xref: /linux/mm/memblock.c (revision 4bb1eb3cd4bd6241d5e5f99bbfd801ea5a007b6c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 
20 #include <asm/sections.h>
21 #include <linux/io.h>
22 
23 #include "internal.h"
24 
25 #define INIT_MEMBLOCK_REGIONS			128
26 #define INIT_PHYSMEM_REGIONS			4
27 
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30 #endif
31 
32 /**
33  * DOC: memblock overview
34  *
35  * Memblock is a method of managing memory regions during the early
36  * boot period when the usual kernel memory allocators are not up and
37  * running.
38  *
39  * Memblock views the system memory as collections of contiguous
40  * regions. There are several types of these collections:
41  *
42  * * ``memory`` - describes the physical memory available to the
43  *   kernel; this may differ from the actual physical memory installed
44  *   in the system, for instance when the memory is restricted with
45  *   ``mem=`` command line parameter
46  * * ``reserved`` - describes the regions that were allocated
47  * * ``physmem`` - describes the actual physical memory available during
48  *   boot regardless of the possible restrictions and memory hot(un)plug;
49  *   the ``physmem`` type is only available on some architectures.
50  *
51  * Each region is represented by :c:type:`struct memblock_region` that
52  * defines the region extents, its attributes and NUMA node id on NUMA
53  * systems. Every memory type is described by the :c:type:`struct
54  * memblock_type` which contains an array of memory regions along with
55  * the allocator metadata. The "memory" and "reserved" types are nicely
56  * wrapped with :c:type:`struct memblock`. This structure is statically
57  * initialized at build time. The region arrays are initially sized to
58  * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59  * for "reserved". The region array for "physmem" is initially sized to
60  * %INIT_PHYSMEM_REGIONS.
61  * The memblock_allow_resize() enables automatic resizing of the region
62  * arrays during addition of new regions. This feature should be used
63  * with care so that memory allocated for the region array will not
64  * overlap with areas that should be reserved, for example initrd.
65  *
66  * The early architecture setup should tell memblock what the physical
67  * memory layout is by using memblock_add() or memblock_add_node()
68  * functions. The first function does not assign the region to a NUMA
69  * node and it is appropriate for UMA systems. Yet, it is possible to
70  * use it on NUMA systems as well and assign the region to a NUMA node
71  * later in the setup process using memblock_set_node(). The
72  * memblock_add_node() performs such an assignment directly.
73  *
74  * Once memblock is setup the memory can be allocated using one of the
75  * API variants:
76  *
77  * * memblock_phys_alloc*() - these functions return the **physical**
78  *   address of the allocated memory
79  * * memblock_alloc*() - these functions return the **virtual** address
80  *   of the allocated memory.
81  *
82  * Note, that both API variants use implicit assumptions about allowed
83  * memory ranges and the fallback methods. Consult the documentation
84  * of memblock_alloc_internal() and memblock_alloc_range_nid()
85  * functions for more elaborate description.
86  *
87  * As the system boot progresses, the architecture specific mem_init()
88  * function frees all the memory to the buddy page allocator.
89  *
90  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91  * memblock data structures (except "physmem") will be discarded after the
92  * system initialization completes.
93  */
94 
95 #ifndef CONFIG_NEED_MULTIPLE_NODES
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
98 #endif
99 
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
104 
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109 #endif
110 
111 struct memblock memblock __initdata_memblock = {
112 	.memory.regions		= memblock_memory_init_regions,
113 	.memory.cnt		= 1,	/* empty dummy entry */
114 	.memory.max		= INIT_MEMBLOCK_REGIONS,
115 	.memory.name		= "memory",
116 
117 	.reserved.regions	= memblock_reserved_init_regions,
118 	.reserved.cnt		= 1,	/* empty dummy entry */
119 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
120 	.reserved.name		= "reserved",
121 
122 	.bottom_up		= false,
123 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
124 };
125 
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128 	.regions		= memblock_physmem_init_regions,
129 	.cnt			= 1,	/* empty dummy entry */
130 	.max			= INIT_PHYSMEM_REGIONS,
131 	.name			= "physmem",
132 };
133 #endif
134 
135 int memblock_debug __initdata_memblock;
136 static bool system_has_some_mirror __initdata_memblock = false;
137 static int memblock_can_resize __initdata_memblock;
138 static int memblock_memory_in_slab __initdata_memblock = 0;
139 static int memblock_reserved_in_slab __initdata_memblock = 0;
140 
141 static enum memblock_flags __init_memblock choose_memblock_flags(void)
142 {
143 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
144 }
145 
146 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
147 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
148 {
149 	return *size = min(*size, PHYS_ADDR_MAX - base);
150 }
151 
152 /*
153  * Address comparison utilities
154  */
155 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
156 				       phys_addr_t base2, phys_addr_t size2)
157 {
158 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
159 }
160 
161 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
162 					phys_addr_t base, phys_addr_t size)
163 {
164 	unsigned long i;
165 
166 	for (i = 0; i < type->cnt; i++)
167 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
168 					   type->regions[i].size))
169 			break;
170 	return i < type->cnt;
171 }
172 
173 /**
174  * __memblock_find_range_bottom_up - find free area utility in bottom-up
175  * @start: start of candidate range
176  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
177  *       %MEMBLOCK_ALLOC_ACCESSIBLE
178  * @size: size of free area to find
179  * @align: alignment of free area to find
180  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
181  * @flags: pick from blocks based on memory attributes
182  *
183  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
184  *
185  * Return:
186  * Found address on success, 0 on failure.
187  */
188 static phys_addr_t __init_memblock
189 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
190 				phys_addr_t size, phys_addr_t align, int nid,
191 				enum memblock_flags flags)
192 {
193 	phys_addr_t this_start, this_end, cand;
194 	u64 i;
195 
196 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
197 		this_start = clamp(this_start, start, end);
198 		this_end = clamp(this_end, start, end);
199 
200 		cand = round_up(this_start, align);
201 		if (cand < this_end && this_end - cand >= size)
202 			return cand;
203 	}
204 
205 	return 0;
206 }
207 
208 /**
209  * __memblock_find_range_top_down - find free area utility, in top-down
210  * @start: start of candidate range
211  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
212  *       %MEMBLOCK_ALLOC_ACCESSIBLE
213  * @size: size of free area to find
214  * @align: alignment of free area to find
215  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
216  * @flags: pick from blocks based on memory attributes
217  *
218  * Utility called from memblock_find_in_range_node(), find free area top-down.
219  *
220  * Return:
221  * Found address on success, 0 on failure.
222  */
223 static phys_addr_t __init_memblock
224 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
225 			       phys_addr_t size, phys_addr_t align, int nid,
226 			       enum memblock_flags flags)
227 {
228 	phys_addr_t this_start, this_end, cand;
229 	u64 i;
230 
231 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
232 					NULL) {
233 		this_start = clamp(this_start, start, end);
234 		this_end = clamp(this_end, start, end);
235 
236 		if (this_end < size)
237 			continue;
238 
239 		cand = round_down(this_end - size, align);
240 		if (cand >= this_start)
241 			return cand;
242 	}
243 
244 	return 0;
245 }
246 
247 /**
248  * memblock_find_in_range_node - find free area in given range and node
249  * @size: size of free area to find
250  * @align: alignment of free area to find
251  * @start: start of candidate range
252  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
253  *       %MEMBLOCK_ALLOC_ACCESSIBLE
254  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
255  * @flags: pick from blocks based on memory attributes
256  *
257  * Find @size free area aligned to @align in the specified range and node.
258  *
259  * When allocation direction is bottom-up, the @start should be greater
260  * than the end of the kernel image. Otherwise, it will be trimmed. The
261  * reason is that we want the bottom-up allocation just near the kernel
262  * image so it is highly likely that the allocated memory and the kernel
263  * will reside in the same node.
264  *
265  * If bottom-up allocation failed, will try to allocate memory top-down.
266  *
267  * Return:
268  * Found address on success, 0 on failure.
