xref: /linux/mm/memblock.c (revision 5bbfea1eacdf584d0d159e38c01ee190162706d9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 
20 #include <asm/sections.h>
21 #include <linux/io.h>
22 
23 #include "internal.h"
24 
25 #define INIT_MEMBLOCK_REGIONS			128
26 #define INIT_PHYSMEM_REGIONS			4
27 
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30 #endif
31 
32 /**
33  * DOC: memblock overview
34  *
35  * Memblock is a method of managing memory regions during the early
36  * boot period when the usual kernel memory allocators are not up and
37  * running.
38  *
39  * Memblock views the system memory as collections of contiguous
40  * regions. There are several types of these collections:
41  *
42  * * ``memory`` - describes the physical memory available to the
43  *   kernel; this may differ from the actual physical memory installed
44  *   in the system, for instance when the memory is restricted with
45  *   ``mem=`` command line parameter
46  * * ``reserved`` - describes the regions that were allocated
47  * * ``physmem`` - describes the actual physical memory available during
48  *   boot regardless of the possible restrictions and memory hot(un)plug;
49  *   the ``physmem`` type is only available on some architectures.
50  *
51  * Each region is represented by struct memblock_region that
52  * defines the region extents, its attributes and NUMA node id on NUMA
53  * systems. Every memory type is described by the struct memblock_type
54  * which contains an array of memory regions along with
55  * the allocator metadata. The "memory" and "reserved" types are nicely
56  * wrapped with struct memblock. This structure is statically
57  * initialized at build time. The region arrays are initially sized to
58  * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59  * for "reserved". The region array for "physmem" is initially sized to
60  * %INIT_PHYSMEM_REGIONS.
61  * The memblock_allow_resize() enables automatic resizing of the region
62  * arrays during addition of new regions. This feature should be used
63  * with care so that memory allocated for the region array will not
64  * overlap with areas that should be reserved, for example initrd.
65  *
66  * The early architecture setup should tell memblock what the physical
67  * memory layout is by using memblock_add() or memblock_add_node()
68  * functions. The first function does not assign the region to a NUMA
69  * node and it is appropriate for UMA systems. Yet, it is possible to
70  * use it on NUMA systems as well and assign the region to a NUMA node
71  * later in the setup process using memblock_set_node(). The
72  * memblock_add_node() performs such an assignment directly.
73  *
74  * Once memblock is setup the memory can be allocated using one of the
75  * API variants:
76  *
77  * * memblock_phys_alloc*() - these functions return the **physical**
78  *   address of the allocated memory
79  * * memblock_alloc*() - these functions return the **virtual** address
80  *   of the allocated memory.
81  *
82  * Note, that both API variants use implicit assumptions about allowed
83  * memory ranges and the fallback methods. Consult the documentation
84  * of memblock_alloc_internal() and memblock_alloc_range_nid()
85  * functions for more elaborate description.
86  *
87  * As the system boot progresses, the architecture specific mem_init()
88  * function frees all the memory to the buddy page allocator.
89  *
90  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91  * memblock data structures (except "physmem") will be discarded after the
92  * system initialization completes.
93  */
94 
95 #ifndef CONFIG_NUMA
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
98 #endif
99 
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
104 
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109 #endif
110 
111 struct memblock memblock __initdata_memblock = {
112 	.memory.regions		= memblock_memory_init_regions,
113 	.memory.cnt		= 1,	/* empty dummy entry */
114 	.memory.max		= INIT_MEMBLOCK_REGIONS,
115 	.memory.name		= "memory",
116 
117 	.reserved.regions	= memblock_reserved_init_regions,
118 	.reserved.cnt		= 1,	/* empty dummy entry */
119 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
120 	.reserved.name		= "reserved",
121 
122 	.bottom_up		= false,
123 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
124 };
125 
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128 	.regions		= memblock_physmem_init_regions,
129 	.cnt			= 1,	/* empty dummy entry */
130 	.max			= INIT_PHYSMEM_REGIONS,
131 	.name			= "physmem",
132 };
133 #endif
134 
135 /*
136  * keep a pointer to &memblock.memory in the text section to use it in
137  * __next_mem_range() and its helpers.
138  *  For architectures that do not keep memblock data after init, this
139  * pointer will be reset to NULL at memblock_discard()
140  */
141 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142 
143 #define for_each_memblock_type(i, memblock_type, rgn)			\
144 	for (i = 0, rgn = &memblock_type->regions[0];			\
145 	     i < memblock_type->cnt;					\
146 	     i++, rgn = &memblock_type->regions[i])
147 
148 #define memblock_dbg(fmt, ...)						\
149 	do {								\
150 		if (memblock_debug)					\
151 			pr_info(fmt, ##__VA_ARGS__);			\
152 	} while (0)
153 
154 static int memblock_debug __initdata_memblock;
155 static bool system_has_some_mirror __initdata_memblock = false;
156 static int memblock_can_resize __initdata_memblock;
157 static int memblock_memory_in_slab __initdata_memblock = 0;
158 static int memblock_reserved_in_slab __initdata_memblock = 0;
159 
160 static enum memblock_flags __init_memblock choose_memblock_flags(void)
161 {
162 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163 }
164 
165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167 {
168 	return *size = min(*size, PHYS_ADDR_MAX - base);
169 }
170 
171 /*
172  * Address comparison utilities
173  */
174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
175 				       phys_addr_t base2, phys_addr_t size2)
176 {
177 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178 }
179 
180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
181 					phys_addr_t base, phys_addr_t size)
182 {
183 	unsigned long i;
184 
185 	memblock_cap_size(base, &size);
186 
187 	for (i = 0; i < type->cnt; i++)
188 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
189 					   type->regions[i].size))
190 			break;
191 	return i < type->cnt;
192 }
193 
194 /**
195  * __memblock_find_range_bottom_up - find free area utility in bottom-up
196  * @start: start of candidate range
197  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
198  *       %MEMBLOCK_ALLOC_ACCESSIBLE
199  * @size: size of free area to find
200  * @align: alignment of free area to find
201  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
202  * @flags: pick from blocks based on memory attributes
203  *
204  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
205  *
206  * Return:
207  * Found address on success, 0 on failure.
208  */
209 static phys_addr_t __init_memblock
210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
211 				phys_addr_t size, phys_addr_t align, int nid,
212 				enum memblock_flags flags)
213 {
214 	phys_addr_t this_start, this_end, cand;
215 	u64 i;
216 
217 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
218 		this_start = clamp(this_start, start, end);
219 		this_end = clamp(this_end, start, end);
220 
221 		cand = round_up(this_start, align);
222 		if (cand < this_end && this_end - cand >= size)
223 			return cand;
224 	}
225 
226 	return 0;
227 }
228 
229 /**
230  * __memblock_find_range_top_down - find free area utility, in top-down
231  * @start: start of candidate range
232  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
233  *       %MEMBLOCK_ALLOC_ACCESSIBLE
234  * @size: size of free area to find
235  * @align: alignment of free area to find
236  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
237  * @flags: pick from blocks based on memory attributes
238  *
239  * Utility called from memblock_find_in_range_node(), find free area top-down.
240  *
241  * Return:
242  * Found address on success, 0 on failure.
243  */
244 static phys_addr_t __init_memblock
245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
246 			       phys_addr_t size, phys_addr_t align, int nid,
247 			       enum memblock_flags flags)
248 {
249 	phys_addr_t this_start, this_end, cand;
250 	u64 i;
251 
252 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
253 					NULL) {
254 		this_start = clamp(this_start, start, end);
255 		this_end = clamp(this_end, start, end);
256 
257 		if (this_end < size)
258 			continue;
259 
260 		cand = round_down(this_end - size, align);
261 		if (cand >= this_start)
262 			return cand;
263 	}
264 
265 	return 0;
266 }
267 
268 /**
269  * memblock_find_in_range_node - find free area in given range and node
270  * @size: size of free area to find
271  * @align: alignment of free area to find
272  * @start: start of candidate range
273  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
274  *       %MEMBLOCK_ALLOC_ACCESSIBLE
275  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
276  * @flags: pick from blocks based on memory attributes
277  *
278  * Find @size free area aligned to @align in the specified range and node.
