xref: /linux/mm/memblock.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/kmemleak.h>
21 #include <linux/seq_file.h>
22 #include <linux/memblock.h>
23 
24 #include <asm/sections.h>
25 #include <linux/io.h>
26 
27 #include "internal.h"
28 
29 #define INIT_MEMBLOCK_REGIONS			128
30 #define INIT_PHYSMEM_REGIONS			4
31 
32 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
33 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
34 #endif
35 
36 /**
37  * DOC: memblock overview
38  *
39  * Memblock is a method of managing memory regions during the early
40  * boot period when the usual kernel memory allocators are not up and
41  * running.
42  *
43  * Memblock views the system memory as collections of contiguous
44  * regions. There are several types of these collections:
45  *
46  * * ``memory`` - describes the physical memory available to the
47  *   kernel; this may differ from the actual physical memory installed
48  *   in the system, for instance when the memory is restricted with
49  *   ``mem=`` command line parameter
50  * * ``reserved`` - describes the regions that were allocated
51  * * ``physmap`` - describes the actual physical memory regardless of
52  *   the possible restrictions; the ``physmap`` type is only available
53  *   on some architectures.
54  *
55  * Each region is represented by :c:type:`struct memblock_region` that
56  * defines the region extents, its attributes and NUMA node id on NUMA
57  * systems. Every memory type is described by the :c:type:`struct
58  * memblock_type` which contains an array of memory regions along with
59  * the allocator metadata. The memory types are nicely wrapped with
60  * :c:type:`struct memblock`. This structure is statically initialzed
61  * at build time. The region arrays for the "memory" and "reserved"
62  * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
63  * "physmap" type to %INIT_PHYSMEM_REGIONS.
64  * The :c:func:`memblock_allow_resize` enables automatic resizing of
65  * the region arrays during addition of new regions. This feature
66  * should be used with care so that memory allocated for the region
67  * array will not overlap with areas that should be reserved, for
68  * example initrd.
69  *
70  * The early architecture setup should tell memblock what the physical
71  * memory layout is by using :c:func:`memblock_add` or
72  * :c:func:`memblock_add_node` functions. The first function does not
73  * assign the region to a NUMA node and it is appropriate for UMA
74  * systems. Yet, it is possible to use it on NUMA systems as well and
75  * assign the region to a NUMA node later in the setup process using
76  * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
77  * performs such an assignment directly.
78  *
79  * Once memblock is setup the memory can be allocated using one of the
80  * API variants:
81  *
82  * * :c:func:`memblock_phys_alloc*` - these functions return the
83  *   **physical** address of the allocated memory
84  * * :c:func:`memblock_alloc*` - these functions return the **virtual**
85  *   address of the allocated memory.
86  *
87  * Note, that both API variants use implict assumptions about allowed
88  * memory ranges and the fallback methods. Consult the documentation
89  * of :c:func:`memblock_alloc_internal` and
90  * :c:func:`memblock_alloc_range_nid` functions for more elaboarte
91  * description.
92  *
93  * As the system boot progresses, the architecture specific
94  * :c:func:`mem_init` function frees all the memory to the buddy page
95  * allocator.
96  *
97  * If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the
98  * memblock data structures will be discarded after the system
99  * initialization compltes.
100  */
101 
102 #ifndef CONFIG_NEED_MULTIPLE_NODES
103 struct pglist_data __refdata contig_page_data;
104 EXPORT_SYMBOL(contig_page_data);
105 #endif
106 
107 unsigned long max_low_pfn;
108 unsigned long min_low_pfn;
109 unsigned long max_pfn;
110 unsigned long long max_possible_pfn;
111 
112 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
113 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
114 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
115 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
116 #endif
117 
118 struct memblock memblock __initdata_memblock = {
119 	.memory.regions		= memblock_memory_init_regions,
120 	.memory.cnt		= 1,	/* empty dummy entry */
121 	.memory.max		= INIT_MEMBLOCK_REGIONS,
122 	.memory.name		= "memory",
123 
124 	.reserved.regions	= memblock_reserved_init_regions,
125 	.reserved.cnt		= 1,	/* empty dummy entry */
126 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
127 	.reserved.name		= "reserved",
128 
129 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
130 	.physmem.regions	= memblock_physmem_init_regions,
131 	.physmem.cnt		= 1,	/* empty dummy entry */
132 	.physmem.max		= INIT_PHYSMEM_REGIONS,
133 	.physmem.name		= "physmem",
134 #endif
135 
136 	.bottom_up		= false,
137 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
138 };
139 
140 int memblock_debug __initdata_memblock;
141 static bool system_has_some_mirror __initdata_memblock = false;
142 static int memblock_can_resize __initdata_memblock;
143 static int memblock_memory_in_slab __initdata_memblock = 0;
144 static int memblock_reserved_in_slab __initdata_memblock = 0;
145 
146 static enum memblock_flags __init_memblock choose_memblock_flags(void)
147 {
148 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
149 }
150 
151 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
152 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
153 {
154 	return *size = min(*size, PHYS_ADDR_MAX - base);
155 }
156 
157 /*
158  * Address comparison utilities
159  */
160 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
161 				       phys_addr_t base2, phys_addr_t size2)
162 {
163 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
164 }
165 
166 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
167 					phys_addr_t base, phys_addr_t size)
168 {
169 	unsigned long i;
170 
171 	for (i = 0; i < type->cnt; i++)
172 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
173 					   type->regions[i].size))
174 			break;
175 	return i < type->cnt;
176 }
177 
178 /**
179  * __memblock_find_range_bottom_up - find free area utility in bottom-up
180  * @start: start of candidate range
181  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
182  *       %MEMBLOCK_ALLOC_ACCESSIBLE
183  * @size: size of free area to find
184  * @align: alignment of free area to find
185  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
186  * @flags: pick from blocks based on memory attributes
187  *
188  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
189  *
190  * Return:
191  * Found address on success, 0 on failure.
192  */
193 static phys_addr_t __init_memblock
194 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
195 				phys_addr_t size, phys_addr_t align, int nid,
196 				enum memblock_flags flags)
197 {
198 	phys_addr_t this_start, this_end, cand;
199 	u64 i;
200 
201 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
202 		this_start = clamp(this_start, start, end);
203 		this_end = clamp(this_end, start, end);
204 
205 		cand = round_up(this_start, align);
206 		if (cand < this_end && this_end - cand >= size)
207 			return cand;
208 	}
209 
210 	return 0;
211 }
212 
213 /**
214  * __memblock_find_range_top_down - find free area utility, in top-down
215  * @start: start of candidate range
216  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
217  *       %MEMBLOCK_ALLOC_ACCESSIBLE
218  * @size: size of free area to find
219  * @align: alignment of free area to find
220  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
221  * @flags: pick from blocks based on memory attributes
222  *
223  * Utility called from memblock_find_in_range_node(), find free area top-down.
224  *
225  * Return:
226  * Found address on success, 0 on failure.
227  */
228 static phys_addr_t __init_memblock
229 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
230 			       phys_addr_t size, phys_addr_t align, int nid,
231 			       enum memblock_flags flags)
232 {
233 	phys_addr_t this_start, this_end, cand;
234 	u64 i;
235 
236 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
237 					NULL) {
238 		this_start = clamp(this_start, start, end);
239 		this_end = clamp(this_end, start, end);
240 
241 		if (this_end < size)
242 			continue;
243 
244 		cand = round_down(this_end - size, align);
245 		if (cand >= this_start)
246 			return cand;
247 	}
248 
249 	return 0;
250 }
251 
252 /**
253  * memblock_find_in_range_node - find free area in given range and node
254  * @size: size of free area to find
255  * @align: alignment of free area to find
256  * @start: start of candidate range
257  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
258  *       %MEMBLOCK_ALLOC_ACCESSIBLE
259  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
260  * @flags: pick from blocks based on memory attributes
261  *
262  * Find @size free area aligned to @align in the specified range and node.
