1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for maintaining information about logical memory blocks. 4 * 5 * Peter Bergner, IBM Corp. June 2001. 6 * Copyright (C) 2001 Peter Bergner. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/init.h> 12 #include <linux/bitops.h> 13 #include <linux/poison.h> 14 #include <linux/pfn.h> 15 #include <linux/debugfs.h> 16 #include <linux/kmemleak.h> 17 #include <linux/seq_file.h> 18 #include <linux/memblock.h> 19 20 #include <asm/sections.h> 21 #include <linux/io.h> 22 23 #include "internal.h" 24 25 #define INIT_MEMBLOCK_REGIONS 128 26 #define INIT_PHYSMEM_REGIONS 4 27 28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 30 #endif 31 32 /** 33 * DOC: memblock overview 34 * 35 * Memblock is a method of managing memory regions during the early 36 * boot period when the usual kernel memory allocators are not up and 37 * running. 38 * 39 * Memblock views the system memory as collections of contiguous 40 * regions. There are several types of these collections: 41 * 42 * * ``memory`` - describes the physical memory available to the 43 * kernel; this may differ from the actual physical memory installed 44 * in the system, for instance when the memory is restricted with 45 * ``mem=`` command line parameter 46 * * ``reserved`` - describes the regions that were allocated 47 * * ``physmem`` - describes the actual physical memory available during 48 * boot regardless of the possible restrictions and memory hot(un)plug; 49 * the ``physmem`` type is only available on some architectures. 50 * 51 * Each region is represented by struct memblock_region that 52 * defines the region extents, its attributes and NUMA node id on NUMA 53 * systems. Every memory type is described by the struct memblock_type 54 * which contains an array of memory regions along with 55 * the allocator metadata. The "memory" and "reserved" types are nicely 56 * wrapped with struct memblock. This structure is statically 57 * initialized at build time. The region arrays are initially sized to 58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS 59 * for "reserved". The region array for "physmem" is initially sized to 60 * %INIT_PHYSMEM_REGIONS. 61 * The memblock_allow_resize() enables automatic resizing of the region 62 * arrays during addition of new regions. This feature should be used 63 * with care so that memory allocated for the region array will not 64 * overlap with areas that should be reserved, for example initrd. 65 * 66 * The early architecture setup should tell memblock what the physical 67 * memory layout is by using memblock_add() or memblock_add_node() 68 * functions. The first function does not assign the region to a NUMA 69 * node and it is appropriate for UMA systems. Yet, it is possible to 70 * use it on NUMA systems as well and assign the region to a NUMA node 71 * later in the setup process using memblock_set_node(). The 72 * memblock_add_node() performs such an assignment directly. 73 * 74 * Once memblock is setup the memory can be allocated using one of the 75 * API variants: 76 * 77 * * memblock_phys_alloc*() - these functions return the **physical** 78 * address of the allocated memory 79 * * memblock_alloc*() - these functions return the **virtual** address 80 * of the allocated memory. 81 * 82 * Note, that both API variants use implicit assumptions about allowed 83 * memory ranges and the fallback methods. Consult the documentation 84 * of memblock_alloc_internal() and memblock_alloc_range_nid() 85 * functions for more elaborate description. 86 * 87 * As the system boot progresses, the architecture specific mem_init() 88 * function frees all the memory to the buddy page allocator. 89 * 90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 91 * memblock data structures (except "physmem") will be discarded after the 92 * system initialization completes. 93 */ 94 95 #ifndef CONFIG_NEED_MULTIPLE_NODES 96 struct pglist_data __refdata contig_page_data; 97 EXPORT_SYMBOL(contig_page_data); 98 #endif 99 100 unsigned long max_low_pfn; 101 unsigned long min_low_pfn; 102 unsigned long max_pfn; 103 unsigned long long max_possible_pfn; 104 105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; 109 #endif 110 111 struct memblock memblock __initdata_memblock = { 112 .memory.regions = memblock_memory_init_regions, 113 .memory.cnt = 1, /* empty dummy entry */ 114 .memory.max = INIT_MEMBLOCK_REGIONS, 115 .memory.name = "memory", 116 117 .reserved.regions = memblock_reserved_init_regions, 118 .reserved.cnt = 1, /* empty dummy entry */ 119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 120 .reserved.name = "reserved", 121 122 .bottom_up = false, 123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 124 }; 125 126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 127 struct memblock_type physmem = { 128 .regions = memblock_physmem_init_regions, 129 .cnt = 1, /* empty dummy entry */ 130 .max = INIT_PHYSMEM_REGIONS, 131 .name = "physmem", 132 }; 133 #endif 134 135 /* 136 * keep a pointer to &memblock.memory in the text section to use it in 137 * __next_mem_range() and its helpers. 138 * For architectures that do not keep memblock data after init, this 139 * pointer will be reset to NULL at memblock_discard() 140 */ 141 static __refdata struct memblock_type *memblock_memory = &memblock.memory; 142 143 #define for_each_memblock_type(i, memblock_type, rgn) \ 144 for (i = 0, rgn = &memblock_type->regions[0]; \ 145 i < memblock_type->cnt; \ 146 i++, rgn = &memblock_type->regions[i]) 147 148 #define memblock_dbg(fmt, ...) \ 149 do { \ 150 if (memblock_debug) \ 151 pr_info(fmt, ##__VA_ARGS__); \ 152 } while (0) 153 154 static int memblock_debug __initdata_memblock; 155 static bool system_has_some_mirror __initdata_memblock = false; 156 static int memblock_can_resize __initdata_memblock; 157 static int memblock_memory_in_slab __initdata_memblock = 0; 158 static int memblock_reserved_in_slab __initdata_memblock = 0; 159 160 static enum memblock_flags __init_memblock choose_memblock_flags(void) 161 { 162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 163 } 164 165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 167 { 168 return *size = min(*size, PHYS_ADDR_MAX - base); 169 } 170 171 /* 172 * Address comparison utilities 173 */ 174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 175 phys_addr_t base2, phys_addr_t size2) 176 { 177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 178 } 179 180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 181 phys_addr_t base, phys_addr_t size) 182 { 183 unsigned long i; 184 185 for (i = 0; i < type->cnt; i++) 186 if (memblock_addrs_overlap(base, size, type->regions[i].base, 187 type->regions[i].size)) 188 break; 189 return i < type->cnt; 190 } 191 192 /** 193 * __memblock_find_range_bottom_up - find free area utility in bottom-up 194 * @start: start of candidate range 195 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 196 * %MEMBLOCK_ALLOC_ACCESSIBLE 197 * @size: size of free area to find 198 * @align: alignment of free area to find 199 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 200 * @flags: pick from blocks based on memory attributes 201 * 202 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 203 * 204 * Return: 205 * Found address on success, 0 on failure. 206 */ 207 static phys_addr_t __init_memblock 208 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 209 phys_addr_t size, phys_addr_t align, int nid, 210 enum memblock_flags flags) 211 { 212 phys_addr_t this_start, this_end, cand; 213 u64 i; 214 215 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 216 this_start = clamp(this_start, start, end); 217 this_end = clamp(this_end, start, end); 218 219 cand = round_up(this_start, align); 220 if (cand < this_end && this_end - cand >= size) 221 return cand; 222 } 223 224 return 0; 225 } 226 227 /** 228 * __memblock_find_range_top_down - find free area utility, in top-down 229 * @start: start of candidate range 230 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 231 * %MEMBLOCK_ALLOC_ACCESSIBLE 232 * @size: size of free area to find 233 * @align: alignment of free area to find 234 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 235 * @flags: pick from blocks based on memory attributes 236 * 237 * Utility called from memblock_find_in_range_node(), find free area top-down. 238 * 239 * Return: 240 * Found address on success, 0 on failure. 