279  *
280  * Return:
281  * Found address on success, 0 on failure.
282  */
283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
284 					phys_addr_t align, phys_addr_t start,
285 					phys_addr_t end, int nid,
286 					enum memblock_flags flags)
287 {
288 	/* pump up @end */
289 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
290 	    end == MEMBLOCK_ALLOC_KASAN)
291 		end = memblock.current_limit;
292 
293 	/* avoid allocating the first page */
294 	start = max_t(phys_addr_t, start, PAGE_SIZE);
295 	end = max(start, end);
296 
297 	if (memblock_bottom_up())
298 		return __memblock_find_range_bottom_up(start, end, size, align,
299 						       nid, flags);
300 	else
301 		return __memblock_find_range_top_down(start, end, size, align,
302 						      nid, flags);
303 }
304 
305 /**
306  * memblock_find_in_range - find free area in given range
307  * @start: start of candidate range
308  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
309  *       %MEMBLOCK_ALLOC_ACCESSIBLE
310  * @size: size of free area to find
311  * @align: alignment of free area to find
312  *
313  * Find @size free area aligned to @align in the specified range.
314  *
315  * Return:
316  * Found address on success, 0 on failure.
317  */
318 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
319 					phys_addr_t end, phys_addr_t size,
320 					phys_addr_t align)
321 {
322 	phys_addr_t ret;
323 	enum memblock_flags flags = choose_memblock_flags();
324 
325 again:
326 	ret = memblock_find_in_range_node(size, align, start, end,
327 					    NUMA_NO_NODE, flags);
328 
329 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
330 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
331 			&size);
332 		flags &= ~MEMBLOCK_MIRROR;
333 		goto again;
334 	}
335 
336 	return ret;
337 }
338 
339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
340 {
341 	type->total_size -= type->regions[r].size;
342 	memmove(&type->regions[r], &type->regions[r + 1],
343 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
344 	type->cnt--;
345 
346 	/* Special case for empty arrays */
347 	if (type->cnt == 0) {
348 		WARN_ON(type->total_size != 0);
349 		type->cnt = 1;
350 		type->regions[0].base = 0;
351 		type->regions[0].size = 0;
352 		type->regions[0].flags = 0;
353 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
354 	}
355 }
356 
357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
358 /**
359  * memblock_discard - discard memory and reserved arrays if they were allocated
360  */
361 void __init memblock_discard(void)
362 {
363 	phys_addr_t addr, size;
364 
365 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
366 		addr = __pa(memblock.reserved.regions);
367 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
368 				  memblock.reserved.max);
369 		__memblock_free_late(addr, size);
370 	}
371 
372 	if (memblock.memory.regions != memblock_memory_init_regions) {
373 		addr = __pa(memblock.memory.regions);
374 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
375 				  memblock.memory.max);
376 		__memblock_free_late(addr, size);
377 	}
378 
379 	memblock_memory = NULL;
380 }
381 #endif
382 
383 /**
384  * memblock_double_array - double the size of the memblock regions array
385  * @type: memblock type of the regions array being doubled
386  * @new_area_start: starting address of memory range to avoid overlap with
387  * @new_area_size: size of memory range to avoid overlap with
388  *
389  * Double the size of the @type regions array. If memblock is being used to
390  * allocate memory for a new reserved regions array and there is a previously
391  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
392  * waiting to be reserved, ensure the memory used by the new array does
393  * not overlap.
394  *
395  * Return:
396  * 0 on success, -1 on failure.
397  */
398 static int __init_memblock memblock_double_array(struct memblock_type *type,
399 						phys_addr_t new_area_start,
400 						phys_addr_t new_area_size)
401 {
402 	struct memblock_region *new_array, *old_array;
403 	phys_addr_t old_alloc_size, new_alloc_size;
404 	phys_addr_t old_size, new_size, addr, new_end;
405 	int use_slab = slab_is_available();
406 	int *in_slab;
407 
408 	/* We don't allow resizing until we know about the reserved regions
409 	 * of memory that aren't suitable for allocation
410 	 */
411 	if (!memblock_can_resize)
412 		return -1;
413 
414 	/* Calculate new doubled size */
415 	old_size = type->max * sizeof(struct memblock_region);
416 	new_size = old_size << 1;
417 	/*
418 	 * We need to allocated new one align to PAGE_SIZE,
419 	 *   so we can free them completely later.
420 	 */
421 	old_alloc_size = PAGE_ALIGN(old_size);
422 	new_alloc_size = PAGE_ALIGN(new_size);
423 
424 	/* Retrieve the slab flag */
425 	if (type == &memblock.memory)
426 		in_slab = &memblock_memory_in_slab;
427 	else
428 		in_slab = &memblock_reserved_in_slab;
429 
430 	/* Try to find some space for it */
431 	if (use_slab) {
432 		new_array = kmalloc(new_size, GFP_KERNEL);
433 		addr = new_array ? __pa(new_array) : 0;
434 	} else {
435 		/* only exclude range when trying to double reserved.regions */
436 		if (type != &memblock.reserved)
437 			new_area_start = new_area_size = 0;
438 
439 		addr = memblock_find_in_range(new_area_start + new_area_size,
440 						memblock.current_limit,
441 						new_alloc_size, PAGE_SIZE);
442 		if (!addr && new_area_size)
443 			addr = memblock_find_in_range(0,
444 				min(new_area_start, memblock.current_limit),
445 				new_alloc_size, PAGE_SIZE);
446 
447 		new_array = addr ? __va(addr) : NULL;
448 	}
449 	if (!addr) {
450 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
451 		       type->name, type->max, type->max * 2);
452 		return -1;
453 	}
454 
455 	new_end = addr + new_size - 1;
456 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
457 			type->name, type->max * 2, &addr, &new_end);
458 
459 	/*
460 	 * Found space, we now need to move the array over before we add the
461 	 * reserved region since it may be our reserved array itself that is
462 	 * full.
463 	 */
464 	memcpy(new_array, type->regions, old_size);
465 	memset(new_array + type->max, 0, old_size);
466 	old_array = type->regions;
467 	type->regions = new_array;
468 	type->max <<= 1;
469 
470 	/* Free old array. We needn't free it if the array is the static one */
471 	if (*in_slab)
472 		kfree(old_array);
473 	else if (old_array != memblock_memory_init_regions &&
474 		 old_array != memblock_reserved_init_regions)
475 		memblock_free_ptr(old_array, old_alloc_size);
476 
477 	/*
478 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
479 	 * needn't do it
480 	 */
481 	if (!use_slab)
482 		BUG_ON(memblock_reserve(addr, new_alloc_size));
483 
484 	/* Update slab flag */
485 	*in_slab = use_slab;
486 
487 	return 0;
488 }
489 
490 /**
491  * memblock_merge_regions - merge neighboring compatible regions
492  * @type: memblock type to scan
493  *
494  * Scan @type and merge neighboring compatible regions.
495  */
496 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
497 {
498 	int i = 0;
499 
500 	/* cnt never goes below 1 */
501 	while (i < type->cnt - 1) {
502 		struct memblock_region *this = &type->regions[i];
503 		struct memblock_region *next = &type->regions[i + 1];
504 
505 		if (this->base + this->size != next->base ||
506 		    memblock_get_region_node(this) !=
507 		    memblock_get_region_node(next) ||
508 		    this->flags != next->flags) {
509 			BUG_ON(this->base + this->size > next->base);
510 			i++;
511 			continue;
512 		}
513 
514 		this->size += next->size;
515 		/* move forward from next + 1, index of which is i + 2 */
516 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
517 		type->cnt--;
518 	}
519 }
520 
521 /**
522  * memblock_insert_region - insert new memblock region
523  * @type:	memblock type to insert into
524  * @idx:	index for the insertion point
525  * @base:	base address of the new region
526  * @size:	size of the new region
527  * @nid:	node id of the new region
528  * @flags:	flags of the new region
529  *
530  * Insert new memblock region [@base, @base + @size) into @type at @idx.
531  * @type must already have extra room to accommodate the new region.
