1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for maintaining information about logical memory blocks. 4 * 5 * Peter Bergner, IBM Corp. June 2001. 6 * Copyright (C) 2001 Peter Bergner. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/init.h> 12 #include <linux/bitops.h> 13 #include <linux/poison.h> 14 #include <linux/pfn.h> 15 #include <linux/debugfs.h> 16 #include <linux/kmemleak.h> 17 #include <linux/seq_file.h> 18 #include <linux/memblock.h> 19 20 #include <asm/sections.h> 21 #include <linux/io.h> 22 23 #include "internal.h" 24 25 #define INIT_MEMBLOCK_REGIONS 128 26 #define INIT_PHYSMEM_REGIONS 4 27 28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 30 #endif 31 32 /** 33 * DOC: memblock overview 34 * 35 * Memblock is a method of managing memory regions during the early 36 * boot period when the usual kernel memory allocators are not up and 37 * running. 38 * 39 * Memblock views the system memory as collections of contiguous 40 * regions. There are several types of these collections: 41 * 42 * * ``memory`` - describes the physical memory available to the 43 * kernel; this may differ from the actual physical memory installed 44 * in the system, for instance when the memory is restricted with 45 * ``mem=`` command line parameter 46 * * ``reserved`` - describes the regions that were allocated 47 * * ``physmem`` - describes the actual physical memory available during 48 * boot regardless of the possible restrictions and memory hot(un)plug; 49 * the ``physmem`` type is only available on some architectures. 50 * 51 * Each region is represented by struct memblock_region that 52 * defines the region extents, its attributes and NUMA node id on NUMA 53 * systems. Every memory type is described by the struct memblock_type 54 * which contains an array of memory regions along with 55 * the allocator metadata. The "memory" and "reserved" types are nicely 56 * wrapped with struct memblock. This structure is statically 57 * initialized at build time. The region arrays are initially sized to 58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS 59 * for "reserved". The region array for "physmem" is initially sized to 60 * %INIT_PHYSMEM_REGIONS. 61 * The memblock_allow_resize() enables automatic resizing of the region 62 * arrays during addition of new regions. This feature should be used 63 * with care so that memory allocated for the region array will not 64 * overlap with areas that should be reserved, for example initrd. 65 * 66 * The early architecture setup should tell memblock what the physical 67 * memory layout is by using memblock_add() or memblock_add_node() 68 * functions. The first function does not assign the region to a NUMA 69 * node and it is appropriate for UMA systems. Yet, it is possible to 70 * use it on NUMA systems as well and assign the region to a NUMA node 71 * later in the setup process using memblock_set_node(). The 72 * memblock_add_node() performs such an assignment directly. 73 * 74 * Once memblock is setup the memory can be allocated using one of the 75 * API variants: 76 * 77 * * memblock_phys_alloc*() - these functions return the **physical** 78 * address of the allocated memory 79 * * memblock_alloc*() - these functions return the **virtual** address 80 * of the allocated memory. 81 * 82 * Note, that both API variants use implicit assumptions about allowed 83 * memory ranges and the fallback methods. Consult the documentation 84 * of memblock_alloc_internal() and memblock_alloc_range_nid() 85 * functions for more elaborate description. 86 * 87 * As the system boot progresses, the architecture specific mem_init() 88 * function frees all the memory to the buddy page allocator. 89 * 90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 91 * memblock data structures (except "physmem") will be discarded after the 92 * system initialization completes. 93 */ 94 95 #ifndef CONFIG_NUMA 96 struct pglist_data __refdata contig_page_data; 97 EXPORT_SYMBOL(contig_page_data); 98 #endif 99 100 unsigned long max_low_pfn; 101 unsigned long min_low_pfn; 102 unsigned long max_pfn; 103 unsigned long long max_possible_pfn; 104 105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; 109 #endif 110 111 struct memblock memblock __initdata_memblock = { 112 .memory.regions = memblock_memory_init_regions, 113 .memory.cnt = 1, /* empty dummy entry */ 114 .memory.max = INIT_MEMBLOCK_REGIONS, 115 .memory.name = "memory", 116 117 .reserved.regions = memblock_reserved_init_regions, 118 .reserved.cnt = 1, /* empty dummy entry */ 119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 120 .reserved.name = "reserved", 121 122 .bottom_up = false, 123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 124 }; 125 126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 127 struct memblock_type physmem = { 128 .regions = memblock_physmem_init_regions, 129 .cnt = 1, /* empty dummy entry */ 130 .max = INIT_PHYSMEM_REGIONS, 131 .name = "physmem", 132 }; 133 #endif 134 135 /* 136 * keep a pointer to &memblock.memory in the text section to use it in 137 * __next_mem_range() and its helpers. 138 * For architectures that do not keep memblock data after init, this 139 * pointer will be reset to NULL at memblock_discard() 140 */ 141 static __refdata struct memblock_type *memblock_memory = &memblock.memory; 142 143 #define for_each_memblock_type(i, memblock_type, rgn) \ 144 for (i = 0, rgn = &memblock_type->regions[0]; \ 145 i < memblock_type->cnt; \ 146 i++, rgn = &memblock_type->regions[i]) 147 148 #define memblock_dbg(fmt, ...) \ 149 do { \ 150 if (memblock_debug) \ 151 pr_info(fmt, ##__VA_ARGS__); \ 152 } while (0) 153 154 static int memblock_debug __initdata_memblock; 155 static bool system_has_some_mirror __initdata_memblock = false; 156 static int memblock_can_resize __initdata_memblock; 157 static int memblock_memory_in_slab __initdata_memblock = 0; 158 static int memblock_reserved_in_slab __initdata_memblock = 0; 159 160 static enum memblock_flags __init_memblock choose_memblock_flags(void) 161 { 162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 163 } 164 165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 167 { 168 return *size = min(*size, PHYS_ADDR_MAX - base); 169 } 170 171 /* 172 * Address comparison utilities 173 */ 174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 175 phys_addr_t base2, phys_addr_t size2) 176 { 177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 178 } 179 180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 181 phys_addr_t base, phys_addr_t size) 182 { 183 unsigned long i; 184 185 memblock_cap_size(base, &size); 186 187 for (i = 0; i < type->cnt; i++) 188 if (memblock_addrs_overlap(base, size, type->regions[i].base, 189 type->regions[i].size)) 190 break; 191 return i < type->cnt; 192 } 193 194 /** 195 * __memblock_find_range_bottom_up - find free area utility in bottom-up 196 * @start: start of candidate range 197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 198 * %MEMBLOCK_ALLOC_ACCESSIBLE 199 * @size: size of free area to find 200 * @align: alignment of free area to find 201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 202 * @flags: pick from blocks based on memory attributes 203 * 204 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 205 * 206 * Return: 207 * Found address on success, 0 on failure. 208 */ 209 static phys_addr_t __init_memblock 210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 211 phys_addr_t size, phys_addr_t align, int nid, 212 enum memblock_flags flags) 213 { 214 phys_addr_t this_start, this_end, cand; 215 u64 i; 216 217 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 218 this_start = clamp(this_start, start, end); 219 this_end = clamp(this_end, start, end); 220 221 cand = round_up(this_start, align); 222 if (cand < this_end && this_end - cand >= size) 223 return cand; 224 } 225 226 return 0; 227 } 228 229 /** 230 * __memblock_find_range_top_down - find free area utility, in top-down 231 * @start: start of candidate range 232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 233 * %MEMBLOCK_ALLOC_ACCESSIBLE 234 * @size: size of free area to find 235 * @align: alignment of free area to find 236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 237 * @flags: pick from blocks based on memory attributes 238 * 239 * Utility called from memblock_find_in_range_node(), find free area top-down. 240 * 241 * Return: 242 * Found address on success, 0 on failure. 