269  */
270 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
271 					phys_addr_t align, phys_addr_t start,
272 					phys_addr_t end, int nid,
273 					enum memblock_flags flags)
274 {
275 	phys_addr_t kernel_end, ret;
276 
277 	/* pump up @end */
278 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
279 	    end == MEMBLOCK_ALLOC_KASAN)
280 		end = memblock.current_limit;
281 
282 	/* avoid allocating the first page */
283 	start = max_t(phys_addr_t, start, PAGE_SIZE);
284 	end = max(start, end);
285 	kernel_end = __pa_symbol(_end);
286 
287 	/*
288 	 * try bottom-up allocation only when bottom-up mode
289 	 * is set and @end is above the kernel image.
290 	 */
291 	if (memblock_bottom_up() && end > kernel_end) {
292 		phys_addr_t bottom_up_start;
293 
294 		/* make sure we will allocate above the kernel */
295 		bottom_up_start = max(start, kernel_end);
296 
297 		/* ok, try bottom-up allocation first */
298 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
299 						      size, align, nid, flags);
300 		if (ret)
301 			return ret;
302 
303 		/*
304 		 * we always limit bottom-up allocation above the kernel,
305 		 * but top-down allocation doesn't have the limit, so
306 		 * retrying top-down allocation may succeed when bottom-up
307 		 * allocation failed.
308 		 *
309 		 * bottom-up allocation is expected to be fail very rarely,
310 		 * so we use WARN_ONCE() here to see the stack trace if
311 		 * fail happens.
312 		 */
313 		WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
314 			  "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
315 	}
316 
317 	return __memblock_find_range_top_down(start, end, size, align, nid,
318 					      flags);
319 }
320 
321 /**
322  * memblock_find_in_range - find free area in given range
323  * @start: start of candidate range
324  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
325  *       %MEMBLOCK_ALLOC_ACCESSIBLE
326  * @size: size of free area to find
327  * @align: alignment of free area to find
328  *
329  * Find @size free area aligned to @align in the specified range.
330  *
331  * Return:
332  * Found address on success, 0 on failure.
333  */
334 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
335 					phys_addr_t end, phys_addr_t size,
336 					phys_addr_t align)
337 {
338 	phys_addr_t ret;
339 	enum memblock_flags flags = choose_memblock_flags();
340 
341 again:
342 	ret = memblock_find_in_range_node(size, align, start, end,
343 					    NUMA_NO_NODE, flags);
344 
345 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
346 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
347 			&size);
348 		flags &= ~MEMBLOCK_MIRROR;
349 		goto again;
350 	}
351 
352 	return ret;
353 }
354 
355 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
356 {
357 	type->total_size -= type->regions[r].size;
358 	memmove(&type->regions[r], &type->regions[r + 1],
359 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
360 	type->cnt--;
361 
362 	/* Special case for empty arrays */
363 	if (type->cnt == 0) {
364 		WARN_ON(type->total_size != 0);
365 		type->cnt = 1;
366 		type->regions[0].base = 0;
367 		type->regions[0].size = 0;
368 		type->regions[0].flags = 0;
369 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
370 	}
371 }
372 
373 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
374 /**
375  * memblock_discard - discard memory and reserved arrays if they were allocated
376  */
377 void __init memblock_discard(void)
378 {
379 	phys_addr_t addr, size;
380 
381 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
382 		addr = __pa(memblock.reserved.regions);
383 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
384 				  memblock.reserved.max);
385 		__memblock_free_late(addr, size);
386 	}
387 
388 	if (memblock.memory.regions != memblock_memory_init_regions) {
389 		addr = __pa(memblock.memory.regions);
390 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
391 				  memblock.memory.max);
392 		__memblock_free_late(addr, size);
393 	}
394 }
395 #endif
396 
397 /**
398  * memblock_double_array - double the size of the memblock regions array
399  * @type: memblock type of the regions array being doubled
400  * @new_area_start: starting address of memory range to avoid overlap with
401  * @new_area_size: size of memory range to avoid overlap with
402  *
403  * Double the size of the @type regions array. If memblock is being used to
404  * allocate memory for a new reserved regions array and there is a previously
405  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
406  * waiting to be reserved, ensure the memory used by the new array does
407  * not overlap.
408  *
409  * Return:
410  * 0 on success, -1 on failure.
411  */
412 static int __init_memblock memblock_double_array(struct memblock_type *type,
413 						phys_addr_t new_area_start,
414 						phys_addr_t new_area_size)
415 {
416 	struct memblock_region *new_array, *old_array;
417 	phys_addr_t old_alloc_size, new_alloc_size;
418 	phys_addr_t old_size, new_size, addr, new_end;
419 	int use_slab = slab_is_available();
420 	int *in_slab;
421 
422 	/* We don't allow resizing until we know about the reserved regions
423 	 * of memory that aren't suitable for allocation
424 	 */
425 	if (!memblock_can_resize)
426 		return -1;
427 
428 	/* Calculate new doubled size */
429 	old_size = type->max * sizeof(struct memblock_region);
430 	new_size = old_size << 1;
431 	/*
432 	 * We need to allocated new one align to PAGE_SIZE,
433 	 *   so we can free them completely later.
434 	 */
435 	old_alloc_size = PAGE_ALIGN(old_size);
436 	new_alloc_size = PAGE_ALIGN(new_size);
437 
438 	/* Retrieve the slab flag */
439 	if (type == &memblock.memory)
440 		in_slab = &memblock_memory_in_slab;
441 	else
442 		in_slab = &memblock_reserved_in_slab;
443 
444 	/* Try to find some space for it */
445 	if (use_slab) {
446 		new_array = kmalloc(new_size, GFP_KERNEL);
447 		addr = new_array ? __pa(new_array) : 0;
448 	} else {
449 		/* only exclude range when trying to double reserved.regions */
450 		if (type != &memblock.reserved)
451 			new_area_start = new_area_size = 0;
452 
453 		addr = memblock_find_in_range(new_area_start + new_area_size,
454 						memblock.current_limit,
455 						new_alloc_size, PAGE_SIZE);
456 		if (!addr && new_area_size)
457 			addr = memblock_find_in_range(0,
458 				min(new_area_start, memblock.current_limit),
459 				new_alloc_size, PAGE_SIZE);
460 
461 		new_array = addr ? __va(addr) : NULL;
462 	}
463 	if (!addr) {
464 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
465 		       type->name, type->max, type->max * 2);
466 		return -1;
467 	}
468 
469 	new_end = addr + new_size - 1;
470 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
471 			type->name, type->max * 2, &addr, &new_end);
472 
473 	/*
474 	 * Found space, we now need to move the array over before we add the
475 	 * reserved region since it may be our reserved array itself that is
476 	 * full.
477 	 */
478 	memcpy(new_array, type->regions, old_size);
479 	memset(new_array + type->max, 0, old_size);
480 	old_array = type->regions;
481 	type->regions = new_array;
482 	type->max <<= 1;
483 
484 	/* Free old array. We needn't free it if the array is the static one */
485 	if (*in_slab)
486 		kfree(old_array);
487 	else if (old_array != memblock_memory_init_regions &&
488 		 old_array != memblock_reserved_init_regions)
489 		memblock_free(__pa(old_array), old_alloc_size);
490 
491 	/*
492 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
493 	 * needn't do it
494 	 */
495 	if (!use_slab)
496 		BUG_ON(memblock_reserve(addr, new_alloc_size));
497 
498 	/* Update slab flag */
499 	*in_slab = use_slab;
500 
501 	return 0;
502 }
503 
504 /**
505  * memblock_merge_regions - merge neighboring compatible regions
506  * @type: memblock type to scan
507  *
508  * Scan @type and merge neighboring compatible regions.