532  */
533 static void __init_memblock memblock_insert_region(struct memblock_type *type,
534 						   int idx, phys_addr_t base,
535 						   phys_addr_t size,
536 						   int nid,
537 						   enum memblock_flags flags)
538 {
539 	struct memblock_region *rgn = &type->regions[idx];
540 
541 	BUG_ON(type->cnt >= type->max);
542 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
543 	rgn->base = base;
544 	rgn->size = size;
545 	rgn->flags = flags;
546 	memblock_set_region_node(rgn, nid);
547 	type->cnt++;
548 	type->total_size += size;
549 }
550 
551 /**
552  * memblock_add_range - add new memblock region
553  * @type: memblock type to add new region into
554  * @base: base address of the new region
555  * @size: size of the new region
556  * @nid: nid of the new region
557  * @flags: flags of the new region
558  *
559  * Add new memblock region [@base, @base + @size) into @type.  The new region
560  * is allowed to overlap with existing ones - overlaps don't affect already
561  * existing regions.  @type is guaranteed to be minimal (all neighbouring
562  * compatible regions are merged) after the addition.
563  *
564  * Return:
565  * 0 on success, -errno on failure.
566  */
567 static int __init_memblock memblock_add_range(struct memblock_type *type,
568 				phys_addr_t base, phys_addr_t size,
569 				int nid, enum memblock_flags flags)
570 {
571 	bool insert = false;
572 	phys_addr_t obase = base;
573 	phys_addr_t end = base + memblock_cap_size(base, &size);
574 	int idx, nr_new;
575 	struct memblock_region *rgn;
576 
577 	if (!size)
578 		return 0;
579 
580 	/* special case for empty array */
581 	if (type->regions[0].size == 0) {
582 		WARN_ON(type->cnt != 1 || type->total_size);
583 		type->regions[0].base = base;
584 		type->regions[0].size = size;
585 		type->regions[0].flags = flags;
586 		memblock_set_region_node(&type->regions[0], nid);
587 		type->total_size = size;
588 		return 0;
589 	}
590 repeat:
591 	/*
592 	 * The following is executed twice.  Once with %false @insert and
593 	 * then with %true.  The first counts the number of regions needed
594 	 * to accommodate the new area.  The second actually inserts them.
595 	 */
596 	base = obase;
597 	nr_new = 0;
598 
599 	for_each_memblock_type(idx, type, rgn) {
600 		phys_addr_t rbase = rgn->base;
601 		phys_addr_t rend = rbase + rgn->size;
602 
603 		if (rbase >= end)
604 			break;
605 		if (rend <= base)
606 			continue;
607 		/*
608 		 * @rgn overlaps.  If it separates the lower part of new
609 		 * area, insert that portion.
610 		 */
611 		if (rbase > base) {
612 #ifdef CONFIG_NUMA
613 			WARN_ON(nid != memblock_get_region_node(rgn));
614 #endif
615 			WARN_ON(flags != rgn->flags);
616 			nr_new++;
617 			if (insert)
618 				memblock_insert_region(type, idx++, base,
619 						       rbase - base, nid,
620 						       flags);
621 		}
622 		/* area below @rend is dealt with, forget about it */
623 		base = min(rend, end);
624 	}
625 
626 	/* insert the remaining portion */
627 	if (base < end) {
628 		nr_new++;
629 		if (insert)
630 			memblock_insert_region(type, idx, base, end - base,
631 					       nid, flags);
632 	}
633 
634 	if (!nr_new)
635 		return 0;
636 
637 	/*
638 	 * If this was the first round, resize array and repeat for actual
639 	 * insertions; otherwise, merge and return.
640 	 */
641 	if (!insert) {
642 		while (type->cnt + nr_new > type->max)
643 			if (memblock_double_array(type, obase, size) < 0)
644 				return -ENOMEM;
645 		insert = true;
646 		goto repeat;
647 	} else {
648 		memblock_merge_regions(type);
649 		return 0;
650 	}
651 }
652 
653 /**
654  * memblock_add_node - add new memblock region within a NUMA node
655  * @base: base address of the new region
656  * @size: size of the new region
657  * @nid: nid of the new region
658  *
659  * Add new memblock region [@base, @base + @size) to the "memory"
660  * type. See memblock_add_range() description for mode details
661  *
662  * Return:
663  * 0 on success, -errno on failure.
664  */
665 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
666 				       int nid)
667 {
668 	phys_addr_t end = base + size - 1;
669 
670 	memblock_dbg("%s: [%pa-%pa] nid=%d %pS\n", __func__,
671 		     &base, &end, nid, (void *)_RET_IP_);
672 
673 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
674 }
675 
676 /**
677  * memblock_add - add new memblock region
678  * @base: base address of the new region
679  * @size: size of the new region
680  *
681  * Add new memblock region [@base, @base + @size) to the "memory"
682  * type. See memblock_add_range() description for mode details
683  *
684  * Return:
685  * 0 on success, -errno on failure.
686  */
687 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
688 {
689 	phys_addr_t end = base + size - 1;
690 
691 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
692 		     &base, &end, (void *)_RET_IP_);
693 
694 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
695 }
696 
697 /**
698  * memblock_isolate_range - isolate given range into disjoint memblocks
699  * @type: memblock type to isolate range for
700  * @base: base of range to isolate
701  * @size: size of range to isolate
702  * @start_rgn: out parameter for the start of isolated region
703  * @end_rgn: out parameter for the end of isolated region
704  *
705  * Walk @type and ensure that regions don't cross the boundaries defined by
706  * [@base, @base + @size).  Crossing regions are split at the boundaries,
707  * which may create at most two more regions.  The index of the first
708  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
709  *
710  * Return:
711  * 0 on success, -errno on failure.
712  */
713 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
714 					phys_addr_t base, phys_addr_t size,
715 					int *start_rgn, int *end_rgn)
716 {
717 	phys_addr_t end = base + memblock_cap_size(base, &size);
718 	int idx;
719 	struct memblock_region *rgn;
720 
721 	*start_rgn = *end_rgn = 0;
722 
723 	if (!size)
724 		return 0;
725 
726 	/* we'll create at most two more regions */
727 	while (type->cnt + 2 > type->max)
728 		if (memblock_double_array(type, base, size) < 0)
729 			return -ENOMEM;
730 
731 	for_each_memblock_type(idx, type, rgn) {
732 		phys_addr_t rbase = rgn->base;
733 		phys_addr_t rend = rbase + rgn->size;
734 
735 		if (rbase >= end)
736 			break;
737 		if (rend <= base)
738 			continue;
739 
740 		if (rbase < base) {
741 			/*
742 			 * @rgn intersects from below.  Split and continue
743 			 * to process the next region - the new top half.
744 			 */
745 			rgn->base = base;
746 			rgn->size -= base - rbase;
747 			type->total_size -= base - rbase;
748 			memblock_insert_region(type, idx, rbase, base - rbase,
749 					       memblock_get_region_node(rgn),
750 					       rgn->flags);
751 		} else if (rend > end) {
752 			/*
753 			 * @rgn intersects from above.  Split and redo the
754 			 * current region - the new bottom half.
755 			 */
756 			rgn->base = end;
757 			rgn->size -= end - rbase;
758 			type->total_size -= end - rbase;
759 			memblock_insert_region(type, idx--, rbase, end - rbase,
760 					       memblock_get_region_node(rgn),
761 					       rgn->flags);
762 		} else {
763 			/* @rgn is fully contained, record it */
764 			if (!*end_rgn)
765 				*start_rgn = idx;
766 			*end_rgn = idx + 1;
767 		}
768 	}
769 
770 	return 0;
771 }
772 
773 static int __init_memblock memblock_remove_range(struct memblock_type *type,
774 					  phys_addr_t base, phys_addr_t size)
775 {
776 	int start_rgn, end_rgn;
777 	int i, ret;
778 
779 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
780 	if (ret)
781 		return ret;
782 
783 	for (i = end_rgn - 1; i >= start_rgn; i--)
784 		memblock_remove_region(type, i);
785 	return 0;
786 }
787 
788 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
789 {
790 	phys_addr_t end = base + size - 1;
791 
792 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
793 		     &base, &end, (void *)_RET_IP_);
794 
795 	return memblock_remove_range(&memblock.memory, base, size);
796 }
797 
798 /**
799  * memblock_free_ptr - free boot memory allocation
800  * @ptr: starting address of the  boot memory allocation
801  * @size: size of the boot memory block in bytes
802  *
803  * Free boot memory block previously allocated by memblock_alloc_xx() API.