243 */ 244 static phys_addr_t __init_memblock 245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 246 phys_addr_t size, phys_addr_t align, int nid, 247 enum memblock_flags flags) 248 { 249 phys_addr_t this_start, this_end, cand; 250 u64 i; 251 252 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 253 NULL) { 254 this_start = clamp(this_start, start, end); 255 this_end = clamp(this_end, start, end); 256 257 if (this_end < size) 258 continue; 259 260 cand = round_down(this_end - size, align); 261 if (cand >= this_start) 262 return cand; 263 } 264 265 return 0; 266 } 267 268 /** 269 * memblock_find_in_range_node - find free area in given range and node 270 * @size: size of free area to find 271 * @align: alignment of free area to find 272 * @start: start of candidate range 273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 274 * %MEMBLOCK_ALLOC_ACCESSIBLE 275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 276 * @flags: pick from blocks based on memory attributes 277 * 278 * Find @size free area aligned to @align in the specified range and node. 279 * 280 * Return: 281 * Found address on success, 0 on failure. 282 */ 283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 284 phys_addr_t align, phys_addr_t start, 285 phys_addr_t end, int nid, 286 enum memblock_flags flags) 287 { 288 /* pump up @end */ 289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 290 end == MEMBLOCK_ALLOC_KASAN) 291 end = memblock.current_limit; 292 293 /* avoid allocating the first page */ 294 start = max_t(phys_addr_t, start, PAGE_SIZE); 295 end = max(start, end); 296 297 if (memblock_bottom_up()) 298 return __memblock_find_range_bottom_up(start, end, size, align, 299 nid, flags); 300 else 301 return __memblock_find_range_top_down(start, end, size, align, 302 nid, flags); 303 } 304 305 /** 306 * memblock_find_in_range - find free area in given range 307 * @start: start of candidate range 308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 309 * %MEMBLOCK_ALLOC_ACCESSIBLE 310 * @size: size of free area to find 311 * @align: alignment of free area to find 312 * 313 * Find @size free area aligned to @align in the specified range. 314 * 315 * Return: 316 * Found address on success, 0 on failure. 317 */ 318 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 319 phys_addr_t end, phys_addr_t size, 320 phys_addr_t align) 321 { 322 phys_addr_t ret; 323 enum memblock_flags flags = choose_memblock_flags(); 324 325 again: 326 ret = memblock_find_in_range_node(size, align, start, end, 327 NUMA_NO_NODE, flags); 328 329 if (!ret && (flags & MEMBLOCK_MIRROR)) { 330 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 331 &size); 332 flags &= ~MEMBLOCK_MIRROR; 333 goto again; 334 } 335 336 return ret; 337 } 338 339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 340 { 341 type->total_size -= type->regions[r].size; 342 memmove(&type->regions[r], &type->regions[r + 1], 343 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 344 type->cnt--; 345 346 /* Special case for empty arrays */ 347 if (type->cnt == 0) { 348 WARN_ON(type->total_size != 0); 349 type->cnt = 1; 350 type->regions[0].base = 0; 351 type->regions[0].size = 0; 352 type->regions[0].flags = 0; 353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 354 } 355 } 356 357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 358 /** 359 * memblock_discard - discard memory and reserved arrays if they were allocated 360 */ 361 void __init memblock_discard(void) 362 { 363 phys_addr_t addr, size; 364 365 if (memblock.reserved.regions != memblock_reserved_init_regions) { 366 addr = __pa(memblock.reserved.regions); 367 size = PAGE_ALIGN(sizeof(struct memblock_region) * 368 memblock.reserved.max); 369 __memblock_free_late(addr, size); 370 } 371 372 if (memblock.memory.regions != memblock_memory_init_regions) { 373 addr = __pa(memblock.memory.regions); 374 size = PAGE_ALIGN(sizeof(struct memblock_region) * 375 memblock.memory.max); 376 __memblock_free_late(addr, size); 377 } 378 379 memblock_memory = NULL; 380 } 381 #endif 382 383 /** 384 * memblock_double_array - double the size of the memblock regions array 385 * @type: memblock type of the regions array being doubled 386 * @new_area_start: starting address of memory range to avoid overlap with 387 * @new_area_size: size of memory range to avoid overlap with 388 * 389 * Double the size of the @type regions array. If memblock is being used to 390 * allocate memory for a new reserved regions array and there is a previously 391 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 392 * waiting to be reserved, ensure the memory used by the new array does 393 * not overlap. 394 * 395 * Return: 396 * 0 on success, -1 on failure. 397 */ 398 static int __init_memblock memblock_double_array(struct memblock_type *type, 399 phys_addr_t new_area_start, 400 phys_addr_t new_area_size) 401 { 402 struct memblock_region *new_array, *old_array; 403 phys_addr_t old_alloc_size, new_alloc_size; 404 phys_addr_t old_size, new_size, addr, new_end; 405 int use_slab = slab_is_available(); 406 int *in_slab; 407 408 /* We don't allow resizing until we know about the reserved regions 409 * of memory that aren't suitable for allocation 410 */ 411 if (!memblock_can_resize) 412 return -1; 413 414 /* Calculate new doubled size */ 415 old_size = type->max * sizeof(struct memblock_region); 416 new_size = old_size << 1; 417 /* 418 * We need to allocated new one align to PAGE_SIZE, 419 * so we can free them completely later. 420 */ 421 old_alloc_size = PAGE_ALIGN(old_size); 422 new_alloc_size = PAGE_ALIGN(new_size); 423 424 /* Retrieve the slab flag */ 425 if (type == &memblock.memory) 426 in_slab = &memblock_memory_in_slab; 427 else 428 in_slab = &memblock_reserved_in_slab; 429 430 /* Try to find some space for it */ 431 if (use_slab) { 432 new_array = kmalloc(new_size, GFP_KERNEL); 433 addr = new_array ? __pa(new_array) : 0; 434 } else { 435 /* only exclude range when trying to double reserved.regions */ 436 if (type != &memblock.reserved) 437 new_area_start = new_area_size = 0; 438 439 addr = memblock_find_in_range(new_area_start + new_area_size, 440 memblock.current_limit, 441 new_alloc_size, PAGE_SIZE); 442 if (!addr && new_area_size) 443 addr = memblock_find_in_range(0, 444 min(new_area_start, memblock.current_limit), 445 new_alloc_size, PAGE_SIZE); 446 447 new_array = addr ? __va(addr) : NULL; 448 } 449 if (!addr) { 450 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 451 type->name, type->max, type->max * 2); 452 return -1; 453 } 454 455 new_end = addr + new_size - 1; 456 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 457 type->name, type->max * 2, &addr, &new_end); 458 459 /* 460 * Found space, we now need to move the array over before we add the 461 * reserved region since it may be our reserved array itself that is 462 * full. 463 */ 464 memcpy(new_array, type->regions, old_size); 465 memset(new_array + type->max, 0, old_size); 466 old_array = type->regions; 467 type->regions = new_array; 468 type->max <<= 1; 469 470 /* Free old array. We needn't free it if the array is the static one */ 471 if (*in_slab) 472 kfree(old_array); 473 else if (old_array != memblock_memory_init_regions && 474 old_array != memblock_reserved_init_regions) 475 memblock_free_ptr(old_array, old_alloc_size); 476 477 /* 478 * Reserve the new array if that comes from the memblock. Otherwise, we 479 * needn't do it 480 */ 481 if (!use_slab) 482 BUG_ON(memblock_reserve(addr, new_alloc_size)); 483 484 /* Update slab flag */ 485 *in_slab = use_slab; 486 487 return 0; 488 } 489 490 /** 491 * memblock_merge_regions - merge neighboring compatible regions 492 * @type: memblock type to scan 493 * 494 * Scan @type and merge neighboring compatible regions. 