509  */
510 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
511 {
512 	int i = 0;
513 
514 	/* cnt never goes below 1 */
515 	while (i < type->cnt - 1) {
516 		struct memblock_region *this = &type->regions[i];
517 		struct memblock_region *next = &type->regions[i + 1];
518 
519 		if (this->base + this->size != next->base ||
520 		    memblock_get_region_node(this) !=
521 		    memblock_get_region_node(next) ||
522 		    this->flags != next->flags) {
523 			BUG_ON(this->base + this->size > next->base);
524 			i++;
525 			continue;
526 		}
527 
528 		this->size += next->size;
529 		/* move forward from next + 1, index of which is i + 2 */
530 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
531 		type->cnt--;
532 	}
533 }
534 
535 /**
536  * memblock_insert_region - insert new memblock region
537  * @type:	memblock type to insert into
538  * @idx:	index for the insertion point
539  * @base:	base address of the new region
540  * @size:	size of the new region
541  * @nid:	node id of the new region
542  * @flags:	flags of the new region
543  *
544  * Insert new memblock region [@base, @base + @size) into @type at @idx.
545  * @type must already have extra room to accommodate the new region.
546  */
547 static void __init_memblock memblock_insert_region(struct memblock_type *type,
548 						   int idx, phys_addr_t base,
549 						   phys_addr_t size,
550 						   int nid,
551 						   enum memblock_flags flags)
552 {
553 	struct memblock_region *rgn = &type->regions[idx];
554 
555 	BUG_ON(type->cnt >= type->max);
556 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
557 	rgn->base = base;
558 	rgn->size = size;
559 	rgn->flags = flags;
560 	memblock_set_region_node(rgn, nid);
561 	type->cnt++;
562 	type->total_size += size;
563 }
564 
565 /**
566  * memblock_add_range - add new memblock region
567  * @type: memblock type to add new region into
568  * @base: base address of the new region
569  * @size: size of the new region
570  * @nid: nid of the new region
571  * @flags: flags of the new region
572  *
573  * Add new memblock region [@base, @base + @size) into @type.  The new region
574  * is allowed to overlap with existing ones - overlaps don't affect already
575  * existing regions.  @type is guaranteed to be minimal (all neighbouring
576  * compatible regions are merged) after the addition.
577  *
578  * Return:
579  * 0 on success, -errno on failure.
580  */
581 static int __init_memblock memblock_add_range(struct memblock_type *type,
582 				phys_addr_t base, phys_addr_t size,
583 				int nid, enum memblock_flags flags)
584 {
585 	bool insert = false;
586 	phys_addr_t obase = base;
587 	phys_addr_t end = base + memblock_cap_size(base, &size);
588 	int idx, nr_new;
589 	struct memblock_region *rgn;
590 
591 	if (!size)
592 		return 0;
593 
594 	/* special case for empty array */
595 	if (type->regions[0].size == 0) {
596 		WARN_ON(type->cnt != 1 || type->total_size);
597 		type->regions[0].base = base;
598 		type->regions[0].size = size;
599 		type->regions[0].flags = flags;
600 		memblock_set_region_node(&type->regions[0], nid);
601 		type->total_size = size;
602 		return 0;
603 	}
604 repeat:
605 	/*
606 	 * The following is executed twice.  Once with %false @insert and
607 	 * then with %true.  The first counts the number of regions needed
608 	 * to accommodate the new area.  The second actually inserts them.
609 	 */
610 	base = obase;
611 	nr_new = 0;
612 
613 	for_each_memblock_type(idx, type, rgn) {
614 		phys_addr_t rbase = rgn->base;
615 		phys_addr_t rend = rbase + rgn->size;
616 
617 		if (rbase >= end)
618 			break;
619 		if (rend <= base)
620 			continue;
621 		/*
622 		 * @rgn overlaps.  If it separates the lower part of new
623 		 * area, insert that portion.
624 		 */
625 		if (rbase > base) {
626 #ifdef CONFIG_NEED_MULTIPLE_NODES
627 			WARN_ON(nid != memblock_get_region_node(rgn));
628 #endif
629 			WARN_ON(flags != rgn->flags);
630 			nr_new++;
631 			if (insert)
632 				memblock_insert_region(type, idx++, base,
633 						       rbase - base, nid,
634 						       flags);
635 		}
636 		/* area below @rend is dealt with, forget about it */
637 		base = min(rend, end);
638 	}
639 
640 	/* insert the remaining portion */
641 	if (base < end) {
642 		nr_new++;
643 		if (insert)
644 			memblock_insert_region(type, idx, base, end - base,
645 					       nid, flags);
646 	}
647 
648 	if (!nr_new)
649 		return 0;
650 
651 	/*
652 	 * If this was the first round, resize array and repeat for actual
653 	 * insertions; otherwise, merge and return.
654 	 */
655 	if (!insert) {
656 		while (type->cnt + nr_new > type->max)
657 			if (memblock_double_array(type, obase, size) < 0)
658 				return -ENOMEM;
659 		insert = true;
660 		goto repeat;
661 	} else {
662 		memblock_merge_regions(type);
663 		return 0;
664 	}
665 }
666 
667 /**
668  * memblock_add_node - add new memblock region within a NUMA node
669  * @base: base address of the new region
670  * @size: size of the new region
671  * @nid: nid of the new region
672  *
673  * Add new memblock region [@base, @base + @size) to the "memory"
674  * type. See memblock_add_range() description for mode details
675  *
676  * Return:
677  * 0 on success, -errno on failure.
678  */
679 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
680 				       int nid)
681 {
682 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
683 }
684 
685 /**
686  * memblock_add - add new memblock region
687  * @base: base address of the new region
688  * @size: size of the new region
689  *
690  * Add new memblock region [@base, @base + @size) to the "memory"
691  * type. See memblock_add_range() description for mode details
692  *
693  * Return:
694  * 0 on success, -errno on failure.
695  */
696 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
697 {
698 	phys_addr_t end = base + size - 1;
699 
700 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
701 		     &base, &end, (void *)_RET_IP_);
702 
703 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
704 }
705 
706 /**
707  * memblock_isolate_range - isolate given range into disjoint memblocks
708  * @type: memblock type to isolate range for
709  * @base: base of range to isolate
710  * @size: size of range to isolate
711  * @start_rgn: out parameter for the start of isolated region
712  * @end_rgn: out parameter for the end of isolated region
713  *
714  * Walk @type and ensure that regions don't cross the boundaries defined by
715  * [@base, @base + @size).  Crossing regions are split at the boundaries,
716  * which may create at most two more regions.  The index of the first
717  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
718  *
719  * Return:
720  * 0 on success, -errno on failure.
721  */
722 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
723 					phys_addr_t base, phys_addr_t size,
724 					int *start_rgn, int *end_rgn)
725 {
726 	phys_addr_t end = base + memblock_cap_size(base, &size);
727 	int idx;
728 	struct memblock_region *rgn;
729 
730 	*start_rgn = *end_rgn = 0;
731 
732 	if (!size)
733 		return 0;
734 
735 	/* we'll create at most two more regions */
736 	while (type->cnt + 2 > type->max)
737 		if (memblock_double_array(type, base, size) < 0)
738 			return -ENOMEM;
739 
740 	for_each_memblock_type(idx, type, rgn) {
741 		phys_addr_t rbase = rgn->base;
742 		phys_addr_t rend = rbase + rgn->size;
743 
744 		if (rbase >= end)
745 			break;
746 		if (rend <= base)
747 			continue;
748 
749 		if (rbase < base) {
750 			/*
751 			 * @rgn intersects from below.  Split and continue
752 			 * to process the next region - the new top half.
753 			 */
754 			rgn->base = base;
755 			rgn->size -= base - rbase;
756 			type->total_size -= base - rbase;
757 			memblock_insert_region(type, idx, rbase, base - rbase,
758 					       memblock_get_region_node(rgn),
759 					       rgn->flags);
760 		} else if (rend > end) {
761 			/*
762 			 * @rgn intersects from above.  Split and redo the
763 			 * current region - the new bottom half.
