xref: /linux/mm/memblock.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22 
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
25 
26 struct memblock memblock __initdata_memblock = {
27 	.memory.regions		= memblock_memory_init_regions,
28 	.memory.cnt		= 1,	/* empty dummy entry */
29 	.memory.max		= INIT_MEMBLOCK_REGIONS,
30 
31 	.reserved.regions	= memblock_reserved_init_regions,
32 	.reserved.cnt		= 1,	/* empty dummy entry */
33 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
34 
35 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
36 };
37 
38 int memblock_debug __initdata_memblock;
39 static int memblock_can_resize __initdata_memblock;
40 static int memblock_memory_in_slab __initdata_memblock = 0;
41 static int memblock_reserved_in_slab __initdata_memblock = 0;
42 
43 /* inline so we don't get a warning when pr_debug is compiled out */
44 static inline const char *memblock_type_name(struct memblock_type *type)
45 {
46 	if (type == &memblock.memory)
47 		return "memory";
48 	else if (type == &memblock.reserved)
49 		return "reserved";
50 	else
51 		return "unknown";
52 }
53 
54 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
55 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
56 {
57 	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
58 }
59 
60 /*
61  * Address comparison utilities
62  */
63 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
64 				       phys_addr_t base2, phys_addr_t size2)
65 {
66 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
67 }
68 
69 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
70 					phys_addr_t base, phys_addr_t size)
71 {
72 	unsigned long i;
73 
74 	for (i = 0; i < type->cnt; i++) {
75 		phys_addr_t rgnbase = type->regions[i].base;
76 		phys_addr_t rgnsize = type->regions[i].size;
77 		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
78 			break;
79 	}
80 
81 	return (i < type->cnt) ? i : -1;
82 }
83 
84 /**
85  * memblock_find_in_range_node - find free area in given range and node
86  * @start: start of candidate range
87  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
88  * @size: size of free area to find
89  * @align: alignment of free area to find
90  * @nid: nid of the free area to find, %MAX_NUMNODES for any node
91  *
92  * Find @size free area aligned to @align in the specified range and node.
93  *
94  * RETURNS:
95  * Found address on success, %0 on failure.
96  */
97 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
98 					phys_addr_t end, phys_addr_t size,
99 					phys_addr_t align, int nid)
100 {
101 	phys_addr_t this_start, this_end, cand;
102 	u64 i;
103 
104 	/* pump up @end */
105 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
106 		end = memblock.current_limit;
107 
108 	/* avoid allocating the first page */
109 	start = max_t(phys_addr_t, start, PAGE_SIZE);
110 	end = max(start, end);
111 
112 	for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
113 		this_start = clamp(this_start, start, end);
114 		this_end = clamp(this_end, start, end);
115 
116 		if (this_end < size)
117 			continue;
118 
119 		cand = round_down(this_end - size, align);
120 		if (cand >= this_start)
121 			return cand;
122 	}
123 	return 0;
124 }
125 
126 /**
127  * memblock_find_in_range - find free area in given range
128  * @start: start of candidate range
129  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
130  * @size: size of free area to find
131  * @align: alignment of free area to find
132  *
133  * Find @size free area aligned to @align in the specified range.
134  *
135  * RETURNS:
136  * Found address on success, %0 on failure.
137  */
138 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
139 					phys_addr_t end, phys_addr_t size,
140 					phys_addr_t align)
141 {
142 	return memblock_find_in_range_node(start, end, size, align,
143 					   MAX_NUMNODES);
144 }
145 
146 /*
147  * Free memblock.reserved.regions
148  */
149 int __init_memblock memblock_free_reserved_regions(void)
150 {
151 	if (memblock.reserved.regions == memblock_reserved_init_regions)
152 		return 0;
153 
154 	return memblock_free(__pa(memblock.reserved.regions),
155 		 sizeof(struct memblock_region) * memblock.reserved.max);
156 }
157 
158 /*
159  * Reserve memblock.reserved.regions
160  */
161 int __init_memblock memblock_reserve_reserved_regions(void)
162 {
163 	if (memblock.reserved.regions == memblock_reserved_init_regions)
164 		return 0;
165 
166 	return memblock_reserve(__pa(memblock.reserved.regions),
167 		 sizeof(struct memblock_region) * memblock.reserved.max);
168 }
169 
170 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
171 {
172 	type->total_size -= type->regions[r].size;
173 	memmove(&type->regions[r], &type->regions[r + 1],
174 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
175 	type->cnt--;
176 
177 	/* Special case for empty arrays */
178 	if (type->cnt == 0) {
179 		WARN_ON(type->total_size != 0);
180 		type->cnt = 1;
181 		type->regions[0].base = 0;
182 		type->regions[0].size = 0;
183 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
184 	}
185 }
186 
187 /**
188  * memblock_double_array - double the size of the memblock regions array
189  * @type: memblock type of the regions array being doubled
190  * @new_area_start: starting address of memory range to avoid overlap with
191  * @new_area_size: size of memory range to avoid overlap with
192  *
193  * Double the size of the @type regions array. If memblock is being used to
194  * allocate memory for a new reserved regions array and there is a previously
195  * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
196  * waiting to be reserved, ensure the memory used by the new array does
197  * not overlap.
