size)) 1342 goto done; 1343 1344 if (nid != NUMA_NO_NODE && !exact_nid) { 1345 found = memblock_find_in_range_node(size, align, start, 1346 end, NUMA_NO_NODE, 1347 flags); 1348 if (found && !memblock_reserve(found, size)) 1349 goto done; 1350 } 1351 1352 if (flags & MEMBLOCK_MIRROR) { 1353 flags &= ~MEMBLOCK_MIRROR; 1354 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1355 &size); 1356 goto again; 1357 } 1358 1359 return 0; 1360 1361 done: 1362 /* Skip kmemleak for kasan_init() due to high volume. */ 1363 if (end != MEMBLOCK_ALLOC_KASAN) 1364 /* 1365 * The min_count is set to 0 so that memblock allocated 1366 * blocks are never reported as leaks. This is because many 1367 * of these blocks are only referred via the physical 1368 * address which is not looked up by kmemleak. 1369 */ 1370 kmemleak_alloc_phys(found, size, 0, 0); 1371 1372 return found; 1373 } 1374 1375 /** 1376 * memblock_phys_alloc_range - allocate a memory block inside specified range 1377 * @size: size of memory block to be allocated in bytes 1378 * @align: alignment of the region and block's size 1379 * @start: the lower bound of the memory region to allocate (physical address) 1380 * @end: the upper bound of the memory region to allocate (physical address) 1381 * 1382 * Allocate @size bytes in the between @start and @end. 1383 * 1384 * Return: physical address of the allocated memory block on success, 1385 * %0 on failure. 1386 */ 1387 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1388 phys_addr_t align, 1389 phys_addr_t start, 1390 phys_addr_t end) 1391 { 1392 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", 1393 __func__, (u64)size, (u64)align, &start, &end, 1394 (void *)_RET_IP_); 1395 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1396 false); 1397 } 1398 1399 /** 1400 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node 1401 * @size: size of memory block to be allocated in bytes 1402 * @align: alignment of the region and block's size 1403 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1404 * 1405 * Allocates memory block from the specified NUMA node. If the node 1406 * has no available memory, attempts to allocated from any node in the 1407 * system. 1408 * 1409 * Return: physical address of the allocated memory block on success, 1410 * %0 on failure. 1411 */ 1412 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1413 { 1414 return memblock_alloc_range_nid(size, align, 0, 1415 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); 1416 } 1417 1418 /** 1419 * memblock_alloc_internal - allocate boot memory block 1420 * @size: size of memory block to be allocated in bytes 1421 * @align: alignment of the region and block's size 1422 * @min_addr: the lower bound of the memory region to allocate (phys address) 1423 * @max_addr: the upper bound of the memory region to allocate (phys address) 1424 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1425 * @exact_nid: control the allocation fall back to other nodes 1426 * 1427 * Allocates memory block using memblock_alloc_range_nid() and 1428 * converts the returned physical address to virtual. 1429 * 1430 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1431 * will fall back to memory below @min_addr. Other constraints, such 1432 * as node and mirrored memory will be handled again in 1433 * memblock_alloc_range_nid(). 1434 * 1435 * Return: 1436 * Virtual address of allocated memory block on success, NULL on failure. 