1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 #include <linux/memblock.h> 22 23 struct memblock memblock __initdata_memblock; 24 25 int memblock_debug __initdata_memblock; 26 int memblock_can_resize __initdata_memblock; 27 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock; 28 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock; 29 30 /* inline so we don't get a warning when pr_debug is compiled out */ 31 static inline const char *memblock_type_name(struct memblock_type *type) 32 { 33 if (type == &memblock.memory) 34 return "memory"; 35 else if (type == &memblock.reserved) 36 return "reserved"; 37 else 38 return "unknown"; 39 } 40 41 /* 42 * Address comparison utilities 43 */ 44 45 static phys_addr_t __init_memblock memblock_align_down(phys_addr_t addr, phys_addr_t size) 46 { 47 return addr & ~(size - 1); 48 } 49 50 static phys_addr_t __init_memblock memblock_align_up(phys_addr_t addr, phys_addr_t size) 51 { 52 return (addr + (size - 1)) & ~(size - 1); 53 } 54 55 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 56 phys_addr_t base2, phys_addr_t size2) 57 { 58 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 59 } 60 61 long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size) 62 { 63 unsigned long i; 64 65 for (i = 0; i < type->cnt; i++) { 66 phys_addr_t rgnbase = type->regions[i].base; 67 phys_addr_t rgnsize = type->regions[i].size; 68 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) 69 break; 70 } 71 72 return (i < type->cnt) ? i : -1; 73 } 74 75 /* 76 * Find, allocate, deallocate or reserve unreserved regions. All allocations 77 * are top-down. 78 */ 79 80 static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end, 81 phys_addr_t size, phys_addr_t align) 82 { 83 phys_addr_t base, res_base; 84 long j; 85 86 /* In case, huge size is requested */ 87 if (end < size) 88 return MEMBLOCK_ERROR; 89 90 base = memblock_align_down((end - size), align); 91 92 /* Prevent allocations returning 0 as it's also used to 93 * indicate an allocation failure 94 */ 95 if (start == 0) 96 start = PAGE_SIZE; 97 98 while (start <= base) { 99 j = memblock_overlaps_region(&memblock.reserved, base, size); 100 if (j < 0) 101 return base; 102 res_base = memblock.reserved.regions[j].base; 103 if (res_base < size) 104 break; 105 base = memblock_align_down(res_base - size, align); 106 } 107 108 return MEMBLOCK_ERROR; 109 } 110 111 static phys_addr_t __init_memblock memblock_find_base(phys_addr_t size, 112 phys_addr_t align, phys_addr_t start, phys_addr_t end) 113 { 114 long i; 115 116 BUG_ON(0 == size); 117 118 /* Pump up max_addr */ 119 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 120 end = memblock.current_limit; 121 122 /* We do a top-down search, this tends to limit memory 123 * fragmentation by keeping early boot allocs near the 124 * top of memory 125 */ 126 for (i = memblock.memory.cnt - 1; i >= 0; i--) { 127 phys_addr_t memblockbase = memblock.memory.regions[i].base; 128 phys_addr_t memblocksize = memblock.memory.regions[i].size; 129 phys_addr_t bottom, top, found; 130 131 if (memblocksize < size) 132 continue; 133 if ((memblockbase + memblocksize) <= start) 134 break; 135 bottom = max(memblockbase, start); 136 top = min(memblockbase + memblocksize, end); 137 if (bottom >= top) 138 continue; 139 found = memblock_find_region(bottom, top, size, align); 140 if (found != MEMBLOCK_ERROR) 141 return found; 142 } 143 return MEMBLOCK_ERROR; 144 } 145 146 /* 147 * Find a free area with specified alignment in a specific range. 