263  *
264  * When allocation direction is bottom-up, the @start should be greater
265  * than the end of the kernel image. Otherwise, it will be trimmed. The
266  * reason is that we want the bottom-up allocation just near the kernel
267  * image so it is highly likely that the allocated memory and the kernel
268  * will reside in the same node.
269  *
270  * If bottom-up allocation failed, will try to allocate memory top-down.
271  *
272  * Return:
273  * Found address on success, 0 on failure.
274  */
275 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
276 					phys_addr_t align, phys_addr_t start,
277 					phys_addr_t end, int nid,
278 					enum memblock_flags flags)
279 {
280 	phys_addr_t kernel_end, ret;
281 
282 	/* pump up @end */
283 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
284 	    end == MEMBLOCK_ALLOC_KASAN)
285 		end = memblock.current_limit;
286 
287 	/* avoid allocating the first page */
288 	start = max_t(phys_addr_t, start, PAGE_SIZE);
289 	end = max(start, end);
290 	kernel_end = __pa_symbol(_end);
291 
292 	/*
293 	 * try bottom-up allocation only when bottom-up mode
294 	 * is set and @end is above the kernel image.
295 	 */
296 	if (memblock_bottom_up() && end > kernel_end) {
297 		phys_addr_t bottom_up_start;
298 
299 		/* make sure we will allocate above the kernel */
300 		bottom_up_start = max(start, kernel_end);
301 
302 		/* ok, try bottom-up allocation first */
303 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
304 						      size, align, nid, flags);
305 		if (ret)
306 			return ret;
307 
308 		/*
309 		 * we always limit bottom-up allocation above the kernel,
310 		 * but top-down allocation doesn't have the limit, so
311 		 * retrying top-down allocation may succeed when bottom-up
312 		 * allocation failed.
313 		 *
314 		 * bottom-up allocation is expected to be fail very rarely,
315 		 * so we use WARN_ONCE() here to see the stack trace if
316 		 * fail happens.
317 		 */
318 		WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
319 			  "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
320 	}
321 
322 	return __memblock_find_range_top_down(start, end, size, align, nid,
323 					      flags);
324 }
325 
326 /**
327  * memblock_find_in_range - find free area in given range
328  * @start: start of candidate range
329  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
330  *       %MEMBLOCK_ALLOC_ACCESSIBLE
331  * @size: size of free area to find
332  * @align: alignment of free area to find
333  *
334  * Find @size free area aligned to @align in the specified range.
335  *
336  * Return:
337  * Found address on success, 0 on failure.
338  */
339 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
340 					phys_addr_t end, phys_addr_t size,
341 					phys_addr_t align)
342 {
343 	phys_addr_t ret;
344 	enum memblock_flags flags = choose_memblock_flags();
345 
346 again:
347 	ret = memblock_find_in_range_node(size, align, start, end,
348 					    NUMA_NO_NODE, flags);
349 
350 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
351 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
352 			&size);
353 		flags &= ~MEMBLOCK_MIRROR;
354 		goto again;
355 	}
356 
357 	return ret;
358 }
359 
360 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
361 {
362 	type->total_size -= type->regions[r].size;
363 	memmove(&type->regions[r], &type->regions[r + 1],
364 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
365 	type->cnt--;
366 
367 	/* Special case for empty arrays */
368 	if (type->cnt == 0) {
369 		WARN_ON(type->total_size != 0);
370 		type->cnt = 1;
371 		type->regions[0].base = 0;
372 		type->regions[0].size = 0;
373 		type->regions[0].flags = 0;
374 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
375 	}
376 }
377 
378 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
379 /**
380  * memblock_discard - discard memory and reserved arrays if they were allocated
381  */
382 void __init memblock_discard(void)
383 {
384 	phys_addr_t addr, size;
385 
386 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
387 		addr = __pa(memblock.reserved.regions);
388 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
389 				  memblock.reserved.max);
390 		__memblock_free_late(addr, size);
391 	}
392 
393 	if (memblock.memory.regions != memblock_memory_init_regions) {
394 		addr = __pa(memblock.memory.regions);
395 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
396 				  memblock.memory.max);
397 		__memblock_free_late(addr, size);
398 	}
399 }
400 #endif
401 
402 /**
403  * memblock_double_array - double the size of the memblock regions array
404  * @type: memblock type of the regions array being doubled
405  * @new_area_start: starting address of memory range to avoid overlap with
406  * @new_area_size: size of memory range to avoid overlap with
407  *
408  * Double the size of the @type regions array. If memblock is being used to
409  * allocate memory for a new reserved regions array and there is a previously
410  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
411  * waiting to be reserved, ensure the memory used by the new array does
412  * not overlap.
413  *
414  * Return:
415  * 0 on success, -1 on failure.
416  */
417 static int __init_memblock memblock_double_array(struct memblock_type *type,
418 						phys_addr_t new_area_start,
419 						phys_addr_t new_area_size)
420 {
421 	struct memblock_region *new_array, *old_array;
422 	phys_addr_t old_alloc_size, new_alloc_size;
423 	phys_addr_t old_size, new_size, addr, new_end;
424 	int use_slab = slab_is_available();
425 	int *in_slab;
426 
427 	/* We don't allow resizing until we know about the reserved regions
428 	 * of memory that aren't suitable for allocation
429 	 */
430 	if (!memblock_can_resize)
431 		return -1;
432 
433 	/* Calculate new doubled size */
434 	old_size = type->max * sizeof(struct memblock_region);
435 	new_size = old_size << 1;
436 	/*
437 	 * We need to allocated new one align to PAGE_SIZE,
438 	 *   so we can free them completely later.
439 	 */
440 	old_alloc_size = PAGE_ALIGN(old_size);
441 	new_alloc_size = PAGE_ALIGN(new_size);
442 
443 	/* Retrieve the slab flag */
444 	if (type == &memblock.memory)
445 		in_slab = &memblock_memory_in_slab;
446 	else
447 		in_slab = &memblock_reserved_in_slab;
448 
449 	/* Try to find some space for it */
450 	if (use_slab) {
451 		new_array = kmalloc(new_size, GFP_KERNEL);
452 		addr = new_array ? __pa(new_array) : 0;
453 	} else {
454 		/* only exclude range when trying to double reserved.regions */
455 		if (type != &memblock.reserved)
456 			new_area_start = new_area_size = 0;
457 
458 		addr = memblock_find_in_range(new_area_start + new_area_size,
459 						memblock.current_limit,
460 						new_alloc_size, PAGE_SIZE);
461 		if (!addr && new_area_size)
462 			addr = memblock_find_in_range(0,
463 				min(new_area_start, memblock.current_limit),
464 				new_alloc_size, PAGE_SIZE);
465 
466 		new_array = addr ? __va(addr) : NULL;
467 	}
468 	if (!addr) {
469 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
470 		       type->name, type->max, type->max * 2);
471 		return -1;
472 	}
473 
474 	new_end = addr + new_size - 1;
475 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
476 			type->name, type->max * 2, &addr, &new_end);
477 
478 	/*
479 	 * Found space, we now need to move the array over before we add the
480 	 * reserved region since it may be our reserved array itself that is
481 	 * full.