241 */ 242 static phys_addr_t __init_memblock 243 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 244 phys_addr_t size, phys_addr_t align, int nid, 245 enum memblock_flags flags) 246 { 247 phys_addr_t this_start, this_end, cand; 248 u64 i; 249 250 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 251 NULL) { 252 this_start = clamp(this_start, start, end); 253 this_end = clamp(this_end, start, end); 254 255 if (this_end < size) 256 continue; 257 258 cand = round_down(this_end - size, align); 259 if (cand >= this_start) 260 return cand; 261 } 262 263 return 0; 264 } 265 266 /** 267 * memblock_find_in_range_node - find free area in given range and node 268 * @size: size of free area to find 269 * @align: alignment of free area to find 270 * @start: start of candidate range 271 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 272 * %MEMBLOCK_ALLOC_ACCESSIBLE 273 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 274 * @flags: pick from blocks based on memory attributes 275 * 276 * Find @size free area aligned to @align in the specified range and node. 277 * 278 * Return: 279 * Found address on success, 0 on failure. 280 */ 281 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 282 phys_addr_t align, phys_addr_t start, 283 phys_addr_t end, int nid, 284 enum memblock_flags flags) 285 { 286 /* pump up @end */ 287 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 288 end == MEMBLOCK_ALLOC_KASAN) 289 end = memblock.current_limit; 290 291 /* avoid allocating the first page */ 292 start = max_t(phys_addr_t, start, PAGE_SIZE); 293 end = max(start, end); 294 295 if (memblock_bottom_up()) 296 return __memblock_find_range_bottom_up(start, end, size, align, 297 nid, flags); 298 else 299 return __memblock_find_range_top_down(start, end, size, align, 300 nid, flags); 301 } 302 303 /** 304 * memblock_find_in_range - find free area in given range 305 * @start: start of candidate range 306 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 307 * %MEMBLOCK_ALLOC_ACCESSIBLE 308 * @size: size of free area to find 309 * @align: alignment of free area to find 310 * 311 * Find @size free area aligned to @align in the specified range. 312 * 313 * Return: 314 * Found address on success, 0 on failure. 315 */ 316 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 317 phys_addr_t end, phys_addr_t size, 318 phys_addr_t align) 319 { 320 phys_addr_t ret; 321 enum memblock_flags flags = choose_memblock_flags(); 322 323 again: 324 ret = memblock_find_in_range_node(size, align, start, end, 325 NUMA_NO_NODE, flags); 326 327 if (!ret && (flags & MEMBLOCK_MIRROR)) { 328 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 329 &size); 330 flags &= ~MEMBLOCK_MIRROR; 331 goto again; 332 } 333 334 return ret; 335 } 336 337 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 338 { 339 type->total_size -= type->regions[r].size; 340 memmove(&type->regions[r], &type->regions[r + 1], 341 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 342 type->cnt--; 343 344 /* Special case for empty arrays */ 345 if (type->cnt == 0) { 346 WARN_ON(type->total_size != 0); 347 type->cnt = 1; 348 type->regions[0].base = 0; 349 type->regions[0].size = 0; 350 type->regions[0].flags = 0; 351 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 352 } 353 } 354 355 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 356 /** 357 * memblock_discard - discard memory and reserved arrays if they were allocated 358 */ 359 void __init memblock_discard(void) 360 { 361 phys_addr_t addr, size; 362 363 if (memblock.reserved.regions != memblock_reserved_init_regions) { 364 addr = __pa(memblock.reserved.regions); 365 size = PAGE_ALIGN(sizeof(struct memblock_region) * 366 memblock.reserved.max); 367 __memblock_free_late(addr, size); 368 } 369 370 if (memblock.memory.regions != memblock_memory_init_regions) { 371 addr = __pa(memblock.memory.regions); 372 size = PAGE_ALIGN(sizeof(struct memblock_region) * 373 memblock.memory.max); 374 __memblock_free_late(addr, size); 375 } 376 377 memblock_memory = NULL; 378 } 379 #endif 380 381 /** 382 * memblock_double_array - double the size of the memblock regions array 383 * @type: memblock type of the regions array being doubled 384 * @new_area_start: starting address of memory range to avoid overlap with 385 * @new_area_size: size of memory range to avoid overlap with 386 * 387 * Double the size of the @type regions array. If memblock is being used to 388 * allocate memory for a new reserved regions array and there is a previously 389 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 390 * waiting to be reserved, ensure the memory used by the new array does 391 * not overlap. 392 * 393 * Return: 394 * 0 on success, -1 on failure. 395 */ 396 static int __init_memblock memblock_double_array(struct memblock_type *type, 397 phys_addr_t new_area_start, 398 phys_addr_t new_area_size) 399 { 400 struct memblock_region *new_array, *old_array; 401 phys_addr_t old_alloc_size, new_alloc_size; 402 phys_addr_t old_size, new_size, addr, new_end; 403 int use_slab = slab_is_available(); 404 int *in_slab; 405 406 /* We don't allow resizing until we know about the reserved regions 407 * of memory that aren't suitable for allocation 408 */ 409 if (!memblock_can_resize) 410 return -1; 411 412 /* Calculate new doubled size */ 413 old_size = type->max * sizeof(struct memblock_region); 414 new_size = old_size << 1; 415 /* 416 * We need to allocated new one align to PAGE_SIZE, 417 * so we can free them completely later. 418 */ 419 old_alloc_size = PAGE_ALIGN(old_size); 420 new_alloc_size = PAGE_ALIGN(new_size); 421 422 /* Retrieve the slab flag */ 423 if (type == &memblock.memory) 424 in_slab = &memblock_memory_in_slab; 425 else 426 in_slab = &memblock_reserved_in_slab; 427 428 /* Try to find some space for it */ 429 if (use_slab) { 430 new_array = kmalloc(new_size, GFP_KERNEL); 431 addr = new_array ? __pa(new_array) : 0; 432 } else { 433 /* only exclude range when trying to double reserved.regions */ 434 if (type != &memblock.reserved) 435 new_area_start = new_area_size = 0; 436 437 addr = memblock_find_in_range(new_area_start + new_area_size, 438 memblock.current_limit, 439 new_alloc_size, PAGE_SIZE); 440 if (!addr && new_area_size) 441 addr = memblock_find_in_range(0, 442 min(new_area_start, memblock.current_limit), 443 new_alloc_size, PAGE_SIZE); 444 445 new_array = addr ? __va(addr) : NULL; 446 } 447 if (!addr) { 448 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 449 type->name, type->max, type->max * 2); 450 return -1; 451 } 452 453 new_end = addr + new_size - 1; 454 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 455 type->name, type->max * 2, &addr, &new_end); 456 457 /* 458 * Found space, we now need to move the array over before we add the 459 * reserved region since it may be our reserved array itself that is 460 * full. 461 */ 462 memcpy(new_array, type->regions, old_size); 463 memset(new_array + type->max, 0, old_size); 464 old_array = type->regions; 465 type->regions = new_array; 466 type->max <<= 1; 467 468 /* Free old array. We needn't free it if the array is the static one */ 469 if (*in_slab) 470 kfree(old_array); 471 else if (old_array != memblock_memory_init_regions && 472 old_array != memblock_reserved_init_regions) 473 memblock_free(__pa(old_array), old_alloc_size); 474 475 /* 476 * Reserve the new array if that comes from the memblock. Otherwise, we 477 * needn't do it 478 */ 479 if (!use_slab) 480 BUG_ON(memblock_reserve(addr, new_alloc_size)); 481 482 /* Update slab flag */ 483 *in_slab = use_slab; 484 485 return 0; 486 } 487 488 /** 489 * memblock_merge_regions - merge neighboring compatible regions 490 * @type: memblock type to scan 491 * 492 * Scan @type and merge neighboring compatible regions. 