495 */ 496 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 497 { 498 int i = 0; 499 500 /* cnt never goes below 1 */ 501 while (i < type->cnt - 1) { 502 struct memblock_region *this = &type->regions[i]; 503 struct memblock_region *next = &type->regions[i + 1]; 504 505 if (this->base + this->size != next->base || 506 memblock_get_region_node(this) != 507 memblock_get_region_node(next) || 508 this->flags != next->flags) { 509 BUG_ON(this->base + this->size > next->base); 510 i++; 511 continue; 512 } 513 514 this->size += next->size; 515 /* move forward from next + 1, index of which is i + 2 */ 516 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 517 type->cnt--; 518 } 519 } 520 521 /** 522 * memblock_insert_region - insert new memblock region 523 * @type: memblock type to insert into 524 * @idx: index for the insertion point 525 * @base: base address of the new region 526 * @size: size of the new region 527 * @nid: node id of the new region 528 * @flags: flags of the new region 529 * 530 * Insert new memblock region [@base, @base + @size) into @type at @idx. 531 * @type must already have extra room to accommodate the new region. 532 */ 533 static void __init_memblock memblock_insert_region(struct memblock_type *type, 534 int idx, phys_addr_t base, 535 phys_addr_t size, 536 int nid, 537 enum memblock_flags flags) 538 { 539 struct memblock_region *rgn = &type->regions[idx]; 540 541 BUG_ON(type->cnt >= type->max); 542 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 543 rgn->base = base; 544 rgn->size = size; 545 rgn->flags = flags; 546 memblock_set_region_node(rgn, nid); 547 type->cnt++; 548 type->total_size += size; 549 } 550 551 /** 552 * memblock_add_range - add new memblock region 553 * @type: memblock type to add new region into 554 * @base: base address of the new region 555 * @size: size of the new region 556 * @nid: nid of the new region 557 * @flags: flags of the new region 558 * 559 * Add new memblock region [@base, @base + @size) into @type. The new region 560 * is allowed to overlap with existing ones - overlaps don't affect already 561 * existing regions. @type is guaranteed to be minimal (all neighbouring 562 * compatible regions are merged) after the addition. 563 * 564 * Return: 565 * 0 on success, -errno on failure. 566 */ 567 static int __init_memblock memblock_add_range(struct memblock_type *type, 568 phys_addr_t base, phys_addr_t size, 569 int nid, enum memblock_flags flags) 570 { 571 bool insert = false; 572 phys_addr_t obase = base; 573 phys_addr_t end = base + memblock_cap_size(base, &size); 574 int idx, nr_new; 575 struct memblock_region *rgn; 576 577 if (!size) 578 return 0; 579 580 /* special case for empty array */ 581 if (type->regions[0].size == 0) { 582 WARN_ON(type->cnt != 1 || type->total_size); 583 type->regions[0].base = base; 584 type->regions[0].size = size; 585 type->regions[0].flags = flags; 586 memblock_set_region_node(&type->regions[0], nid); 587 type->total_size = size; 588 return 0; 589 } 590 repeat: 591 /* 592 * The following is executed twice. Once with %false @insert and 593 * then with %true. The first counts the number of regions needed 594 * to accommodate the new area. The second actually inserts them. 595 */ 596 base = obase; 597 nr_new = 0; 598 599 for_each_memblock_type(idx, type, rgn) { 600 phys_addr_t rbase = rgn->base; 601 phys_addr_t rend = rbase + rgn->size; 602 603 if (rbase >= end) 604 break; 605 if (rend <= base) 606 continue; 607 /* 608 * @rgn overlaps. If it separates the lower part of new 609 * area, insert that portion. 610 */ 611 if (rbase > base) { 612 #ifdef CONFIG_NUMA 613 WARN_ON(nid != memblock_get_region_node(rgn)); 614 #endif 615 WARN_ON(flags != rgn->flags); 616 nr_new++; 617 if (insert) 618 memblock_insert_region(type, idx++, base, 619 rbase - base, nid, 620 flags); 621 } 622 /* area below @rend is dealt with, forget about it */ 623 base = min(rend, end); 624 } 625 626 /* insert the remaining portion */ 627 if (base < end) { 628 nr_new++; 629 if (insert) 630 memblock_insert_region(type, idx, base, end - base, 631 nid, flags); 632 } 633 634 if (!nr_new) 635 return 0; 636 637 /* 638 * If this was the first round, resize array and repeat for actual 639 * insertions; otherwise, merge and return. 640 */ 641 if (!insert) { 642 while (type->cnt + nr_new > type->max) 643 if (memblock_double_array(type, obase, size) < 0) 644 return -ENOMEM; 645 insert = true; 646 goto repeat; 647 } else { 648 memblock_merge_regions(type); 649 return 0; 650 } 651 } 652 653 /** 654 * memblock_add_node - add new memblock region within a NUMA node 655 * @base: base address of the new region 656 * @size: size of the new region 657 * @nid: nid of the new region 658 * 659 * Add new memblock region [@base, @base + @size) to the "memory" 660 * type. See memblock_add_range() description for mode details 661 * 662 * Return: 663 * 0 on success, -errno on failure. 664 */ 665 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 666 int nid) 667 { 668 phys_addr_t end = base + size - 1; 669 670 memblock_dbg("%s: [%pa-%pa] nid=%d %pS\n", __func__, 671 &base, &end, nid, (void *)_RET_IP_); 672 673 return memblock_add_range(&memblock.memory, base, size, nid, 0); 674 } 675 676 /** 677 * memblock_add - add new memblock region 678 * @base: base address of the new region 679 * @size: size of the new region 680 * 681 * Add new memblock region [@base, @base + @size) to the "memory" 682 * type. See memblock_add_range() description for mode details 683 * 684 * Return: 685 * 0 on success, -errno on failure. 686 */ 687 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 688 { 689 phys_addr_t end = base + size - 1; 690 691 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 692 &base, &end, (void *)_RET_IP_); 693 694 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 695 } 696 697 /** 698 * memblock_isolate_range - isolate given range into disjoint memblocks 699 * @type: memblock type to isolate range for 700 * @base: base of range to isolate 701 * @size: size of range to isolate 702 * @start_rgn: out parameter for the start of isolated region 703 * @end_rgn: out parameter for the end of isolated region 704 * 705 * Walk @type and ensure that regions don't cross the boundaries defined by 706 * [@base, @base + @size). Crossing regions are split at the boundaries, 707 * which may create at most two more regions. The index of the first 708 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 709 * 710 * Return: 711 * 0 on success, -errno on failure. 712 */ 713 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 714 phys_addr_t base, phys_addr_t size, 715 int *start_rgn, int *end_rgn) 716 { 717 phys_addr_t end = base + memblock_cap_size(base, &size); 718 int idx; 719 struct memblock_region *rgn; 720 721 *start_rgn = *end_rgn = 0; 722 723 if (!size) 724 return 0; 725 726 /* we'll create at most two more regions */ 727 while (type->cnt + 2 > type->max) 728 if (memblock_double_array(type, base, size) < 0) 729 return -ENOMEM; 730 731 for_each_memblock_type(idx, type, rgn) { 732 phys_addr_t rbase = rgn->base; 733 phys_addr_t rend = rbase + rgn->size; 734 735 if (rbase >= end) 736 break; 737 if (rend <= base) 738 continue; 739 740 if (rbase < base) { 741 /* 742 * @rgn intersects from below. Split and continue 743 * to process the next region - the new top half. 744 */ 745 rgn->base = base; 746 rgn->size -= base - rbase; 747 type->total_size -= base - rbase; 748 memblock_insert_region(type, idx, rbase, base - rbase, 749 memblock_get_region_node(rgn), 750 rgn->flags); 751 } else if (rend > end) { 752 /* 753 * @rgn intersects from above. Split and redo the 754 * current region - the new bottom half. 755 */ 756 rgn->base = end; 757 rgn->size -= end - rbase; 758 type->total_size -= end - rbase; 759 memblock_insert_region(type, idx--, rbase, end - rbase, 760 memblock_get_region_node(rgn), 761 rgn->flags); 762 } else { 763 /* @rgn is fully contained, record it */ 764 if (!