804  * The freeing memory will not be released to the buddy allocator.
805  */
806 void __init_memblock memblock_free_ptr(void *ptr, size_t size)
807 {
808 	if (ptr)
809 		memblock_free(__pa(ptr), size);
810 }
811 
812 /**
813  * memblock_free - free boot memory block
814  * @base: phys starting address of the  boot memory block
815  * @size: size of the boot memory block in bytes
816  *
817  * Free boot memory block previously allocated by memblock_alloc_xx() API.
818  * The freeing memory will not be released to the buddy allocator.
819  */
820 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
821 {
822 	phys_addr_t end = base + size - 1;
823 
824 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
825 		     &base, &end, (void *)_RET_IP_);
826 
827 	kmemleak_free_part_phys(base, size);
828 	return memblock_remove_range(&memblock.reserved, base, size);
829 }
830 
831 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
832 {
833 	phys_addr_t end = base + size - 1;
834 
835 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
836 		     &base, &end, (void *)_RET_IP_);
837 
838 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
839 }
840 
841 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
842 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
843 {
844 	phys_addr_t end = base + size - 1;
845 
846 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
847 		     &base, &end, (void *)_RET_IP_);
848 
849 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
850 }
851 #endif
852 
853 /**
854  * memblock_setclr_flag - set or clear flag for a memory region
855  * @base: base address of the region
856  * @size: size of the region
857  * @set: set or clear the flag
858  * @flag: the flag to update
859  *
860  * This function isolates region [@base, @base + @size), and sets/clears flag
861  *
862  * Return: 0 on success, -errno on failure.
863  */
864 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
865 				phys_addr_t size, int set, int flag)
866 {
867 	struct memblock_type *type = &memblock.memory;
868 	int i, ret, start_rgn, end_rgn;
869 
870 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
871 	if (ret)
872 		return ret;
873 
874 	for (i = start_rgn; i < end_rgn; i++) {
875 		struct memblock_region *r = &type->regions[i];
876 
877 		if (set)
878 			r->flags |= flag;
879 		else
880 			r->flags &= ~flag;
881 	}
882 
883 	memblock_merge_regions(type);
884 	return 0;
885 }
886 
887 /**
888  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
889  * @base: the base phys addr of the region
890  * @size: the size of the region
891  *
892  * Return: 0 on success, -errno on failure.
893  */
894 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
895 {
896 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
897 }
898 
899 /**
900  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
901  * @base: the base phys addr of the region
902  * @size: the size of the region
903  *
904  * Return: 0 on success, -errno on failure.
905  */
906 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
907 {
908 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
909 }
910 
911 /**
912  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
913  * @base: the base phys addr of the region
914  * @size: the size of the region
915  *
916  * Return: 0 on success, -errno on failure.
917  */
918 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
919 {
920 	system_has_some_mirror = true;
921 
922 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
923 }
924 
925 /**
926  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
927  * @base: the base phys addr of the region
928  * @size: the size of the region
929  *
930  * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
931  * direct mapping of the physical memory. These regions will still be
932  * covered by the memory map. The struct page representing NOMAP memory
933  * frames in the memory map will be PageReserved()
934  *
935  * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
936  * memblock, the caller must inform kmemleak to ignore that memory
937  *
938  * Return: 0 on success, -errno on failure.
939  */
940 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
941 {
942 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
943 }
944 
945 /**
946  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
947  * @base: the base phys addr of the region
948  * @size: the size of the region
949  *
950  * Return: 0 on success, -errno on failure.
951  */
952 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
953 {
954 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
955 }
956 
957 static bool should_skip_region(struct memblock_type *type,
958 			       struct memblock_region *m,
959 			       int nid, int flags)
960 {
961 	int m_nid = memblock_get_region_node(m);
962 
963 	/* we never skip regions when iterating memblock.reserved or physmem */
964 	if (type != memblock_memory)
965 		return false;
966 
967 	/* only memory regions are associated with nodes, check it */
968 	if (nid != NUMA_NO_NODE && nid != m_nid)
969 		return true;
970 
971 	/* skip hotpluggable memory regions if needed */
972 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
973 	    !(flags & MEMBLOCK_HOTPLUG))
974 		return true;
975 
976 	/* if we want mirror memory skip non-mirror memory regions */
977 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
978 		return true;
979 
980 	/* skip nomap memory unless we were asked for it explicitly */
981 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
982 		return true;
983 
984 	return false;
985 }
986 
987 /**
988  * __next_mem_range - next function for for_each_free_mem_range() etc.
989  * @idx: pointer to u64 loop variable
990  * @nid: node selector, %NUMA_NO_NODE for all nodes
991  * @flags: pick from blocks based on memory attributes
992  * @type_a: pointer to memblock_type from where the range is taken
993  * @type_b: pointer to memblock_type which excludes memory from being taken
994  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
995  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
996  * @out_nid: ptr to int for nid of the range, can be %NULL
997  *
998  * Find the first area from *@idx which matches @nid, fill the out
999  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1000  * *@idx contains index into type_a and the upper 32bit indexes the
1001  * areas before each region in type_b.	For example, if type_b regions
1002  * look like the following,
1003  *
1004  *	0:[0-16), 1:[32-48), 2:[128-130)
1005  *
1006  * The upper 32bit indexes the following regions.
1007  *
1008  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1009  *
1010  * As both region arrays are sorted, the function advances the two indices
1011  * in lockstep and returns each intersection.
1012  */
1013 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1014 		      struct memblock_type *type_a,
1015 		      struct memblock_type *type_b, phys_addr_t *out_start,
1016 		      phys_addr_t *out_end, int *out_nid)
1017 {
1018 	int idx_a = *idx & 0xffffffff;
1019 	int idx_b = *idx >> 32;
1020 
1021 	if (WARN_ONCE(nid == MAX_NUMNODES,
1022 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1023 		nid = NUMA_NO_NODE;
1024 
1025 	for (; idx_a < type_a->cnt; idx_a++) {
1026 		struct memblock_region *m = &type_a->regions[idx_a];
1027 
1028 		phys_addr_t m_start = m->base;
1029 		phys_addr_t m_end = m->base + m->size;
1030 		int	    m_nid = memblock_get_region_node(m);
1031 
1032 		if (should_skip_region(type_a, m, nid, flags))
1033 			continue;
1034 
1035 		if (!type_b) {
1036 			if (out_start)
1037 				*out_start = m_start;
1038 			if (out_end)
1039 				*out_end = m_end;
1040 			if (out_nid)
1041 				*out_nid = m_nid;
1042 			idx_a++;
1043 			*idx = (u32)idx_a | (u64)idx_b << 32;
1044 			return;
1045 		}
1046 
1047 		/* scan areas before each reservation */
1048 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1049 			struct memblock_region *r;
1050 			phys_addr_t r_start;
1051 			phys_addr_t r_end;
1052 
1053 			r = &type_b->regions[idx_b];
1054 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1055 			r_end = idx_b < type_b->cnt ?
1056 				r->base : PHYS_ADDR_MAX;
1057 
1058 			/*
1059 			 * if idx_b advanced past idx_a,
1060 			 * break out to advance idx_a
1061 			 */
1062 			if (r_start >= m_end)
1063 				break;
1064 			/* if the two regions intersect, we're done */
1065 			if (m_start < r_end) {
1066 				if (out_start)
1067 					*out_start =
1068 						max(m_start, r_start);
1069 				if (out_end)
1070 					*out_end = min(m_end, r_end);
1071 				if (out_nid)
1072 					*out_nid = m_nid;
1073 				/*
1074 				 * The region which ends first is
1075 				 * advanced for the next iteration.
1076 				 */
1077 				if (m_end <= r_end)
1078 					idx_a++;
1079 				else
1080 					idx_b++;
1081 				*idx = (u32)idx_a | (u64)idx_b << 32;
1082 				return;
1083 			}
1084 		}
1085 	}
1086 
1087 	/* signal end of iteration */
1088 	*idx = ULLONG_MAX;
1089 }
1090 
1091 /**
1092  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1093  *
1094  * @idx: pointer to u64 loop variable
1095  * @nid: node selector, %NUMA_NO_NODE for all nodes
1096  * @flags: pick from blocks based on memory attributes
1097  * @type_a: pointer to memblock_type from where the range is taken
1098  * @type_b: pointer to memblock_type which excludes memory from being taken
1099  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1100  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1101  * @out_nid: ptr to int for nid of the range, can be %NULL
1102  *
1103  * Finds the next range from type_a which is not marked as unsuitable
1104  * in type_b.