1437 */ 1438 static void * __init memblock_alloc_internal( 1439 phys_addr_t size, phys_addr_t align, 1440 phys_addr_t min_addr, phys_addr_t max_addr, 1441 int nid, bool exact_nid) 1442 { 1443 phys_addr_t alloc; 1444 1445 /* 1446 * Detect any accidental use of these APIs after slab is ready, as at 1447 * this moment memblock may be deinitialized already and its 1448 * internal data may be destroyed (after execution of memblock_free_all) 1449 */ 1450 if (WARN_ON_ONCE(slab_is_available())) 1451 return kzalloc_node(size, GFP_NOWAIT, nid); 1452 1453 if (max_addr > memblock.current_limit) 1454 max_addr = memblock.current_limit; 1455 1456 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, 1457 exact_nid); 1458 1459 /* retry allocation without lower limit */ 1460 if (!alloc && min_addr) 1461 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, 1462 exact_nid); 1463 1464 if (!alloc) 1465 return NULL; 1466 1467 return phys_to_virt(alloc); 1468 } 1469 1470 /** 1471 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node 1472 * without zeroing memory 1473 * @size: size of memory block to be allocated in bytes 1474 * @align: alignment of the region and block's size 1475 * @min_addr: the lower bound of the memory region from where the allocation 1476 * is preferred (phys address) 1477 * @max_addr: the upper bound of the memory region from where the allocation 1478 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1479 * allocate only from memory limited by memblock.current_limit value 1480 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1481 * 1482 * Public function, provides additional debug information (including caller 1483 * info), if enabled. Does not zero allocated memory. 1484 * 1485 * Return: 1486 * Virtual address of allocated memory block on success, NULL on failure. 1487 */ 1488 void * __init memblock_alloc_exact_nid_raw( 1489 phys_addr_t size, phys_addr_t align, 1490 phys_addr_t min_addr, phys_addr_t max_addr, 1491 int nid) 1492 { 1493 void *ptr; 1494 1495 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1496 __func__, (u64)size, (u64)align, nid, &min_addr, 1497 &max_addr, (void *)_RET_IP_); 1498 1499 ptr = memblock_alloc_internal(size, align, 1500 min_addr, max_addr, nid, true); 1501 if (ptr && size > 0) 1502 page_init_poison(ptr, size); 1503 1504 return ptr; 1505 } 1506 1507 /** 1508 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1509 * memory and without panicking 1510 * @size: size of memory block to be allocated in bytes 1511 * @align: alignment of the region and block's size 1512 * @min_addr: the lower bound of the memory region from where the allocation 1513 * is preferred (phys address) 1514 * @max_addr: the upper bound of the memory region from where the allocation 1515 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1516 * allocate only from memory limited by memblock.current_limit value 1517 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1518 * 1519 * Public function, provides additional debug information (including caller 1520 * info), if enabled. Does not zero allocated memory, does not panic if request 1521 * cannot be satisfied. 1522 * 1523 * Return: 1524 * Virtual address of allocated memory block on success, NULL on failure. 1525 */ 1526 void * __init memblock_alloc_try_nid_raw( 1527 phys_addr_t size, phys_addr_t align, 1528 phys_addr_t min_addr, phys_addr_t max_addr, 1529 int nid) 1530 { 1531 void *ptr; 1532 1533 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1534 __func__, (u64)size, (u64)align, nid, &min_addr, 1535 &max_addr, (void *)_RET_IP_); 1536 1537 ptr = memblock_alloc_internal(size, align, 1538 min_addr, max_addr, nid, false); 1539 if (ptr && size > 0) 1540 page_init_poison(ptr, size); 1541 1542 return ptr; 1543 } 1544 1545 /** 1546 * memblock_alloc_try_nid - allocate boot memory block 1547 * @size: size of memory block to be allocated in bytes 1548 * @align: alignment of the region and block's size 1549 * @min_addr: the lower bound of the memory region from where the allocation 1550 * is preferred (phys address) 1551 * @max_addr: the upper bound of the memory region from where the allocation 1552 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1553 * allocate only from memory limited by memblock.current_limit value 1554 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1555 * 1556 * Public function, provides additional debug information (including caller 1557 * info), if enabled. This function zeroes the allocated memory. 