493 */ 494 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 495 { 496 int i = 0; 497 498 /* cnt never goes below 1 */ 499 while (i < type->cnt - 1) { 500 struct memblock_region *this = &type->regions[i]; 501 struct memblock_region *next = &type->regions[i + 1]; 502 503 if (this->base + this->size != next->base || 504 memblock_get_region_node(this) != 505 memblock_get_region_node(next) || 506 this->flags != next->flags) { 507 BUG_ON(this->base + this->size > next->base); 508 i++; 509 continue; 510 } 511 512 this->size += next->size; 513 /* move forward from next + 1, index of which is i + 2 */ 514 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 515 type->cnt--; 516 } 517 } 518 519 /** 520 * memblock_insert_region - insert new memblock region 521 * @type: memblock type to insert into 522 * @idx: index for the insertion point 523 * @base: base address of the new region 524 * @size: size of the new region 525 * @nid: node id of the new region 526 * @flags: flags of the new region 527 * 528 * Insert new memblock region [@base, @base + @size) into @type at @idx. 529 * @type must already have extra room to accommodate the new region. 530 */ 531 static void __init_memblock memblock_insert_region(struct memblock_type *type, 532 int idx, phys_addr_t base, 533 phys_addr_t size, 534 int nid, 535 enum memblock_flags flags) 536 { 537 struct memblock_region *rgn = &type->regions[idx]; 538 539 BUG_ON(type->cnt >= type->max); 540 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 541 rgn->base = base; 542 rgn->size = size; 543 rgn->flags = flags; 544 memblock_set_region_node(rgn, nid); 545 type->cnt++; 546 type->total_size += size; 547 } 548 549 /** 550 * memblock_add_range - add new memblock region 551 * @type: memblock type to add new region into 552 * @base: base address of the new region 553 * @size: size of the new region 554 * @nid: nid of the new region 555 * @flags: flags of the new region 556 * 557 * Add new memblock region [@base, @base + @size) into @type. The new region 558 * is allowed to overlap with existing ones - overlaps don't affect already 559 * existing regions. @type is guaranteed to be minimal (all neighbouring 560 * compatible regions are merged) after the addition. 561 * 562 * Return: 563 * 0 on success, -errno on failure. 564 */ 565 static int __init_memblock memblock_add_range(struct memblock_type *type, 566 phys_addr_t base, phys_addr_t size, 567 int nid, enum memblock_flags flags) 568 { 569 bool insert = false; 570 phys_addr_t obase = base; 571 phys_addr_t end = base + memblock_cap_size(base, &size); 572 int idx, nr_new; 573 struct memblock_region *rgn; 574 575 if (!size) 576 return 0; 577 578 /* special case for empty array */ 579 if (type->regions[0].size == 0) { 580 WARN_ON(type->cnt != 1 || type->total_size); 581 type->regions[0].base = base; 582 type->regions[0].size = size; 583 type->regions[0].flags = flags; 584 memblock_set_region_node(&type->regions[0], nid); 585 type->total_size = size; 586 return 0; 587 } 588 repeat: 589 /* 590 * The following is executed twice. Once with %false @insert and 591 * then with %true. The first counts the number of regions needed 592 * to accommodate the new area. The second actually inserts them. 593 */ 594 base = obase; 595 nr_new = 0; 596 597 for_each_memblock_type(idx, type, rgn) { 598 phys_addr_t rbase = rgn->base; 599 phys_addr_t rend = rbase + rgn->size; 600 601 if (rbase >= end) 602 break; 603 if (rend <= base) 604 continue; 605 /* 606 * @rgn overlaps. If it separates the lower part of new 607 * area, insert that portion. 608 */ 609 if (rbase > base) { 610 #ifdef CONFIG_NEED_MULTIPLE_NODES 611 WARN_ON(nid != memblock_get_region_node(rgn)); 612 #endif 613 WARN_ON(flags != rgn->flags); 614 nr_new++; 615 if (insert) 616 memblock_insert_region(type, idx++, base, 617 rbase - base, nid, 618 flags); 619 } 620 /* area below @rend is dealt with, forget about it */ 621 base = min(rend, end); 622 } 623 624 /* insert the remaining portion */ 625 if (base < end) { 626 nr_new++; 627 if (insert) 628 memblock_insert_region(type, idx, base, end - base, 629 nid, flags); 630 } 631 632 if (!nr_new) 633 return 0; 634 635 /* 636 * If this was the first round, resize array and repeat for actual 637 * insertions; otherwise, merge and return. 638 */ 639 if (!insert) { 640 while (type->cnt + nr_new > type->max) 641 if (memblock_double_array(type, obase, size) < 0) 642 return -ENOMEM; 643 insert = true; 644 goto repeat; 645 } else { 646 memblock_merge_regions(type); 647 return 0; 648 } 649 } 650 651 /** 652 * memblock_add_node - add new memblock region within a NUMA node 653 * @base: base address of the new region 654 * @size: size of the new region 655 * @nid: nid of the new region 656 * 657 * Add new memblock region [@base, @base + @size) to the "memory" 658 * type. See memblock_add_range() description for mode details 659 * 660 * Return: 661 * 0 on success, -errno on failure. 662 */ 663 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 664 int nid) 665 { 666 return memblock_add_range(&memblock.memory, base, size, nid, 0); 667 } 668 669 /** 670 * memblock_add - add new memblock region 671 * @base: base address of the new region 672 * @size: size of the new region 673 * 674 * Add new memblock region [@base, @base + @size) to the "memory" 675 * type. See memblock_add_range() description for mode details 676 * 677 * Return: 678 * 0 on success, -errno on failure. 679 */ 680 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 681 { 682 phys_addr_t end = base + size - 1; 683 684 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 685 &base, &end, (void *)_RET_IP_); 686 687 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 688 } 689 690 /** 691 * memblock_isolate_range - isolate given range into disjoint memblocks 692 * @type: memblock type to isolate range for 693 * @base: base of range to isolate 694 * @size: size of range to isolate 695 * @start_rgn: out parameter for the start of isolated region 696 * @end_rgn: out parameter for the end of isolated region 697 * 698 * Walk @type and ensure that regions don't cross the boundaries defined by 699 * [@base, @base + @size). Crossing regions are split at the boundaries, 700 * which may create at most two more regions. The index of the first 701 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 702 * 703 * Return: 704 * 0 on success, -errno on failure. 705 */ 706 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 707 phys_addr_t base, phys_addr_t size, 708 int *start_rgn, int *end_rgn) 709 { 710 phys_addr_t end = base + memblock_cap_size(base, &size); 711 int idx; 712 struct memblock_region *rgn; 713 714 *start_rgn = *end_rgn = 0; 715 716 if (!size) 717 return 0; 718 719 /* we'll create at most two more regions */ 720 while (type->cnt + 2 > type->max) 721 if (memblock_double_array(type, base, size) < 0) 722 return -ENOMEM; 723 724 for_each_memblock_type(idx, type, rgn) { 725 phys_addr_t rbase = rgn->base; 726 phys_addr_t rend = rbase + rgn->size; 727 728 if (rbase >= end) 729 break; 730 if (rend <= base) 731 continue; 732 733 if (rbase < base) { 734 /* 735 * @rgn intersects from below. Split and continue 736 * to process the next region - the new top half. 737 */ 738 rgn->base = base; 739 rgn->size -= base - rbase; 740 type->total_size -= base - rbase; 741 memblock_insert_region(type, idx, rbase, base - rbase, 742 memblock_get_region_node(rgn), 743 rgn->flags); 744 } else if (rend > end) { 745 /* 746 * @rgn intersects from above. Split and redo the 747 * current region - the new bottom half. 748 */ 749 rgn->base = end; 750 rgn->size -= end - rbase; 751 type->total_size -= end - rbase; 752 memblock_insert_region(type, idx--, rbase, end - rbase, 753 memblock_get_region_node(rgn), 754 rgn->flags); 755 } else { 756 /* @rgn is fully contained, record it */ 757 if (!