148 */ 149 u64 __init_memblock memblock_find_in_range(u64 start, u64 end, u64 size, u64 align) 150 { 151 return memblock_find_base(size, align, start, end); 152 } 153 154 /* 155 * Free memblock.reserved.regions 156 */ 157 int __init_memblock memblock_free_reserved_regions(void) 158 { 159 if (memblock.reserved.regions == memblock_reserved_init_regions) 160 return 0; 161 162 return memblock_free(__pa(memblock.reserved.regions), 163 sizeof(struct memblock_region) * memblock.reserved.max); 164 } 165 166 /* 167 * Reserve memblock.reserved.regions 168 */ 169 int __init_memblock memblock_reserve_reserved_regions(void) 170 { 171 if (memblock.reserved.regions == memblock_reserved_init_regions) 172 return 0; 173 174 return memblock_reserve(__pa(memblock.reserved.regions), 175 sizeof(struct memblock_region) * memblock.reserved.max); 176 } 177 178 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 179 { 180 unsigned long i; 181 182 for (i = r; i < type->cnt - 1; i++) { 183 type->regions[i].base = type->regions[i + 1].base; 184 type->regions[i].size = type->regions[i + 1].size; 185 } 186 type->cnt--; 187 188 /* Special case for empty arrays */ 189 if (type->cnt == 0) { 190 type->cnt = 1; 191 type->regions[0].base = 0; 192 type->regions[0].size = 0; 193 } 194 } 195 196 /* Defined below but needed now */ 197 static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size); 198 199 static int __init_memblock memblock_double_array(struct memblock_type *type) 200 { 201 struct memblock_region *new_array, *old_array; 202 phys_addr_t old_size, new_size, addr; 203 int use_slab = slab_is_available(); 204 205 /* We don't allow resizing until we know about the reserved regions 206 * of memory that aren't suitable for allocation 207 */ 208 if (!memblock_can_resize) 209 return -1; 210 211 /* Calculate new doubled size */ 212 old_size = type->max * sizeof(struct memblock_region); 213 new_size = old_size << 1; 214 215 /* Try to find some space for it. 216 * 217 * WARNING: We assume that either slab_is_available() and we use it or 218 * we use MEMBLOCK for allocations. That means that this is unsafe to use 219 * when bootmem is currently active (unless bootmem itself is implemented 220 * on top of MEMBLOCK which isn't the case yet) 221 * 222 * This should however not be an issue for now, as we currently only 223 * call into MEMBLOCK while it's still active, or much later when slab is 224 * active for memory hotplug operations 225 */ 226 if (use_slab) { 227 new_array = kmalloc(new_size, GFP_KERNEL); 228 addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array); 229 } else 230 addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE); 231 if (addr == MEMBLOCK_ERROR) { 232 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 233 memblock_type_name(type), type->max, type->max * 2); 234 return -1; 235 } 236 new_array = __va(addr); 237 238 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]", 239 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1); 240 241 /* Found space, we now need to move the array over before 242 * we add the reserved region since it may be our reserved 243 * array itself that is full. 244 */ 245 memcpy(new_array, type->regions, old_size); 246 memset(new_array + type->max, 0, old_size); 247 old_array = type->regions; 248 type->regions = new_array; 249 type->max <<= 1; 250 251 /* If we use SLAB that's it, we are done */ 252 if (use_slab) 253 return 0; 254 255 /* Add the new reserved region now. Should not fail ! */ 256 BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size)); 257 258 /* If the array wasn't our static init one, then free it. We only do 259 * that before SLAB is available as later on, we don't know whether 260 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal 261 * anyways 262 */ 263 if (old_array != memblock_memory_init_regions && 264 old_array != memblock_reserved_init_regions) 265 memblock_free(__pa(old_array), old_size); 266 267 return 0; 268 } 269 270 extern int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1, 271 phys_addr_t addr2, phys_addr_t size2) 272 { 273 return 1; 274 } 275 276 static long __init_memblock memblock_add_region(struct memblock_type *type, 277 phys_addr_t base, phys_addr_t size) 278 { 279 phys_addr_t end = base + size; 280 int i, slot = -1; 281 282 /* First try and coalesce this MEMBLOCK with others */ 283 for (i = 0; i < type->cnt; i++) { 284 struct memblock_region *rgn = &type->regions[i]; 285 phys_addr_t rend = rgn->base + rgn->size; 286 287 /* Exit if there's no possible hits */ 288 if (rgn->base > end || rgn->size == 0) 289 break; 290 291 /* Check if we are fully enclosed within an existing 292 * block 293 */ 294 if (rgn->base <= base && rend >= end) 295 return 0; 296 297 /* Check if we overlap or are adjacent with the bottom 298 * of a block. 