1558 * 1559 * Return: 1560 * Virtual address of allocated memory block on success, NULL on failure. 1561 */ 1562 void * __init memblock_alloc_try_nid( 1563 phys_addr_t size, phys_addr_t align, 1564 phys_addr_t min_addr, phys_addr_t max_addr, 1565 int nid) 1566 { 1567 void *ptr; 1568 1569 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1570 __func__, (u64)size, (u64)align, nid, &min_addr, 1571 &max_addr, (void *)_RET_IP_); 1572 ptr = memblock_alloc_internal(size, align, 1573 min_addr, max_addr, nid, false); 1574 if (ptr) 1575 memset(ptr, 0, size); 1576 1577 return ptr; 1578 } 1579 1580 /** 1581 * __memblock_free_late - free pages directly to buddy allocator 1582 * @base: phys starting address of the boot memory block 1583 * @size: size of the boot memory block in bytes 1584 * 1585 * This is only useful when the memblock allocator has already been torn 1586 * down, but we are still initializing the system. Pages are released directly 1587 * to the buddy allocator. 1588 */ 1589 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1590 { 1591 phys_addr_t cursor, end; 1592 1593 end = base + size - 1; 1594 memblock_dbg("%s: [%pa-%pa] %pS\n", 1595 __func__, &base, &end, (void *)_RET_IP_); 1596 kmemleak_free_part_phys(base, size); 1597 cursor = PFN_UP(base); 1598 end = PFN_DOWN(base + size); 1599 1600 for (; cursor < end; cursor++) { 1601 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1602 totalram_pages_inc(); 1603 } 1604 } 1605 1606 /* 1607 * Remaining API functions 1608 */ 1609 1610 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1611 { 1612 return memblock.memory.total_size; 1613 } 1614 1615 phys_addr_t __init_memblock memblock_reserved_size(void) 1616 { 1617 return memblock.reserved.total_size; 1618 } 1619 1620 /* lowest address */ 1621 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1622 { 1623 return memblock.memory.regions[0].base; 1624 } 1625 1626 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1627 { 1628 int idx = memblock.memory.cnt - 1; 1629 1630 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1631 } 1632 1633 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1634 { 1635 phys_addr_t max_addr = PHYS_ADDR_MAX; 1636 struct memblock_region *r; 1637 1638 /* 1639 * translate the memory @limit size into the max address within one of 1640 * the memory memblock regions, if the @limit exceeds the total size 1641 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1642 */ 1643 for_each_mem_region(r) { 1644 if (limit <= r->size) { 1645 max_addr = r->base + limit; 1646 break; 1647 } 1648 limit -= r->size; 1649 } 1650 1651 return max_addr; 1652 } 1653 1654 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1655 { 1656 phys_addr_t max_addr; 1657 1658 if (!limit) 1659 return; 1660 1661 max_addr = __find_max_addr(limit); 1662 1663 /* @limit exceeds the total size of the memory, do nothing */ 1664 if (max_addr == PHYS_ADDR_MAX) 1665 return; 1666 1667 /* truncate both memory and reserved regions */ 1668 memblock_remove_range(&memblock.memory, max_addr, 1669 PHYS_ADDR_MAX); 1670 memblock_remove_range(&memblock.reserved, max_addr, 1671 PHYS_ADDR_MAX); 1672 } 1673 1674 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1675 { 1676 int start_rgn, end_rgn; 1677 int i, ret; 1678 1679 if (!size) 1680 return; 1681 1682 ret = memblock_isolate_range(&memblock.memory, base, size, 1683 &start_rgn, &end_rgn); 1684 if (ret) 1685 return; 1686 1687 /* remove all the MAP regions */ 1688 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1689 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1690 memblock_remove_region(&memblock.memory, i); 1691 1692 for (i = start_rgn - 1; i >= 0; i--) 1693 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1694 memblock_remove_region(&memblock.memory, i); 1695 1696 /* truncate the reserved regions */ 1697 memblock_remove_range(&memblock.reserved, 0, base); 1698 memblock_remove_range(&memblock.reserved, 1699 base + size, PHYS_ADDR_MAX); 1700 } 1701 1702 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1703 { 1704 phys_addr_t max_addr; 1705 1706 if (!limit) 1707 return; 1708 1709 max_addr = __find_max_addr(limit); 1710 1711 /* @limit exceeds the total size of the memory, do nothing */ 1712 if (max_addr == PHYS_ADDR_MAX) 1713 return; 1714 1715 memblock_cap_memory_range(0, max_addr); 1716 } 1717 1718 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1719 { 1720 unsigned int left = 0, right = type->cnt; 1721 1722 do { 1723 unsigned int mid = (right + left) / 2; 1724 1725 if (addr < type->regions[mid].base) 1726 right = mid; 1727 else if (addr >= (type->regions[mid].base + 1728 type->regions[mid].size)) 1729 left = mid + 1; 1730 else 1731 return mid; 1732 } while (left < right); 1733 return -1; 1734 } 1735 1736 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1737 { 1738 return memblock_search(&memblock.reserved, addr) != -1; 1739 } 1740 1741 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1742 { 1743 return memblock_search(&memblock.memory, addr) != -1; 1744 } 1745 1746 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1747 { 1748 int i = memblock_search(&memblock.memory, addr); 1749 1750 if (i == -1) 1751 return false; 1752 return !memblock_is_nomap(&memblock.memory.regions[i]); 1753 } 1754 1755 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1756 unsigned long *start_pfn, unsigned long *end_pfn) 1757 { 1758 struct memblock_type *type = &memblock.memory; 1759 int mid = memblock_search(type, PFN_PHYS(pfn)); 1760 1761 if (mid == -1) 1762 return -1; 1763 1764 *start_pfn = PFN_DOWN(type->regions[mid].base); 1765 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1766 1767 return memblock_get_region_node(&type->regions[mid]); 1768 } 1769 1770 /** 1771 * memblock_is_region_memory - check if a region is a subset of memory 1772 * @base: base of region to check 1773 * @size: size of region to check 1774 * 1775 * Check if the region [@base, @base + @size) is a subset of a memory block. 1776 * 1777 * Return: 1778 * 0 if false, non-zero if true 1779 */ 1780 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1781 { 1782 int idx = memblock_search(&memblock.memory, base); 1783 phys_addr_t end = base + memblock_cap_size(base, &size); 1784 1785 if (idx == -1) 1786 return false; 1787 return (memblock.memory.regions[idx].base + 1788 memblock.memory.regions[idx].size) >= end; 1789 } 1790 1791 /** 1792 * memblock_is_region_reserved - check if a region intersects reserved memory 1793 * @base: base of region to check 1794 * @size: size of region to check 1795 * 1796 * Check if the region [@base, @base + @size) intersects a reserved 1797 * memory block. 1798 * 1799 * Return: 1800 * True if they intersect, false if not. 1801 */ 1802 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1803 { 1804 return memblock_overlaps_region(&memblock.reserved, base, size); 1805 } 1806 1807 void __init_memblock memblock_trim_memory(phys_addr_t align) 1808 { 1809 phys_addr_t start, end, orig_start, orig_end; 1810 struct memblock_region *r; 1811 1812 for_each_mem_region(r) { 1813 orig_start = r->base; 1814 orig_end = r->base + r->size; 1815 start = round_up(orig_start, align); 1816 end = round_down(orig_end, align); 1817 1818 if (start == orig_start && end == orig_end) 1819 continue; 1820 1821 if (start < end) { 1822 r->base = start; 1823 r->size = end - start; 1824 } else { 1825 memblock_remove_region(&memblock.memory, 1826 r - memblock.memory.regions); 1827 r--; 1828 } 1829 } 1830 } 1831 1832 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1833 { 1834 memblock.current_limit = limit; 1835 } 1836 1837 phys_addr_t __init_memblock memblock_get_current_limit(void) 1838 { 1839 return memblock.current_limit; 