*end_rgn) 758 *start_rgn = idx; 759 *end_rgn = idx + 1; 760 } 761 } 762 763 return 0; 764 } 765 766 static int __init_memblock memblock_remove_range(struct memblock_type *type, 767 phys_addr_t base, phys_addr_t size) 768 { 769 int start_rgn, end_rgn; 770 int i, ret; 771 772 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 773 if (ret) 774 return ret; 775 776 for (i = end_rgn - 1; i >= start_rgn; i--) 777 memblock_remove_region(type, i); 778 return 0; 779 } 780 781 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 782 { 783 phys_addr_t end = base + size - 1; 784 785 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 786 &base, &end, (void *)_RET_IP_); 787 788 return memblock_remove_range(&memblock.memory, base, size); 789 } 790 791 /** 792 * memblock_free - free boot memory block 793 * @base: phys starting address of the boot memory block 794 * @size: size of the boot memory block in bytes 795 * 796 * Free boot memory block previously allocated by memblock_alloc_xx() API. 797 * The freeing memory will not be released to the buddy allocator. 798 */ 799 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 800 { 801 phys_addr_t end = base + size - 1; 802 803 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 804 &base, &end, (void *)_RET_IP_); 805 806 kmemleak_free_part_phys(base, size); 807 return memblock_remove_range(&memblock.reserved, base, size); 808 } 809 810 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 811 { 812 phys_addr_t end = base + size - 1; 813 814 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 815 &base, &end, (void *)_RET_IP_); 816 817 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 818 } 819 820 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 821 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) 822 { 823 phys_addr_t end = base + size - 1; 824 825 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 826 &base, &end, (void *)_RET_IP_); 827 828 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); 829 } 830 #endif 831 832 /** 833 * memblock_setclr_flag - set or clear flag for a memory region 834 * @base: base address of the region 835 * @size: size of the region 836 * @set: set or clear the flag 837 * @flag: the flag to update 838 * 839 * This function isolates region [@base, @base + @size), and sets/clears flag 840 * 841 * Return: 0 on success, -errno on failure. 842 */ 843 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 844 phys_addr_t size, int set, int flag) 845 { 846 struct memblock_type *type = &memblock.memory; 847 int i, ret, start_rgn, end_rgn; 848 849 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 850 if (ret) 851 return ret; 852 853 for (i = start_rgn; i < end_rgn; i++) { 854 struct memblock_region *r = &type->regions[i]; 855 856 if (set) 857 r->flags |= flag; 858 else 859 r->flags &= ~flag; 860 } 861 862 memblock_merge_regions(type); 863 return 0; 864 } 865 866 /** 867 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 868 * @base: the base phys addr of the region 869 * @size: the size of the region 870 * 871 * Return: 0 on success, -errno on failure. 872 */ 873 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 874 { 875 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 876 } 877 878 /** 879 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 880 * @base: the base phys addr of the region 881 * @size: the size of the region 882 * 883 * Return: 0 on success, -errno on failure. 884 */ 885 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 886 { 887 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 888 } 889 890 /** 891 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 892 * @base: the base phys addr of the region 893 * @size: the size of the region 894 * 895 * Return: 0 on success, -errno on failure. 896 */ 897 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 898 { 899 system_has_some_mirror = true; 900 901 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 902 } 903 904 /** 905 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 906 * @base: the base phys addr of the region 907 * @size: the size of the region 908 * 909 * Return: 0 on success, -errno on failure. 910 */ 911 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 912 { 913 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 914 } 915 916 /** 917 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 918 * @base: the base phys addr of the region 919 * @size: the size of the region 920 * 921 * Return: 0 on success, -errno on failure. 922 */ 923 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 924 { 925 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 926 } 927 928 static bool should_skip_region(struct memblock_type *type, 929 struct memblock_region *m, 930 int nid, int flags) 931 { 932 int m_nid = memblock_get_region_node(m); 933 934 /* we never skip regions when iterating memblock.reserved or physmem */ 935 if (type != memblock_memory) 936 return false; 937 938 /* only memory regions are associated with nodes, check it */ 939 if (nid != NUMA_NO_NODE && nid != m_nid) 940 return true; 941 942 /* skip hotpluggable memory regions if needed */ 943 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 944 return true; 945 946 /* if we want mirror memory skip non-mirror memory regions */ 947 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 948 return true; 949 950 /* skip nomap memory unless we were asked for it explicitly */ 951 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 952 return true; 953 954 return false; 955 } 956 957 /** 958 * __next_mem_range - next function for for_each_free_mem_range() etc. 959 * @idx: pointer to u64 loop variable 960 * @nid: node selector, %NUMA_NO_NODE for all nodes 961 * @flags: pick from blocks based on memory attributes 962 * @type_a: pointer to memblock_type from where the range is taken 963 * @type_b: pointer to memblock_type which excludes memory from being taken 964 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 965 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 966 * @out_nid: ptr to int for nid of the range, can be %NULL 967 * 968 * Find the first area from *@idx which matches @nid, fill the out 969 * parameters, and update *@idx for the next iteration. The lower 32bit of 970 * *@idx contains index into type_a and the upper 32bit indexes the 971 * areas before each region in type_b. For example, if type_b regions 972 * look like the following, 973 * 974 * 0:[0-16), 1:[32-48), 2:[128-130) 975 * 976 * The upper 32bit indexes the following regions. 977 * 978 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 979 * 980 * As both region arrays are sorted, the function advances the two indices 981 * in lockstep and returns each intersection. 982 */ 983 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 984 struct memblock_type *type_a, 985 struct memblock_type *type_b, phys_addr_t *out_start, 986 phys_addr_t *out_end, int *out_nid) 987 { 988 int idx_a = *idx & 0xffffffff; 989 int idx_b = *idx >> 32; 990 991 if (WARN_ONCE(nid == MAX_NUMNODES, 992 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 993 nid = NUMA_NO_NODE; 994 995 for (; idx_a < type_a->cnt; idx_a++) { 996 struct memblock_region *m = &type_a->regions[idx_a]; 997 998 phys_addr_t m_start = m->base; 999 phys_addr_t m_end = m->base + m->size; 1000 int m_nid = memblock_get_region_node(m); 1001 1002 if (should_skip_region(type_a, m, nid, flags)) 1003 continue; 1004 1005 if (!type_b) { 1006 if (out_start) 1007 *out_start = m_start; 1008 if (out_end) 1009 *out_end = m_end; 1010 if (out_nid) 1011 *out_nid = m_nid; 1012 idx_a++; 1013 *idx = (u32)idx_a | (u64)idx_b << 32; 1014 return; 1015 } 1016 1017 /* scan areas before each reservation */ 1018 for (; idx_b < type_b->cnt + 1; idx_b++) { 1019 struct memblock_region *r; 1020 phys_addr_t r_start; 1021 phys_addr_t r_end; 1022 1023 r = &type_b->regions[idx_b]; 1024 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1025 r_end = idx_b < type_b->cnt ? 