764 			 */
765 			rgn->base = end;
766 			rgn->size -= end - rbase;
767 			type->total_size -= end - rbase;
768 			memblock_insert_region(type, idx--, rbase, end - rbase,
769 					       memblock_get_region_node(rgn),
770 					       rgn->flags);
771 		} else {
772 			/* @rgn is fully contained, record it */
773 			if (!*end_rgn)
774 				*start_rgn = idx;
775 			*end_rgn = idx + 1;
776 		}
777 	}
778 
779 	return 0;
780 }
781 
782 static int __init_memblock memblock_remove_range(struct memblock_type *type,
783 					  phys_addr_t base, phys_addr_t size)
784 {
785 	int start_rgn, end_rgn;
786 	int i, ret;
787 
788 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
789 	if (ret)
790 		return ret;
791 
792 	for (i = end_rgn - 1; i >= start_rgn; i--)
793 		memblock_remove_region(type, i);
794 	return 0;
795 }
796 
797 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
798 {
799 	phys_addr_t end = base + size - 1;
800 
801 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
802 		     &base, &end, (void *)_RET_IP_);
803 
804 	return memblock_remove_range(&memblock.memory, base, size);
805 }
806 
807 /**
808  * memblock_free - free boot memory block
809  * @base: phys starting address of the  boot memory block
810  * @size: size of the boot memory block in bytes
811  *
812  * Free boot memory block previously allocated by memblock_alloc_xx() API.
813  * The freeing memory will not be released to the buddy allocator.
814  */
815 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
816 {
817 	phys_addr_t end = base + size - 1;
818 
819 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
820 		     &base, &end, (void *)_RET_IP_);
821 
822 	kmemleak_free_part_phys(base, size);
823 	return memblock_remove_range(&memblock.reserved, base, size);
824 }
825 
826 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
827 {
828 	phys_addr_t end = base + size - 1;
829 
830 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
831 		     &base, &end, (void *)_RET_IP_);
832 
833 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
834 }
835 
836 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
837 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
838 {
839 	phys_addr_t end = base + size - 1;
840 
841 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
842 		     &base, &end, (void *)_RET_IP_);
843 
844 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
845 }
846 #endif
847 
848 /**
849  * memblock_setclr_flag - set or clear flag for a memory region
850  * @base: base address of the region
851  * @size: size of the region
852  * @set: set or clear the flag
853  * @flag: the flag to udpate
854  *
855  * This function isolates region [@base, @base + @size), and sets/clears flag
856  *
857  * Return: 0 on success, -errno on failure.
858  */
859 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
860 				phys_addr_t size, int set, int flag)
861 {
862 	struct memblock_type *type = &memblock.memory;
863 	int i, ret, start_rgn, end_rgn;
864 
865 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
866 	if (ret)
867 		return ret;
868 
869 	for (i = start_rgn; i < end_rgn; i++) {
870 		struct memblock_region *r = &type->regions[i];
871 
872 		if (set)
873 			r->flags |= flag;
874 		else
875 			r->flags &= ~flag;
876 	}
877 
878 	memblock_merge_regions(type);
879 	return 0;
880 }
881 
882 /**
883  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
884  * @base: the base phys addr of the region
885  * @size: the size of the region
886  *
887  * Return: 0 on success, -errno on failure.
888  */
889 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
890 {
891 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
892 }
893 
894 /**
895  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
896  * @base: the base phys addr of the region
897  * @size: the size of the region
898  *
899  * Return: 0 on success, -errno on failure.
900  */
901 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
902 {
903 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
904 }
905 
906 /**
907  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
908  * @base: the base phys addr of the region
909  * @size: the size of the region
910  *
911  * Return: 0 on success, -errno on failure.
912  */
913 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
914 {
915 	system_has_some_mirror = true;
916 
917 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
918 }
919 
920 /**
921  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
922  * @base: the base phys addr of the region
923  * @size: the size of the region
924  *
925  * Return: 0 on success, -errno on failure.
926  */
927 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
928 {
929 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
930 }
931 
932 /**
933  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
934  * @base: the base phys addr of the region
935  * @size: the size of the region
936  *
937  * Return: 0 on success, -errno on failure.
938  */
939 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
940 {
941 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
942 }
943 
944 /**
945  * __next_reserved_mem_region - next function for for_each_reserved_region()
946  * @idx: pointer to u64 loop variable
947  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
948  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
949  *
950  * Iterate over all reserved memory regions.
951  */
952 void __init_memblock __next_reserved_mem_region(u64 *idx,
953 					   phys_addr_t *out_start,
954 					   phys_addr_t *out_end)
955 {
956 	struct memblock_type *type = &memblock.reserved;
957 
958 	if (*idx < type->cnt) {
959 		struct memblock_region *r = &type->regions[*idx];
960 		phys_addr_t base = r->base;
961 		phys_addr_t size = r->size;
962 
963 		if (out_start)
964 			*out_start = base;
965 		if (out_end)
966 			*out_end = base + size - 1;
967 
968 		*idx += 1;
969 		return;
970 	}
971 
972 	/* signal end of iteration */
973 	*idx = ULLONG_MAX;
974 }
975 
976 static bool should_skip_region(struct memblock_region *m, int nid, int flags)
977 {
978 	int m_nid = memblock_get_region_node(m);
979 
980 	/* only memory regions are associated with nodes, check it */
981 	if (nid != NUMA_NO_NODE && nid != m_nid)
982 		return true;
983 
984 	/* skip hotpluggable memory regions if needed */
985 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
986 		return true;
987 
988 	/* if we want mirror memory skip non-mirror memory regions */
989 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
990 		return true;
991 
992 	/* skip nomap memory unless we were asked for it explicitly */
993 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
994 		return true;
995 
996 	return false;
997 }
998 
999 /**
1000  * __next_mem_range - next function for for_each_free_mem_range() etc.
1001  * @idx: pointer to u64 loop variable
1002  * @nid: node selector, %NUMA_NO_NODE for all nodes
1003  * @flags: pick from blocks based on memory attributes
1004  * @type_a: pointer to memblock_type from where the range is taken
1005  * @type_b: pointer to memblock_type which excludes memory from being taken
1006  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1007  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1008  * @out_nid: ptr to int for nid of the range, can be %NULL
1009  *
1010  * Find the first area from *@idx which matches @nid, fill the out
1011  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1012  * *@idx contains index into type_a and the upper 32bit indexes the
1013  * areas before each region in type_b.	For example, if type_b regions
1014  * look like the following,
1015  *
1016  *	0:[0-16), 1:[32-48), 2:[128-130)
1017  *
1018  * The upper 32bit indexes the following regions.
1019  *
1020  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1021  *
1022  * As both region arrays are sorted, the function advances the two indices
1023  * in lockstep and returns each intersection.
1024  */
1025 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1026 		      struct memblock_type *type_a,
1027 		      struct memblock_type *type_b, phys_addr_t *out_start,
1028 		      phys_addr_t *out_end, int *out_nid)
1029 {
1030 	int idx_a = *idx & 0xffffffff;
1031 	int idx_b = *idx >> 32;
1032 
1033 	if (WARN_ONCE(nid == MAX_NUMNODES,
1034 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1035 		nid = NUMA_NO_NODE;
1036 
1037 	for (; idx_a < type_a->cnt; idx_a++) {
1038 		struct memblock_region *m = &type_a->regions[idx_a];
1039 
1040 		phys_addr_t m_start = m->base;
1041 		phys_addr_t m_end = m->base + m->size;
1042 		int	    m_nid = memblock_get_region_node(m);
1043 
1044 		if (should_skip_region(m, nid, flags))
1045 			continue;
1046 
1047 		if (!type_b) {
1048 			if (out_start)
1049 				*out_start = m_start;
1050 			if (out_end)
1051 				*out_end = m_end;
1052 			if (out_nid)
1053 				*out_nid = m_nid;
1054 			idx_a++;
1055 			*idx = (u32)idx_a | (u64)idx_b << 32;
1056 			return;
1057 		}
1058 
1059 		/* scan areas before each reservation */
1060 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1061 			struct memblock_region *r;
1062 			phys_addr_t r_start;
1063 			phys_addr_t r_end;
1064 
1065 			r = &type_b->regions[idx_b];
1066 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1067 			r_end = idx_b < type_b->cnt ?