198  *
199  * RETURNS:
200  * 0 on success, -1 on failure.
201  */
202 static int __init_memblock memblock_double_array(struct memblock_type *type,
203 						phys_addr_t new_area_start,
204 						phys_addr_t new_area_size)
205 {
206 	struct memblock_region *new_array, *old_array;
207 	phys_addr_t old_size, new_size, addr;
208 	int use_slab = slab_is_available();
209 	int *in_slab;
210 
211 	/* We don't allow resizing until we know about the reserved regions
212 	 * of memory that aren't suitable for allocation
213 	 */
214 	if (!memblock_can_resize)
215 		return -1;
216 
217 	/* Calculate new doubled size */
218 	old_size = type->max * sizeof(struct memblock_region);
219 	new_size = old_size << 1;
220 
221 	/* Retrieve the slab flag */
222 	if (type == &memblock.memory)
223 		in_slab = &memblock_memory_in_slab;
224 	else
225 		in_slab = &memblock_reserved_in_slab;
226 
227 	/* Try to find some space for it.
228 	 *
229 	 * WARNING: We assume that either slab_is_available() and we use it or
230 	 * we use MEMBLOCK for allocations. That means that this is unsafe to use
231 	 * when bootmem is currently active (unless bootmem itself is implemented
232 	 * on top of MEMBLOCK which isn't the case yet)
233 	 *
234 	 * This should however not be an issue for now, as we currently only
235 	 * call into MEMBLOCK while it's still active, or much later when slab is
236 	 * active for memory hotplug operations
237 	 */
238 	if (use_slab) {
239 		new_array = kmalloc(new_size, GFP_KERNEL);
240 		addr = new_array ? __pa(new_array) : 0;
241 	} else {
242 		/* only exclude range when trying to double reserved.regions */
243 		if (type != &memblock.reserved)
244 			new_area_start = new_area_size = 0;
245 
246 		addr = memblock_find_in_range(new_area_start + new_area_size,
247 						memblock.current_limit,
248 						new_size, sizeof(phys_addr_t));
249 		if (!addr && new_area_size)
250 			addr = memblock_find_in_range(0,
251 					min(new_area_start, memblock.current_limit),
252 					new_size, sizeof(phys_addr_t));
253 
254 		new_array = addr ? __va(addr) : 0;
255 	}
256 	if (!addr) {
257 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
258 		       memblock_type_name(type), type->max, type->max * 2);
259 		return -1;
260 	}
261 
262 	memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
263 		 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
264 
265 	/* Found space, we now need to move the array over before
266 	 * we add the reserved region since it may be our reserved
267 	 * array itself that is full.
268 	 */
269 	memcpy(new_array, type->regions, old_size);
270 	memset(new_array + type->max, 0, old_size);
271 	old_array = type->regions;
272 	type->regions = new_array;
273 	type->max <<= 1;
274 
275 	/* Free old array. We needn't free it if the array is the
276 	 * static one
277 	 */
278 	if (*in_slab)
279 		kfree(old_array);
280 	else if (old_array != memblock_memory_init_regions &&
281 		 old_array != memblock_reserved_init_regions)
282 		memblock_free(__pa(old_array), old_size);
283 
284 	/* Reserve the new array if that comes from the memblock.
285 	 * Otherwise, we needn't do it
286 	 */
287 	if (!use_slab)
288 		BUG_ON(memblock_reserve(addr, new_size));
289 
290 	/* Update slab flag */
291 	*in_slab = use_slab;
292 
293 	return 0;
294 }
295 
296 /**
297  * memblock_merge_regions - merge neighboring compatible regions
298  * @type: memblock type to scan
299  *
300  * Scan @type and merge neighboring compatible regions.