482 	 */
483 	memcpy(new_array, type->regions, old_size);
484 	memset(new_array + type->max, 0, old_size);
485 	old_array = type->regions;
486 	type->regions = new_array;
487 	type->max <<= 1;
488 
489 	/* Free old array. We needn't free it if the array is the static one */
490 	if (*in_slab)
491 		kfree(old_array);
492 	else if (old_array != memblock_memory_init_regions &&
493 		 old_array != memblock_reserved_init_regions)
494 		memblock_free(__pa(old_array), old_alloc_size);
495 
496 	/*
497 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
498 	 * needn't do it
499 	 */
500 	if (!use_slab)
501 		BUG_ON(memblock_reserve(addr, new_alloc_size));
502 
503 	/* Update slab flag */
504 	*in_slab = use_slab;
505 
506 	return 0;
507 }
508 
509 /**
510  * memblock_merge_regions - merge neighboring compatible regions
511  * @type: memblock type to scan
512  *
513  * Scan @type and merge neighboring compatible regions.
514  */
515 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
516 {
517 	int i = 0;
518 
519 	/* cnt never goes below 1 */
520 	while (i < type->cnt - 1) {
521 		struct memblock_region *this = &type->regions[i];
522 		struct memblock_region *next = &type->regions[i + 1];
523 
524 		if (this->base + this->size != next->base ||
525 		    memblock_get_region_node(this) !=
526 		    memblock_get_region_node(next) ||
527 		    this->flags != next->flags) {
528 			BUG_ON(this->base + this->size > next->base);
529 			i++;
530 			continue;
531 		}
532 
533 		this->size += next->size;
534 		/* move forward from next + 1, index of which is i + 2 */
535 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
536 		type->cnt--;
537 	}
538 }
539 
540 /**
541  * memblock_insert_region - insert new memblock region
542  * @type:	memblock type to insert into
543  * @idx:	index for the insertion point
544  * @base:	base address of the new region
545  * @size:	size of the new region
546  * @nid:	node id of the new region
547  * @flags:	flags of the new region
548  *
549  * Insert new memblock region [@base, @base + @size) into @type at @idx.
550  * @type must already have extra room to accommodate the new region.
551  */
552 static void __init_memblock memblock_insert_region(struct memblock_type *type,
553 						   int idx, phys_addr_t base,
554 						   phys_addr_t size,
555 						   int nid,
556 						   enum memblock_flags flags)
557 {
558 	struct memblock_region *rgn = &type->regions[idx];
559 
560 	BUG_ON(type->cnt >= type->max);
561 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
562 	rgn->base = base;
563 	rgn->size = size;
564 	rgn->flags = flags;
565 	memblock_set_region_node(rgn, nid);
566 	type->cnt++;
567 	type->total_size += size;
568 }
569 
570 /**
571  * memblock_add_range - add new memblock region
572  * @type: memblock type to add new region into
573  * @base: base address of the new region
574  * @size: size of the new region
575  * @nid: nid of the new region
576  * @flags: flags of the new region
577  *
578  * Add new memblock region [@base, @base + @size) into @type.  The new region
579  * is allowed to overlap with existing ones - overlaps don't affect already
580  * existing regions.  @type is guaranteed to be minimal (all neighbouring
581  * compatible regions are merged) after the addition.
582  *
583  * Return:
584  * 0 on success, -errno on failure.
585  */
586 int __init_memblock memblock_add_range(struct memblock_type *type,
587 				phys_addr_t base, phys_addr_t size,
588 				int nid, enum memblock_flags flags)
589 {
590 	bool insert = false;
591 	phys_addr_t obase = base;
592 	phys_addr_t end = base + memblock_cap_size(base, &size);
593 	int idx, nr_new;
594 	struct memblock_region *rgn;
595 
596 	if (!size)
597 		return 0;
598 
599 	/* special case for empty array */
600 	if (type->regions[0].size == 0) {
601 		WARN_ON(type->cnt != 1 || type->total_size);
602 		type->regions[0].base = base;
603 		type->regions[0].size = size;
604 		type->regions[0].flags = flags;
605 		memblock_set_region_node(&type->regions[0], nid);
606 		type->total_size = size;
607 		return 0;
608 	}
609 repeat:
610 	/*
611 	 * The following is executed twice.  Once with %false @insert and
612 	 * then with %true.  The first counts the number of regions needed
613 	 * to accommodate the new area.  The second actually inserts them.
614 	 */
615 	base = obase;
616 	nr_new = 0;
617 
618 	for_each_memblock_type(idx, type, rgn) {
619 		phys_addr_t rbase = rgn->base;
620 		phys_addr_t rend = rbase + rgn->size;
621 
622 		if (rbase >= end)
623 			break;
624 		if (rend <= base)
625 			continue;
626 		/*
627 		 * @rgn overlaps.  If it separates the lower part of new
628 		 * area, insert that portion.
629 		 */
630 		if (rbase > base) {
631 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
632 			WARN_ON(nid != memblock_get_region_node(rgn));
633 #endif
634 			WARN_ON(flags != rgn->flags);
635 			nr_new++;
636 			if (insert)
637 				memblock_insert_region(type, idx++, base,
638 						       rbase - base, nid,
639 						       flags);
640 		}
641 		/* area below @rend is dealt with, forget about it */
642 		base = min(rend, end);
643 	}
644 
645 	/* insert the remaining portion */
646 	if (base < end) {
647 		nr_new++;
648 		if (insert)
649 			memblock_insert_region(type, idx, base, end - base,
650 					       nid, flags);
651 	}
652 
653 	if (!nr_new)
654 		return 0;
655 
656 	/*
657 	 * If this was the first round, resize array and repeat for actual
658 	 * insertions; otherwise, merge and return.
659 	 */
660 	if (!insert) {
661 		while (type->cnt + nr_new > type->max)
662 			if (memblock_double_array(type, obase, size) < 0)
663 				return -ENOMEM;
664 		insert = true;
665 		goto repeat;
666 	} else {
667 		memblock_merge_regions(type);
668 		return 0;
669 	}
670 }
671 
672 /**
673  * memblock_add_node - add new memblock region within a NUMA node
674  * @base: base address of the new region
675  * @size: size of the new region
676  * @nid: nid of the new region
677  *
678  * Add new memblock region [@base, @base + @size) to the "memory"
679  * type. See memblock_add_range() description for mode details
680  *
681  * Return:
682  * 0 on success, -errno on failure.
683  */
684 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
685 				       int nid)
686 {
687 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
688 }
689 
690 /**
691  * memblock_add - add new memblock region
692  * @base: base address of the new region
693  * @size: size of the new region
694  *
695  * Add new memblock region [@base, @base + @size) to the "memory"
696  * type. See memblock_add_range() description for mode details
697  *
698  * Return:
699  * 0 on success, -errno on failure.
700  */
701 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
702 {
703 	phys_addr_t end = base + size - 1;
704 
705 	memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
706 		     &base, &end, (void *)_RET_IP_);
707 
708 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
709 }
710 
711 /**
712  * memblock_isolate_range - isolate given range into disjoint memblocks
713  * @type: memblock type to isolate range for
714  * @base: base of range to isolate
715  * @size: size of range to isolate
716  * @start_rgn: out parameter for the start of isolated region
717  * @end_rgn: out parameter for the end of isolated region
718  *
719  * Walk @type and ensure that regions don't cross the boundaries defined by
720  * [@base, @base + @size).  Crossing regions are split at the boundaries,
721  * which may create at most two more regions.  The index of the first
722  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
723  *
724  * Return:
725  * 0 on success, -errno on failure.