1068 				r->base : PHYS_ADDR_MAX;
1069 
1070 			/*
1071 			 * if idx_b advanced past idx_a,
1072 			 * break out to advance idx_a
1073 			 */
1074 			if (r_start >= m_end)
1075 				break;
1076 			/* if the two regions intersect, we're done */
1077 			if (m_start < r_end) {
1078 				if (out_start)
1079 					*out_start =
1080 						max(m_start, r_start);
1081 				if (out_end)
1082 					*out_end = min(m_end, r_end);
1083 				if (out_nid)
1084 					*out_nid = m_nid;
1085 				/*
1086 				 * The region which ends first is
1087 				 * advanced for the next iteration.
1088 				 */
1089 				if (m_end <= r_end)
1090 					idx_a++;
1091 				else
1092 					idx_b++;
1093 				*idx = (u32)idx_a | (u64)idx_b << 32;
1094 				return;
1095 			}
1096 		}
1097 	}
1098 
1099 	/* signal end of iteration */
1100 	*idx = ULLONG_MAX;
1101 }
1102 
1103 /**
1104  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1105  *
1106  * @idx: pointer to u64 loop variable
1107  * @nid: node selector, %NUMA_NO_NODE for all nodes
1108  * @flags: pick from blocks based on memory attributes
1109  * @type_a: pointer to memblock_type from where the range is taken
1110  * @type_b: pointer to memblock_type which excludes memory from being taken
1111  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1112  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1113  * @out_nid: ptr to int for nid of the range, can be %NULL
1114  *
1115  * Finds the next range from type_a which is not marked as unsuitable
1116  * in type_b.
1117  *
1118  * Reverse of __next_mem_range().
1119  */
1120 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1121 					  enum memblock_flags flags,
1122 					  struct memblock_type *type_a,
1123 					  struct memblock_type *type_b,
1124 					  phys_addr_t *out_start,
1125 					  phys_addr_t *out_end, int *out_nid)
1126 {
1127 	int idx_a = *idx & 0xffffffff;
1128 	int idx_b = *idx >> 32;
1129 
1130 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1131 		nid = NUMA_NO_NODE;
1132 
1133 	if (*idx == (u64)ULLONG_MAX) {
1134 		idx_a = type_a->cnt - 1;
1135 		if (type_b != NULL)
1136 			idx_b = type_b->cnt;
1137 		else
1138 			idx_b = 0;
1139 	}
1140 
1141 	for (; idx_a >= 0; idx_a--) {
1142 		struct memblock_region *m = &type_a->regions[idx_a];
1143 
1144 		phys_addr_t m_start = m->base;
1145 		phys_addr_t m_end = m->base + m->size;
1146 		int m_nid = memblock_get_region_node(m);
1147 
1148 		if (should_skip_region(m, nid, flags))
1149 			continue;
1150 
1151 		if (!type_b) {
1152 			if (out_start)
1153 				*out_start = m_start;
1154 			if (out_end)
1155 				*out_end = m_end;
1156 			if (out_nid)
1157 				*out_nid = m_nid;
1158 			idx_a--;
1159 			*idx = (u32)idx_a | (u64)idx_b << 32;
1160 			return;
1161 		}
1162 
1163 		/* scan areas before each reservation */
1164 		for (; idx_b >= 0; idx_b--) {
1165 			struct memblock_region *r;
1166 			phys_addr_t r_start;
1167 			phys_addr_t r_end;
1168 
1169 			r = &type_b->regions[idx_b];
1170 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1171 			r_end = idx_b < type_b->cnt ?
1172 				r->base : PHYS_ADDR_MAX;
1173 			/*
1174 			 * if idx_b advanced past idx_a,
1175 			 * break out to advance idx_a
1176 			 */
1177 
1178 			if (r_end <= m_start)
1179 				break;
1180 			/* if the two regions intersect, we're done */
1181 			if (m_end > r_start) {
1182 				if (out_start)
1183 					*out_start = max(m_start, r_start);
1184 				if (out_end)
1185 					*out_end = min(m_end, r_end);
1186 				if (out_nid)
1187 					*out_nid = m_nid;
1188 				if (m_start >= r_start)
1189 					idx_a--;
1190 				else
1191 					idx_b--;
1192 				*idx = (u32)idx_a | (u64)idx_b << 32;
1193 				return;
1194 			}
1195 		}
1196 	}
1197 	/* signal end of iteration */
1198 	*idx = ULLONG_MAX;
1199 }
1200 
1201 /*
1202  * Common iterator interface used to define for_each_mem_pfn_range().
1203  */
1204 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1205 				unsigned long *out_start_pfn,
1206 				unsigned long *out_end_pfn, int *out_nid)
1207 {
1208 	struct memblock_type *type = &memblock.memory;
1209 	struct memblock_region *r;
1210 	int r_nid;
1211 
1212 	while (++*idx < type->cnt) {
1213 		r = &type->regions[*idx];
1214 		r_nid = memblock_get_region_node(r);
1215 
1216 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1217 			continue;
1218 		if (nid == MAX_NUMNODES || nid == r_nid)
1219 			break;
1220 	}
1221 	if (*idx >= type->cnt) {
1222 		*idx = -1;
1223 		return;
1224 	}
1225 
1226 	if (out_start_pfn)
1227 		*out_start_pfn = PFN_UP(r->base);
1228 	if (out_end_pfn)
1229 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1230 	if (out_nid)
1231 		*out_nid = r_nid;
1232 }
1233 
1234 /**
1235  * memblock_set_node - set node ID on memblock regions
1236  * @base: base of area to set node ID for
1237  * @size: size of area to set node ID for
1238  * @type: memblock type to set node ID for
1239  * @nid: node ID to set
1240  *
1241  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1242  * Regions which cross the area boundaries are split as necessary.
1243  *
1244  * Return:
1245  * 0 on success, -errno on failure.
1246  */
1247 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1248 				      struct memblock_type *type, int nid)
1249 {
1250 #ifdef CONFIG_NEED_MULTIPLE_NODES
1251 	int start_rgn, end_rgn;
1252 	int i, ret;
1253 
1254 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1255 	if (ret)
1256 		return ret;
1257 
1258 	for (i = start_rgn; i < end_rgn; i++)
1259 		memblock_set_region_node(&type->regions[i], nid);
1260 
1261 	memblock_merge_regions(type);
1262 #endif
1263 	return 0;
1264 }
1265 
1266 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1267 /**
1268  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1269  *
1270  * @idx: pointer to u64 loop variable
1271  * @zone: zone in which all of the memory blocks reside
1272  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1273  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1274  *
1275  * This function is meant to be a zone/pfn specific wrapper for the
1276  * for_each_mem_range type iterators. Specifically they are used in the
1277  * deferred memory init routines and as such we were duplicating much of
1278  * this logic throughout the code. So instead of having it in multiple
1279  * locations it seemed like it would make more sense to centralize this to
1280  * one new iterator that does everything they need.
1281  */
1282 void __init_memblock
1283 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1284 			     unsigned long *out_spfn, unsigned long *out_epfn)
1285 {
1286 	int zone_nid = zone_to_nid(zone);
1287 	phys_addr_t spa, epa;
1288 	int nid;
1289 
1290 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1291 			 &memblock.memory, &memblock.reserved,
1292 			 &spa, &epa, &nid);
1293 
1294 	while (*idx != U64_MAX) {
1295 		unsigned long epfn = PFN_DOWN(epa);
1296 		unsigned long spfn = PFN_UP(spa);
1297 
1298 		/*
1299 		 * Verify the end is at least past the start of the zone and
1300 		 * that we have at least one PFN to initialize.