1026 r->base : PHYS_ADDR_MAX; 1027 1028 /* 1029 * if idx_b advanced past idx_a, 1030 * break out to advance idx_a 1031 */ 1032 if (r_start >= m_end) 1033 break; 1034 /* if the two regions intersect, we're done */ 1035 if (m_start < r_end) { 1036 if (out_start) 1037 *out_start = 1038 max(m_start, r_start); 1039 if (out_end) 1040 *out_end = min(m_end, r_end); 1041 if (out_nid) 1042 *out_nid = m_nid; 1043 /* 1044 * The region which ends first is 1045 * advanced for the next iteration. 1046 */ 1047 if (m_end <= r_end) 1048 idx_a++; 1049 else 1050 idx_b++; 1051 *idx = (u32)idx_a | (u64)idx_b << 32; 1052 return; 1053 } 1054 } 1055 } 1056 1057 /* signal end of iteration */ 1058 *idx = ULLONG_MAX; 1059 } 1060 1061 /** 1062 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1063 * 1064 * @idx: pointer to u64 loop variable 1065 * @nid: node selector, %NUMA_NO_NODE for all nodes 1066 * @flags: pick from blocks based on memory attributes 1067 * @type_a: pointer to memblock_type from where the range is taken 1068 * @type_b: pointer to memblock_type which excludes memory from being taken 1069 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1070 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1071 * @out_nid: ptr to int for nid of the range, can be %NULL 1072 * 1073 * Finds the next range from type_a which is not marked as unsuitable 1074 * in type_b. 1075 * 1076 * Reverse of __next_mem_range(). 1077 */ 1078 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1079 enum memblock_flags flags, 1080 struct memblock_type *type_a, 1081 struct memblock_type *type_b, 1082 phys_addr_t *out_start, 1083 phys_addr_t *out_end, int *out_nid) 1084 { 1085 int idx_a = *idx & 0xffffffff; 1086 int idx_b = *idx >> 32; 1087 1088 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1089 nid = NUMA_NO_NODE; 1090 1091 if (*idx == (u64)ULLONG_MAX) { 1092 idx_a = type_a->cnt - 1; 1093 if (type_b != NULL) 1094 idx_b = type_b->cnt; 1095 else 1096 idx_b = 0; 1097 } 1098 1099 for (; idx_a >= 0; idx_a--) { 1100 struct memblock_region *m = &type_a->regions[idx_a]; 1101 1102 phys_addr_t m_start = m->base; 1103 phys_addr_t m_end = m->base + m->size; 1104 int m_nid = memblock_get_region_node(m); 1105 1106 if (should_skip_region(type_a, m, nid, flags)) 1107 continue; 1108 1109 if (!type_b) { 1110 if (out_start) 1111 *out_start = m_start; 1112 if (out_end) 1113 *out_end = m_end; 1114 if (out_nid) 1115 *out_nid = m_nid; 1116 idx_a--; 1117 *idx = (u32)idx_a | (u64)idx_b << 32; 1118 return; 1119 } 1120 1121 /* scan areas before each reservation */ 1122 for (; idx_b >= 0; idx_b--) { 1123 struct memblock_region *r; 1124 phys_addr_t r_start; 1125 phys_addr_t r_end; 1126 1127 r = &type_b->regions[idx_b]; 1128 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1129 r_end = idx_b < type_b->cnt ? 1130 r->base : PHYS_ADDR_MAX; 1131 /* 1132 * if idx_b advanced past idx_a, 1133 * break out to advance idx_a 1134 */ 1135 1136 if (r_end <= m_start) 1137 break; 1138 /* if the two regions intersect, we're done */ 1139 if (m_end > r_start) { 1140 if (out_start) 1141 *out_start = max(m_start, r_start); 1142 if (out_end) 1143 *out_end = min(m_end, r_end); 1144 if (out_nid) 1145 *out_nid = m_nid; 1146 if (m_start >= r_start) 1147 idx_a--; 1148 else 1149 idx_b--; 1150 *idx = (u32)idx_a | (u64)idx_b << 32; 1151 return; 1152 } 1153 } 1154 } 1155 /* signal end of iteration */ 1156 *idx = ULLONG_MAX; 1157 } 1158 1159 /* 1160 * Common iterator interface used to define for_each_mem_pfn_range(). 1161 */ 1162 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1163 unsigned long *out_start_pfn, 1164 unsigned long *out_end_pfn, int *out_nid) 1165 { 1166 struct memblock_type *type = &memblock.memory; 1167 struct memblock_region *r; 1168 int r_nid; 1169 1170 while (++*idx < type->cnt) { 1171 r = &type->regions[*idx]; 1172 r_nid = memblock_get_region_node(r); 1173 1174 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1175 continue; 1176 if (nid == MAX_NUMNODES || nid == r_nid) 1177 break; 1178 } 1179 if (*idx >= type->cnt) { 1180 *idx = -1; 1181 return; 1182 } 1183 1184 if (out_start_pfn) 1185 *out_start_pfn = PFN_UP(r->base); 1186 if (out_end_pfn) 1187 *out_end_pfn = PFN_DOWN(r->base + r->size); 1188 if (out_nid) 1189 *out_nid = r_nid; 1190 } 1191 1192 /** 1193 * memblock_set_node - set node ID on memblock regions 1194 * @base: base of area to set node ID for 1195 * @size: size of area to set node ID for 1196 * @type: memblock type to set node ID for 1197 * @nid: node ID to set 1198 * 1199 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1200 * Regions which cross the area boundaries are split as necessary. 1201 * 1202 * Return: 1203 * 0 on success, -errno on failure. 1204 */ 1205 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1206 struct memblock_type *type, int nid) 1207 { 1208 #ifdef CONFIG_NEED_MULTIPLE_NODES 1209 int start_rgn, end_rgn; 1210 int i, ret; 1211 1212 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1213 if (ret) 1214 return ret; 1215 1216 for (i = start_rgn; i < end_rgn; i++) 1217 memblock_set_region_node(&type->regions[i], nid); 1218 1219 memblock_merge_regions(type); 1220 #endif 1221 return 0; 1222 } 1223 1224 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1225 /** 1226 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() 1227 * 1228 * @idx: pointer to u64 loop variable 1229 * @zone: zone in which all of the memory blocks reside 1230 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL 1231 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL 1232 * 1233 * This function is meant to be a zone/pfn specific wrapper for the 1234 * for_each_mem_range type iterators. Specifically they are used in the 1235 * deferred memory init routines and as such we were duplicating much of 1236 * this logic throughout the code. So instead of having it in multiple 1237 * locations it seemed like it would make more sense to centralize this to 1238 * one new iterator that does everything they need. 1239 */ 1240 void __init_memblock 1241 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 1242 unsigned long *out_spfn, unsigned long *out_epfn) 1243 { 1244 int zone_nid = zone_to_nid(zone); 1245 phys_addr_t spa, epa; 1246 int nid; 1247 1248 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1249 &memblock.memory, &memblock.reserved, 1250 &spa, &epa, &nid); 1251 1252 while (*idx != U64_MAX) { 1253 unsigned long epfn = PFN_DOWN(epa); 1254 unsigned long spfn = PFN_UP(spa); 1255 1256 /* 1257 * Verify the end is at least past the start of the zone and 1258 * that we have at least one PFN to initialize. 1259 */ 1260 if (zone->zone_start_pfn < epfn && spfn < epfn) { 1261 /* if we went too far just stop searching */ 1262 if (zone_end_pfn(zone) <= spfn) { 1263 *idx = U64_MAX; 1264 break; 1265 } 1266 1267 if (out_spfn) 1268 *out_spfn = max(zone->zone_start_pfn, spfn); 1269 if (out_epfn) 1270 *out_epfn = min(zone_end_pfn(zone), epfn); 1271 1272 return; 1273 } 1274 1275 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1276 &memblock.memory, &memblock.reserved, 1277 &spa, &epa, &nid); 1278 } 1279 1280 /* signal end of iteration */ 1281 if (out_spfn) 1282 *out_spfn = ULONG_MAX; 1283 if (out_epfn) 1284 *out_epfn = 0; 1285 } 1286 1287 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1288 1289 /** 1290 * memblock_alloc_range_nid - allocate boot memory block 1291 * @size: size of memory block to be allocated in bytes 1292 * @align: alignment of the region and block's size 1293 * @start: the lower bound of the memory region to allocate (phys address) 1294 * @end: the upper bound of the memory region to allocate (phys address) 1295 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1296 * @exact_nid: control the allocation fall back to other nodes 1297 * 1298 * The allocation is performed from memory region limited by 1299 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. 1300 * 1301 * If the specified node can not hold the requested memory and @exact_nid 1302 * is false, the allocation falls back to any node in the system. 