1105  *
1106  * Reverse of __next_mem_range().
1107  */
1108 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1109 					  enum memblock_flags flags,
1110 					  struct memblock_type *type_a,
1111 					  struct memblock_type *type_b,
1112 					  phys_addr_t *out_start,
1113 					  phys_addr_t *out_end, int *out_nid)
1114 {
1115 	int idx_a = *idx & 0xffffffff;
1116 	int idx_b = *idx >> 32;
1117 
1118 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1119 		nid = NUMA_NO_NODE;
1120 
1121 	if (*idx == (u64)ULLONG_MAX) {
1122 		idx_a = type_a->cnt - 1;
1123 		if (type_b != NULL)
1124 			idx_b = type_b->cnt;
1125 		else
1126 			idx_b = 0;
1127 	}
1128 
1129 	for (; idx_a >= 0; idx_a--) {
1130 		struct memblock_region *m = &type_a->regions[idx_a];
1131 
1132 		phys_addr_t m_start = m->base;
1133 		phys_addr_t m_end = m->base + m->size;
1134 		int m_nid = memblock_get_region_node(m);
1135 
1136 		if (should_skip_region(type_a, m, nid, flags))
1137 			continue;
1138 
1139 		if (!type_b) {
1140 			if (out_start)
1141 				*out_start = m_start;
1142 			if (out_end)
1143 				*out_end = m_end;
1144 			if (out_nid)
1145 				*out_nid = m_nid;
1146 			idx_a--;
1147 			*idx = (u32)idx_a | (u64)idx_b << 32;
1148 			return;
1149 		}
1150 
1151 		/* scan areas before each reservation */
1152 		for (; idx_b >= 0; idx_b--) {
1153 			struct memblock_region *r;
1154 			phys_addr_t r_start;
1155 			phys_addr_t r_end;
1156 
1157 			r = &type_b->regions[idx_b];
1158 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1159 			r_end = idx_b < type_b->cnt ?
1160 				r->base : PHYS_ADDR_MAX;
1161 			/*
1162 			 * if idx_b advanced past idx_a,
1163 			 * break out to advance idx_a
1164 			 */
1165 
1166 			if (r_end <= m_start)
1167 				break;
1168 			/* if the two regions intersect, we're done */
1169 			if (m_end > r_start) {
1170 				if (out_start)
1171 					*out_start = max(m_start, r_start);
1172 				if (out_end)
1173 					*out_end = min(m_end, r_end);
1174 				if (out_nid)
1175 					*out_nid = m_nid;
1176 				if (m_start >= r_start)
1177 					idx_a--;
1178 				else
1179 					idx_b--;
1180 				*idx = (u32)idx_a | (u64)idx_b << 32;
1181 				return;
1182 			}
1183 		}
1184 	}
1185 	/* signal end of iteration */
1186 	*idx = ULLONG_MAX;
1187 }
1188 
1189 /*
1190  * Common iterator interface used to define for_each_mem_pfn_range().
1191  */
1192 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1193 				unsigned long *out_start_pfn,
1194 				unsigned long *out_end_pfn, int *out_nid)
1195 {
1196 	struct memblock_type *type = &memblock.memory;
1197 	struct memblock_region *r;
1198 	int r_nid;
1199 
1200 	while (++*idx < type->cnt) {
1201 		r = &type->regions[*idx];
1202 		r_nid = memblock_get_region_node(r);
1203 
1204 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1205 			continue;
1206 		if (nid == MAX_NUMNODES || nid == r_nid)
1207 			break;
1208 	}
1209 	if (*idx >= type->cnt) {
1210 		*idx = -1;
1211 		return;
1212 	}
1213 
1214 	if (out_start_pfn)
1215 		*out_start_pfn = PFN_UP(r->base);
1216 	if (out_end_pfn)
1217 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1218 	if (out_nid)
1219 		*out_nid = r_nid;
1220 }
1221 
1222 /**
1223  * memblock_set_node - set node ID on memblock regions
1224  * @base: base of area to set node ID for
1225  * @size: size of area to set node ID for
1226  * @type: memblock type to set node ID for
1227  * @nid: node ID to set
1228  *
1229  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1230  * Regions which cross the area boundaries are split as necessary.
1231  *
1232  * Return:
1233  * 0 on success, -errno on failure.
1234  */
1235 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1236 				      struct memblock_type *type, int nid)
1237 {
1238 #ifdef CONFIG_NUMA
1239 	int start_rgn, end_rgn;
1240 	int i, ret;
1241 
1242 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1243 	if (ret)
1244 		return ret;
1245 
1246 	for (i = start_rgn; i < end_rgn; i++)
1247 		memblock_set_region_node(&type->regions[i], nid);
1248 
1249 	memblock_merge_regions(type);
1250 #endif
1251 	return 0;
1252 }
1253 
1254 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1255 /**
1256  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1257  *
1258  * @idx: pointer to u64 loop variable
1259  * @zone: zone in which all of the memory blocks reside
1260  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1261  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1262  *
1263  * This function is meant to be a zone/pfn specific wrapper for the
1264  * for_each_mem_range type iterators. Specifically they are used in the
1265  * deferred memory init routines and as such we were duplicating much of
1266  * this logic throughout the code. So instead of having it in multiple
1267  * locations it seemed like it would make more sense to centralize this to
1268  * one new iterator that does everything they need.
1269  */
1270 void __init_memblock
1271 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1272 			     unsigned long *out_spfn, unsigned long *out_epfn)
1273 {
1274 	int zone_nid = zone_to_nid(zone);
1275 	phys_addr_t spa, epa;
1276 	int nid;
1277 
1278 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1279 			 &memblock.memory, &memblock.reserved,
1280 			 &spa, &epa, &nid);
1281 
1282 	while (*idx != U64_MAX) {
1283 		unsigned long epfn = PFN_DOWN(epa);
1284 		unsigned long spfn = PFN_UP(spa);
1285 
1286 		/*
1287 		 * Verify the end is at least past the start of the zone and
1288 		 * that we have at least one PFN to initialize.
1289 		 */
1290 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1291 			/* if we went too far just stop searching */
1292 			if (zone_end_pfn(zone) <= spfn) {
1293 				*idx = U64_MAX;
1294 				break;
1295 			}
1296 
1297 			if (out_spfn)
1298 				*out_spfn = max(zone->zone_start_pfn, spfn);
1299 			if (out_epfn)
1300 				*out_epfn = min(zone_end_pfn(zone), epfn);
1301 
1302 			return;
1303 		}
1304 
1305 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1306 				 &memblock.memory, &memblock.reserved,
1307 				 &spa, &epa, &nid);
1308 	}
1309 
1310 	/* signal end of iteration */
1311 	if (out_spfn)
1312 		*out_spfn = ULONG_MAX;
1313 	if (out_epfn)
1314 		*out_epfn = 0;
1315 }
1316 
1317 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1318 
1319 /**
1320  * memblock_alloc_range_nid - allocate boot memory block
1321  * @size: size of memory block to be allocated in bytes
1322  * @align: alignment of the region and block's size
1323  * @start: the lower bound of the memory region to allocate (phys address)
1324  * @end: the upper bound of the memory region to allocate (phys address)
1325  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1326  * @exact_nid: control the allocation fall back to other nodes
1327  *
1328  * The allocation is performed from memory region limited by
1329  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1330  *
1331  * If the specified node can not hold the requested memory and @exact_nid
1332  * is false, the allocation falls back to any node in the system.
1333  *
1334  * For systems with memory mirroring, the allocation is attempted first
1335  * from the regions with mirroring enabled and then retried from any
1336  * memory region.
1337  *
1338  * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1339  * allocated boot memory block, so that it is never reported as leaks.
1340  *
1341  * Return:
1342  * Physical address of allocated memory block on success, %0 on failure.