1301 		 */
1302 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1303 			/* if we went too far just stop searching */
1304 			if (zone_end_pfn(zone) <= spfn) {
1305 				*idx = U64_MAX;
1306 				break;
1307 			}
1308 
1309 			if (out_spfn)
1310 				*out_spfn = max(zone->zone_start_pfn, spfn);
1311 			if (out_epfn)
1312 				*out_epfn = min(zone_end_pfn(zone), epfn);
1313 
1314 			return;
1315 		}
1316 
1317 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1318 				 &memblock.memory, &memblock.reserved,
1319 				 &spa, &epa, &nid);
1320 	}
1321 
1322 	/* signal end of iteration */
1323 	if (out_spfn)
1324 		*out_spfn = ULONG_MAX;
1325 	if (out_epfn)
1326 		*out_epfn = 0;
1327 }
1328 
1329 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1330 
1331 /**
1332  * memblock_alloc_range_nid - allocate boot memory block
1333  * @size: size of memory block to be allocated in bytes
1334  * @align: alignment of the region and block's size
1335  * @start: the lower bound of the memory region to allocate (phys address)
1336  * @end: the upper bound of the memory region to allocate (phys address)
1337  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1338  * @exact_nid: control the allocation fall back to other nodes
1339  *
1340  * The allocation is performed from memory region limited by
1341  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1342  *
1343  * If the specified node can not hold the requested memory and @exact_nid
1344  * is false, the allocation falls back to any node in the system.
1345  *
1346  * For systems with memory mirroring, the allocation is attempted first
1347  * from the regions with mirroring enabled and then retried from any
1348  * memory region.
1349  *
1350  * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1351  * allocated boot memory block, so that it is never reported as leaks.
1352  *
1353  * Return:
1354  * Physical address of allocated memory block on success, %0 on failure.
1355  */
1356 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1357 					phys_addr_t align, phys_addr_t start,
1358 					phys_addr_t end, int nid,
1359 					bool exact_nid)
1360 {
1361 	enum memblock_flags flags = choose_memblock_flags();
1362 	phys_addr_t found;
1363 
1364 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1365 		nid = NUMA_NO_NODE;
1366 
1367 	if (!align) {
1368 		/* Can't use WARNs this early in boot on powerpc */
1369 		dump_stack();
1370 		align = SMP_CACHE_BYTES;
1371 	}
1372 
1373 again:
1374 	found = memblock_find_in_range_node(size, align, start, end, nid,
1375 					    flags);
1376 	if (found && !memblock_reserve(found, size))
1377 		goto done;
1378 
1379 	if (nid != NUMA_NO_NODE && !exact_nid) {
1380 		found = memblock_find_in_range_node(size, align, start,
1381 						    end, NUMA_NO_NODE,
1382 						    flags);
1383 		if (found && !memblock_reserve(found, size))
1384 			goto done;
1385 	}
1386 
1387 	if (flags & MEMBLOCK_MIRROR) {
1388 		flags &= ~MEMBLOCK_MIRROR;
1389 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1390 			&size);
1391 		goto again;
1392 	}
1393 
1394 	return 0;
1395 
1396 done:
1397 	/* Skip kmemleak for kasan_init() due to high volume. */
1398 	if (end != MEMBLOCK_ALLOC_KASAN)
1399 		/*
1400 		 * The min_count is set to 0 so that memblock allocated
1401 		 * blocks are never reported as leaks. This is because many
1402 		 * of these blocks are only referred via the physical
1403 		 * address which is not looked up by kmemleak.
1404 		 */
1405 		kmemleak_alloc_phys(found, size, 0, 0);
1406 
1407 	return found;
1408 }
1409 
1410 /**
1411  * memblock_phys_alloc_range - allocate a memory block inside specified range
1412  * @size: size of memory block to be allocated in bytes
1413  * @align: alignment of the region and block's size
1414  * @start: the lower bound of the memory region to allocate (physical address)
1415  * @end: the upper bound of the memory region to allocate (physical address)
1416  *
1417  * Allocate @size bytes in the between @start and @end.
1418  *
1419  * Return: physical address of the allocated memory block on success,
1420  * %0 on failure.
1421  */
1422 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1423 					     phys_addr_t align,
1424 					     phys_addr_t start,
1425 					     phys_addr_t end)
1426 {
1427 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1428 					false);
1429 }
1430 
1431 /**
1432  * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1433  * @size: size of memory block to be allocated in bytes
1434  * @align: alignment of the region and block's size
1435  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1436  *
1437  * Allocates memory block from the specified NUMA node. If the node
1438  * has no available memory, attempts to allocated from any node in the
1439  * system.
1440  *
1441  * Return: physical address of the allocated memory block on success,
1442  * %0 on failure.
1443  */
1444 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1445 {
1446 	return memblock_alloc_range_nid(size, align, 0,
1447 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1448 }
1449 
1450 /**
1451  * memblock_alloc_internal - allocate boot memory block
1452  * @size: size of memory block to be allocated in bytes
1453  * @align: alignment of the region and block's size
1454  * @min_addr: the lower bound of the memory region to allocate (phys address)
1455  * @max_addr: the upper bound of the memory region to allocate (phys address)
1456  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1457  * @exact_nid: control the allocation fall back to other nodes
1458  *
1459  * Allocates memory block using memblock_alloc_range_nid() and
1460  * converts the returned physical address to virtual.
1461  *
1462  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1463  * will fall back to memory below @min_addr. Other constraints, such
1464  * as node and mirrored memory will be handled again in
1465  * memblock_alloc_range_nid().
1466  *
1467  * Return:
1468  * Virtual address of allocated memory block on success, NULL on failure.
1469  */
1470 static void * __init memblock_alloc_internal(
1471 				phys_addr_t size, phys_addr_t align,
1472 				phys_addr_t min_addr, phys_addr_t max_addr,
1473 				int nid, bool exact_nid)
1474 {
1475 	phys_addr_t alloc;
1476 
1477 	/*
1478 	 * Detect any accidental use of these APIs after slab is ready, as at
1479 	 * this moment memblock may be deinitialized already and its
1480 	 * internal data may be destroyed (after execution of memblock_free_all)
1481 	 */
1482 	if (WARN_ON_ONCE(slab_is_available()))
1483 		return kzalloc_node(size, GFP_NOWAIT, nid);
1484 
1485 	if (max_addr > memblock.current_limit)
1486 		max_addr = memblock.current_limit;
1487 
1488 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1489 					exact_nid);
1490 
1491 	/* retry allocation without lower limit */
1492 	if (!alloc && min_addr)
1493 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1494 						exact_nid);
1495 
1496 	if (!alloc)
1497 		return NULL;
1498 
1499 	return phys_to_virt(alloc);
1500 }
1501 
1502 /**
1503  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1504  * without zeroing memory
1505  * @size: size of memory block to be allocated in bytes
1506  * @align: alignment of the region and block's size
1507  * @min_addr: the lower bound of the memory region from where the allocation
1508  *	  is preferred (phys address)
1509  * @max_addr: the upper bound of the memory region from where the allocation
1510  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1511  *	      allocate only from memory limited by memblock.current_limit value
1512  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1513  *
1514  * Public function, provides additional debug information (including caller
1515  * info), if enabled. Does not zero allocated memory.
1516  *
1517  * Return:
1518  * Virtual address of allocated memory block on success, NULL on failure.
1519  */
1520 void * __init memblock_alloc_exact_nid_raw(
1521 			phys_addr_t size, phys_addr_t align,
1522 			phys_addr_t min_addr, phys_addr_t max_addr,
1523 			int nid)
1524 {
1525 	void *ptr;
1526 
1527 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1528 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1529 		     &max_addr, (void *)_RET_IP_);
1530 
1531 	ptr = memblock_alloc_internal(size, align,
1532 					   min_addr, max_addr, nid, true);
1533 	if (ptr && size > 0)
1534 		page_init_poison(ptr, size);
1535 
1536 	return ptr;
1537 }
1538 
1539 /**
1540  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1541  * memory and without panicking
1542  * @size: size of memory block to be allocated in bytes
1543  * @align: alignment of the region and block's size
1544  * @min_addr: the lower bound of the memory region from where the allocation
1545  *	  is preferred (phys address)
1546  * @max_addr: the upper bound of the memory region from where the allocation
1547  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1548  *	      allocate only from memory limited by memblock.current_limit value
1549  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1550  *
1551  * Public function, provides additional debug information (including caller
1552  * info), if enabled. Does not zero allocated memory, does not panic if request
1553  * cannot be satisfied.