*end_rgn) 765 *start_rgn = idx; 766 *end_rgn = idx + 1; 767 } 768 } 769 770 return 0; 771 } 772 773 static int __init_memblock memblock_remove_range(struct memblock_type *type, 774 phys_addr_t base, phys_addr_t size) 775 { 776 int start_rgn, end_rgn; 777 int i, ret; 778 779 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 780 if (ret) 781 return ret; 782 783 for (i = end_rgn - 1; i >= start_rgn; i--) 784 memblock_remove_region(type, i); 785 return 0; 786 } 787 788 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 789 { 790 phys_addr_t end = base + size - 1; 791 792 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 793 &base, &end, (void *)_RET_IP_); 794 795 return memblock_remove_range(&memblock.memory, base, size); 796 } 797 798 /** 799 * memblock_free_ptr - free boot memory allocation 800 * @ptr: starting address of the boot memory allocation 801 * @size: size of the boot memory block in bytes 802 * 803 * Free boot memory block previously allocated by memblock_alloc_xx() API. 804 * The freeing memory will not be released to the buddy allocator. 805 */ 806 void __init_memblock memblock_free_ptr(void *ptr, size_t size) 807 { 808 if (ptr) 809 memblock_free(__pa(ptr), size); 810 } 811 812 /** 813 * memblock_free - free boot memory block 814 * @base: phys starting address of the boot memory block 815 * @size: size of the boot memory block in bytes 816 * 817 * Free boot memory block previously allocated by memblock_alloc_xx() API. 818 * The freeing memory will not be released to the buddy allocator. 819 */ 820 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 821 { 822 phys_addr_t end = base + size - 1; 823 824 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 825 &base, &end, (void *)_RET_IP_); 826 827 kmemleak_free_part_phys(base, size); 828 return memblock_remove_range(&memblock.reserved, base, size); 829 } 830 831 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 832 { 833 phys_addr_t end = base + size - 1; 834 835 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 836 &base, &end, (void *)_RET_IP_); 837 838 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 839 } 840 841 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 842 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) 843 { 844 phys_addr_t end = base + size - 1; 845 846 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 847 &base, &end, (void *)_RET_IP_); 848 849 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); 850 } 851 #endif 852 853 /** 854 * memblock_setclr_flag - set or clear flag for a memory region 855 * @base: base address of the region 856 * @size: size of the region 857 * @set: set or clear the flag 858 * @flag: the flag to update 859 * 860 * This function isolates region [@base, @base + @size), and sets/clears flag 861 * 862 * Return: 0 on success, -errno on failure. 863 */ 864 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 865 phys_addr_t size, int set, int flag) 866 { 867 struct memblock_type *type = &memblock.memory; 868 int i, ret, start_rgn, end_rgn; 869 870 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 871 if (ret) 872 return ret; 873 874 for (i = start_rgn; i < end_rgn; i++) { 875 struct memblock_region *r = &type->regions[i]; 876 877 if (set) 878 r->flags |= flag; 879 else 880 r->flags &= ~flag; 881 } 882 883 memblock_merge_regions(type); 884 return 0; 885 } 886 887 /** 888 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 889 * @base: the base phys addr of the region 890 * @size: the size of the region 891 * 892 * Return: 0 on success, -errno on failure. 893 */ 894 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 895 { 896 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 897 } 898 899 /** 900 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 901 * @base: the base phys addr of the region 902 * @size: the size of the region 903 * 904 * Return: 0 on success, -errno on failure. 905 */ 906 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 907 { 908 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 909 } 910 911 /** 912 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 913 * @base: the base phys addr of the region 914 * @size: the size of the region 915 * 916 * Return: 0 on success, -errno on failure. 917 */ 918 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 919 { 920 system_has_some_mirror = true; 921 922 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 923 } 924 925 /** 926 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 927 * @base: the base phys addr of the region 928 * @size: the size of the region 929 * 930 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the 931 * direct mapping of the physical memory. These regions will still be 932 * covered by the memory map. The struct page representing NOMAP memory 933 * frames in the memory map will be PageReserved() 934 * 935 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from 936 * memblock, the caller must inform kmemleak to ignore that memory 937 * 938 * Return: 0 on success, -errno on failure. 939 */ 940 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 941 { 942 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 943 } 944 945 /** 946 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 947 * @base: the base phys addr of the region 948 * @size: the size of the region 949 * 950 * Return: 0 on success, -errno on failure. 951 */ 952 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 953 { 954 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 955 } 956 957 static bool should_skip_region(struct memblock_type *type, 958 struct memblock_region *m, 959 int nid, int flags) 960 { 961 int m_nid = memblock_get_region_node(m); 962 963 /* we never skip regions when iterating memblock.reserved or physmem */ 964 if (type != memblock_memory) 965 return false; 966 967 /* only memory regions are associated with nodes, check it */ 968 if (nid != NUMA_NO_NODE && nid != m_nid) 969 return true; 970 971 /* skip hotpluggable memory regions if needed */ 972 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) && 973 !(flags & MEMBLOCK_HOTPLUG)) 974 return true; 975 976 /* if we want mirror memory skip non-mirror memory regions */ 977 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 978 return true; 979 980 /* skip nomap memory unless we were asked for it explicitly */ 981 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 982 return true; 983 984 return false; 985 } 986 987 /** 988 * __next_mem_range - next function for for_each_free_mem_range() etc. 989 * @idx: pointer to u64 loop variable 990 * @nid: node selector, %NUMA_NO_NODE for all nodes 991 * @flags: pick from blocks based on memory attributes 992 * @type_a: pointer to memblock_type from where the range is taken 993 * @type_b: pointer to memblock_type which excludes memory from being taken 994 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 995 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 996 * @out_nid: ptr to int for nid of the range, can be %NULL 997 * 998 * Find the first area from *@idx which matches @nid, fill the out 999 * parameters, and update *@idx for the next iteration. The lower 32bit of 1000 * *@idx contains index into type_a and the upper 32bit indexes the 1001 * areas before each region in type_b. For example, if type_b regions 1002 * look like the following, 1003 * 1004 * 0:[0-16), 1:[32-48), 2:[128-130) 1005 * 1006 * The upper 32bit indexes the following regions. 1007 * 1008 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 1009 * 1010 * As both region arrays are sorted, the function advances the two indices 1011 * in lockstep and returns each intersection. 1012 */ 1013 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 1014 struct memblock_type *type_a, 1015 struct memblock_type *type_b, phys_addr_t *out_start, 1016 phys_addr_t *out_end, int *out_nid) 1017 { 1018 int idx_a = *idx & 0xffffffff; 1019 int idx_b = *idx >> 32; 1020 1021 if (WARN_ONCE(nid == MAX_NUMNODES, 1022 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1023 nid = NUMA_NO_NODE; 1024 1025 for (; idx_a < type_a->cnt; idx_a++) { 1026 struct memblock_region *m = &type_a->regions[idx_a]; 1027 1028 phys_addr_t m_start = m->base; 1029 phys_addr_t m_end = m->base + m->size; 1030 int m_nid = memblock_get_region_node(m); 1031 1032 if (should_skip_region(type_a, m, nid, flags)) 1033 continue; 1034 1035 if (!type_b) { 1036 if (out_start) 1037 *out_start = m_start; 1038 if (out_end) 1039 *out_end = m_end; 1040 if (out_nid) 1041 *out_nid = m_nid; 1042 idx_a++; 1043 *idx = (u32)idx_a | (u64)idx_b << 32; 1044 return; 1045 } 1046 1047 /* scan areas before each reservation */ 1048 for (; idx_b < type_b->cnt + 1; idx_b++) { 1049 struct memblock_region *r; 1050 phys_addr_t r_start; 1051 phys_addr_t r_end; 1052 1053 r = &type_b->regions[idx_b]; 1054 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1055 r_end = idx_b < type_b->cnt ? 