726  */
727 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
728 					phys_addr_t base, phys_addr_t size,
729 					int *start_rgn, int *end_rgn)
730 {
731 	phys_addr_t end = base + memblock_cap_size(base, &size);
732 	int idx;
733 	struct memblock_region *rgn;
734 
735 	*start_rgn = *end_rgn = 0;
736 
737 	if (!size)
738 		return 0;
739 
740 	/* we'll create at most two more regions */
741 	while (type->cnt + 2 > type->max)
742 		if (memblock_double_array(type, base, size) < 0)
743 			return -ENOMEM;
744 
745 	for_each_memblock_type(idx, type, rgn) {
746 		phys_addr_t rbase = rgn->base;
747 		phys_addr_t rend = rbase + rgn->size;
748 
749 		if (rbase >= end)
750 			break;
751 		if (rend <= base)
752 			continue;
753 
754 		if (rbase < base) {
755 			/*
756 			 * @rgn intersects from below.  Split and continue
757 			 * to process the next region - the new top half.
758 			 */
759 			rgn->base = base;
760 			rgn->size -= base - rbase;
761 			type->total_size -= base - rbase;
762 			memblock_insert_region(type, idx, rbase, base - rbase,
763 					       memblock_get_region_node(rgn),
764 					       rgn->flags);
765 		} else if (rend > end) {
766 			/*
767 			 * @rgn intersects from above.  Split and redo the
768 			 * current region - the new bottom half.
769 			 */
770 			rgn->base = end;
771 			rgn->size -= end - rbase;
772 			type->total_size -= end - rbase;
773 			memblock_insert_region(type, idx--, rbase, end - rbase,
774 					       memblock_get_region_node(rgn),
775 					       rgn->flags);
776 		} else {
777 			/* @rgn is fully contained, record it */
778 			if (!*end_rgn)
779 				*start_rgn = idx;
780 			*end_rgn = idx + 1;
781 		}
782 	}
783 
784 	return 0;
785 }
786 
787 static int __init_memblock memblock_remove_range(struct memblock_type *type,
788 					  phys_addr_t base, phys_addr_t size)
789 {
790 	int start_rgn, end_rgn;
791 	int i, ret;
792 
793 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
794 	if (ret)
795 		return ret;
796 
797 	for (i = end_rgn - 1; i >= start_rgn; i--)
798 		memblock_remove_region(type, i);
799 	return 0;
800 }
801 
802 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
803 {
804 	phys_addr_t end = base + size - 1;
805 
806 	memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
807 		     &base, &end, (void *)_RET_IP_);
808 
809 	return memblock_remove_range(&memblock.memory, base, size);
810 }
811 
812 /**
813  * memblock_free - free boot memory block
814  * @base: phys starting address of the  boot memory block
815  * @size: size of the boot memory block in bytes
816  *
817  * Free boot memory block previously allocated by memblock_alloc_xx() API.
818  * The freeing memory will not be released to the buddy allocator.
819  */
820 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
821 {
822 	phys_addr_t end = base + size - 1;
823 
824 	memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
825 		     &base, &end, (void *)_RET_IP_);
826 
827 	kmemleak_free_part_phys(base, size);
828 	return memblock_remove_range(&memblock.reserved, base, size);
829 }
830 
831 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
832 {
833 	phys_addr_t end = base + size - 1;
834 
835 	memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
836 		     &base, &end, (void *)_RET_IP_);
837 
838 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
839 }
840 
841 /**
842  * memblock_setclr_flag - set or clear flag for a memory region
843  * @base: base address of the region
844  * @size: size of the region
845  * @set: set or clear the flag
846  * @flag: the flag to udpate
847  *
848  * This function isolates region [@base, @base + @size), and sets/clears flag
849  *
850  * Return: 0 on success, -errno on failure.
851  */
852 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
853 				phys_addr_t size, int set, int flag)
854 {
855 	struct memblock_type *type = &memblock.memory;
856 	int i, ret, start_rgn, end_rgn;
857 
858 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
859 	if (ret)
860 		return ret;
861 
862 	for (i = start_rgn; i < end_rgn; i++) {
863 		struct memblock_region *r = &type->regions[i];
864 
865 		if (set)
866 			r->flags |= flag;
867 		else
868 			r->flags &= ~flag;
869 	}
870 
871 	memblock_merge_regions(type);
872 	return 0;
873 }
874 
875 /**
876  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
877  * @base: the base phys addr of the region
878  * @size: the size of the region
879  *
880  * Return: 0 on success, -errno on failure.
881  */
882 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
883 {
884 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
885 }
886 
887 /**
888  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
889  * @base: the base phys addr of the region
890  * @size: the size of the region
891  *
892  * Return: 0 on success, -errno on failure.
893  */
894 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
895 {
896 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
897 }
898 
899 /**
900  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
901  * @base: the base phys addr of the region
902  * @size: the size of the region
903  *
904  * Return: 0 on success, -errno on failure.
905  */
906 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
907 {
908 	system_has_some_mirror = true;
909 
910 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
911 }
912 
913 /**
914  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
915  * @base: the base phys addr of the region
916  * @size: the size of the region
917  *
918  * Return: 0 on success, -errno on failure.
919  */
920 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
921 {
922 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
923 }
924 
925 /**
926  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
927  * @base: the base phys addr of the region
928  * @size: the size of the region
929  *
930  * Return: 0 on success, -errno on failure.
931  */
932 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
933 {
934 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
935 }
936 
937 /**
938  * __next_reserved_mem_region - next function for for_each_reserved_region()
939  * @idx: pointer to u64 loop variable
940  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
941  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
942  *
943  * Iterate over all reserved memory regions.
944  */
945 void __init_memblock __next_reserved_mem_region(u64 *idx,
946 					   phys_addr_t *out_start,
947 					   phys_addr_t *out_end)
948 {
949 	struct memblock_type *type = &memblock.reserved;
950 
951 	if (*idx < type->cnt) {
952 		struct memblock_region *r = &type->regions[*idx];
953 		phys_addr_t base = r->base;
954 		phys_addr_t size = r->size;
955 
956 		if (out_start)
957 			*out_start = base;
958 		if (out_end)
959 			*out_end = base + size - 1;
960 
961 		*idx += 1;
962 		return;
963 	}
964 
965 	/* signal end of iteration */
966 	*idx = ULLONG_MAX;
967 }
968 
969 static bool should_skip_region(struct memblock_region *m, int nid, int flags)
970 {
971 	int m_nid = memblock_get_region_node(m);
972 
973 	/* only memory regions are associated with nodes, check it */
974 	if (nid != NUMA_NO_NODE && nid != m_nid)
975 		return true;
976 
977 	/* skip hotpluggable memory regions if needed */
978 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
979 		return true;
980 
981 	/* if we want mirror memory skip non-mirror memory regions */
982 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
983 		return true;
984 
985 	/* skip nomap memory unless we were asked for it explicitly */
986 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
987 		return true;
988 
989 	return false;
990 }
991 
992 /**
993  * __next_mem_range - next function for for_each_free_mem_range() etc.
994  * @idx: pointer to u64 loop variable
995  * @nid: node selector, %NUMA_NO_NODE for all nodes
996  * @flags: pick from blocks based on memory attributes
997  * @type_a: pointer to memblock_type from where the range is taken
998  * @type_b: pointer to memblock_type which excludes memory from being taken
999  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1000  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1001  * @out_nid: ptr to int for nid of the range, can be %NULL
1002  *
1003  * Find the first area from *@idx which matches @nid, fill the out
1004  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1005  * *@idx contains index into type_a and the upper 32bit indexes the
1006  * areas before each region in type_b.	For example, if type_b regions
1007  * look like the following,
1008  *
1009  *	0:[0-16), 1:[32-48), 2:[128-130)
1010  *
1011  * The upper 32bit indexes the following regions.