1343  */
1344 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1345 					phys_addr_t align, phys_addr_t start,
1346 					phys_addr_t end, int nid,
1347 					bool exact_nid)
1348 {
1349 	enum memblock_flags flags = choose_memblock_flags();
1350 	phys_addr_t found;
1351 
1352 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1353 		nid = NUMA_NO_NODE;
1354 
1355 	if (!align) {
1356 		/* Can't use WARNs this early in boot on powerpc */
1357 		dump_stack();
1358 		align = SMP_CACHE_BYTES;
1359 	}
1360 
1361 again:
1362 	found = memblock_find_in_range_node(size, align, start, end, nid,
1363 					    flags);
1364 	if (found && !memblock_reserve(found, size))
1365 		goto done;
1366 
1367 	if (nid != NUMA_NO_NODE && !exact_nid) {
1368 		found = memblock_find_in_range_node(size, align, start,
1369 						    end, NUMA_NO_NODE,
1370 						    flags);
1371 		if (found && !memblock_reserve(found, size))
1372 			goto done;
1373 	}
1374 
1375 	if (flags & MEMBLOCK_MIRROR) {
1376 		flags &= ~MEMBLOCK_MIRROR;
1377 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1378 			&size);
1379 		goto again;
1380 	}
1381 
1382 	return 0;
1383 
1384 done:
1385 	/* Skip kmemleak for kasan_init() due to high volume. */
1386 	if (end != MEMBLOCK_ALLOC_KASAN)
1387 		/*
1388 		 * The min_count is set to 0 so that memblock allocated
1389 		 * blocks are never reported as leaks. This is because many
1390 		 * of these blocks are only referred via the physical
1391 		 * address which is not looked up by kmemleak.
1392 		 */
1393 		kmemleak_alloc_phys(found, size, 0, 0);
1394 
1395 	return found;
1396 }
1397 
1398 /**
1399  * memblock_phys_alloc_range - allocate a memory block inside specified range
1400  * @size: size of memory block to be allocated in bytes
1401  * @align: alignment of the region and block's size
1402  * @start: the lower bound of the memory region to allocate (physical address)
1403  * @end: the upper bound of the memory region to allocate (physical address)
1404  *
1405  * Allocate @size bytes in the between @start and @end.
1406  *
1407  * Return: physical address of the allocated memory block on success,
1408  * %0 on failure.
1409  */
1410 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1411 					     phys_addr_t align,
1412 					     phys_addr_t start,
1413 					     phys_addr_t end)
1414 {
1415 	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1416 		     __func__, (u64)size, (u64)align, &start, &end,
1417 		     (void *)_RET_IP_);
1418 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1419 					false);
1420 }
1421 
1422 /**
1423  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1424  * @size: size of memory block to be allocated in bytes
1425  * @align: alignment of the region and block's size
1426  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1427  *
1428  * Allocates memory block from the specified NUMA node. If the node
1429  * has no available memory, attempts to allocated from any node in the
1430  * system.
1431  *
1432  * Return: physical address of the allocated memory block on success,
1433  * %0 on failure.
1434  */
1435 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1436 {
1437 	return memblock_alloc_range_nid(size, align, 0,
1438 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1439 }
1440 
1441 /**
1442  * memblock_alloc_internal - allocate boot memory block
1443  * @size: size of memory block to be allocated in bytes
1444  * @align: alignment of the region and block's size
1445  * @min_addr: the lower bound of the memory region to allocate (phys address)
1446  * @max_addr: the upper bound of the memory region to allocate (phys address)
1447  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1448  * @exact_nid: control the allocation fall back to other nodes
1449  *
1450  * Allocates memory block using memblock_alloc_range_nid() and
1451  * converts the returned physical address to virtual.
1452  *
1453  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1454  * will fall back to memory below @min_addr. Other constraints, such
1455  * as node and mirrored memory will be handled again in
1456  * memblock_alloc_range_nid().
1457  *
1458  * Return:
1459  * Virtual address of allocated memory block on success, NULL on failure.
1460  */
1461 static void * __init memblock_alloc_internal(
1462 				phys_addr_t size, phys_addr_t align,
1463 				phys_addr_t min_addr, phys_addr_t max_addr,
1464 				int nid, bool exact_nid)
1465 {
1466 	phys_addr_t alloc;
1467 
1468 	/*
1469 	 * Detect any accidental use of these APIs after slab is ready, as at
1470 	 * this moment memblock may be deinitialized already and its
1471 	 * internal data may be destroyed (after execution of memblock_free_all)
1472 	 */
1473 	if (WARN_ON_ONCE(slab_is_available()))
1474 		return kzalloc_node(size, GFP_NOWAIT, nid);
1475 
1476 	if (max_addr > memblock.current_limit)
1477 		max_addr = memblock.current_limit;
1478 
1479 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1480 					exact_nid);
1481 
1482 	/* retry allocation without lower limit */
1483 	if (!alloc && min_addr)
1484 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1485 						exact_nid);
1486 
1487 	if (!alloc)
1488 		return NULL;
1489 
1490 	return phys_to_virt(alloc);
1491 }
1492 
1493 /**
1494  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1495  * without zeroing memory
1496  * @size: size of memory block to be allocated in bytes
1497  * @align: alignment of the region and block's size
1498  * @min_addr: the lower bound of the memory region from where the allocation
1499  *	  is preferred (phys address)
1500  * @max_addr: the upper bound of the memory region from where the allocation
1501  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1502  *	      allocate only from memory limited by memblock.current_limit value
1503  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1504  *
1505  * Public function, provides additional debug information (including caller
1506  * info), if enabled. Does not zero allocated memory.
1507  *
1508  * Return:
1509  * Virtual address of allocated memory block on success, NULL on failure.
1510  */
1511 void * __init memblock_alloc_exact_nid_raw(
1512 			phys_addr_t size, phys_addr_t align,
1513 			phys_addr_t min_addr, phys_addr_t max_addr,
1514 			int nid)
1515 {
1516 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1517 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1518 		     &max_addr, (void *)_RET_IP_);
1519 
1520 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1521 				       true);
1522 }
1523 
1524 /**
1525  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1526  * memory and without panicking
1527  * @size: size of memory block to be allocated in bytes
1528  * @align: alignment of the region and block's size
1529  * @min_addr: the lower bound of the memory region from where the allocation
1530  *	  is preferred (phys address)
1531  * @max_addr: the upper bound of the memory region from where the allocation
1532  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1533  *	      allocate only from memory limited by memblock.current_limit value
1534  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1535  *
1536  * Public function, provides additional debug information (including caller
1537  * info), if enabled. Does not zero allocated memory, does not panic if request
1538  * cannot be satisfied.
1539  *
1540  * Return:
1541  * Virtual address of allocated memory block on success, NULL on failure.
1542  */
1543 void * __init memblock_alloc_try_nid_raw(
1544 			phys_addr_t size, phys_addr_t align,
1545 			phys_addr_t min_addr, phys_addr_t max_addr,
1546 			int nid)
1547 {
1548 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1549 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1550 		     &max_addr, (void *)_RET_IP_);
1551 
1552 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1553 				       false);
1554 }
1555 
1556 /**
1557  * memblock_alloc_try_nid - allocate boot memory block
1558  * @size: size of memory block to be allocated in bytes
1559  * @align: alignment of the region and block's size
1560  * @min_addr: the lower bound of the memory region from where the allocation
1561  *	  is preferred (phys address)
1562  * @max_addr: the upper bound of the memory region from where the allocation
1563  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1564  *	      allocate only from memory limited by memblock.current_limit value
1565  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1566  *
1567  * Public function, provides additional debug information (including caller
1568  * info), if enabled. This function zeroes the allocated memory.
1569  *
1570  * Return:
1571  * Virtual address of allocated memory block on success, NULL on failure.