299 */ 300 if (base < rgn->base && end >= rgn->base) { 301 /* If we can't coalesce, create a new block */ 302 if (!memblock_memory_can_coalesce(base, size, 303 rgn->base, 304 rgn->size)) { 305 /* Overlap & can't coalesce are mutually 306 * exclusive, if you do that, be prepared 307 * for trouble 308 */ 309 WARN_ON(end != rgn->base); 310 goto new_block; 311 } 312 /* We extend the bottom of the block down to our 313 * base 314 */ 315 rgn->base = base; 316 rgn->size = rend - base; 317 318 /* Return if we have nothing else to allocate 319 * (fully coalesced) 320 */ 321 if (rend >= end) 322 return 0; 323 324 /* We continue processing from the end of the 325 * coalesced block. 326 */ 327 base = rend; 328 size = end - base; 329 } 330 331 /* Now check if we overlap or are adjacent with the 332 * top of a block 333 */ 334 if (base <= rend && end >= rend) { 335 /* If we can't coalesce, create a new block */ 336 if (!memblock_memory_can_coalesce(rgn->base, 337 rgn->size, 338 base, size)) { 339 /* Overlap & can't coalesce are mutually 340 * exclusive, if you do that, be prepared 341 * for trouble 342 */ 343 WARN_ON(rend != base); 344 goto new_block; 345 } 346 /* We adjust our base down to enclose the 347 * original block and destroy it. It will be 348 * part of our new allocation. Since we've 349 * freed an entry, we know we won't fail 350 * to allocate one later, so we won't risk 351 * losing the original block allocation. 352 */ 353 size += (base - rgn->base); 354 base = rgn->base; 355 memblock_remove_region(type, i--); 356 } 357 } 358 359 /* If the array is empty, special case, replace the fake 360 * filler region and return 361 */ 362 if ((type->cnt == 1) && (type->regions[0].size == 0)) { 363 type->regions[0].base = base; 364 type->regions[0].size = size; 365 return 0; 366 } 367 368 new_block: 369 /* If we are out of space, we fail. It's too late to resize the array 370 * but then this shouldn't have happened in the first place. 371 */ 372 if (WARN_ON(type->cnt >= type->max)) 373 return -1; 374 375 /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */ 376 for (i = type->cnt - 1; i >= 0; i--) { 377 if (base < type->regions[i].base) { 378 type->regions[i+1].base = type->regions[i].base; 379 type->regions[i+1].size = type->regions[i].size; 380 } else { 381 type->regions[i+1].base = base; 382 type->regions[i+1].size = size; 383 slot = i + 1; 384 break; 385 } 386 } 387 if (base < type->regions[0].base) { 388 type->regions[0].base = base; 389 type->regions[0].size = size; 390 slot = 0; 391 } 392 type->cnt++; 393 394 /* The array is full ? Try to resize it. If that fails, we undo 395 * our allocation and return an error 396 */ 397 if (type->cnt == type->max && memblock_double_array(type)) { 398 BUG_ON(slot < 0); 399 memblock_remove_region(type, slot); 400 return -1; 401 } 402 403 return 0; 404 } 405 406 long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 407 { 408 return memblock_add_region(&memblock.memory, base, size); 409 410 } 411 412 static long __init_memblock __memblock_remove(struct memblock_type *type, 413 phys_addr_t base, phys_addr_t size) 414 { 415 phys_addr_t end = base + size; 416 int i; 417 418 /* Walk through the array for collisions */ 419 for (i = 0; i < type->cnt; i++) { 420 struct memblock_region *rgn = &type->regions[i]; 421 phys_addr_t rend = rgn->base + rgn->size; 422 423 /* Nothing more to do, exit */ 424 if (rgn->base > end || rgn->size == 0) 425 break; 426 427 /* If we fully enclose the block, drop it */ 428 if (base <= rgn->base && end >= rend) { 429 memblock_remove_region(type, i--); 430 continue; 431 } 432 433 /* If we are fully enclosed within a block 434 * then we need to split it and we are done 435 */ 436 if (base > rgn->base && end < rend) { 437 rgn->size = base - rgn->base; 438 if (!memblock_add_region(type, end, rend - end)) 439 return 0; 440 /* Failure to split is bad, we at least 441 * restore the block before erroring 442 */ 443 rgn->size = rend - rgn->base; 444 WARN_ON(1); 445 return -1; 446 } 447 448 /* Check if we need to trim the bottom of a block */ 449 if (rgn->base < end && rend > end) { 450 rgn->size -= end - rgn->base; 451 rgn->base = end; 452 break; 453 } 454 455 /* And check if we need to trim the top of a block */ 456 if (base < rend) 457 rgn->size -= rend - base; 458 459 } 460 return 0; 461 } 462 463 long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 464 { 465 return __memblock_remove(&memblock.memory, base, size); 466 } 467 468 long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 469 { 470 return __memblock_remove(&memblock.reserved, base, size); 471 } 472 473 long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 474 { 475 struct memblock_type *_rgn = &memblock.reserved; 476 477 BUG_ON(0 == size); 478 479 return memblock_add_region(_rgn, base, size); 480 } 481 482 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 483 { 484 phys_addr_t found; 485 486 /* We align the size to limit fragmentation. Without this, a lot of 487 * small allocs quickly eat up the whole reserve array on sparc 488 */ 489 size = memblock_align_up(size, align); 490 491 found = memblock_find_base(size, align, 0, max_addr); 492 if (found != MEMBLOCK_ERROR && 493 !memblock_add_region(&memblock.reserved, found, size)) 494 return found; 495 496 return 0; 497 } 498 499 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 500 { 501 phys_addr_t alloc; 502 503 alloc = __memblock_alloc_base(size, align, max_addr); 504 505 if (alloc == 0) 506 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", 507 (unsigned long long) size, (unsigned long long) max_addr); 508 509 return alloc; 510 } 511 512 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 513 { 514 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 515 } 516 517 518 /* 519 * Additional node-local allocators. Search for node memory is bottom up 520 * and walks memblock regions within that node bottom-up as well, but allocation 521 * within an memblock region is top-down. XXX I plan to fix that at some stage 522 * 523 * WARNING: Only available after early_node_map[] has been populated, 524 * on some architectures, that is after all the calls to add_active_range() 525 * have been done to populate it. 526 */ 527 528 phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid) 529 { 530 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 531 /* 532 * This code originates from sparc which really wants use to walk by addresses 533 * and returns the nid. This is not very convenient for early_pfn_map[] users 534 * as the map isn't sorted yet, and it really wants to be walked by nid. 535 * 536 * For now, I implement the inefficient method below which walks the early 537 * map multiple times. Eventually we may want to use an ARCH config option 538 * to implement a completely different method for both case. 539 */ 540 unsigned long start_pfn, end_pfn; 541 int i; 542 543 for (i = 0; i < MAX_NUMNODES; i++) { 544 get_pfn_range_for_nid(i, &start_pfn, &end_pfn); 545 if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn)) 546 continue; 547 *nid = i; 548 return min(end, PFN_PHYS(end_pfn)); 549 } 550 #endif 551 *nid = 0; 552 553 return end; 554 } 555 556 static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp, 557 phys_addr_t size, 558 phys_addr_t align, int nid) 559 { 560 phys_addr_t start, end; 561 562 start = mp->base; 563 end = start + mp->size; 564 565 start = memblock_align_up(start, align); 566 while (start < end) { 567 