1056 r->base : PHYS_ADDR_MAX; 1057 1058 /* 1059 * if idx_b advanced past idx_a, 1060 * break out to advance idx_a 1061 */ 1062 if (r_start >= m_end) 1063 break; 1064 /* if the two regions intersect, we're done */ 1065 if (m_start < r_end) { 1066 if (out_start) 1067 *out_start = 1068 max(m_start, r_start); 1069 if (out_end) 1070 *out_end = min(m_end, r_end); 1071 if (out_nid) 1072 *out_nid = m_nid; 1073 /* 1074 * The region which ends first is 1075 * advanced for the next iteration. 1076 */ 1077 if (m_end <= r_end) 1078 idx_a++; 1079 else 1080 idx_b++; 1081 *idx = (u32)idx_a | (u64)idx_b << 32; 1082 return; 1083 } 1084 } 1085 } 1086 1087 /* signal end of iteration */ 1088 *idx = ULLONG_MAX; 1089 } 1090 1091 /** 1092 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1093 * 1094 * @idx: pointer to u64 loop variable 1095 * @nid: node selector, %NUMA_NO_NODE for all nodes 1096 * @flags: pick from blocks based on memory attributes 1097 * @type_a: pointer to memblock_type from where the range is taken 1098 * @type_b: pointer to memblock_type which excludes memory from being taken 1099 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1100 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1101 * @out_nid: ptr to int for nid of the range, can be %NULL 1102 * 1103 * Finds the next range from type_a which is not marked as unsuitable 1104 * in type_b. 1105 * 1106 * Reverse of __next_mem_range(). 1107 */ 1108 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1109 enum memblock_flags flags, 1110 struct memblock_type *type_a, 1111 struct memblock_type *type_b, 1112 phys_addr_t *out_start, 1113 phys_addr_t *out_end, int *out_nid) 1114 { 1115 int idx_a = *idx & 0xffffffff; 1116 int idx_b = *idx >> 32; 1117 1118 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1119 nid = NUMA_NO_NODE; 1120 1121 if (*idx == (u64)ULLONG_MAX) { 1122 idx_a = type_a->cnt - 1; 1123 if (type_b != NULL) 1124 idx_b = type_b->cnt; 1125 else 1126 idx_b = 0; 1127 } 1128 1129 for (; idx_a >= 0; idx_a--) { 1130 struct memblock_region *m = &type_a->regions[idx_a]; 1131 1132 phys_addr_t m_start = m->base; 1133 phys_addr_t m_end = m->base + m->size; 1134 int m_nid = memblock_get_region_node(m); 1135 1136 if (should_skip_region(type_a, m, nid, flags)) 1137 continue; 1138 1139 if (!type_b) { 1140 if (out_start) 1141 *out_start = m_start; 1142 if (out_end) 1143 *out_end = m_end; 1144 if (out_nid) 1145 *out_nid = m_nid; 1146 idx_a--; 1147 *idx = (u32)idx_a | (u64)idx_b << 32; 1148 return; 1149 } 1150 1151 /* scan areas before each reservation */ 1152 for (; idx_b >= 0; idx_b--) { 1153 struct memblock_region *r; 1154 phys_addr_t r_start; 1155 phys_addr_t r_end; 1156 1157 r = &type_b->regions[idx_b]; 1158 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1159 r_end = idx_b < type_b->cnt ? 1160 r->base : PHYS_ADDR_MAX; 1161 /* 1162 * if idx_b advanced past idx_a, 1163 * break out to advance idx_a 1164 */ 1165 1166 if (r_end <= m_start) 1167 break; 1168 /* if the two regions intersect, we're done */ 1169 if (m_end > r_start) { 1170 if (out_start) 1171 *out_start = max(m_start, r_start); 1172 if (out_end) 1173 *out_end = min(m_end, r_end); 1174 if (out_nid) 1175 *out_nid = m_nid; 1176 if (m_start >= r_start) 1177 idx_a--; 1178 else 1179 idx_b--; 1180 *idx = (u32)idx_a | (u64)idx_b << 32; 1181 return; 1182 } 1183 } 1184 } 1185 /* signal end of iteration */ 1186 *idx = ULLONG_MAX; 1187 } 1188 1189 /* 1190 * Common iterator interface used to define for_each_mem_pfn_range(). 1191 */ 1192 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1193 unsigned long *out_start_pfn, 1194 unsigned long *out_end_pfn, int *out_nid) 1195 { 1196 struct memblock_type *type = &memblock.memory; 1197 struct memblock_region *r; 1198 int r_nid; 1199 1200 while (++*idx < type->cnt) { 1201 r = &type->regions[*idx]; 1202 r_nid = memblock_get_region_node(r); 1203 1204 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1205 continue; 1206 if (nid == MAX_NUMNODES || nid == r_nid) 1207 break; 1208 } 1209 if (*idx >= type->cnt) { 1210 *idx = -1; 1211 return; 1212 } 1213 1214 if (out_start_pfn) 1215 *out_start_pfn = PFN_UP(r->base); 1216 if (out_end_pfn) 1217 *out_end_pfn = PFN_DOWN(r->base + r->size); 1218 if (out_nid) 1219 *out_nid = r_nid; 1220 } 1221 1222 /** 1223 * memblock_set_node - set node ID on memblock regions 1224 * @base: base of area to set node ID for 1225 * @size: size of area to set node ID for 1226 * @type: memblock type to set node ID for 1227 * @nid: node ID to set 1228 * 1229 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1230 * Regions which cross the area boundaries are split as necessary. 1231 * 1232 * Return: 1233 * 0 on success, -errno on failure. 1234 */ 1235 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1236 struct memblock_type *type, int nid) 1237 { 1238 #ifdef CONFIG_NUMA 1239 int start_rgn, end_rgn; 1240 int i, ret; 1241 1242 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1243 if (ret) 1244 return ret; 1245 1246 for (i = start_rgn; i < end_rgn; i++) 1247 memblock_set_region_node(&type->regions[i], nid); 1248 1249 memblock_merge_regions(type); 1250 #endif 1251 return 0; 1252 } 1253 1254 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1255 /** 1256 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() 1257 * 1258 * @idx: pointer to u64 loop variable 1259 * @zone: zone in which all of the memory blocks reside 1260 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL 1261 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL 1262 * 1263 * This function is meant to be a zone/pfn specific wrapper for the 1264 * for_each_mem_range type iterators. Specifically they are used in the 1265 * deferred memory init routines and as such we were duplicating much of 1266 * this logic throughout the code. So instead of having it in multiple 1267 * locations it seemed like it would make more sense to centralize this to 1268 * one new iterator that does everything they need. 1269 */ 1270 void __init_memblock 1271 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 1272 unsigned long *out_spfn, unsigned long *out_epfn) 1273 { 1274 int zone_nid = zone_to_nid(zone); 1275 phys_addr_t spa, epa; 1276 int nid; 1277 1278 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1279 &memblock.memory, &memblock.reserved, 1280 &spa, &epa, &nid); 1281 1282 while (*idx != U64_MAX) { 1283 unsigned long epfn = PFN_DOWN(epa); 1284 unsigned long spfn = PFN_UP(spa); 1285 1286 /* 1287 * Verify the end is at least past the start of the zone and 1288 * that we have at least one PFN to initialize. 1289 */ 1290 if (zone->zone_start_pfn < epfn && spfn < epfn) { 1291 /* if we went too far just stop searching */ 1292 if (zone_end_pfn(zone) <= spfn) { 1293 *idx = U64_MAX; 1294 break; 1295 } 1296 1297 if (out_spfn) 1298 *out_spfn = max(zone->zone_start_pfn, spfn); 1299 if (out_epfn) 1300 *out_epfn = min(zone_end_pfn(zone), epfn); 1301 1302 return; 1303 } 1304 1305 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1306 &memblock.memory, &memblock.reserved, 1307 &spa, &epa, &nid); 1308 } 1309 1310 /* signal end of iteration */ 1311 if (out_spfn) 1312 *out_spfn = ULONG_MAX; 1313 if (out_epfn) 1314 *out_epfn = 0; 1315 } 1316 1317 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1318 1319 /** 1320 * memblock_alloc_range_nid - allocate boot memory block 1321 * @size: size of memory block to be allocated in bytes 1322 * @align: alignment of the region and block's size 1323 * @start: the lower bound of the memory region to allocate (phys address) 1324 * @end: the upper bound of the memory region to allocate (phys address) 1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1326 * @exact_nid: control the allocation fall back to other nodes 1327 * 1328 * The allocation is performed from memory region limited by 1329 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. 