1572  */
1573 void * __init memblock_alloc_try_nid(
1574 			phys_addr_t size, phys_addr_t align,
1575 			phys_addr_t min_addr, phys_addr_t max_addr,
1576 			int nid)
1577 {
1578 	void *ptr;
1579 
1580 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1581 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1582 		     &max_addr, (void *)_RET_IP_);
1583 	ptr = memblock_alloc_internal(size, align,
1584 					   min_addr, max_addr, nid, false);
1585 	if (ptr)
1586 		memset(ptr, 0, size);
1587 
1588 	return ptr;
1589 }
1590 
1591 /**
1592  * __memblock_free_late - free pages directly to buddy allocator
1593  * @base: phys starting address of the  boot memory block
1594  * @size: size of the boot memory block in bytes
1595  *
1596  * This is only useful when the memblock allocator has already been torn
1597  * down, but we are still initializing the system.  Pages are released directly
1598  * to the buddy allocator.
1599  */
1600 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1601 {
1602 	phys_addr_t cursor, end;
1603 
1604 	end = base + size - 1;
1605 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1606 		     __func__, &base, &end, (void *)_RET_IP_);
1607 	kmemleak_free_part_phys(base, size);
1608 	cursor = PFN_UP(base);
1609 	end = PFN_DOWN(base + size);
1610 
1611 	for (; cursor < end; cursor++) {
1612 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1613 		totalram_pages_inc();
1614 	}
1615 }
1616 
1617 /*
1618  * Remaining API functions
1619  */
1620 
1621 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1622 {
1623 	return memblock.memory.total_size;
1624 }
1625 
1626 phys_addr_t __init_memblock memblock_reserved_size(void)
1627 {
1628 	return memblock.reserved.total_size;
1629 }
1630 
1631 /* lowest address */
1632 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1633 {
1634 	return memblock.memory.regions[0].base;
1635 }
1636 
1637 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1638 {
1639 	int idx = memblock.memory.cnt - 1;
1640 
1641 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1642 }
1643 
1644 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1645 {
1646 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1647 	struct memblock_region *r;
1648 
1649 	/*
1650 	 * translate the memory @limit size into the max address within one of
1651 	 * the memory memblock regions, if the @limit exceeds the total size
1652 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1653 	 */
1654 	for_each_mem_region(r) {
1655 		if (limit <= r->size) {
1656 			max_addr = r->base + limit;
1657 			break;
1658 		}
1659 		limit -= r->size;
1660 	}
1661 
1662 	return max_addr;
1663 }
1664 
1665 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1666 {
1667 	phys_addr_t max_addr;
1668 
1669 	if (!limit)
1670 		return;
1671 
1672 	max_addr = __find_max_addr(limit);
1673 
1674 	/* @limit exceeds the total size of the memory, do nothing */
1675 	if (max_addr == PHYS_ADDR_MAX)
1676 		return;
1677 
1678 	/* truncate both memory and reserved regions */
1679 	memblock_remove_range(&memblock.memory, max_addr,
1680 			      PHYS_ADDR_MAX);
1681 	memblock_remove_range(&memblock.reserved, max_addr,
1682 			      PHYS_ADDR_MAX);
1683 }
1684 
1685 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1686 {
1687 	int start_rgn, end_rgn;
1688 	int i, ret;
1689 
1690 	if (!size)
1691 		return;
1692 
1693 	if (!memblock_memory->total_size) {
1694 		pr_warn("%s: No memory registered yet\n", __func__);
1695 		return;
1696 	}
1697 
1698 	ret = memblock_isolate_range(&memblock.memory, base, size,
1699 						&start_rgn, &end_rgn);
1700 	if (ret)
1701 		return;
1702 
1703 	/* remove all the MAP regions */
1704 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1705 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1706 			memblock_remove_region(&memblock.memory, i);
1707 
1708 	for (i = start_rgn - 1; i >= 0; i--)
1709 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1710 			memblock_remove_region(&memblock.memory, i);
1711 
1712 	/* truncate the reserved regions */
1713 	memblock_remove_range(&memblock.reserved, 0, base);
1714 	memblock_remove_range(&memblock.reserved,
1715 			base + size, PHYS_ADDR_MAX);
1716 }
1717 
1718 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1719 {
1720 	phys_addr_t max_addr;
1721 
1722 	if (!limit)
1723 		return;
1724 
1725 	max_addr = __find_max_addr(limit);
1726 
1727 	/* @limit exceeds the total size of the memory, do nothing */
1728 	if (max_addr == PHYS_ADDR_MAX)
1729 		return;
1730 
1731 	memblock_cap_memory_range(0, max_addr);
1732 }
1733 
1734 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1735 {
1736 	unsigned int left = 0, right = type->cnt;
1737 
1738 	do {
1739 		unsigned int mid = (right + left) / 2;
1740 
1741 		if (addr < type->regions[mid].base)
1742 			right = mid;
1743 		else if (addr >= (type->regions[mid].base +
1744 				  type->regions[mid].size))
1745 			left = mid + 1;
1746 		else
1747 			return mid;
1748 	} while (left < right);
1749 	return -1;
1750 }
1751 
1752 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1753 {
1754 	return memblock_search(&memblock.reserved, addr) != -1;
1755 }
1756 
1757 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1758 {
1759 	return memblock_search(&memblock.memory, addr) != -1;
1760 }
1761 
1762 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1763 {
1764 	int i = memblock_search(&memblock.memory, addr);
1765 
1766 	if (i == -1)
1767 		return false;
1768 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1769 }
1770 
1771 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1772 			 unsigned long *start_pfn, unsigned long *end_pfn)
1773 {
1774 	struct memblock_type *type = &memblock.memory;
1775 	int mid = memblock_search(type, PFN_PHYS(pfn));
1776 
1777 	if (mid == -1)
1778 		return -1;
1779 
1780 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1781 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1782 
1783 	return memblock_get_region_node(&type->regions[mid]);
1784 }
1785 
1786 /**
1787  * memblock_is_region_memory - check if a region is a subset of memory
1788  * @base: base of region to check
1789  * @size: size of region to check
1790  *
1791  * Check if the region [@base, @base + @size) is a subset of a memory block.
1792  *
1793  * Return:
1794  * 0 if false, non-zero if true
1795  */
1796 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1797 {
1798 	int idx = memblock_search(&memblock.memory, base);
1799 	phys_addr_t end = base + memblock_cap_size(base, &size);
1800 
1801 	if (idx == -1)
1802 		return false;
1803 	return (memblock.memory.regions[idx].base +
1804 		 memblock.memory.regions[idx].size) >= end;
1805 }
1806 
1807 /**
1808  * memblock_is_region_reserved - check if a region intersects reserved memory
1809  * @base: base of region to check
1810  * @size: size of region to check
1811  *
1812  * Check if the region [@base, @base + @size) intersects a reserved
1813  * memory block.
1814  *
1815  * Return:
1816  * True if they intersect, false if not.
1817  */
1818 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1819 {
1820 	return memblock_overlaps_region(&memblock.reserved, base, size);
1821 }
1822 
1823 void __init_memblock memblock_trim_memory(phys_addr_t align)
1824 {
1825 	phys_addr_t start, end, orig_start, orig_end;
1826 	struct memblock_region *r;
1827 
1828 	for_each_mem_region(r) {
1829 		orig_start = r->base;
1830 		orig_end = r->base + r->size;
1831 		start = round_up(orig_start, align);
1832 		end = round_down(orig_end, align);
1833 
1834 		if (start == orig_start && end == orig_end)
1835 			continue;
1836 
1837 		if (start < end) {
1838 			r->base = start;
1839 			r->size = end - start;
1840 		} else {
1841 			memblock_remove_region(&memblock.memory,
1842 					       r - memblock.memory.regions);
1843 			r--;
1844 		}
1845 	}
1846 }
1847 
1848 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1849 {
1850 	memblock.current_limit = limit;
1851 }
1852 
1853 phys_addr_t __init_memblock memblock_get_current_limit(void)
1854 {
1855 	return memblock.current_limit;
1856 }
1857 
1858 static void __init_memblock memblock_dump(struct memblock_type *type)
1859 {
1860 	phys_addr_t base, end, size;
1861 	enum memblock_flags flags;
1862 	int idx;
1863 	struct memblock_region *rgn;
1864 
1865 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1866 
1867 	for_each_memblock_type(idx, type, rgn) {
1868 		char nid_buf[32] = "";
1869 
1870 		base = rgn->base;
1871 		size = rgn->size;
1872 		end = base + size - 1;
1873 		flags = rgn->flags;
1874 #ifdef CONFIG_NUMA
1875 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1876 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1877 				 memblock_get_region_node(rgn));
1878 #endif
1879 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1880 			type->name, idx, &base, &end, &size, nid_buf, flags);
1881 	}
1882 }
1883 
1884 static void __init_memblock __memblock_dump_all(void)
1885 {
1886 	pr_info("MEMBLOCK configuration:\n");
1887 	pr_info(" memory size = %pa reserved size = %pa\n",
1888 		&memblock.memory.total_size,
1889 		&memblock.reserved.total_size);
1890 
1891 	memblock_dump(&memblock.memory);
1892 	memblock_dump(&memblock.reserved);
1893 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1894 	memblock_dump(&physmem);
1895 #endif
1896 }
1897 
1898 void __init_memblock memblock_dump_all(void)
1899 {
1900 	if (memblock_debug)
1901 		__memblock_dump_all();
1902 }
1903 
1904 void __init memblock_allow_resize(void)
1905 {
1906 	memblock_can_resize = 1;
1907 }
1908 
1909 static int __init early_memblock(char *p)
1910 {
1911 	if (p && strstr(p, "debug"))
1912 		memblock_debug = 1;
1913 	return 0;
1914 }
1915 early_param("memblock", early_memblock);
1916 
1917 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1918 {
1919 	struct page *start_pg, *end_pg;
1920 	phys_addr_t pg, pgend;
1921 
1922 	/*
1923 	 * Convert start_pfn/end_pfn to a struct page pointer.