1303 * 1304 * For systems with memory mirroring, the allocation is attempted first 1305 * from the regions with mirroring enabled and then retried from any 1306 * memory region. 1307 * 1308 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for 1309 * allocated boot memory block, so that it is never reported as leaks. 1310 * 1311 * Return: 1312 * Physical address of allocated memory block on success, %0 on failure. 1313 */ 1314 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1315 phys_addr_t align, phys_addr_t start, 1316 phys_addr_t end, int nid, 1317 bool exact_nid) 1318 { 1319 enum memblock_flags flags = choose_memblock_flags(); 1320 phys_addr_t found; 1321 1322 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1323 nid = NUMA_NO_NODE; 1324 1325 if (!align) { 1326 /* Can't use WARNs this early in boot on powerpc */ 1327 dump_stack(); 1328 align = SMP_CACHE_BYTES; 1329 } 1330 1331 again: 1332 found = memblock_find_in_range_node(size, align, start, end, nid, 1333 flags); 1334 if (found && !memblock_reserve(found, size)) 1335 goto done; 1336 1337 if (nid != NUMA_NO_NODE && !exact_nid) { 1338 found = memblock_find_in_range_node(size, align, start, 1339 end, NUMA_NO_NODE, 1340 flags); 1341 if (found && !memblock_reserve(found, size)) 1342 goto done; 1343 } 1344 1345 if (flags & MEMBLOCK_MIRROR) { 1346 flags &= ~MEMBLOCK_MIRROR; 1347 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1348 &size); 1349 goto again; 1350 } 1351 1352 return 0; 1353 1354 done: 1355 /* Skip kmemleak for kasan_init() due to high volume. */ 1356 if (end != MEMBLOCK_ALLOC_KASAN) 1357 /* 1358 * The min_count is set to 0 so that memblock allocated 1359 * blocks are never reported as leaks. This is because many 1360 * of these blocks are only referred via the physical 1361 * address which is not looked up by kmemleak. 1362 */ 1363 kmemleak_alloc_phys(found, size, 0, 0); 1364 1365 return found; 1366 } 1367 1368 /** 1369 * memblock_phys_alloc_range - allocate a memory block inside specified range 1370 * @size: size of memory block to be allocated in bytes 1371 * @align: alignment of the region and block's size 1372 * @start: the lower bound of the memory region to allocate (physical address) 1373 * @end: the upper bound of the memory region to allocate (physical address) 1374 * 1375 * Allocate @size bytes in the between @start and @end. 1376 * 1377 * Return: physical address of the allocated memory block on success, 1378 * %0 on failure. 1379 */ 1380 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1381 phys_addr_t align, 1382 phys_addr_t start, 1383 phys_addr_t end) 1384 { 1385 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", 1386 __func__, (u64)size, (u64)align, &start, &end, 1387 (void *)_RET_IP_); 1388 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1389 false); 1390 } 1391 1392 /** 1393 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node 1394 * @size: size of memory block to be allocated in bytes 1395 * @align: alignment of the region and block's size 1396 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1397 * 1398 * Allocates memory block from the specified NUMA node. If the node 1399 * has no available memory, attempts to allocated from any node in the 1400 * system. 1401 * 1402 * Return: physical address of the allocated memory block on success, 1403 * %0 on failure. 1404 */ 1405 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1406 { 1407 return memblock_alloc_range_nid(size, align, 0, 1408 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); 1409 } 1410 1411 /** 1412 * memblock_alloc_internal - allocate boot memory block 1413 * @size: size of memory block to be allocated in bytes 1414 * @align: alignment of the region and block's size 1415 * @min_addr: the lower bound of the memory region to allocate (phys address) 1416 * @max_addr: the upper bound of the memory region to allocate (phys address) 1417 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1418 * @exact_nid: control the allocation fall back to other nodes 1419 * 1420 * Allocates memory block using memblock_alloc_range_nid() and 1421 * converts the returned physical address to virtual. 1422 * 1423 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1424 * will fall back to memory below @min_addr. Other constraints, such 1425 * as node and mirrored memory will be handled again in 1426 * memblock_alloc_range_nid(). 1427 * 1428 * Return: 1429 * Virtual address of allocated memory block on success, NULL on failure. 1430 */ 1431 static void * __init memblock_alloc_internal( 1432 phys_addr_t size, phys_addr_t align, 1433 phys_addr_t min_addr, phys_addr_t max_addr, 1434 int nid, bool exact_nid) 1435 { 1436 phys_addr_t alloc; 1437 1438 /* 1439 * Detect any accidental use of these APIs after slab is ready, as at 1440 * this moment memblock may be deinitialized already and its 1441 * internal data may be destroyed (after execution of memblock_free_all) 1442 */ 1443 if (WARN_ON_ONCE(slab_is_available())) 1444 return kzalloc_node(size, GFP_NOWAIT, nid); 1445 1446 if (max_addr > memblock.current_limit) 1447 max_addr = memblock.current_limit; 1448 1449 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, 1450 exact_nid); 1451 1452 /* retry allocation without lower limit */ 1453 if (!alloc && min_addr) 1454 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, 1455 exact_nid); 1456 1457 if (!alloc) 1458 return NULL; 1459 1460 return phys_to_virt(alloc); 1461 } 1462 1463 /** 1464 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node 1465 * without zeroing memory 1466 * @size: size of memory block to be allocated in bytes 1467 * @align: alignment of the region and block's size 1468 * @min_addr: the lower bound of the memory region from where the allocation 1469 * is preferred (phys address) 1470 * @max_addr: the upper bound of the memory region from where the allocation 1471 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1472 * allocate only from memory limited by memblock.current_limit value 1473 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1474 * 1475 * Public function, provides additional debug information (including caller 1476 * info), if enabled. Does not zero allocated memory. 1477 * 1478 * Return: 1479 * Virtual address of allocated memory block on success, NULL on failure. 1480 */ 1481 void * __init memblock_alloc_exact_nid_raw( 1482 phys_addr_t size, phys_addr_t align, 1483 phys_addr_t min_addr, phys_addr_t max_addr, 1484 int nid) 1485 { 1486 void *ptr; 1487 1488 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1489 __func__, (u64)size, (u64)align, nid, &min_addr, 1490 &max_addr, (void *)_RET_IP_); 1491 1492 ptr = memblock_alloc_internal(size, align, 1493 min_addr, max_addr, nid, true); 1494 if (ptr && size > 0) 1495 page_init_poison(ptr, size); 1496 1497 return ptr; 1498 } 1499 1500 /** 1501 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1502 * memory and without panicking 1503 * @size: size of memory block to be allocated in bytes 1504 * @align: alignment of the region and block's size 1505 * @min_addr: the lower bound of the memory region from where the allocation 1506 * is preferred (phys address) 1507 * @max_addr: the upper bound of the memory region from where the allocation 1508 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1509 * allocate only from memory limited by memblock.current_limit value 1510 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1511 * 1512 * Public function, provides additional debug information (including caller 1513 * info), if enabled. Does not zero allocated memory, does not panic if request 1514 * cannot be satisfied. 1515 * 1516 * Return: 1517 * Virtual address of allocated memory block on success, NULL on failure. 