1840 } 1841 1842 static void __init_memblock memblock_dump(struct memblock_type *type) 1843 { 1844 phys_addr_t base, end, size; 1845 enum memblock_flags flags; 1846 int idx; 1847 struct memblock_region *rgn; 1848 1849 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1850 1851 for_each_memblock_type(idx, type, rgn) { 1852 char nid_buf[32] = ""; 1853 1854 base = rgn->base; 1855 size = rgn->size; 1856 end = base + size - 1; 1857 flags = rgn->flags; 1858 #ifdef CONFIG_NUMA 1859 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1860 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1861 memblock_get_region_node(rgn)); 1862 #endif 1863 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1864 type->name, idx, &base, &end, &size, nid_buf, flags); 1865 } 1866 } 1867 1868 static void __init_memblock __memblock_dump_all(void) 1869 { 1870 pr_info("MEMBLOCK configuration:\n"); 1871 pr_info(" memory size = %pa reserved size = %pa\n", 1872 &memblock.memory.total_size, 1873 &memblock.reserved.total_size); 1874 1875 memblock_dump(&memblock.memory); 1876 memblock_dump(&memblock.reserved); 1877 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1878 memblock_dump(&physmem); 1879 #endif 1880 } 1881 1882 void __init_memblock memblock_dump_all(void) 1883 { 1884 if (memblock_debug) 1885 __memblock_dump_all(); 1886 } 1887 1888 void __init memblock_allow_resize(void) 1889 { 1890 memblock_can_resize = 1; 1891 } 1892 1893 static int __init early_memblock(char *p) 1894 { 1895 if (p && strstr(p, "debug")) 1896 memblock_debug = 1; 1897 return 0; 1898 } 1899 early_param("memblock", early_memblock); 1900 1901 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) 1902 { 1903 struct page *start_pg, *end_pg; 1904 phys_addr_t pg, pgend; 1905 1906 /* 1907 * Convert start_pfn/end_pfn to a struct page pointer. 1908 */ 1909 start_pg = pfn_to_page(start_pfn - 1) + 1; 1910 end_pg = pfn_to_page(end_pfn - 1) + 1; 1911 1912 /* 1913 * Convert to physical addresses, and round start upwards and end 1914 * downwards. 1915 */ 1916 pg = PAGE_ALIGN(__pa(start_pg)); 1917 pgend = __pa(end_pg) & PAGE_MASK; 1918 1919 /* 1920 * If there are free pages between these, free the section of the 1921 * memmap array. 1922 */ 1923 if (pg < pgend) 1924 memblock_free(pg, pgend - pg); 1925 } 1926 1927 /* 1928 * The mem_map array can get very big. Free the unused area of the memory map. 1929 */ 1930 static void __init free_unused_memmap(void) 1931 { 1932 unsigned long start, end, prev_end = 0; 1933 int i; 1934 1935 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || 1936 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 1937 return; 1938 1939 /* 1940 * This relies on each bank being in address order. 1941 * The banks are sorted previously in bootmem_init(). 1942 */ 1943 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { 1944 #ifdef CONFIG_SPARSEMEM 1945 /* 1946 * Take care not to free memmap entries that don't exist 1947 * due to SPARSEMEM sections which aren't present. 1948 */ 1949 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 1950 #endif 1951 /* 1952 * Align down here since many operations in VM subsystem 1953 * presume that there are no holes in the memory map inside 1954 * a pageblock 1955 */ 1956 start = round_down(start, pageblock_nr_pages); 1957 1958 /* 1959 * If we had a previous bank, and there is a space 1960 * between the current bank and the previous, free it. 1961 */ 1962 if (prev_end && prev_end < start) 1963 free_memmap(prev_end, start); 1964 1965 /* 1966 * Align up here since many operations in VM subsystem 1967 * presume that there are no holes in the memory map inside 1968 * a pageblock 1969 */ 1970 prev_end = ALIGN(end, pageblock_nr_pages); 1971 } 1972 1973 #ifdef CONFIG_SPARSEMEM 1974 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) { 1975 prev_end = ALIGN(end, pageblock_nr_pages); 1976 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 