1012  *
1013  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1014  *
1015  * As both region arrays are sorted, the function advances the two indices
1016  * in lockstep and returns each intersection.
1017  */
1018 void __init_memblock __next_mem_range(u64 *idx, int nid,
1019 				      enum memblock_flags flags,
1020 				      struct memblock_type *type_a,
1021 				      struct memblock_type *type_b,
1022 				      phys_addr_t *out_start,
1023 				      phys_addr_t *out_end, int *out_nid)
1024 {
1025 	int idx_a = *idx & 0xffffffff;
1026 	int idx_b = *idx >> 32;
1027 
1028 	if (WARN_ONCE(nid == MAX_NUMNODES,
1029 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1030 		nid = NUMA_NO_NODE;
1031 
1032 	for (; idx_a < type_a->cnt; idx_a++) {
1033 		struct memblock_region *m = &type_a->regions[idx_a];
1034 
1035 		phys_addr_t m_start = m->base;
1036 		phys_addr_t m_end = m->base + m->size;
1037 		int	    m_nid = memblock_get_region_node(m);
1038 
1039 		if (should_skip_region(m, nid, flags))
1040 			continue;
1041 
1042 		if (!type_b) {
1043 			if (out_start)
1044 				*out_start = m_start;
1045 			if (out_end)
1046 				*out_end = m_end;
1047 			if (out_nid)
1048 				*out_nid = m_nid;
1049 			idx_a++;
1050 			*idx = (u32)idx_a | (u64)idx_b << 32;
1051 			return;
1052 		}
1053 
1054 		/* scan areas before each reservation */
1055 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1056 			struct memblock_region *r;
1057 			phys_addr_t r_start;
1058 			phys_addr_t r_end;
1059 
1060 			r = &type_b->regions[idx_b];
1061 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1062 			r_end = idx_b < type_b->cnt ?
1063 				r->base : PHYS_ADDR_MAX;
1064 
1065 			/*
1066 			 * if idx_b advanced past idx_a,
1067 			 * break out to advance idx_a
1068 			 */
1069 			if (r_start >= m_end)
1070 				break;
1071 			/* if the two regions intersect, we're done */
1072 			if (m_start < r_end) {
1073 				if (out_start)
1074 					*out_start =
1075 						max(m_start, r_start);
1076 				if (out_end)
1077 					*out_end = min(m_end, r_end);
1078 				if (out_nid)
1079 					*out_nid = m_nid;
1080 				/*
1081 				 * The region which ends first is
1082 				 * advanced for the next iteration.
1083 				 */
1084 				if (m_end <= r_end)
1085 					idx_a++;
1086 				else
1087 					idx_b++;
1088 				*idx = (u32)idx_a | (u64)idx_b << 32;
1089 				return;
1090 			}
1091 		}
1092 	}
1093 
1094 	/* signal end of iteration */
1095 	*idx = ULLONG_MAX;
1096 }
1097 
1098 /**
1099  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1100  *
1101  * @idx: pointer to u64 loop variable
1102  * @nid: node selector, %NUMA_NO_NODE for all nodes
1103  * @flags: pick from blocks based on memory attributes
1104  * @type_a: pointer to memblock_type from where the range is taken
1105  * @type_b: pointer to memblock_type which excludes memory from being taken
1106  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1107  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1108  * @out_nid: ptr to int for nid of the range, can be %NULL
1109  *
1110  * Finds the next range from type_a which is not marked as unsuitable
1111  * in type_b.
1112  *
1113  * Reverse of __next_mem_range().
1114  */
1115 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1116 					  enum memblock_flags flags,
1117 					  struct memblock_type *type_a,
1118 					  struct memblock_type *type_b,
1119 					  phys_addr_t *out_start,
1120 					  phys_addr_t *out_end, int *out_nid)
1121 {
1122 	int idx_a = *idx & 0xffffffff;
1123 	int idx_b = *idx >> 32;
1124 
1125 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1126 		nid = NUMA_NO_NODE;
1127 
1128 	if (*idx == (u64)ULLONG_MAX) {
1129 		idx_a = type_a->cnt - 1;
1130 		if (type_b != NULL)
1131 			idx_b = type_b->cnt;
1132 		else
1133 			idx_b = 0;
1134 	}
1135 
1136 	for (; idx_a >= 0; idx_a--) {
1137 		struct memblock_region *m = &type_a->regions[idx_a];
1138 
1139 		phys_addr_t m_start = m->base;
1140 		phys_addr_t m_end = m->base + m->size;
1141 		int m_nid = memblock_get_region_node(m);
1142 
1143 		if (should_skip_region(m, nid, flags))
1144 			continue;
1145 
1146 		if (!type_b) {
1147 			if (out_start)
1148 				*out_start = m_start;
1149 			if (out_end)
1150 				*out_end = m_end;
1151 			if (out_nid)
1152 				*out_nid = m_nid;
1153 			idx_a--;
1154 			*idx = (u32)idx_a | (u64)idx_b << 32;
1155 			return;
1156 		}
1157 
1158 		/* scan areas before each reservation */
1159 		for (; idx_b >= 0; idx_b--) {
1160 			struct memblock_region *r;
1161 			phys_addr_t r_start;
1162 			phys_addr_t r_end;
1163 
1164 			r = &type_b->regions[idx_b];
1165 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1166 			r_end = idx_b < type_b->cnt ?
1167 				r->base : PHYS_ADDR_MAX;
1168 			/*
1169 			 * if idx_b advanced past idx_a,
1170 			 * break out to advance idx_a
1171 			 */
1172 
1173 			if (r_end <= m_start)
1174 				break;
1175 			/* if the two regions intersect, we're done */
1176 			if (m_end > r_start) {
1177 				if (out_start)
1178 					*out_start = max(m_start, r_start);
1179 				if (out_end)
1180 					*out_end = min(m_end, r_end);
1181 				if (out_nid)
1182 					*out_nid = m_nid;
1183 				if (m_start >= r_start)
1184 					idx_a--;
1185 				else
1186 					idx_b--;
1187 				*idx = (u32)idx_a | (u64)idx_b << 32;
1188 				return;
1189 			}
1190 		}
1191 	}
1192 	/* signal end of iteration */
1193 	*idx = ULLONG_MAX;
1194 }
1195 
1196 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1197 /*
1198  * Common iterator interface used to define for_each_mem_pfn_range().
1199  */
1200 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1201 				unsigned long *out_start_pfn,
1202 				unsigned long *out_end_pfn, int *out_nid)
1203 {
1204 	struct memblock_type *type = &memblock.memory;
1205 	struct memblock_region *r;
1206 
1207 	while (++*idx < type->cnt) {
1208 		r = &type->regions[*idx];
1209 
1210 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1211 			continue;
1212 		if (nid == MAX_NUMNODES || nid == r->nid)
1213 			break;
1214 	}
1215 	if (*idx >= type->cnt) {
1216 		*idx = -1;
1217 		return;
1218 	}
1219 
1220 	if (out_start_pfn)
1221 		*out_start_pfn = PFN_UP(r->base);
1222 	if (out_end_pfn)
1223 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1224 	if (out_nid)
1225 		*out_nid = r->nid;
1226 }
1227 
1228 /**
1229  * memblock_set_node - set node ID on memblock regions
1230  * @base: base of area to set node ID for
1231  * @size: size of area to set node ID for
1232  * @type: memblock type to set node ID for
1233  * @nid: node ID to set
1234  *
1235  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1236  * Regions which cross the area boundaries are split as necessary.