1518 */ 1519 void * __init memblock_alloc_try_nid_raw( 1520 phys_addr_t size, phys_addr_t align, 1521 phys_addr_t min_addr, phys_addr_t max_addr, 1522 int nid) 1523 { 1524 void *ptr; 1525 1526 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1527 __func__, (u64)size, (u64)align, nid, &min_addr, 1528 &max_addr, (void *)_RET_IP_); 1529 1530 ptr = memblock_alloc_internal(size, align, 1531 min_addr, max_addr, nid, false); 1532 if (ptr && size > 0) 1533 page_init_poison(ptr, size); 1534 1535 return ptr; 1536 } 1537 1538 /** 1539 * memblock_alloc_try_nid - allocate boot memory block 1540 * @size: size of memory block to be allocated in bytes 1541 * @align: alignment of the region and block's size 1542 * @min_addr: the lower bound of the memory region from where the allocation 1543 * is preferred (phys address) 1544 * @max_addr: the upper bound of the memory region from where the allocation 1545 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1546 * allocate only from memory limited by memblock.current_limit value 1547 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1548 * 1549 * Public function, provides additional debug information (including caller 1550 * info), if enabled. This function zeroes the allocated memory. 1551 * 1552 * Return: 1553 * Virtual address of allocated memory block on success, NULL on failure. 1554 */ 1555 void * __init memblock_alloc_try_nid( 1556 phys_addr_t size, phys_addr_t align, 1557 phys_addr_t min_addr, phys_addr_t max_addr, 1558 int nid) 1559 { 1560 void *ptr; 1561 1562 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1563 __func__, (u64)size, (u64)align, nid, &min_addr, 1564 &max_addr, (void *)_RET_IP_); 1565 ptr = memblock_alloc_internal(size, align, 1566 min_addr, max_addr, nid, false); 1567 if (ptr) 1568 memset(ptr, 0, size); 1569 1570 return ptr; 1571 } 1572 1573 /** 1574 * __memblock_free_late - free pages directly to buddy allocator 1575 * @base: phys starting address of the boot memory block 1576 * @size: size of the boot memory block in bytes 1577 * 1578 * This is only useful when the memblock allocator has already been torn 1579 * down, but we are still initializing the system. Pages are released directly 1580 * to the buddy allocator. 1581 */ 1582 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1583 { 1584 phys_addr_t cursor, end; 1585 1586 end = base + size - 1; 1587 memblock_dbg("%s: [%pa-%pa] %pS\n", 1588 __func__, &base, &end, (void *)_RET_IP_); 1589 kmemleak_free_part_phys(base, size); 1590 cursor = PFN_UP(base); 1591 end = PFN_DOWN(base + size); 1592 1593 for (; cursor < end; cursor++) { 1594 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1595 totalram_pages_inc(); 1596 } 1597 } 1598 1599 /* 1600 * Remaining API functions 1601 */ 1602 1603 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1604 { 1605 return memblock.memory.total_size; 1606 } 1607 1608 phys_addr_t __init_memblock memblock_reserved_size(void) 1609 { 1610 return memblock.reserved.total_size; 1611 } 1612 1613 /* lowest address */ 1614 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1615 { 1616 return memblock.memory.regions[0].base; 1617 } 1618 1619 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1620 { 1621 int idx = memblock.memory.cnt - 1; 1622 1623 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1624 } 1625 1626 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1627 { 1628 phys_addr_t max_addr = PHYS_ADDR_MAX; 1629 struct memblock_region *r; 1630 1631 /* 1632 * translate the memory @limit size into the max address within one of 1633 * the memory memblock regions, if the @limit exceeds the total size 1634 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1635 */ 1636 for_each_mem_region(r) { 1637 if (limit <= r->size) { 1638 max_addr = r->base + limit; 1639 break; 1640 } 1641 limit -= r->size; 1642 } 1643 1644 return max_addr; 1645 } 1646 1647 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1648 { 1649 phys_addr_t max_addr; 1650 1651 if (!limit) 1652 return; 1653 1654 max_addr = __find_max_addr(limit); 1655 1656 /* @limit exceeds the total size of the memory, do nothing */ 1657 if (max_addr == PHYS_ADDR_MAX) 1658 return; 1659 1660 /* truncate both memory and reserved regions */ 1661 memblock_remove_range(&memblock.memory, max_addr, 1662 PHYS_ADDR_MAX); 1663 memblock_remove_range(&memblock.reserved, max_addr, 1664 PHYS_ADDR_MAX); 1665 } 1666 1667 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1668 { 1669 int start_rgn, end_rgn; 1670 int i, ret; 1671 1672 if (!size) 1673 return; 1674 1675 ret = memblock_isolate_range(&memblock.memory, base, size, 1676 &start_rgn, &end_rgn); 1677 if (ret) 1678 return; 1679 1680 /* remove all the MAP regions */ 1681 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1682 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1683 memblock_remove_region(&memblock.memory, i); 1684 1685 for (i = start_rgn - 1; i >= 0; i--) 1686 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1687 memblock_remove_region(&memblock.memory, i); 1688 1689 /* truncate the reserved regions */ 1690 memblock_remove_range(&memblock.reserved, 0, base); 1691 memblock_remove_range(&memblock.reserved, 1692 base + size, PHYS_ADDR_MAX); 1693 } 1694 1695 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1696 { 1697 phys_addr_t max_addr; 1698 1699 if (!limit) 1700 return; 1701 1702 max_addr = __find_max_addr(limit); 1703 1704 /* @limit exceeds the total size of the memory, do nothing */ 1705 if (max_addr == PHYS_ADDR_MAX) 1706 return; 1707 1708 memblock_cap_memory_range(0, max_addr); 1709 } 1710 1711 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1712 { 1713 unsigned int left = 0, right = type->cnt; 1714 1715 do { 1716 unsigned int mid = (right + left) / 2; 1717 1718 if (addr < type->regions[mid].base) 1719 right = mid; 1720 else if (addr >= (type->regions[mid].base + 1721 type->regions[mid].size)) 1722 left = mid + 1; 1723 else 1724 return mid; 1725 } while (left < right); 1726 return -1; 1727 } 1728 1729 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1730 { 1731 return memblock_search(&memblock.reserved, addr) != -1; 1732 } 1733 1734 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1735 { 1736 return memblock_search(&memblock.memory, addr) != -1; 1737 } 1738 1739 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1740 { 1741 int i = memblock_search(&memblock.memory, addr); 1742 1743 if (i == -1) 1744 return false; 1745 return !memblock_is_nomap(&memblock.memory.regions[i]); 1746 } 1747 1748 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1749 unsigned long *start_pfn, unsigned long *end_pfn) 1750 { 1751 struct memblock_type *type = &memblock.memory; 1752 int mid = memblock_search(type, PFN_PHYS(pfn)); 1753 1754 if (mid == -1) 1755 return -1; 1756 1757 *start_pfn = PFN_DOWN(type->regions[mid].base); 1758 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1759 1760 return memblock_get_region_node(&type->regions[mid]); 1761 } 1762 1763 /** 1764 * memblock_is_region_memory - check if a region is a subset of memory 1765 * @base: base of region to check 1766 * @size: size of region to check 1767 * 1768 * Check if the region [@base, @base + @size) is a subset of a memory block. 1769 * 1770 * Return: 1771 * 0 if false, non-zero if true 1772 */ 1773 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1774 { 1775 int idx = memblock_search(&memblock.memory, base); 1776 phys_addr_t end = base + memblock_cap_size(base, &size); 1777 1778 if (idx == -1) 1779 return false; 1780 return (memblock.memory.regions[idx].base + 1781 memblock.memory.regions[idx].size) >= end; 1782 } 1783 1784 /** 1785 * memblock_is_region_reserved - check if a region intersects reserved memory 1786 * @base: base of region to check 1787 * @size: size of region to check 1788 * 1789 * Check if the region [@base, @base + @size) intersects a reserved 1790 * memory block. 