phys_addr_t this_end; 568 int this_nid; 569 570 this_end = memblock_nid_range(start, end, &this_nid); 571 if (this_nid == nid) { 572 phys_addr_t ret = memblock_find_region(start, this_end, size, align); 573 if (ret != MEMBLOCK_ERROR && 574 !memblock_add_region(&memblock.reserved, ret, size)) 575 return ret; 576 } 577 start = this_end; 578 } 579 580 return MEMBLOCK_ERROR; 581 } 582 583 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 584 { 585 struct memblock_type *mem = &memblock.memory; 586 int i; 587 588 BUG_ON(0 == size); 589 590 /* We align the size to limit fragmentation. Without this, a lot of 591 * small allocs quickly eat up the whole reserve array on sparc 592 */ 593 size = memblock_align_up(size, align); 594 595 /* We do a bottom-up search for a region with the right 596 * nid since that's easier considering how memblock_nid_range() 597 * works 598 */ 599 for (i = 0; i < mem->cnt; i++) { 600 phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i], 601 size, align, nid); 602 if (ret != MEMBLOCK_ERROR) 603 return ret; 604 } 605 606 return 0; 607 } 608 609 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 610 { 611 phys_addr_t res = memblock_alloc_nid(size, align, nid); 612 613 if (res) 614 return res; 615 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE); 616 } 617 618 619 /* 620 * Remaining API functions 621 */ 622 623 /* You must call memblock_analyze() before this. */ 624 phys_addr_t __init memblock_phys_mem_size(void) 625 { 626 return memblock.memory_size; 627 } 628 629 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 630 { 631 int idx = memblock.memory.cnt - 1; 632 633 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 634 } 635 636 /* You must call memblock_analyze() after this. */ 637 void __init memblock_enforce_memory_limit(phys_addr_t memory_limit) 638 { 639 unsigned long i; 640 phys_addr_t limit; 641 struct memblock_region *p; 642 643 if (!memory_limit) 644 return; 645 646 /* Truncate the memblock regions to satisfy the memory limit. */ 647 limit = memory_limit; 648 for (i = 0; i < memblock.memory.cnt; i++) { 649 if (limit > memblock.memory.regions[i].size) { 650 limit -= memblock.memory.regions[i].size; 651 continue; 652 } 653 654 memblock.memory.regions[i].size = limit; 655 memblock.memory.cnt = i + 1; 656 break; 657 } 658 659 memory_limit = memblock_end_of_DRAM(); 660 661 /* And truncate any reserves above the limit also. */ 662 for (i = 0; i < memblock.reserved.cnt; i++) { 663 p = &memblock.reserved.regions[i]; 664 665 if (p->base > memory_limit) 666 p->size = 0; 667 else if ((p->base + p->size) > memory_limit) 668 p->size = memory_limit - p->base; 669 670 if (p->size == 0) { 671 memblock_remove_region(&memblock.reserved, i); 672 i--; 673 } 674 } 675 } 676 677 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 678 { 679 unsigned int left = 0, right = type->cnt; 680 681 do { 682 unsigned int mid = (right + left) / 2; 683 684 if (addr < type->regions[mid].base) 685 right = mid; 686 else if (addr >= (type->regions[mid].base + 687 type->regions[mid].size)) 688 left = mid + 1; 689 else 690 return mid; 691 } while (left < right); 692 return -1; 693 } 694 695 int __init memblock_is_reserved(phys_addr_t addr) 696 { 697 return memblock_search(&memblock.reserved, addr) != -1; 698 } 699 700 int __init_memblock memblock_is_memory(phys_addr_t addr) 701 { 702 return memblock_search(&memblock.memory, addr) != -1; 703 } 704 705 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 706 { 707 int idx = memblock_search(&memblock.memory, base); 708 709 if (idx == -1) 710 return 0; 711 return memblock.memory.regions[idx].base <= base && 712 (memblock.memory.regions[idx].base + 713 memblock.memory.regions[idx].size) >= (base + size); 714 } 715 716 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 717 { 718 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; 719 } 720 721 722 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 723 { 724 memblock.current_limit = limit; 725 } 726 727 static void __init_memblock memblock_dump(struct memblock_type *region, char *name) 728 { 729 unsigned long long base, size; 730 int i; 731 732 pr_info(" %s.cnt = 0x%lx\n", name, region->cnt); 733 734 for (i = 0; i < region->cnt; i++) { 735 base = region->regions[i].base; 736 size = region->regions[i].size; 737 738 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n", 739 name, i, base, base + size - 1, size); 740 } 741 } 742 743 void __init_memblock memblock_dump_all(void) 744 { 745 if (!memblock_debug) 746 return; 747 748 pr_info("MEMBLOCK configuration:\n"); 749 pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size); 750 751 memblock_dump(&memblock.memory, "memory"); 752 memblock_dump(&memblock.reserved, "reserved"); 753 } 754 755 void __init memblock_analyze(void) 756 { 757 int i; 758 759 /* Check marker in the unused last array entry */ 760 WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base 761 != MEMBLOCK_INACTIVE); 762 WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base 763 != MEMBLOCK_INACTIVE); 764 765 memblock.memory_size = 0; 766 767 for (i = 0; i < memblock.memory.cnt; i++) 768 memblock.memory_size += memblock.memory.regions[i].size; 769 770 /* We allow resizing from there */ 771 memblock_can_resize = 1; 772 } 773 774 void __init memblock_init(void) 775 { 776 static int init_done __initdata = 0; 777 778 if (init_done) 779 return; 780 init_done = 1; 781 782 /* Hookup the initial arrays */ 783 memblock.memory.regions = memblock_memory_init_regions; 784 memblock.memory.max = INIT_MEMBLOCK_REGIONS; 785 memblock.reserved.regions = memblock_reserved_init_regions; 786 memblock.reserved.max = INIT_MEMBLOCK_REGIONS; 787 788 /* Write a marker in the unused last array entry */ 789 memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE; 790 memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE; 791 792 /* Create a dummy zero size MEMBLOCK which will get coalesced away later. 793 * This simplifies the memblock_add() code below... 794 */ 795 memblock.memory.regions[0].base = 0; 796 memblock.memory.regions[0].size = 0; 797 memblock.memory.cnt = 1; 798 799 /* Ditto. */ 800 memblock.reserved.regions[0].base = 0; 801 memblock.reserved.regions[0].size = 0; 802 memblock.reserved.cnt = 1; 803 804 memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE; 805 } 806 807 static int __init early_memblock(char *p) 808 { 809 if (p && strstr(p, "debug")) 810 memblock_debug = 1; 811 return 0; 812 } 813 early_param("memblock", early_memblock); 814 815 #if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK) 816 817 static int memblock_debug_show(struct seq_file *m, void *private) 818 { 819 struct memblock_type *type = m->private; 820 struct memblock_region *reg; 821 int i; 822 823 for (i = 0; i < type->cnt; i++) { 824 reg = &type->regions[i]; 825 seq_printf(m, "%4d: ", i); 826 if (sizeof(phys_addr_t) == 4) 827 seq_printf(m, "0x%08lx..0x%08lx\n", 828 (unsigned long)reg->base, 829 (unsigned long)(reg->base + reg->size - 1)); 830 else 831 seq_printf(m, "0x%016llx..0x%016llx\n", 832 (unsigned long long)reg->base, 833 (unsigned long long)(reg->base + reg->size - 1)); 834 835 } 836 return 0; 837 } 838 839 static int memblock_debug_open(struct inode *inode, struct file *file) 840 { 841 return single_open(file, memblock_debug_show, inode->i_private); 842 } 843 844 static const struct file_operations memblock_debug_fops = { 845 .open = memblock_debug_open, 846 .read = seq_read, 847 .llseek = seq_lseek, 848 .release = single_release, 849 }; 850 851 static int __init memblock_init_debugfs(void) 852 { 853 struct dentry *root = debugfs_create_dir("memblock", NULL); 854 if (!root) 855 return -ENXIO; 856 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 857 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 858 859 return 0; 860 } 861 __initcall(memblock_init_debugfs); 862 863 #endif /* CONFIG_DEBUG_FS */ 864