1237  *
1238  * Return:
1239  * 0 on success, -errno on failure.
1240  */
1241 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1242 				      struct memblock_type *type, int nid)
1243 {
1244 	int start_rgn, end_rgn;
1245 	int i, ret;
1246 
1247 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1248 	if (ret)
1249 		return ret;
1250 
1251 	for (i = start_rgn; i < end_rgn; i++)
1252 		memblock_set_region_node(&type->regions[i], nid);
1253 
1254 	memblock_merge_regions(type);
1255 	return 0;
1256 }
1257 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1258 
1259 /**
1260  * memblock_alloc_range_nid - allocate boot memory block
1261  * @size: size of memory block to be allocated in bytes
1262  * @align: alignment of the region and block's size
1263  * @start: the lower bound of the memory region to allocate (phys address)
1264  * @end: the upper bound of the memory region to allocate (phys address)
1265  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1266  *
1267  * The allocation is performed from memory region limited by
1268  * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
1269  *
1270  * If the specified node can not hold the requested memory the
1271  * allocation falls back to any node in the system
1272  *
1273  * For systems with memory mirroring, the allocation is attempted first
1274  * from the regions with mirroring enabled and then retried from any
1275  * memory region.
1276  *
1277  * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1278  * allocated boot memory block, so that it is never reported as leaks.
1279  *
1280  * Return:
1281  * Physical address of allocated memory block on success, %0 on failure.
1282  */
1283 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1284 					phys_addr_t align, phys_addr_t start,
1285 					phys_addr_t end, int nid)
1286 {
1287 	enum memblock_flags flags = choose_memblock_flags();
1288 	phys_addr_t found;
1289 
1290 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1291 		nid = NUMA_NO_NODE;
1292 
1293 	if (!align) {
1294 		/* Can't use WARNs this early in boot on powerpc */
1295 		dump_stack();
1296 		align = SMP_CACHE_BYTES;
1297 	}
1298 
1299 	if (end > memblock.current_limit)
1300 		end = memblock.current_limit;
1301 
1302 again:
1303 	found = memblock_find_in_range_node(size, align, start, end, nid,
1304 					    flags);
1305 	if (found && !memblock_reserve(found, size))
1306 		goto done;
1307 
1308 	if (nid != NUMA_NO_NODE) {
1309 		found = memblock_find_in_range_node(size, align, start,
1310 						    end, NUMA_NO_NODE,
1311 						    flags);
1312 		if (found && !memblock_reserve(found, size))
1313 			goto done;
1314 	}
1315 
1316 	if (flags & MEMBLOCK_MIRROR) {
1317 		flags &= ~MEMBLOCK_MIRROR;
1318 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1319 			&size);
1320 		goto again;
1321 	}
1322 
1323 	return 0;
1324 
1325 done:
1326 	/* Skip kmemleak for kasan_init() due to high volume. */
1327 	if (end != MEMBLOCK_ALLOC_KASAN)
1328 		/*
1329 		 * The min_count is set to 0 so that memblock allocated
1330 		 * blocks are never reported as leaks. This is because many
1331 		 * of these blocks are only referred via the physical
1332 		 * address which is not looked up by kmemleak.
1333 		 */
1334 		kmemleak_alloc_phys(found, size, 0, 0);
1335 
1336 	return found;
1337 }
1338 
1339 /**
1340  * memblock_phys_alloc_range - allocate a memory block inside specified range
1341  * @size: size of memory block to be allocated in bytes
1342  * @align: alignment of the region and block's size
1343  * @start: the lower bound of the memory region to allocate (physical address)
1344  * @end: the upper bound of the memory region to allocate (physical address)
1345  *
1346  * Allocate @size bytes in the between @start and @end.
1347  *
1348  * Return: physical address of the allocated memory block on success,
1349  * %0 on failure.
1350  */
1351 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1352 					     phys_addr_t align,
1353 					     phys_addr_t start,
1354 					     phys_addr_t end)
1355 {
1356 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
1357 }
1358 
1359 /**
1360  * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1361  * @size: size of memory block to be allocated in bytes
1362  * @align: alignment of the region and block's size
1363  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1364  *
1365  * Allocates memory block from the specified NUMA node. If the node
1366  * has no available memory, attempts to allocated from any node in the
1367  * system.
1368  *
1369  * Return: physical address of the allocated memory block on success,
1370  * %0 on failure.
1371  */
1372 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1373 {
1374 	return memblock_alloc_range_nid(size, align, 0,
1375 					MEMBLOCK_ALLOC_ACCESSIBLE, nid);
1376 }
1377 
1378 /**
1379  * memblock_alloc_internal - allocate boot memory block
1380  * @size: size of memory block to be allocated in bytes
1381  * @align: alignment of the region and block's size
1382  * @min_addr: the lower bound of the memory region to allocate (phys address)
1383  * @max_addr: the upper bound of the memory region to allocate (phys address)
1384  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1385  *
1386  * Allocates memory block using memblock_alloc_range_nid() and
1387  * converts the returned physical address to virtual.
1388  *
1389  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1390  * will fall back to memory below @min_addr. Other constraints, such
1391  * as node and mirrored memory will be handled again in
1392  * memblock_alloc_range_nid().
1393  *
1394  * Return:
1395  * Virtual address of allocated memory block on success, NULL on failure.
1396  */
1397 static void * __init memblock_alloc_internal(
1398 				phys_addr_t size, phys_addr_t align,
1399 				phys_addr_t min_addr, phys_addr_t max_addr,
1400 				int nid)
1401 {
1402 	phys_addr_t alloc;
1403 
1404 	/*
1405 	 * Detect any accidental use of these APIs after slab is ready, as at
1406 	 * this moment memblock may be deinitialized already and its
1407 	 * internal data may be destroyed (after execution of memblock_free_all)
1408 	 */
1409 	if (WARN_ON_ONCE(slab_is_available()))
1410 		return kzalloc_node(size, GFP_NOWAIT, nid);
1411 
1412 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid);
1413 
1414 	/* retry allocation without lower limit */
1415 	if (!alloc && min_addr)
1416 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid);
1417 
1418 	if (!alloc)
1419 		return NULL;
1420 
1421 	return phys_to_virt(alloc);
1422 }
1423 
1424 /**
1425  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1426  * memory and without panicking
1427  * @size: size of memory block to be allocated in bytes
1428  * @align: alignment of the region and block's size
1429  * @min_addr: the lower bound of the memory region from where the allocation
1430  *	  is preferred (phys address)
1431  * @max_addr: the upper bound of the memory region from where the allocation
1432  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1433  *	      allocate only from memory limited by memblock.current_limit value
1434  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1435  *
1436  * Public function, provides additional debug information (including caller
1437  * info), if enabled. Does not zero allocated memory, does not panic if request
1438  * cannot be satisfied.
1439  *
1440  * Return:
1441  * Virtual address of allocated memory block on success, NULL on failure.