1330 * 1331 * If the specified node can not hold the requested memory and @exact_nid 1332 * is false, the allocation falls back to any node in the system. 1333 * 1334 * For systems with memory mirroring, the allocation is attempted first 1335 * from the regions with mirroring enabled and then retried from any 1336 * memory region. 1337 * 1338 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for 1339 * allocated boot memory block, so that it is never reported as leaks. 1340 * 1341 * Return: 1342 * Physical address of allocated memory block on success, %0 on failure. 1343 */ 1344 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1345 phys_addr_t align, phys_addr_t start, 1346 phys_addr_t end, int nid, 1347 bool exact_nid) 1348 { 1349 enum memblock_flags flags = choose_memblock_flags(); 1350 phys_addr_t found; 1351 1352 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1353 nid = NUMA_NO_NODE; 1354 1355 if (!align) { 1356 /* Can't use WARNs this early in boot on powerpc */ 1357 dump_stack(); 1358 align = SMP_CACHE_BYTES; 1359 } 1360 1361 again: 1362 found = memblock_find_in_range_node(size, align, start, end, nid, 1363 flags); 1364 if (found && !memblock_reserve(found, size)) 1365 goto done; 1366 1367 if (nid != NUMA_NO_NODE && !exact_nid) { 1368 found = memblock_find_in_range_node(size, align, start, 1369 end, NUMA_NO_NODE, 1370 flags); 1371 if (found && !memblock_reserve(found, size)) 1372 goto done; 1373 } 1374 1375 if (flags & MEMBLOCK_MIRROR) { 1376 flags &= ~MEMBLOCK_MIRROR; 1377 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1378 &size); 1379 goto again; 1380 } 1381 1382 return 0; 1383 1384 done: 1385 /* Skip kmemleak for kasan_init() due to high volume. */ 1386 if (end != MEMBLOCK_ALLOC_KASAN) 1387 /* 1388 * The min_count is set to 0 so that memblock allocated 1389 * blocks are never reported as leaks. This is because many 1390 * of these blocks are only referred via the physical 1391 * address which is not looked up by kmemleak. 1392 */ 1393 kmemleak_alloc_phys(found, size, 0, 0); 1394 1395 return found; 1396 } 1397 1398 /** 1399 * memblock_phys_alloc_range - allocate a memory block inside specified range 1400 * @size: size of memory block to be allocated in bytes 1401 * @align: alignment of the region and block's size 1402 * @start: the lower bound of the memory region to allocate (physical address) 1403 * @end: the upper bound of the memory region to allocate (physical address) 1404 * 1405 * Allocate @size bytes in the between @start and @end. 1406 * 1407 * Return: physical address of the allocated memory block on success, 1408 * %0 on failure. 1409 */ 1410 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1411 phys_addr_t align, 1412 phys_addr_t start, 1413 phys_addr_t end) 1414 { 1415 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", 1416 __func__, (u64)size, (u64)align, &start, &end, 1417 (void *)_RET_IP_); 1418 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1419 false); 1420 } 1421 1422 /** 1423 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node 1424 * @size: size of memory block to be allocated in bytes 1425 * @align: alignment of the region and block's size 1426 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1427 * 1428 * Allocates memory block from the specified NUMA node. If the node 1429 * has no available memory, attempts to allocated from any node in the 1430 * system. 1431 * 1432 * Return: physical address of the allocated memory block on success, 1433 * %0 on failure. 1434 */ 1435 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1436 { 1437 return memblock_alloc_range_nid(size, align, 0, 1438 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); 1439 } 1440 1441 /** 1442 * memblock_alloc_internal - allocate boot memory block 1443 * @size: size of memory block to be allocated in bytes 1444 * @align: alignment of the region and block's size 1445 * @min_addr: the lower bound of the memory region to allocate (phys address) 1446 * @max_addr: the upper bound of the memory region to allocate (phys address) 1447 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1448 * @exact_nid: control the allocation fall back to other nodes 1449 * 1450 * Allocates memory block using memblock_alloc_range_nid() and 1451 * converts the returned physical address to virtual. 1452 * 1453 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1454 * will fall back to memory below @min_addr. Other constraints, such 1455 * as node and mirrored memory will be handled again in 1456 * memblock_alloc_range_nid(). 1457 * 1458 * Return: 1459 * Virtual address of allocated memory block on success, NULL on failure. 1460 */ 1461 static void * __init memblock_alloc_internal( 1462 phys_addr_t size, phys_addr_t align, 1463 phys_addr_t min_addr, phys_addr_t max_addr, 1464 int nid, bool exact_nid) 1465 { 1466 phys_addr_t alloc; 1467 1468 /* 1469 * Detect any accidental use of these APIs after slab is ready, as at 1470 * this moment memblock may be deinitialized already and its 1471 * internal data may be destroyed (after execution of memblock_free_all) 1472 */ 1473 if (WARN_ON_ONCE(slab_is_available())) 1474 return kzalloc_node(size, GFP_NOWAIT, nid); 1475 1476 if (max_addr > memblock.current_limit) 1477 max_addr = memblock.current_limit; 1478 1479 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, 1480 exact_nid); 1481 1482 /* retry allocation without lower limit */ 1483 if (!alloc && min_addr) 1484 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, 1485 exact_nid); 1486 1487 if (!alloc) 1488 return NULL; 1489 1490 return phys_to_virt(alloc); 1491 } 1492 1493 /** 1494 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node 1495 * without zeroing memory 1496 * @size: size of memory block to be allocated in bytes 1497 * @align: alignment of the region and block's size 1498 * @min_addr: the lower bound of the memory region from where the allocation 1499 * is preferred (phys address) 1500 * @max_addr: the upper bound of the memory region from where the allocation 1501 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1502 * allocate only from memory limited by memblock.current_limit value 1503 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1504 * 1505 * Public function, provides additional debug information (including caller 1506 * info), if enabled. Does not zero allocated memory. 1507 * 1508 * Return: 1509 * Virtual address of allocated memory block on success, NULL on failure. 1510 */ 1511 void * __init memblock_alloc_exact_nid_raw( 1512 phys_addr_t size, phys_addr_t align, 1513 phys_addr_t min_addr, phys_addr_t max_addr, 1514 int nid) 1515 { 1516 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1517 __func__, (u64)size, (u64)align, nid, &min_addr, 1518 &max_addr, (void *)_RET_IP_); 1519 1520 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1521 true); 1522 } 1523 1524 /** 1525 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1526 * memory and without panicking 1527 * @size: size of memory block to be allocated in bytes 1528 * @align: alignment of the region and block's size 1529 * @min_addr: the lower bound of the memory region from where the allocation 1530 * is preferred (phys address) 1531 * @max_addr: the upper bound of the memory region from where the allocation 1532 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1533 * allocate only from memory limited by memblock.current_limit value 1534 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1535 * 1536 * Public function, provides additional debug information (including caller 1537 * info), if enabled. Does not zero allocated memory, does not panic if request 1538 * cannot be satisfied. 1539 * 1540 * Return: 1541 * Virtual address of allocated memory block on success, NULL on failure. 