1554  *
1555  * Return:
1556  * Virtual address of allocated memory block on success, NULL on failure.
1557  */
1558 void * __init memblock_alloc_try_nid_raw(
1559 			phys_addr_t size, phys_addr_t align,
1560 			phys_addr_t min_addr, phys_addr_t max_addr,
1561 			int nid)
1562 {
1563 	void *ptr;
1564 
1565 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1566 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1567 		     &max_addr, (void *)_RET_IP_);
1568 
1569 	ptr = memblock_alloc_internal(size, align,
1570 					   min_addr, max_addr, nid, false);
1571 	if (ptr && size > 0)
1572 		page_init_poison(ptr, size);
1573 
1574 	return ptr;
1575 }
1576 
1577 /**
1578  * memblock_alloc_try_nid - allocate boot memory block
1579  * @size: size of memory block to be allocated in bytes
1580  * @align: alignment of the region and block's size
1581  * @min_addr: the lower bound of the memory region from where the allocation
1582  *	  is preferred (phys address)
1583  * @max_addr: the upper bound of the memory region from where the allocation
1584  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1585  *	      allocate only from memory limited by memblock.current_limit value
1586  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1587  *
1588  * Public function, provides additional debug information (including caller
1589  * info), if enabled. This function zeroes the allocated memory.
1590  *
1591  * Return:
1592  * Virtual address of allocated memory block on success, NULL on failure.
1593  */
1594 void * __init memblock_alloc_try_nid(
1595 			phys_addr_t size, phys_addr_t align,
1596 			phys_addr_t min_addr, phys_addr_t max_addr,
1597 			int nid)
1598 {
1599 	void *ptr;
1600 
1601 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1602 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1603 		     &max_addr, (void *)_RET_IP_);
1604 	ptr = memblock_alloc_internal(size, align,
1605 					   min_addr, max_addr, nid, false);
1606 	if (ptr)
1607 		memset(ptr, 0, size);
1608 
1609 	return ptr;
1610 }
1611 
1612 /**
1613  * __memblock_free_late - free pages directly to buddy allocator
1614  * @base: phys starting address of the  boot memory block
1615  * @size: size of the boot memory block in bytes
1616  *
1617  * This is only useful when the memblock allocator has already been torn
1618  * down, but we are still initializing the system.  Pages are released directly
1619  * to the buddy allocator.
1620  */
1621 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1622 {
1623 	phys_addr_t cursor, end;
1624 
1625 	end = base + size - 1;
1626 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1627 		     __func__, &base, &end, (void *)_RET_IP_);
1628 	kmemleak_free_part_phys(base, size);
1629 	cursor = PFN_UP(base);
1630 	end = PFN_DOWN(base + size);
1631 
1632 	for (; cursor < end; cursor++) {
1633 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1634 		totalram_pages_inc();
1635 	}
1636 }
1637 
1638 /*
1639  * Remaining API functions
1640  */
1641 
1642 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1643 {
1644 	return memblock.memory.total_size;
1645 }
1646 
1647 phys_addr_t __init_memblock memblock_reserved_size(void)
1648 {
1649 	return memblock.reserved.total_size;
1650 }
1651 
1652 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1653 {
1654 	unsigned long pages = 0;
1655 	struct memblock_region *r;
1656 	unsigned long start_pfn, end_pfn;
1657 
1658 	for_each_memblock(memory, r) {
1659 		start_pfn = memblock_region_memory_base_pfn(r);
1660 		end_pfn = memblock_region_memory_end_pfn(r);
1661 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1662 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1663 		pages += end_pfn - start_pfn;
1664 	}
1665 
1666 	return PFN_PHYS(pages);
1667 }
1668 
1669 /* lowest address */
1670 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1671 {
1672 	return memblock.memory.regions[0].base;
1673 }
1674 
1675 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1676 {
1677 	int idx = memblock.memory.cnt - 1;
1678 
1679 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1680 }
1681 
1682 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1683 {
1684 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1685 	struct memblock_region *r;
1686 
1687 	/*
1688 	 * translate the memory @limit size into the max address within one of
1689 	 * the memory memblock regions, if the @limit exceeds the total size
1690 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1691 	 */
1692 	for_each_memblock(memory, r) {
1693 		if (limit <= r->size) {
1694 			max_addr = r->base + limit;
1695 			break;
1696 		}
1697 		limit -= r->size;
1698 	}
1699 
1700 	return max_addr;
1701 }
1702 
1703 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1704 {
1705 	phys_addr_t max_addr;
1706 
1707 	if (!limit)
1708 		return;
1709 
1710 	max_addr = __find_max_addr(limit);
1711 
1712 	/* @limit exceeds the total size of the memory, do nothing */
1713 	if (max_addr == PHYS_ADDR_MAX)
1714 		return;
1715 
1716 	/* truncate both memory and reserved regions */
1717 	memblock_remove_range(&memblock.memory, max_addr,
1718 			      PHYS_ADDR_MAX);
1719 	memblock_remove_range(&memblock.reserved, max_addr,
1720 			      PHYS_ADDR_MAX);
1721 }
1722 
1723 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1724 {
1725 	int start_rgn, end_rgn;
1726 	int i, ret;
1727 
1728 	if (!size)
1729 		return;
1730 
1731 	ret = memblock_isolate_range(&memblock.memory, base, size,
1732 						&start_rgn, &end_rgn);
1733 	if (ret)
1734 		return;
1735 
1736 	/* remove all the MAP regions */
1737 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1738 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1739 			memblock_remove_region(&memblock.memory, i);
1740 
1741 	for (i = start_rgn - 1; i >= 0; i--)
1742 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1743 			memblock_remove_region(&memblock.memory, i);
1744 
1745 	/* truncate the reserved regions */
1746 	memblock_remove_range(&memblock.reserved, 0, base);
1747 	memblock_remove_range(&memblock.reserved,
1748 			base + size, PHYS_ADDR_MAX);
1749 }
1750 
1751 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1752 {
1753 	phys_addr_t max_addr;
1754 
1755 	if (!limit)
1756 		return;
1757 
1758 	max_addr = __find_max_addr(limit);
1759 
1760 	/* @limit exceeds the total size of the memory, do nothing */
1761 	if (max_addr == PHYS_ADDR_MAX)
1762 		return;
1763 
1764 	memblock_cap_memory_range(0, max_addr);
1765 }
1766 
1767 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1768 {
1769 	unsigned int left = 0, right = type->cnt;
1770 
1771 	do {
1772 		unsigned int mid = (right + left) / 2;
1773 
1774 		if (addr < type->regions[mid].base)
1775 			right = mid;
1776 		else if (addr >= (type->regions[mid].base +
1777 				  type->regions[mid].size))
1778 			left = mid + 1;
1779 		else
1780 			return mid;
1781 	} while (left < right);
1782 	return -1;
1783 }
1784 
1785 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1786 {
1787 	return memblock_search(&memblock.reserved, addr) != -1;
1788 }
1789 
1790 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1791 {
1792 	return memblock_search(&memblock.memory, addr) != -1;
1793 }
1794 
1795 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1796 {
1797 	int i = memblock_search(&memblock.memory, addr);
1798 
1799 	if (i == -1)
1800 		return false;
1801 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1802 }
1803 
1804 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1805 			 unsigned long *start_pfn, unsigned long *end_pfn)
1806 {
1807 	struct memblock_type *type = &memblock.memory;
1808 	int mid = memblock_search(type, PFN_PHYS(pfn));
1809 
1810 	if (mid == -1)
1811 		return -1;
1812 
1813 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1814 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1815 
1816 	return memblock_get_region_node(&type->regions[mid]);
1817 }
1818 
1819 /**
1820  * memblock_is_region_memory - check if a region is a subset of memory
1821  * @base: base of region to check
1822  * @size: size of region to check
1823  *
1824  * Check if the region [@base, @base + @size) is a subset of a memory block.