1442  */
1443 void * __init memblock_alloc_try_nid_raw(
1444 			phys_addr_t size, phys_addr_t align,
1445 			phys_addr_t min_addr, phys_addr_t max_addr,
1446 			int nid)
1447 {
1448 	void *ptr;
1449 
1450 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1451 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1452 		     &max_addr, (void *)_RET_IP_);
1453 
1454 	ptr = memblock_alloc_internal(size, align,
1455 					   min_addr, max_addr, nid);
1456 	if (ptr && size > 0)
1457 		page_init_poison(ptr, size);
1458 
1459 	return ptr;
1460 }
1461 
1462 /**
1463  * memblock_alloc_try_nid - allocate boot memory block
1464  * @size: size of memory block to be allocated in bytes
1465  * @align: alignment of the region and block's size
1466  * @min_addr: the lower bound of the memory region from where the allocation
1467  *	  is preferred (phys address)
1468  * @max_addr: the upper bound of the memory region from where the allocation
1469  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1470  *	      allocate only from memory limited by memblock.current_limit value
1471  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1472  *
1473  * Public function, provides additional debug information (including caller
1474  * info), if enabled. This function zeroes the allocated memory.
1475  *
1476  * Return:
1477  * Virtual address of allocated memory block on success, NULL on failure.
1478  */
1479 void * __init memblock_alloc_try_nid(
1480 			phys_addr_t size, phys_addr_t align,
1481 			phys_addr_t min_addr, phys_addr_t max_addr,
1482 			int nid)
1483 {
1484 	void *ptr;
1485 
1486 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1487 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1488 		     &max_addr, (void *)_RET_IP_);
1489 	ptr = memblock_alloc_internal(size, align,
1490 					   min_addr, max_addr, nid);
1491 	if (ptr)
1492 		memset(ptr, 0, size);
1493 
1494 	return ptr;
1495 }
1496 
1497 /**
1498  * __memblock_free_late - free pages directly to buddy allocator
1499  * @base: phys starting address of the  boot memory block
1500  * @size: size of the boot memory block in bytes
1501  *
1502  * This is only useful when the memblock allocator has already been torn
1503  * down, but we are still initializing the system.  Pages are released directly
1504  * to the buddy allocator.
1505  */
1506 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1507 {
1508 	phys_addr_t cursor, end;
1509 
1510 	end = base + size - 1;
1511 	memblock_dbg("%s: [%pa-%pa] %pF\n",
1512 		     __func__, &base, &end, (void *)_RET_IP_);
1513 	kmemleak_free_part_phys(base, size);
1514 	cursor = PFN_UP(base);
1515 	end = PFN_DOWN(base + size);
1516 
1517 	for (; cursor < end; cursor++) {
1518 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1519 		totalram_pages_inc();
1520 	}
1521 }
1522 
1523 /*
1524  * Remaining API functions
1525  */
1526 
1527 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1528 {
1529 	return memblock.memory.total_size;
1530 }
1531 
1532 phys_addr_t __init_memblock memblock_reserved_size(void)
1533 {
1534 	return memblock.reserved.total_size;
1535 }
1536 
1537 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1538 {
1539 	unsigned long pages = 0;
1540 	struct memblock_region *r;
1541 	unsigned long start_pfn, end_pfn;
1542 
1543 	for_each_memblock(memory, r) {
1544 		start_pfn = memblock_region_memory_base_pfn(r);
1545 		end_pfn = memblock_region_memory_end_pfn(r);
1546 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1547 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1548 		pages += end_pfn - start_pfn;
1549 	}
1550 
1551 	return PFN_PHYS(pages);
1552 }
1553 
1554 /* lowest address */
1555 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1556 {
1557 	return memblock.memory.regions[0].base;
1558 }
1559 
1560 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1561 {
1562 	int idx = memblock.memory.cnt - 1;
1563 
1564 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1565 }
1566 
1567 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1568 {
1569 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1570 	struct memblock_region *r;
1571 
1572 	/*
1573 	 * translate the memory @limit size into the max address within one of
1574 	 * the memory memblock regions, if the @limit exceeds the total size
1575 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1576 	 */
1577 	for_each_memblock(memory, r) {
1578 		if (limit <= r->size) {
1579 			max_addr = r->base + limit;
1580 			break;
1581 		}
1582 		limit -= r->size;
1583 	}
1584 
1585 	return max_addr;
1586 }
1587 
1588 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1589 {
1590 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1591 
1592 	if (!limit)
1593 		return;
1594 
1595 	max_addr = __find_max_addr(limit);
1596 
1597 	/* @limit exceeds the total size of the memory, do nothing */
1598 	if (max_addr == PHYS_ADDR_MAX)
1599 		return;
1600 
1601 	/* truncate both memory and reserved regions */
1602 	memblock_remove_range(&memblock.memory, max_addr,
1603 			      PHYS_ADDR_MAX);
1604 	memblock_remove_range(&memblock.reserved, max_addr,
1605 			      PHYS_ADDR_MAX);
1606 }
1607 
1608 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1609 {
1610 	int start_rgn, end_rgn;
1611 	int i, ret;
1612 
1613 	if (!size)
1614 		return;
1615 
1616 	ret = memblock_isolate_range(&memblock.memory, base, size,
1617 						&start_rgn, &end_rgn);
1618 	if (ret)
1619 		return;
1620 
1621 	/* remove all the MAP regions */
1622 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1623 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1624 			memblock_remove_region(&memblock.memory, i);
1625 
1626 	for (i = start_rgn - 1; i >= 0; i--)
1627 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1628 			memblock_remove_region(&memblock.memory, i);
1629 
1630 	/* truncate the reserved regions */
1631 	memblock_remove_range(&memblock.reserved, 0, base);
1632 	memblock_remove_range(&memblock.reserved,
1633 			base + size, PHYS_ADDR_MAX);
1634 }
1635 
1636 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1637 {
1638 	phys_addr_t max_addr;
1639 
1640 	if (!limit)
1641 		return;
1642 
1643 	max_addr = __find_max_addr(limit);
1644 
1645 	/* @limit exceeds the total size of the memory, do nothing */
1646 	if (max_addr == PHYS_ADDR_MAX)
1647 		return;
1648 
1649 	memblock_cap_memory_range(0, max_addr);
1650 }
1651 
1652 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1653 {
1654 	unsigned int left = 0, right = type->cnt;
1655 
1656 	do {
1657 		unsigned int mid = (right + left) / 2;
1658 
1659 		if (addr < type->regions[mid].base)
1660 			right = mid;
1661 		else if (addr >= (type->regions[mid].base +
1662 				  type->regions[mid].size))
1663 			left = mid + 1;
1664 		else
1665 			return mid;
1666 	} while (left < right);
1667 	return -1;
1668 }
1669 
1670 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1671 {
1672 	return memblock_search(&memblock.reserved, addr) != -1;
1673 }
1674 
1675 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1676 {
1677 	return memblock_search(&memblock.memory, addr) != -1;
1678 }
1679 
1680 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1681 {
1682 	int i = memblock_search(&memblock.memory, addr);
1683 
1684 	if (i == -1)
1685 		return false;
1686 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1687 }
1688 
1689 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1690 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1691 			 unsigned long *start_pfn, unsigned long *end_pfn)
1692 {
1693 	struct memblock_type *type = &memblock.memory;
1694 	int mid = memblock_search(type, PFN_PHYS(pfn));
1695 
1696 	if (mid == -1)
1697 		return -1;
1698 
1699 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1700 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1701 
1702 	return type->regions[mid].nid;
1703 }
1704 #endif
1705 
1706 /**
1707  * memblock_is_region_memory - check if a region is a subset of memory
1708  * @base: base of region to check
1709  * @size: size of region to check
1710  *
1711  * Check if the region [@base, @base + @size) is a subset of a memory block.