301  */
302 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
303 {
304 	int i = 0;
305 
306 	/* cnt never goes below 1 */
307 	while (i < type->cnt - 1) {
308 		struct memblock_region *this = &type->regions[i];
309 		struct memblock_region *next = &type->regions[i + 1];
310 
311 		if (this->base + this->size != next->base ||
312 		    memblock_get_region_node(this) !=
313 		    memblock_get_region_node(next)) {
314 			BUG_ON(this->base + this->size > next->base);
315 			i++;
316 			continue;
317 		}
318 
319 		this->size += next->size;
320 		memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
321 		type->cnt--;
322 	}
323 }
324 
325 /**
326  * memblock_insert_region - insert new memblock region
327  * @type: memblock type to insert into
328  * @idx: index for the insertion point
329  * @base: base address of the new region
330  * @size: size of the new region
331  *
332  * Insert new memblock region [@base,@base+@size) into @type at @idx.
333  * @type must already have extra room to accomodate the new region.
334  */
335 static void __init_memblock memblock_insert_region(struct memblock_type *type,
336 						   int idx, phys_addr_t base,
337 						   phys_addr_t size, int nid)
338 {
339 	struct memblock_region *rgn = &type->regions[idx];
340 
341 	BUG_ON(type->cnt >= type->max);
342 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
343 	rgn->base = base;
344 	rgn->size = size;
345 	memblock_set_region_node(rgn, nid);
346 	type->cnt++;
347 	type->total_size += size;
348 }
349 
350 /**
351  * memblock_add_region - add new memblock region
352  * @type: memblock type to add new region into
353  * @base: base address of the new region
354  * @size: size of the new region
355  * @nid: nid of the new region
356  *
357  * Add new memblock region [@base,@base+@size) into @type.  The new region
358  * is allowed to overlap with existing ones - overlaps don't affect already
359  * existing regions.  @type is guaranteed to be minimal (all neighbouring
360  * compatible regions are merged) after the addition.
361  *
362  * RETURNS:
363  * 0 on success, -errno on failure.
364  */
365 static int __init_memblock memblock_add_region(struct memblock_type *type,
366 				phys_addr_t base, phys_addr_t size, int nid)
367 {
368 	bool insert = false;
369 	phys_addr_t obase = base;
370 	phys_addr_t end = base + memblock_cap_size(base, &size);
371 	int i, nr_new;
372 
373 	if (!size)
374 		return 0;
375 
376 	/* special case for empty array */
377 	if (type->regions[0].size == 0) {
378 		WARN_ON(type->cnt != 1 || type->total_size);
379 		type->regions[0].base = base;
380 		type->regions[0].size = size;
381 		memblock_set_region_node(&type->regions[0], nid);
382 		type->total_size = size;
383 		return 0;
384 	}
385 repeat:
386 	/*
387 	 * The following is executed twice.  Once with %false @insert and
388 	 * then with %true.  The first counts the number of regions needed
389 	 * to accomodate the new area.  The second actually inserts them.
390 	 */
391 	base = obase;
392 	nr_new = 0;
393 
394 	for (i = 0; i < type->cnt; i++) {
395 		struct memblock_region *rgn = &type->regions[i];
396 		phys_addr_t rbase = rgn->base;
397 		phys_addr_t rend = rbase + rgn->size;
398 
399 		if (rbase >= end)
400 			break;
401 		if (rend <= base)
402 			continue;
403 		/*
404 		 * @rgn overlaps.  If it separates the lower part of new
405 		 * area, insert that portion.
406 		 */
407 		if (rbase > base) {
408 			nr_new++;
409 			if (insert)
410 				memblock_insert_region(type, i++, base,
411 						       rbase - base, nid);
412 		}
413 		/* area below @rend is dealt with, forget about it */
414 		base = min(rend, end);
415 	}
416 
417 	/* insert the remaining portion */
418 	if (base < end) {
419 		nr_new++;
420 		if (insert)
421 			memblock_insert_region(type, i, base, end - base, nid);
422 	}
423 
424 	/*
425 	 * If this was the first round, resize array and repeat for actual
426 	 * insertions; otherwise, merge and return.