1791 * 1792 * Return: 1793 * True if they intersect, false if not. 1794 */ 1795 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1796 { 1797 memblock_cap_size(base, &size); 1798 return memblock_overlaps_region(&memblock.reserved, base, size); 1799 } 1800 1801 void __init_memblock memblock_trim_memory(phys_addr_t align) 1802 { 1803 phys_addr_t start, end, orig_start, orig_end; 1804 struct memblock_region *r; 1805 1806 for_each_mem_region(r) { 1807 orig_start = r->base; 1808 orig_end = r->base + r->size; 1809 start = round_up(orig_start, align); 1810 end = round_down(orig_end, align); 1811 1812 if (start == orig_start && end == orig_end) 1813 continue; 1814 1815 if (start < end) { 1816 r->base = start; 1817 r->size = end - start; 1818 } else { 1819 memblock_remove_region(&memblock.memory, 1820 r - memblock.memory.regions); 1821 r--; 1822 } 1823 } 1824 } 1825 1826 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1827 { 1828 memblock.current_limit = limit; 1829 } 1830 1831 phys_addr_t __init_memblock memblock_get_current_limit(void) 1832 { 1833 return memblock.current_limit; 1834 } 1835 1836 static void __init_memblock memblock_dump(struct memblock_type *type) 1837 { 1838 phys_addr_t base, end, size; 1839 enum memblock_flags flags; 1840 int idx; 1841 struct memblock_region *rgn; 1842 1843 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1844 1845 for_each_memblock_type(idx, type, rgn) { 1846 char nid_buf[32] = ""; 1847 1848 base = rgn->base; 1849 size = rgn->size; 1850 end = base + size - 1; 1851 flags = rgn->flags; 1852 #ifdef CONFIG_NEED_MULTIPLE_NODES 1853 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1854 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1855 memblock_get_region_node(rgn)); 1856 #endif 1857 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1858 type->name, idx, &base, &end, &size, nid_buf, flags); 1859 } 1860 } 1861 1862 static void __init_memblock __memblock_dump_all(void) 1863 { 1864 pr_info("MEMBLOCK configuration:\n"); 1865 pr_info(" memory size = %pa reserved size = %pa\n", 1866 &memblock.memory.total_size, 1867 &memblock.reserved.total_size); 1868 1869 memblock_dump(&memblock.memory); 1870 memblock_dump(&memblock.reserved); 1871 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1872 memblock_dump(&physmem); 1873 #endif 1874 } 1875 1876 void __init_memblock memblock_dump_all(void) 1877 { 1878 if (memblock_debug) 1879 __memblock_dump_all(); 1880 } 1881 1882 void __init memblock_allow_resize(void) 1883 { 1884 memblock_can_resize = 1; 1885 } 1886 1887 static int __init early_memblock(char *p) 1888 { 1889 if (p && strstr(p, "debug")) 1890 memblock_debug = 1; 1891 return 0; 1892 } 1893 early_param("memblock", early_memblock); 1894 1895 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) 1896 { 1897 struct page *start_pg, *end_pg; 1898 phys_addr_t pg, pgend; 1899 1900 /* 1901 * Convert start_pfn/end_pfn to a struct page pointer. 1902 */ 1903 start_pg = pfn_to_page(start_pfn - 1) + 1; 1904 end_pg = pfn_to_page(end_pfn - 1) + 1; 1905 1906 /* 1907 * Convert to physical addresses, and round start upwards and end 1908 * downwards. 1909 */ 1910 pg = PAGE_ALIGN(__pa(start_pg)); 1911 pgend = __pa(end_pg) & PAGE_MASK; 1912 1913 /* 1914 * If there are free pages between these, free the section of the 1915 * memmap array. 1916 */ 1917 if (pg < pgend) 1918 memblock_free(pg, pgend - pg); 1919 } 1920 1921 /* 1922 * The mem_map array can get very big. Free the unused area of the memory map. 1923 */ 1924 static void __init free_unused_memmap(void) 1925 { 1926 unsigned long start, end, prev_end = 0; 1927 int i; 1928 1929 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || 1930 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 1931 return; 1932 1933 /* 1934 * This relies on each bank being in address order. 1935 * The banks are sorted previously in bootmem_init(). 1936 */ 1937 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { 1938 #ifdef CONFIG_SPARSEMEM 1939 /* 1940 * Take care not to free memmap entries that don't exist 1941 * due to SPARSEMEM sections which aren't present. 1942 */ 1943 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 1944 #else 1945 /* 1946 * Align down here since the VM subsystem insists that the 1947 * memmap entries are valid from the bank start aligned to 1948 * MAX_ORDER_NR_PAGES. 1949 */ 1950 start = round_down(start, MAX_ORDER_NR_PAGES); 1951 #endif 1952 1953 /* 1954 * If we had a previous bank, and there is a space 1955 * between the current bank and the previous, free it. 1956 */ 1957 if (prev_end && prev_end < start) 1958 free_memmap(prev_end, start); 1959 1960 /* 1961 * Align up here since the VM subsystem insists that the 1962 * memmap entries are valid from the bank end aligned to 1963 * MAX_ORDER_NR_PAGES. 1964 */ 1965 prev_end = ALIGN(end, MAX_ORDER_NR_PAGES); 1966 } 1967 1968 #ifdef CONFIG_SPARSEMEM 1969 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) 1970 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 1971 #endif 1972 } 1973 1974 static void __init __free_pages_memory(unsigned long start, unsigned long end) 1975 { 1976 int order; 1977 1978 while (start < end) { 1979 order = min(MAX_ORDER - 1UL, __ffs(start)); 1980 1981 while (start + (1UL << order) > end) 1982 order--; 1983 1984 memblock_free_pages(pfn_to_page(start), start, order); 1985 1986 start += (1UL << order); 1987 } 1988 } 1989 1990 static unsigned long __init __free_memory_core(phys_addr_t start, 1991 phys_addr_t end) 1992 { 1993 unsigned long start_pfn = PFN_UP(start); 1994 unsigned long end_pfn = min_t(unsigned long, 1995 PFN_DOWN(end), max_low_pfn); 1996 1997 if (start_pfn >= end_pfn) 1998 return 0; 1999 2000 __free_pages_memory(start_pfn, end_pfn); 2001 2002 return end_pfn - start_pfn; 2003 } 2004 2005 static unsigned long __init free_low_memory_core_early(void) 2006 { 2007 unsigned long count = 0; 2008 phys_addr_t start, end; 2009 u64 i; 2010 2011 memblock_clear_hotplug(0, -1); 2012 2013 for_each_reserved_mem_range(i, &start, &end) 2014 reserve_bootmem_region(start, end); 2015 2016 /* 2017 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 2018 * because in some case like Node0 doesn't have RAM installed 2019 * low ram will be on Node1 2020 */ 2021 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 2022 NULL) 2023 count += __free_memory_core(start, end); 2024 2025 return count; 2026 } 2027 2028 static int reset_managed_pages_done __initdata; 2029 2030 void reset_node_managed_pages(pg_data_t *pgdat) 2031 { 2032 struct zone *z; 2033 2034 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 2035 atomic_long_set(&z->managed_pages, 0); 2036 } 2037 2038 void __init reset_all_zones_managed_pages(void) 2039 { 2040 struct pglist_data *pgdat; 2041 2042 if (reset_managed_pages_done) 2043 return; 2044 2045 for_each_online_pgdat(pgdat) 2046 reset_node_managed_pages(pgdat); 2047 2048 reset_managed_pages_done = 1; 2049 } 2050 2051 /** 2052 * memblock_free_all - release free pages to the buddy allocator 2053 * 2054 * Return: the number of pages actually released. 2055 */ 2056 unsigned long __init memblock_free_all(void) 2057 { 2058 unsigned long pages; 2059 2060 free_unused_memmap(); 2061 reset_all_zones_managed_pages(); 2062 2063 pages = free_low_memory_core_early(); 2064 totalram_pages_add(pages); 2065 2066 return pages; 2067 } 2068 2069 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 2070 2071 static int memblock_debug_show(struct seq_file *m, void *private) 2072 { 2073 struct memblock_type *type = m->private; 2074 struct memblock_region *reg; 2075 int i; 2076 phys_addr_t end; 2077 2078 for (i = 0; i < type->cnt; i++) { 2079 reg = &type->regions[i]; 2080 end = reg->base + reg->size - 1; 2081 2082 seq_printf(m, "%4d: ", i); 2083 seq_printf(m, "%pa..%pa\n", ®->base, &end); 2084 } 2085 return 0; 2086 } 2087 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2088 2089 static int __init memblock_init_debugfs(void) 2090 { 2091 struct dentry *root = debugfs_create_dir("memblock", NULL); 2092 2093 debugfs_create_file("memory", 0444, root, 2094 &memblock.memory, &memblock_debug_fops); 2095 debugfs_create_file("reserved", 0444, root, 2096 &memblock.reserved, &memblock_debug_fops); 2097 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2098 debugfs_create_file("physmem", 0444, root, &physmem, 2099 &memblock_debug_fops); 2100 #endif 2101 2102 return 0; 2103 } 2104 __initcall(memblock_init_debugfs); 2105 2106 #endif /* CONFIG_DEBUG_FS */ 2107