1542 */ 1543 void * __init memblock_alloc_try_nid_raw( 1544 phys_addr_t size, phys_addr_t align, 1545 phys_addr_t min_addr, phys_addr_t max_addr, 1546 int nid) 1547 { 1548 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1549 __func__, (u64)size, (u64)align, nid, &min_addr, 1550 &max_addr, (void *)_RET_IP_); 1551 1552 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1553 false); 1554 } 1555 1556 /** 1557 * memblock_alloc_try_nid - allocate boot memory block 1558 * @size: size of memory block to be allocated in bytes 1559 * @align: alignment of the region and block's size 1560 * @min_addr: the lower bound of the memory region from where the allocation 1561 * is preferred (phys address) 1562 * @max_addr: the upper bound of the memory region from where the allocation 1563 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1564 * allocate only from memory limited by memblock.current_limit value 1565 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1566 * 1567 * Public function, provides additional debug information (including caller 1568 * info), if enabled. This function zeroes the allocated memory. 1569 * 1570 * Return: 1571 * Virtual address of allocated memory block on success, NULL on failure. 1572 */ 1573 void * __init memblock_alloc_try_nid( 1574 phys_addr_t size, phys_addr_t align, 1575 phys_addr_t min_addr, phys_addr_t max_addr, 1576 int nid) 1577 { 1578 void *ptr; 1579 1580 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1581 __func__, (u64)size, (u64)align, nid, &min_addr, 1582 &max_addr, (void *)_RET_IP_); 1583 ptr = memblock_alloc_internal(size, align, 1584 min_addr, max_addr, nid, false); 1585 if (ptr) 1586 memset(ptr, 0, size); 1587 1588 return ptr; 1589 } 1590 1591 /** 1592 * __memblock_free_late - free pages directly to buddy allocator 1593 * @base: phys starting address of the boot memory block 1594 * @size: size of the boot memory block in bytes 1595 * 1596 * This is only useful when the memblock allocator has already been torn 1597 * down, but we are still initializing the system. Pages are released directly 1598 * to the buddy allocator. 1599 */ 1600 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1601 { 1602 phys_addr_t cursor, end; 1603 1604 end = base + size - 1; 1605 memblock_dbg("%s: [%pa-%pa] %pS\n", 1606 __func__, &base, &end, (void *)_RET_IP_); 1607 kmemleak_free_part_phys(base, size); 1608 cursor = PFN_UP(base); 1609 end = PFN_DOWN(base + size); 1610 1611 for (; cursor < end; cursor++) { 1612 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1613 totalram_pages_inc(); 1614 } 1615 } 1616 1617 /* 1618 * Remaining API functions 1619 */ 1620 1621 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1622 { 1623 return memblock.memory.total_size; 1624 } 1625 1626 phys_addr_t __init_memblock memblock_reserved_size(void) 1627 { 1628 return memblock.reserved.total_size; 1629 } 1630 1631 /* lowest address */ 1632 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1633 { 1634 return memblock.memory.regions[0].base; 1635 } 1636 1637 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1638 { 1639 int idx = memblock.memory.cnt - 1; 1640 1641 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1642 } 1643 1644 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1645 { 1646 phys_addr_t max_addr = PHYS_ADDR_MAX; 1647 struct memblock_region *r; 1648 1649 /* 1650 * translate the memory @limit size into the max address within one of 1651 * the memory memblock regions, if the @limit exceeds the total size 1652 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1653 */ 1654 for_each_mem_region(r) { 1655 if (limit <= r->size) { 1656 max_addr = r->base + limit; 1657 break; 1658 } 1659 limit -= r->size; 1660 } 1661 1662 return max_addr; 1663 } 1664 1665 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1666 { 1667 phys_addr_t max_addr; 1668 1669 if (!limit) 1670 return; 1671 1672 max_addr = __find_max_addr(limit); 1673 1674 /* @limit exceeds the total size of the memory, do nothing */ 1675 if (max_addr == PHYS_ADDR_MAX) 1676 return; 1677 1678 /* truncate both memory and reserved regions */ 1679 memblock_remove_range(&memblock.memory, max_addr, 1680 PHYS_ADDR_MAX); 1681 memblock_remove_range(&memblock.reserved, max_addr, 1682 PHYS_ADDR_MAX); 1683 } 1684 1685 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1686 { 1687 int start_rgn, end_rgn; 1688 int i, ret; 1689 1690 if (!size) 1691 return; 1692 1693 if (!memblock_memory->total_size) { 1694 pr_warn("%s: No memory registered yet\n", __func__); 1695 return; 1696 } 1697 1698 ret = memblock_isolate_range(&memblock.memory, base, size, 1699 &start_rgn, &end_rgn); 1700 if (ret) 1701 return; 1702 1703 /* remove all the MAP regions */ 1704 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1705 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1706 memblock_remove_region(&memblock.memory, i); 1707 1708 for (i = start_rgn - 1; i >= 0; i--) 1709 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1710 memblock_remove_region(&memblock.memory, i); 1711 1712 /* truncate the reserved regions */ 1713 memblock_remove_range(&memblock.reserved, 0, base); 1714 memblock_remove_range(&memblock.reserved, 1715 base + size, PHYS_ADDR_MAX); 1716 } 1717 1718 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1719 { 1720 phys_addr_t max_addr; 1721 1722 if (!limit) 1723 return; 1724 1725 max_addr = __find_max_addr(limit); 1726 1727 /* @limit exceeds the total size of the memory, do nothing */ 1728 if (max_addr == PHYS_ADDR_MAX) 1729 return; 1730 1731 memblock_cap_memory_range(0, max_addr); 1732 } 1733 1734 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1735 { 1736 unsigned int left = 0, right = type->cnt; 1737 1738 do { 1739 unsigned int mid = (right + left) / 2; 1740 1741 if (addr < type->regions[mid].base) 1742 right = mid; 1743 else if (addr >= (type->regions[mid].base + 1744 type->regions[mid].size)) 1745 left = mid + 1; 1746 else 1747 return mid; 1748 } while (left < right); 1749 return -1; 1750 } 1751 1752 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1753 { 1754 return memblock_search(&memblock.reserved, addr) != -1; 1755 } 1756 1757 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1758 { 1759 return memblock_search(&memblock.memory, addr) != -1; 1760 } 1761 1762 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1763 { 1764 int i = memblock_search(&memblock.memory, addr); 1765 1766 if (i == -1) 1767 return false; 1768 return !memblock_is_nomap(&memblock.memory.regions[i]); 1769 } 1770 1771 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1772 unsigned long *start_pfn, unsigned long *end_pfn) 1773 { 1774 struct memblock_type *type = &memblock.memory; 1775 int mid = memblock_search(type, PFN_PHYS(pfn)); 1776 1777 if (mid == -1) 1778 return -1; 1779 1780 *start_pfn = PFN_DOWN(type->regions[mid].base); 1781 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1782 1783 return memblock_get_region_node(&type->regions[mid]); 1784 } 1785 1786 /** 1787 * memblock_is_region_memory - check if a region is a subset of memory 1788 * @base: base of region to check 1789 * @size: size of region to check 1790 * 1791 * Check if the region [@base, @base + @size) is a subset of a memory block. 1792 * 1793 * Return: 1794 * 0 if false, non-zero if true 1795 */ 1796 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1797 { 1798 int idx = memblock_search(&memblock.memory, base); 1799 phys_addr_t end = base + memblock_cap_size(base, &size); 1800 1801 if (idx == -1) 1802 return false; 1803 return (memblock.memory.regions[idx].base + 1804 memblock.memory.regions[idx].size) >= end; 1805 } 1806 1807 /** 1808 * memblock_is_region_reserved - check if a region intersects reserved memory 1809 * @base: base of region to check 1810 * @size: size of region to check 1811 * 1812 * Check if the region [@base, @base + @size) intersects a reserved 1813 * memory block. 