427 	 */
428 	if (!insert) {
429 		while (type->cnt + nr_new > type->max)
430 			if (memblock_double_array(type, obase, size) < 0)
431 				return -ENOMEM;
432 		insert = true;
433 		goto repeat;
434 	} else {
435 		memblock_merge_regions(type);
436 		return 0;
437 	}
438 }
439 
440 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
441 				       int nid)
442 {
443 	return memblock_add_region(&memblock.memory, base, size, nid);
444 }
445 
446 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
447 {
448 	return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
449 }
450 
451 /**
452  * memblock_isolate_range - isolate given range into disjoint memblocks
453  * @type: memblock type to isolate range for
454  * @base: base of range to isolate
455  * @size: size of range to isolate
456  * @start_rgn: out parameter for the start of isolated region
457  * @end_rgn: out parameter for the end of isolated region
458  *
459  * Walk @type and ensure that regions don't cross the boundaries defined by
460  * [@base,@base+@size).  Crossing regions are split at the boundaries,
461  * which may create at most two more regions.  The index of the first
462  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
463  *
464  * RETURNS:
465  * 0 on success, -errno on failure.
466  */
467 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
468 					phys_addr_t base, phys_addr_t size,
469 					int *start_rgn, int *end_rgn)
470 {
471 	phys_addr_t end = base + memblock_cap_size(base, &size);
472 	int i;
473 
474 	*start_rgn = *end_rgn = 0;
475 
476 	if (!size)
477 		return 0;
478 
479 	/* we'll create at most two more regions */
480 	while (type->cnt + 2 > type->max)
481 		if (memblock_double_array(type, base, size) < 0)
482 			return -ENOMEM;
483 
484 	for (i = 0; i < type->cnt; i++) {
485 		struct memblock_region *rgn = &type->regions[i];
486 		phys_addr_t rbase = rgn->base;
487 		phys_addr_t rend = rbase + rgn->size;
488 
489 		if (rbase >= end)
490 			break;
491 		if (rend <= base)
492 			continue;
493 
494 		if (rbase < base) {
495 			/*
496 			 * @rgn intersects from below.  Split and continue
497 			 * to process the next region - the new top half.
498 			 */
499 			rgn->base = base;
500 			rgn->size -= base - rbase;
501 			type->total_size -= base - rbase;
502 			memblock_insert_region(type, i, rbase, base - rbase,
503 					       memblock_get_region_node(rgn));
504 		} else if (rend > end) {
505 			/*
506 			 * @rgn intersects from above.  Split and redo the
507 			 * current region - the new bottom half.
508 			 */
509 			rgn->base = end;
510 			rgn->size -= end - rbase;
511 			type->total_size -= end - rbase;
512 			memblock_insert_region(type, i--, rbase, end - rbase,
513 					       memblock_get_region_node(rgn));
514 		} else {
515 			/* @rgn is fully contained, record it */
516 			if (!*end_rgn)
517 				*start_rgn = i;
518 			*end_rgn = i + 1;
519 		}
520 	}
521 
522 	return 0;
523 }
524 
525 static int __init_memblock __memblock_remove(struct memblock_type *type,
526 					     phys_addr_t base, phys_addr_t size)
527 {
528 	int start_rgn, end_rgn;
529 	int i, ret;
530 
531 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
532 	if (ret)
533 		return ret;
534 
535 	for (i = end_rgn - 1; i >= start_rgn; i--)
536 		memblock_remove_region(type, i);
537 	return 0;
538 }
539 
540 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
541 {
542 	return __memblock_remove(&memblock.memory, base, size);
543 }
544 
545 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
546 {
547 	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
548 		     (unsigned long long)base,
549 		     (unsigned long long)base + size,
550 		     (void *)_RET_IP_);
551 
552 	return __memblock_remove(&memblock.reserved, base, size);
553 }
554 
555 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
556 {
557 	struct memblock_type *_rgn = &memblock.reserved;
558 
559 	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
560 		     (unsigned long long)base,
561 		     (unsigned long long)base + size,
562 		     (void *)_RET_IP_);
563 
564 	return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
565 }
566 
567 /**
568  * __next_free_mem_range - next function for for_each_free_mem_range()
569  * @idx: pointer to u64 loop variable
570  * @nid: nid: node selector, %MAX_NUMNODES for all nodes
571  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
572  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
573  * @out_nid: ptr to int for nid of the range, can be %NULL
574  *
575  * Find the first free area from *@idx which matches @nid, fill the out
576  * parameters, and update *@idx for the next iteration.  The lower 32bit of
577  * *@idx contains index into memory region and the upper 32bit indexes the
578  * areas before each reserved region.  For example, if reserved regions
579  * look like the following,
580  *
581  *	0:[0-16), 1:[32-48), 2:[128-130)
582  *
583  * The upper 32bit indexes the following regions.