1825  *
1826  * Return:
1827  * 0 if false, non-zero if true
1828  */
1829 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1830 {
1831 	int idx = memblock_search(&memblock.memory, base);
1832 	phys_addr_t end = base + memblock_cap_size(base, &size);
1833 
1834 	if (idx == -1)
1835 		return false;
1836 	return (memblock.memory.regions[idx].base +
1837 		 memblock.memory.regions[idx].size) >= end;
1838 }
1839 
1840 /**
1841  * memblock_is_region_reserved - check if a region intersects reserved memory
1842  * @base: base of region to check
1843  * @size: size of region to check
1844  *
1845  * Check if the region [@base, @base + @size) intersects a reserved
1846  * memory block.
1847  *
1848  * Return:
1849  * True if they intersect, false if not.
1850  */
1851 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1852 {
1853 	memblock_cap_size(base, &size);
1854 	return memblock_overlaps_region(&memblock.reserved, base, size);
1855 }
1856 
1857 void __init_memblock memblock_trim_memory(phys_addr_t align)
1858 {
1859 	phys_addr_t start, end, orig_start, orig_end;
1860 	struct memblock_region *r;
1861 
1862 	for_each_memblock(memory, r) {
1863 		orig_start = r->base;
1864 		orig_end = r->base + r->size;
1865 		start = round_up(orig_start, align);
1866 		end = round_down(orig_end, align);
1867 
1868 		if (start == orig_start && end == orig_end)
1869 			continue;
1870 
1871 		if (start < end) {
1872 			r->base = start;
1873 			r->size = end - start;
1874 		} else {
1875 			memblock_remove_region(&memblock.memory,
1876 					       r - memblock.memory.regions);
1877 			r--;
1878 		}
1879 	}
1880 }
1881 
1882 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1883 {
1884 	memblock.current_limit = limit;
1885 }
1886 
1887 phys_addr_t __init_memblock memblock_get_current_limit(void)
1888 {
1889 	return memblock.current_limit;
1890 }
1891 
1892 static void __init_memblock memblock_dump(struct memblock_type *type)
1893 {
1894 	phys_addr_t base, end, size;
1895 	enum memblock_flags flags;
1896 	int idx;
1897 	struct memblock_region *rgn;
1898 
1899 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1900 
1901 	for_each_memblock_type(idx, type, rgn) {
1902 		char nid_buf[32] = "";
1903 
1904 		base = rgn->base;
1905 		size = rgn->size;
1906 		end = base + size - 1;
1907 		flags = rgn->flags;
1908 #ifdef CONFIG_NEED_MULTIPLE_NODES
1909 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1910 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1911 				 memblock_get_region_node(rgn));
1912 #endif
1913 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1914 			type->name, idx, &base, &end, &size, nid_buf, flags);
1915 	}
1916 }
1917 
1918 void __init_memblock __memblock_dump_all(void)
1919 {
1920 	pr_info("MEMBLOCK configuration:\n");
1921 	pr_info(" memory size = %pa reserved size = %pa\n",
1922 		&memblock.memory.total_size,
1923 		&memblock.reserved.total_size);
1924 
1925 	memblock_dump(&memblock.memory);
1926 	memblock_dump(&memblock.reserved);
1927 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1928 	memblock_dump(&physmem);
1929 #endif
1930 }
1931 
1932 void __init memblock_allow_resize(void)
1933 {
1934 	memblock_can_resize = 1;
1935 }
1936 
1937 static int __init early_memblock(char *p)
1938 {
1939 	if (p && strstr(p, "debug"))
1940 		memblock_debug = 1;
1941 	return 0;
1942 }
1943 early_param("memblock", early_memblock);
1944 
1945 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1946 {
1947 	int order;
1948 
1949 	while (start < end) {
1950 		order = min(MAX_ORDER - 1UL, __ffs(start));
1951 
1952 		while (start + (1UL << order) > end)
1953 			order--;
1954 
1955 		memblock_free_pages(pfn_to_page(start), start, order);
1956 
1957 		start += (1UL << order);
1958 	}
1959 }
1960 
1961 static unsigned long __init __free_memory_core(phys_addr_t start,
1962 				 phys_addr_t end)
1963 {
1964 	unsigned long start_pfn = PFN_UP(start);
1965 	unsigned long end_pfn = min_t(unsigned long,
1966 				      PFN_DOWN(end), max_low_pfn);
1967 
1968 	if (start_pfn >= end_pfn)
1969 		return 0;
1970 
1971 	__free_pages_memory(start_pfn, end_pfn);
1972 
1973 	return end_pfn - start_pfn;
1974 }
1975 
1976 static unsigned long __init free_low_memory_core_early(void)
1977 {
1978 	unsigned long count = 0;
1979 	phys_addr_t start, end;
1980 	u64 i;
1981 
1982 	memblock_clear_hotplug(0, -1);
1983 
1984 	for_each_reserved_mem_region(i, &start, &end)
1985 		reserve_bootmem_region(start, end);
1986 
1987 	/*
1988 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1989 	 *  because in some case like Node0 doesn't have RAM installed
1990 	 *  low ram will be on Node1
1991 	 */
1992 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1993 				NULL)
1994 		count += __free_memory_core(start, end);
1995 
1996 	return count;
1997 }
1998 
1999 static int reset_managed_pages_done __initdata;
2000 
2001 void reset_node_managed_pages(pg_data_t *pgdat)
2002 {
2003 	struct zone *z;
2004 
2005 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2006 		atomic_long_set(&z->managed_pages, 0);
2007 }
2008 
2009 void __init reset_all_zones_managed_pages(void)
2010 {
2011 	struct pglist_data *pgdat;
2012 
2013 	if (reset_managed_pages_done)
2014 		return;
2015 
2016 	for_each_online_pgdat(pgdat)
2017 		reset_node_managed_pages(pgdat);
2018 
2019 	reset_managed_pages_done = 1;
2020 }
2021 
2022 /**
2023  * memblock_free_all - release free pages to the buddy allocator
2024  *
2025  * Return: the number of pages actually released.
2026  */
2027 unsigned long __init memblock_free_all(void)
2028 {
2029 	unsigned long pages;
2030 
2031 	reset_all_zones_managed_pages();
2032 
2033 	pages = free_low_memory_core_early();
2034 	totalram_pages_add(pages);
2035 
2036 	return pages;
2037 }
2038 
2039 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2040 
2041 static int memblock_debug_show(struct seq_file *m, void *private)
2042 {
2043 	struct memblock_type *type = m->private;
2044 	struct memblock_region *reg;
2045 	int i;
2046 	phys_addr_t end;
2047 
2048 	for (i = 0; i < type->cnt; i++) {
2049 		reg = &type->regions[i];
2050 		end = reg->base + reg->size - 1;
2051 
2052 		seq_printf(m, "%4d: ", i);
2053 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2054 	}
2055 	return 0;
2056 }
2057 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2058 
2059 static int __init memblock_init_debugfs(void)
2060 {
2061 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2062 
2063 	debugfs_create_file("memory", 0444, root,
2064 			    &memblock.memory, &memblock_debug_fops);
2065 	debugfs_create_file("reserved", 0444, root,
2066 			    &memblock.reserved, &memblock_debug_fops);
2067 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2068 	debugfs_create_file("physmem", 0444, root, &physmem,
2069 			    &memblock_debug_fops);
2070 #endif
2071 
2072 	return 0;
2073 }
2074 __initcall(memblock_init_debugfs);
2075 
2076 #endif /* CONFIG_DEBUG_FS */
2077