1924 	 */
1925 	start_pg = pfn_to_page(start_pfn - 1) + 1;
1926 	end_pg = pfn_to_page(end_pfn - 1) + 1;
1927 
1928 	/*
1929 	 * Convert to physical addresses, and round start upwards and end
1930 	 * downwards.
1931 	 */
1932 	pg = PAGE_ALIGN(__pa(start_pg));
1933 	pgend = __pa(end_pg) & PAGE_MASK;
1934 
1935 	/*
1936 	 * If there are free pages between these, free the section of the
1937 	 * memmap array.
1938 	 */
1939 	if (pg < pgend)
1940 		memblock_free(pg, pgend - pg);
1941 }
1942 
1943 /*
1944  * The mem_map array can get very big.  Free the unused area of the memory map.
1945  */
1946 static void __init free_unused_memmap(void)
1947 {
1948 	unsigned long start, end, prev_end = 0;
1949 	int i;
1950 
1951 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1952 	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1953 		return;
1954 
1955 	/*
1956 	 * This relies on each bank being in address order.
1957 	 * The banks are sorted previously in bootmem_init().
1958 	 */
1959 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1960 #ifdef CONFIG_SPARSEMEM
1961 		/*
1962 		 * Take care not to free memmap entries that don't exist
1963 		 * due to SPARSEMEM sections which aren't present.
1964 		 */
1965 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1966 #endif
1967 		/*
1968 		 * Align down here since many operations in VM subsystem
1969 		 * presume that there are no holes in the memory map inside
1970 		 * a pageblock
1971 		 */
1972 		start = round_down(start, pageblock_nr_pages);
1973 
1974 		/*
1975 		 * If we had a previous bank, and there is a space
1976 		 * between the current bank and the previous, free it.
1977 		 */
1978 		if (prev_end && prev_end < start)
1979 			free_memmap(prev_end, start);
1980 
1981 		/*
1982 		 * Align up here since many operations in VM subsystem
1983 		 * presume that there are no holes in the memory map inside
1984 		 * a pageblock
1985 		 */
1986 		prev_end = ALIGN(end, pageblock_nr_pages);
1987 	}
1988 
1989 #ifdef CONFIG_SPARSEMEM
1990 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
1991 		prev_end = ALIGN(end, pageblock_nr_pages);
1992 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
1993 	}
1994 #endif
1995 }
1996 
1997 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1998 {
1999 	int order;
2000 
2001 	while (start < end) {
2002 		order = min(MAX_ORDER - 1UL, __ffs(start));
2003 
2004 		while (start + (1UL << order) > end)
2005 			order--;
2006 
2007 		memblock_free_pages(pfn_to_page(start), start, order);
2008 
2009 		start += (1UL << order);
2010 	}
2011 }
2012 
2013 static unsigned long __init __free_memory_core(phys_addr_t start,
2014 				 phys_addr_t end)
2015 {
2016 	unsigned long start_pfn = PFN_UP(start);
2017 	unsigned long end_pfn = min_t(unsigned long,
2018 				      PFN_DOWN(end), max_low_pfn);
2019 
2020 	if (start_pfn >= end_pfn)
2021 		return 0;
2022 
2023 	__free_pages_memory(start_pfn, end_pfn);
2024 
2025 	return end_pfn - start_pfn;
2026 }
2027 
2028 static void __init memmap_init_reserved_pages(void)
2029 {
2030 	struct memblock_region *region;
2031 	phys_addr_t start, end;
2032 	u64 i;
2033 
2034 	/* initialize struct pages for the reserved regions */
2035 	for_each_reserved_mem_range(i, &start, &end)
2036 		reserve_bootmem_region(start, end);
2037 
2038 	/* and also treat struct pages for the NOMAP regions as PageReserved */
2039 	for_each_mem_region(region) {
2040 		if (memblock_is_nomap(region)) {
2041 			start = region->base;
2042 			end = start + region->size;
2043 			reserve_bootmem_region(start, end);
2044 		}
2045 	}
2046 }
2047 
2048 static unsigned long __init free_low_memory_core_early(void)
2049 {
2050 	unsigned long count = 0;
2051 	phys_addr_t start, end;
2052 	u64 i;
2053 
2054 	memblock_clear_hotplug(0, -1);
2055 
2056 	memmap_init_reserved_pages();
2057 
2058 	/*
2059 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2060 	 *  because in some case like Node0 doesn't have RAM installed
2061 	 *  low ram will be on Node1
2062 	 */
2063 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2064 				NULL)
2065 		count += __free_memory_core(start, end);
2066 
2067 	return count;
2068 }
2069 
2070 static int reset_managed_pages_done __initdata;
2071 
2072 void reset_node_managed_pages(pg_data_t *pgdat)
2073 {
2074 	struct zone *z;
2075 
2076 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2077 		atomic_long_set(&z->managed_pages, 0);
2078 }
2079 
2080 void __init reset_all_zones_managed_pages(void)
2081 {
2082 	struct pglist_data *pgdat;
2083 
2084 	if (reset_managed_pages_done)
2085 		return;
2086 
2087 	for_each_online_pgdat(pgdat)
2088 		reset_node_managed_pages(pgdat);
2089 
2090 	reset_managed_pages_done = 1;
2091 }
2092 
2093 /**
2094  * memblock_free_all - release free pages to the buddy allocator
2095  */
2096 void __init memblock_free_all(void)
2097 {
2098 	unsigned long pages;
2099 
2100 	free_unused_memmap();
2101 	reset_all_zones_managed_pages();
2102 
2103 	pages = free_low_memory_core_early();
2104 	totalram_pages_add(pages);
2105 }
2106 
2107 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2108 
2109 static int memblock_debug_show(struct seq_file *m, void *private)
2110 {
2111 	struct memblock_type *type = m->private;
2112 	struct memblock_region *reg;
2113 	int i;
2114 	phys_addr_t end;
2115 
2116 	for (i = 0; i < type->cnt; i++) {
2117 		reg = &type->regions[i];
2118 		end = reg->base + reg->size - 1;
2119 
2120 		seq_printf(m, "%4d: ", i);
2121 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2122 	}
2123 	return 0;
2124 }
2125 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2126 
2127 static int __init memblock_init_debugfs(void)
2128 {
2129 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2130 
2131 	debugfs_create_file("memory", 0444, root,
2132 			    &memblock.memory, &memblock_debug_fops);
2133 	debugfs_create_file("reserved", 0444, root,
2134 			    &memblock.reserved, &memblock_debug_fops);
2135 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2136 	debugfs_create_file("physmem", 0444, root, &physmem,
2137 			    &memblock_debug_fops);
2138 #endif
2139 
2140 	return 0;
2141 }
2142 __initcall(memblock_init_debugfs);
2143 
2144 #endif /* CONFIG_DEBUG_FS */
2145