584  *
585  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
586  *
587  * As both region arrays are sorted, the function advances the two indices
588  * in lockstep and returns each intersection.
589  */
590 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
591 					   phys_addr_t *out_start,
592 					   phys_addr_t *out_end, int *out_nid)
593 {
594 	struct memblock_type *mem = &memblock.memory;
595 	struct memblock_type *rsv = &memblock.reserved;
596 	int mi = *idx & 0xffffffff;
597 	int ri = *idx >> 32;
598 
599 	for ( ; mi < mem->cnt; mi++) {
600 		struct memblock_region *m = &mem->regions[mi];
601 		phys_addr_t m_start = m->base;
602 		phys_addr_t m_end = m->base + m->size;
603 
604 		/* only memory regions are associated with nodes, check it */
605 		if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
606 			continue;
607 
608 		/* scan areas before each reservation for intersection */
609 		for ( ; ri < rsv->cnt + 1; ri++) {
610 			struct memblock_region *r = &rsv->regions[ri];
611 			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
612 			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
613 
614 			/* if ri advanced past mi, break out to advance mi */
615 			if (r_start >= m_end)
616 				break;
617 			/* if the two regions intersect, we're done */
618 			if (m_start < r_end) {
619 				if (out_start)
620 					*out_start = max(m_start, r_start);
621 				if (out_end)
622 					*out_end = min(m_end, r_end);
623 				if (out_nid)
624 					*out_nid = memblock_get_region_node(m);
625 				/*
626 				 * The region which ends first is advanced
627 				 * for the next iteration.
628 				 */
629 				if (m_end <= r_end)
630 					mi++;
631 				else
632 					ri++;
633 				*idx = (u32)mi | (u64)ri << 32;
634 				return;
635 			}
636 		}
637 	}
638 
639 	/* signal end of iteration */
640 	*idx = ULLONG_MAX;
641 }
642 
643 /**
644  * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
645  * @idx: pointer to u64 loop variable
646  * @nid: nid: node selector, %MAX_NUMNODES for all nodes
647  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
648  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
649  * @out_nid: ptr to int for nid of the range, can be %NULL
650  *
651  * Reverse of __next_free_mem_range().
652  */
653 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
654 					   phys_addr_t *out_start,
655 					   phys_addr_t *out_end, int *out_nid)
656 {
657 	struct memblock_type *mem = &memblock.memory;
658 	struct memblock_type *rsv = &memblock.reserved;
659 	int mi = *idx & 0xffffffff;
660 	int ri = *idx >> 32;
661 
662 	if (*idx == (u64)ULLONG_MAX) {
663 		mi = mem->cnt - 1;
664 		ri = rsv->cnt;
665 	}
666 
667 	for ( ; mi >= 0; mi--) {
668 		struct memblock_region *m = &mem->regions[mi];
669 		phys_addr_t m_start = m->base;
670 		phys_addr_t m_end = m->base + m->size;
671 
672 		/* only memory regions are associated with nodes, check it */
673 		if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
674 			continue;
675 
676 		/* scan areas before each reservation for intersection */
677 		for ( ; ri >= 0; ri--) {
678 			struct memblock_region *r = &rsv->regions[ri];
679 			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
680 			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
681 
682 			/* if ri advanced past mi, break out to advance mi */
683 			if (r_end <= m_start)
684 				break;
685 			/* if the two regions intersect, we're done */
686 			if (m_end > r_start) {
687 				if (out_start)
688 					*out_start = max(m_start, r_start);
689 				if (out_end)
690 					*out_end = min(m_end, r_end);
691 				if (out_nid)
692 					*out_nid = memblock_get_region_node(m);
693 
694 				if (m_start >= r_start)
695 					mi--;
696 				else
697 					ri--;
698 				*idx = (u32)mi | (u64)ri << 32;
699 				return;
700 			}
701 		}
702 	}
703 
704 	*idx = ULLONG_MAX;
705 }
706 
707 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
708 /*
709  * Common iterator interface used to define for_each_mem_range().