1814 * 1815 * Return: 1816 * True if they intersect, false if not. 1817 */ 1818 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1819 { 1820 return memblock_overlaps_region(&memblock.reserved, base, size); 1821 } 1822 1823 void __init_memblock memblock_trim_memory(phys_addr_t align) 1824 { 1825 phys_addr_t start, end, orig_start, orig_end; 1826 struct memblock_region *r; 1827 1828 for_each_mem_region(r) { 1829 orig_start = r->base; 1830 orig_end = r->base + r->size; 1831 start = round_up(orig_start, align); 1832 end = round_down(orig_end, align); 1833 1834 if (start == orig_start && end == orig_end) 1835 continue; 1836 1837 if (start < end) { 1838 r->base = start; 1839 r->size = end - start; 1840 } else { 1841 memblock_remove_region(&memblock.memory, 1842 r - memblock.memory.regions); 1843 r--; 1844 } 1845 } 1846 } 1847 1848 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1849 { 1850 memblock.current_limit = limit; 1851 } 1852 1853 phys_addr_t __init_memblock memblock_get_current_limit(void) 1854 { 1855 return memblock.current_limit; 1856 } 1857 1858 static void __init_memblock memblock_dump(struct memblock_type *type) 1859 { 1860 phys_addr_t base, end, size; 1861 enum memblock_flags flags; 1862 int idx; 1863 struct memblock_region *rgn; 1864 1865 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1866 1867 for_each_memblock_type(idx, type, rgn) { 1868 char nid_buf[32] = ""; 1869 1870 base = rgn->base; 1871 size = rgn->size; 1872 end = base + size - 1; 1873 flags = rgn->flags; 1874 #ifdef CONFIG_NUMA 1875 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1876 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1877 memblock_get_region_node(rgn)); 1878 #endif 1879 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1880 type->name, idx, &base, &end, &size, nid_buf, flags); 1881 } 1882 } 1883 1884 static void __init_memblock __memblock_dump_all(void) 1885 { 1886 pr_info("MEMBLOCK configuration:\n"); 1887 pr_info(" memory size = %pa reserved size = %pa\n", 1888 &memblock.memory.total_size, 1889 &memblock.reserved.total_size); 1890 1891 memblock_dump(&memblock.memory); 1892 memblock_dump(&memblock.reserved); 1893 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1894 memblock_dump(&physmem); 1895 #endif 1896 } 1897 1898 void __init_memblock memblock_dump_all(void) 1899 { 1900 if (memblock_debug) 1901 __memblock_dump_all(); 1902 } 1903 1904 void __init memblock_allow_resize(void) 1905 { 1906 memblock_can_resize = 1; 1907 } 1908 1909 static int __init early_memblock(char *p) 1910 { 1911 if (p && strstr(p, "debug")) 1912 memblock_debug = 1; 1913 return 0; 1914 } 1915 early_param("memblock", early_memblock); 1916 1917 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) 1918 { 1919 struct page *start_pg, *end_pg; 1920 phys_addr_t pg, pgend; 1921 1922 /* 1923 * Convert start_pfn/end_pfn to a struct page pointer. 1924 */ 1925 start_pg = pfn_to_page(start_pfn - 1) + 1; 1926 end_pg = pfn_to_page(end_pfn - 1) + 1; 1927 1928 /* 1929 * Convert to physical addresses, and round start upwards and end 1930 * downwards. 1931 */ 1932 pg = PAGE_ALIGN(__pa(start_pg)); 1933 pgend = __pa(end_pg) & PAGE_MASK; 1934 1935 /* 1936 * If there are free pages between these, free the section of the 1937 * memmap array. 1938 */ 1939 if (pg < pgend) 1940 memblock_free(pg, pgend - pg); 1941 } 1942 1943 /* 1944 * The mem_map array can get very big. Free the unused area of the memory map. 1945 */ 1946 static void __init free_unused_memmap(void) 1947 { 1948 unsigned long start, end, prev_end = 0; 1949 int i; 1950 1951 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || 1952 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 1953 return; 1954 1955 /* 1956 * This relies on each bank being in address order. 1957 * The banks are sorted previously in bootmem_init(). 1958 */ 1959 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { 1960 #ifdef CONFIG_SPARSEMEM 1961 /* 1962 * Take care not to free memmap entries that don't exist 1963 * due to SPARSEMEM sections which aren't present. 1964 */ 1965 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 1966 #endif 1967 /* 1968 * Align down here since many operations in VM subsystem 1969 * presume that there are no holes in the memory map inside 1970 * a pageblock 1971 */ 1972 start = round_down(start, pageblock_nr_pages); 1973 1974 /* 1975 * If we had a previous bank, and there is a space 1976 * between the current bank and the previous, free it. 1977 */ 1978 if (prev_end && prev_end < start) 1979 free_memmap(prev_end, start); 1980 1981 /* 1982 * Align up here since many operations in VM subsystem 1983 * presume that there are no holes in the memory map inside 1984 * a pageblock 1985 */ 1986 prev_end = ALIGN(end, pageblock_nr_pages); 1987 } 1988 1989 #ifdef CONFIG_SPARSEMEM 1990 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) { 1991 prev_end = ALIGN(end, pageblock_nr_pages); 1992 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 1993 } 1994 #endif 1995 } 1996 1997 static void __init __free_pages_memory(unsigned long start, unsigned long end) 1998 { 1999 int order; 2000 2001 while (start < end) { 2002 order = min(MAX_ORDER - 1UL, __ffs(start)); 2003 2004 while (start + (1UL << order) > end) 2005 order--; 2006 2007 memblock_free_pages(pfn_to_page(start), start, order); 2008 2009 start += (1UL << order); 2010 } 2011 } 2012 2013 static unsigned long __init __free_memory_core(phys_addr_t start, 2014 phys_addr_t end) 2015 { 2016 unsigned long start_pfn = PFN_UP(start); 2017 unsigned long end_pfn = min_t(unsigned long, 2018 PFN_DOWN(end), max_low_pfn); 2019 2020 if (start_pfn >= end_pfn) 2021 return 0; 2022 2023 __free_pages_memory(start_pfn, end_pfn); 2024 2025 return end_pfn - start_pfn; 2026 } 2027 2028 static void __init memmap_init_reserved_pages(void) 2029 { 2030 struct memblock_region *region; 2031 phys_addr_t start, end; 2032 u64 i; 2033 2034 /* initialize struct pages for the reserved regions */ 2035 for_each_reserved_mem_range(i, &start, &end) 2036 reserve_bootmem_region(start, end); 2037 2038 /* and also treat struct pages for the NOMAP regions as PageReserved */ 2039 for_each_mem_region(region) { 2040 if (memblock_is_nomap(region)) { 2041 start = region->base; 2042 end = start + region->size; 2043 reserve_bootmem_region(start, end); 2044 } 2045 } 2046 } 2047 2048 static unsigned long __init free_low_memory_core_early(void) 2049 { 2050 unsigned long count = 0; 2051 phys_addr_t start, end; 2052 u64 i; 2053 2054 memblock_clear_hotplug(0, -1); 2055 2056 memmap_init_reserved_pages(); 2057 2058 /* 2059 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 2060 * because in some case like Node0 doesn't have RAM installed 2061 * low ram will be on Node1 2062 */ 2063 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 2064 NULL) 2065 count += __free_memory_core(start, end); 2066 2067 return count; 2068 } 2069 2070 static int reset_managed_pages_done __initdata; 2071 2072 void reset_node_managed_pages(pg_data_t *pgdat) 2073 { 2074 struct zone *z; 2075 2076 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 2077 atomic_long_set(&z->managed_pages, 0); 2078 } 2079 2080 void __init reset_all_zones_managed_pages(void) 2081 { 2082 struct pglist_data *pgdat; 2083 2084 if (reset_managed_pages_done) 2085 return; 2086 2087 for_each_online_pgdat(pgdat) 2088 reset_node_managed_pages(pgdat); 2089 2090 reset_managed_pages_done = 1; 2091 } 2092 2093 /** 2094 * memblock_free_all - release free pages to the buddy allocator 2095 */ 2096 void __init memblock_free_all(void) 2097 { 2098 unsigned long pages; 2099 2100 free_unused_memmap(); 2101 reset_all_zones_managed_pages(); 2102 2103 pages = free_low_memory_core_early(); 2104 totalram_pages_add(pages); 2105 } 2106 2107 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 2108 2109 static int memblock_debug_show(struct seq_file *m, void *private) 2110 { 2111 struct memblock_type *type = m->private; 2112 struct memblock_region *reg; 2113 int i; 2114 phys_addr_t end; 2115 2116 for (i = 0; i < type->cnt; i++) { 2117 reg = &type->regions[i]; 2118 end = reg->base + reg->size - 1; 2119 2120 seq_printf(m, "%4d: ", i); 2121 seq_printf(m, "%pa..%pa\n", ®->base, &end); 2122 } 2123 return 0; 2124 } 2125 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2126 2127 static int __init memblock_init_debugfs(void) 2128 { 2129 struct dentry *root = debugfs_create_dir("memblock", NULL); 2130 2131 debugfs_create_file("memory", 0444, root, 2132 &memblock.memory, &memblock_debug_fops); 2133 debugfs_create_file("reserved", 0444, root, 2134 &memblock.reserved, &memblock_debug_fops); 2135 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2136 debugfs_create_file("physmem", 0444, root, &physmem, 2137 &memblock_debug_fops); 2138 #endif 2139 2140 return 0; 2141 } 2142 __initcall(memblock_init_debugfs); 2143 2144 #endif /* CONFIG_DEBUG_FS */ 2145