1977 } 1978 #endif 1979 } 1980 1981 static void __init __free_pages_memory(unsigned long start, unsigned long end) 1982 { 1983 int order; 1984 1985 while (start < end) { 1986 order = min(MAX_ORDER - 1UL, __ffs(start)); 1987 1988 while (start + (1UL << order) > end) 1989 order--; 1990 1991 memblock_free_pages(pfn_to_page(start), start, order); 1992 1993 start += (1UL << order); 1994 } 1995 } 1996 1997 static unsigned long __init __free_memory_core(phys_addr_t start, 1998 phys_addr_t end) 1999 { 2000 unsigned long start_pfn = PFN_UP(start); 2001 unsigned long end_pfn = min_t(unsigned long, 2002 PFN_DOWN(end), max_low_pfn); 2003 2004 if (start_pfn >= end_pfn) 2005 return 0; 2006 2007 __free_pages_memory(start_pfn, end_pfn); 2008 2009 return end_pfn - start_pfn; 2010 } 2011 2012 static void __init memmap_init_reserved_pages(void) 2013 { 2014 struct memblock_region *region; 2015 phys_addr_t start, end; 2016 u64 i; 2017 2018 /* initialize struct pages for the reserved regions */ 2019 for_each_reserved_mem_range(i, &start, &end) 2020 reserve_bootmem_region(start, end); 2021 2022 /* and also treat struct pages for the NOMAP regions as PageReserved */ 2023 for_each_mem_region(region) { 2024 if (memblock_is_nomap(region)) { 2025 start = region->base; 2026 end = start + region->size; 2027 reserve_bootmem_region(start, end); 2028 } 2029 } 2030 } 2031 2032 static unsigned long __init free_low_memory_core_early(void) 2033 { 2034 unsigned long count = 0; 2035 phys_addr_t start, end; 2036 u64 i; 2037 2038 memblock_clear_hotplug(0, -1); 2039 2040 memmap_init_reserved_pages(); 2041 2042 /* 2043 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 2044 * because in some case like Node0 doesn't have RAM installed 2045 * low ram will be on Node1 2046 */ 2047 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 2048 NULL) 2049 count += __free_memory_core(start, end); 2050 2051 return count; 2052 } 2053 2054 static int reset_managed_pages_done __initdata; 2055 2056 void reset_node_managed_pages(pg_data_t *pgdat) 2057 { 2058 struct zone *z; 2059 2060 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 2061 atomic_long_set(&z->managed_pages, 0); 2062 } 2063 2064 void __init reset_all_zones_managed_pages(void) 2065 { 2066 struct pglist_data *pgdat; 2067 2068 if (reset_managed_pages_done) 2069 return; 2070 2071 for_each_online_pgdat(pgdat) 2072 reset_node_managed_pages(pgdat); 2073 2074 reset_managed_pages_done = 1; 2075 } 2076 2077 /** 2078 * memblock_free_all - release free pages to the buddy allocator 2079 */ 2080 void __init memblock_free_all(void) 2081 { 2082 unsigned long pages; 2083 2084 free_unused_memmap(); 2085 reset_all_zones_managed_pages(); 2086 2087 pages = free_low_memory_core_early(); 2088 totalram_pages_add(pages); 2089 } 2090 2091 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 2092 2093 static int memblock_debug_show(struct seq_file *m, void *private) 2094 { 2095 struct memblock_type *type = m->private; 2096 struct memblock_region *reg; 2097 int i; 2098 phys_addr_t end; 2099 2100 for (i = 0; i < type->cnt; i++) { 2101 reg = &type->regions[i]; 2102 end = reg->base + reg->size - 1; 2103 2104 seq_printf(m, "%4d: ", i); 2105 seq_printf(m, "%pa..%pa\n", ®->base, &end); 2106 } 2107 return 0; 2108 } 2109 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2110 2111 static int __init memblock_init_debugfs(void) 2112 { 2113 struct dentry *root = debugfs_create_dir("memblock", NULL); 2114 2115 debugfs_create_file("memory", 0444, root, 2116 &memblock.memory, &memblock_debug_fops); 2117 debugfs_create_file("reserved", 0444, root, 2118 &memblock.reserved, &memblock_debug_fops); 2119 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2120 debugfs_create_file("physmem", 0444, root, &physmem, 2121 &memblock_debug_fops); 2122 #endif 2123 2124 return 0; 2125 } 2126 __initcall(memblock_init_debugfs); 2127 2128 #endif /* CONFIG_DEBUG_FS */ 2129