710  */
711 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
712 				unsigned long *out_start_pfn,
713 				unsigned long *out_end_pfn, int *out_nid)
714 {
715 	struct memblock_type *type = &memblock.memory;
716 	struct memblock_region *r;
717 
718 	while (++*idx < type->cnt) {
719 		r = &type->regions[*idx];
720 
721 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
722 			continue;
723 		if (nid == MAX_NUMNODES || nid == r->nid)
724 			break;
725 	}
726 	if (*idx >= type->cnt) {
727 		*idx = -1;
728 		return;
729 	}
730 
731 	if (out_start_pfn)
732 		*out_start_pfn = PFN_UP(r->base);
733 	if (out_end_pfn)
734 		*out_end_pfn = PFN_DOWN(r->base + r->size);
735 	if (out_nid)
736 		*out_nid = r->nid;
737 }
738 
739 /**
740  * memblock_set_node - set node ID on memblock regions
741  * @base: base of area to set node ID for
742  * @size: size of area to set node ID for
743  * @nid: node ID to set
744  *
745  * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
746  * Regions which cross the area boundaries are split as necessary.
747  *
748  * RETURNS:
749  * 0 on success, -errno on failure.
750  */
751 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
752 				      int nid)
753 {
754 	struct memblock_type *type = &memblock.memory;
755 	int start_rgn, end_rgn;
756 	int i, ret;
757 
758 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
759 	if (ret)
760 		return ret;
761 
762 	for (i = start_rgn; i < end_rgn; i++)
763 		type->regions[i].nid = nid;
764 
765 	memblock_merge_regions(type);
766 	return 0;
767 }
768 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
769 
770 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
771 					phys_addr_t align, phys_addr_t max_addr,
772 					int nid)
773 {
774 	phys_addr_t found;
775 
776 	/* align @size to avoid excessive fragmentation on reserved array */
777 	size = round_up(size, align);
778 
779 	found = memblock_find_in_range_node(0, max_addr, size, align, nid);
780 	if (found && !memblock_reserve(found, size))
781 		return found;
782 
783 	return 0;
784 }
785 
786 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
787 {
788 	return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
789 }
790 
791 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
792 {
793 	return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
794 }
795 
796 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
797 {
798 	phys_addr_t alloc;
799 
800 	alloc = __memblock_alloc_base(size, align, max_addr);
801 
802 	if (alloc == 0)
803 		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
804 		      (unsigned long long) size, (unsigned long long) max_addr);
805 
806 	return alloc;
807 }
808 
809 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
810 {
811 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
812 }
813 
814 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
815 {
816 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
817 
818 	if (res)
819 		return res;
820 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
821 }
822 
823 
824 /*
825  * Remaining API functions
826  */
827 
828 phys_addr_t __init memblock_phys_mem_size(void)
829 {
830 	return memblock.memory.total_size;
831 }
832 
833 /* lowest address */
834 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
835 {
836 	return memblock.memory.regions[0].base;
837 }
838 
839 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
840 {
841 	int idx = memblock.memory.cnt - 1;
842 
843 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
844 }
845 
846 void __init memblock_enforce_memory_limit(phys_addr_t limit)
847 {
848 	unsigned long i;
849 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
850 
851 	if (!limit)
852 		return;
853 
854 	/* find out max address */
855 	for (i = 0; i < memblock.memory.cnt; i++) {
856 		struct memblock_region *r = &memblock.memory.regions[i];
857 
858 		if (limit <= r->size) {
859 			max_addr = r->base + limit;
860 			break;
861 		}
862 		limit -= r->size;
863 	}
864 
865 	/* truncate both memory and reserved regions */
866 	__memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
867 	__memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
868 }
869 
870 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
871 {
872 	unsigned int left = 0, right = type->cnt;
873 
874 	do {
875 		unsigned int mid = (right + left) / 2;
876 
877 		if (addr < type->regions[mid].base)
878 			right = mid;
879 		else if (addr >= (type->regions[mid].base +
880 				  type->regions[mid].size))
881 			left = mid + 1;
882 		else
883 			return mid;
884 	} while (left < right);
885 	return -1;
886 }
887 
888 int __init memblock_is_reserved(phys_addr_t addr)
889 {
890 	return memblock_search(&memblock.reserved, addr) != -1;
891 }
892 
893 int __init_memblock memblock_is_memory(phys_addr_t addr)
894 {
895 	return memblock_search(&memblock.memory, addr) != -1;
896 }
897 
898 /**
899  * memblock_is_region_memory - check if a region is a subset of memory
900  * @base: base of region to check
901  * @size: size of region to check
902  *
903  * Check if the region [@base, @base+@size) is a subset of a memory block.