1712  *
1713  * Return:
1714  * 0 if false, non-zero if true
1715  */
1716 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1717 {
1718 	int idx = memblock_search(&memblock.memory, base);
1719 	phys_addr_t end = base + memblock_cap_size(base, &size);
1720 
1721 	if (idx == -1)
1722 		return false;
1723 	return (memblock.memory.regions[idx].base +
1724 		 memblock.memory.regions[idx].size) >= end;
1725 }
1726 
1727 /**
1728  * memblock_is_region_reserved - check if a region intersects reserved memory
1729  * @base: base of region to check
1730  * @size: size of region to check
1731  *
1732  * Check if the region [@base, @base + @size) intersects a reserved
1733  * memory block.
1734  *
1735  * Return:
1736  * True if they intersect, false if not.
1737  */
1738 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1739 {
1740 	memblock_cap_size(base, &size);
1741 	return memblock_overlaps_region(&memblock.reserved, base, size);
1742 }
1743 
1744 void __init_memblock memblock_trim_memory(phys_addr_t align)
1745 {
1746 	phys_addr_t start, end, orig_start, orig_end;
1747 	struct memblock_region *r;
1748 
1749 	for_each_memblock(memory, r) {
1750 		orig_start = r->base;
1751 		orig_end = r->base + r->size;
1752 		start = round_up(orig_start, align);
1753 		end = round_down(orig_end, align);
1754 
1755 		if (start == orig_start && end == orig_end)
1756 			continue;
1757 
1758 		if (start < end) {
1759 			r->base = start;
1760 			r->size = end - start;
1761 		} else {
1762 			memblock_remove_region(&memblock.memory,
1763 					       r - memblock.memory.regions);
1764 			r--;
1765 		}
1766 	}
1767 }
1768 
1769 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1770 {
1771 	memblock.current_limit = limit;
1772 }
1773 
1774 phys_addr_t __init_memblock memblock_get_current_limit(void)
1775 {
1776 	return memblock.current_limit;
1777 }
1778 
1779 static void __init_memblock memblock_dump(struct memblock_type *type)
1780 {
1781 	phys_addr_t base, end, size;
1782 	enum memblock_flags flags;
1783 	int idx;
1784 	struct memblock_region *rgn;
1785 
1786 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1787 
1788 	for_each_memblock_type(idx, type, rgn) {
1789 		char nid_buf[32] = "";
1790 
1791 		base = rgn->base;
1792 		size = rgn->size;
1793 		end = base + size - 1;
1794 		flags = rgn->flags;
1795 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1796 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1797 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1798 				 memblock_get_region_node(rgn));
1799 #endif
1800 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1801 			type->name, idx, &base, &end, &size, nid_buf, flags);
1802 	}
1803 }
1804 
1805 void __init_memblock __memblock_dump_all(void)
1806 {
1807 	pr_info("MEMBLOCK configuration:\n");
1808 	pr_info(" memory size = %pa reserved size = %pa\n",
1809 		&memblock.memory.total_size,
1810 		&memblock.reserved.total_size);
1811 
1812 	memblock_dump(&memblock.memory);
1813 	memblock_dump(&memblock.reserved);
1814 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1815 	memblock_dump(&memblock.physmem);
1816 #endif
1817 }
1818 
1819 void __init memblock_allow_resize(void)
1820 {
1821 	memblock_can_resize = 1;
1822 }
1823 
1824 static int __init early_memblock(char *p)
1825 {
1826 	if (p && strstr(p, "debug"))
1827 		memblock_debug = 1;
1828 	return 0;
1829 }
1830 early_param("memblock", early_memblock);
1831 
1832 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1833 {
1834 	int order;
1835 
1836 	while (start < end) {
1837 		order = min(MAX_ORDER - 1UL, __ffs(start));
1838 
1839 		while (start + (1UL << order) > end)
1840 			order--;
1841 
1842 		memblock_free_pages(pfn_to_page(start), start, order);
1843 
1844 		start += (1UL << order);
1845 	}
1846 }
1847 
1848 static unsigned long __init __free_memory_core(phys_addr_t start,
1849 				 phys_addr_t end)
1850 {
1851 	unsigned long start_pfn = PFN_UP(start);
1852 	unsigned long end_pfn = min_t(unsigned long,
1853 				      PFN_DOWN(end), max_low_pfn);
1854 
1855 	if (start_pfn >= end_pfn)
1856 		return 0;
1857 
1858 	__free_pages_memory(start_pfn, end_pfn);
1859 
1860 	return end_pfn - start_pfn;
1861 }
1862 
1863 static unsigned long __init free_low_memory_core_early(void)
1864 {
1865 	unsigned long count = 0;
1866 	phys_addr_t start, end;
1867 	u64 i;
1868 
1869 	memblock_clear_hotplug(0, -1);
1870 
1871 	for_each_reserved_mem_region(i, &start, &end)
1872 		reserve_bootmem_region(start, end);
1873 
1874 	/*
1875 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1876 	 *  because in some case like Node0 doesn't have RAM installed
1877 	 *  low ram will be on Node1
1878 	 */
1879 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1880 				NULL)
1881 		count += __free_memory_core(start, end);
1882 
1883 	return count;
1884 }
1885 
1886 static int reset_managed_pages_done __initdata;
1887 
1888 void reset_node_managed_pages(pg_data_t *pgdat)
1889 {
1890 	struct zone *z;
1891 
1892 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1893 		atomic_long_set(&z->managed_pages, 0);
1894 }
1895 
1896 void __init reset_all_zones_managed_pages(void)
1897 {
1898 	struct pglist_data *pgdat;
1899 
1900 	if (reset_managed_pages_done)
1901 		return;
1902 
1903 	for_each_online_pgdat(pgdat)
1904 		reset_node_managed_pages(pgdat);
1905 
1906 	reset_managed_pages_done = 1;
1907 }
1908 
1909 /**
1910  * memblock_free_all - release free pages to the buddy allocator
1911  *
1912  * Return: the number of pages actually released.
1913  */
1914 unsigned long __init memblock_free_all(void)
1915 {
1916 	unsigned long pages;
1917 
1918 	reset_all_zones_managed_pages();
1919 
1920 	pages = free_low_memory_core_early();
1921 	totalram_pages_add(pages);
1922 
1923 	return pages;
1924 }
1925 
1926 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1927 
1928 static int memblock_debug_show(struct seq_file *m, void *private)
1929 {
1930 	struct memblock_type *type = m->private;
1931 	struct memblock_region *reg;
1932 	int i;
1933 	phys_addr_t end;
1934 
1935 	for (i = 0; i < type->cnt; i++) {
1936 		reg = &type->regions[i];
1937 		end = reg->base + reg->size - 1;
1938 
1939 		seq_printf(m, "%4d: ", i);
1940 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1941 	}
1942 	return 0;
1943 }
1944 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1945 
1946 static int __init memblock_init_debugfs(void)
1947 {
1948 	struct dentry *root = debugfs_create_dir("memblock", NULL);
1949 
1950 	debugfs_create_file("memory", 0444, root,
1951 			    &memblock.memory, &memblock_debug_fops);
1952 	debugfs_create_file("reserved", 0444, root,
1953 			    &memblock.reserved, &memblock_debug_fops);
1954 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1955 	debugfs_create_file("physmem", 0444, root,
1956 			    &memblock.physmem, &memblock_debug_fops);
1957 #endif
1958 
1959 	return 0;
1960 }
1961 __initcall(memblock_init_debugfs);
1962 
1963 #endif /* CONFIG_DEBUG_FS */
1964