904  *
905  * RETURNS:
906  * 0 if false, non-zero if true
907  */
908 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
909 {
910 	int idx = memblock_search(&memblock.memory, base);
911 	phys_addr_t end = base + memblock_cap_size(base, &size);
912 
913 	if (idx == -1)
914 		return 0;
915 	return memblock.memory.regions[idx].base <= base &&
916 		(memblock.memory.regions[idx].base +
917 		 memblock.memory.regions[idx].size) >= end;
918 }
919 
920 /**
921  * memblock_is_region_reserved - check if a region intersects reserved memory
922  * @base: base of region to check
923  * @size: size of region to check
924  *
925  * Check if the region [@base, @base+@size) intersects a reserved memory block.
926  *
927  * RETURNS:
928  * 0 if false, non-zero if true
929  */
930 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
931 {
932 	memblock_cap_size(base, &size);
933 	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
934 }
935 
936 
937 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
938 {
939 	memblock.current_limit = limit;
940 }
941 
942 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
943 {
944 	unsigned long long base, size;
945 	int i;
946 
947 	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
948 
949 	for (i = 0; i < type->cnt; i++) {
950 		struct memblock_region *rgn = &type->regions[i];
951 		char nid_buf[32] = "";
952 
953 		base = rgn->base;
954 		size = rgn->size;
955 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
956 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
957 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
958 				 memblock_get_region_node(rgn));
959 #endif
960 		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
961 			name, i, base, base + size - 1, size, nid_buf);
962 	}
963 }
964 
965 void __init_memblock __memblock_dump_all(void)
966 {
967 	pr_info("MEMBLOCK configuration:\n");
968 	pr_info(" memory size = %#llx reserved size = %#llx\n",
969 		(unsigned long long)memblock.memory.total_size,
970 		(unsigned long long)memblock.reserved.total_size);
971 
972 	memblock_dump(&memblock.memory, "memory");
973 	memblock_dump(&memblock.reserved, "reserved");
974 }
975 
976 void __init memblock_allow_resize(void)
977 {
978 	memblock_can_resize = 1;
979 }
980 
981 static int __init early_memblock(char *p)
982 {
983 	if (p && strstr(p, "debug"))
984 		memblock_debug = 1;
985 	return 0;
986 }
987 early_param("memblock", early_memblock);
988 
989 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
990 
991 static int memblock_debug_show(struct seq_file *m, void *private)
992 {
993 	struct memblock_type *type = m->private;
994 	struct memblock_region *reg;
995 	int i;
996 
997 	for (i = 0; i < type->cnt; i++) {
998 		reg = &type->regions[i];
999 		seq_printf(m, "%4d: ", i);
1000 		if (sizeof(phys_addr_t) == 4)
1001 			seq_printf(m, "0x%08lx..0x%08lx\n",
1002 				   (unsigned long)reg->base,
1003 				   (unsigned long)(reg->base + reg->size - 1));
1004 		else
1005 			seq_printf(m, "0x%016llx..0x%016llx\n",
1006 				   (unsigned long long)reg->base,
1007 				   (unsigned long long)(reg->base + reg->size - 1));
1008 
1009 	}
1010 	return 0;
1011 }
1012 
1013 static int memblock_debug_open(struct inode *inode, struct file *file)
1014 {
1015 	return single_open(file, memblock_debug_show, inode->i_private);
1016 }
1017 
1018 static const struct file_operations memblock_debug_fops = {
1019 	.open = memblock_debug_open,
1020 	.read = seq_read,
1021 	.llseek = seq_lseek,
1022 	.release = single_release,
1023 };
1024 
1025 static int __init memblock_init_debugfs(void)
1026 {
1027 	struct dentry *root = debugfs_create_dir("memblock", NULL);
1028 	if (!root)
1029 		return -ENXIO;
1030 	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1031 	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1032 
1033 	return 0;
1034 }
1035 __initcall(memblock_init_debugfs);
1036 
1037 #endif /* CONFIG_DEBUG_FS */
1038