xref: /linux/mm/memblock.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 
20 #include <asm/sections.h>
21 #include <linux/io.h>
22 
23 #include "internal.h"
24 
25 #define INIT_MEMBLOCK_REGIONS			128
26 #define INIT_PHYSMEM_REGIONS			4
27 
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30 #endif
31 
32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33 #define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
34 #endif
35 
36 /**
37  * DOC: memblock overview
38  *
39  * Memblock is a method of managing memory regions during the early
40  * boot period when the usual kernel memory allocators are not up and
41  * running.
42  *
43  * Memblock views the system memory as collections of contiguous
44  * regions. There are several types of these collections:
45  *
46  * * ``memory`` - describes the physical memory available to the
47  *   kernel; this may differ from the actual physical memory installed
48  *   in the system, for instance when the memory is restricted with
49  *   ``mem=`` command line parameter
50  * * ``reserved`` - describes the regions that were allocated
51  * * ``physmem`` - describes the actual physical memory available during
52  *   boot regardless of the possible restrictions and memory hot(un)plug;
53  *   the ``physmem`` type is only available on some architectures.
54  *
55  * Each region is represented by struct memblock_region that
56  * defines the region extents, its attributes and NUMA node id on NUMA
57  * systems. Every memory type is described by the struct memblock_type
58  * which contains an array of memory regions along with
59  * the allocator metadata. The "memory" and "reserved" types are nicely
60  * wrapped with struct memblock. This structure is statically
61  * initialized at build time. The region arrays are initially sized to
62  * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63  * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64  * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65  * The memblock_allow_resize() enables automatic resizing of the region
66  * arrays during addition of new regions. This feature should be used
67  * with care so that memory allocated for the region array will not
68  * overlap with areas that should be reserved, for example initrd.
69  *
70  * The early architecture setup should tell memblock what the physical
71  * memory layout is by using memblock_add() or memblock_add_node()
72  * functions. The first function does not assign the region to a NUMA
73  * node and it is appropriate for UMA systems. Yet, it is possible to
74  * use it on NUMA systems as well and assign the region to a NUMA node
75  * later in the setup process using memblock_set_node(). The
76  * memblock_add_node() performs such an assignment directly.
77  *
78  * Once memblock is setup the memory can be allocated using one of the
79  * API variants:
80  *
81  * * memblock_phys_alloc*() - these functions return the **physical**
82  *   address of the allocated memory
83  * * memblock_alloc*() - these functions return the **virtual** address
84  *   of the allocated memory.
85  *
86  * Note, that both API variants use implicit assumptions about allowed
87  * memory ranges and the fallback methods. Consult the documentation
88  * of memblock_alloc_internal() and memblock_alloc_range_nid()
89  * functions for more elaborate description.
90  *
91  * As the system boot progresses, the architecture specific mem_init()
92  * function frees all the memory to the buddy page allocator.
93  *
94  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95  * memblock data structures (except "physmem") will be discarded after the
96  * system initialization completes.
97  */
98 
99 #ifndef CONFIG_NUMA
100 struct pglist_data __refdata contig_page_data;
101 EXPORT_SYMBOL(contig_page_data);
102 #endif
103 
104 unsigned long max_low_pfn;
105 unsigned long min_low_pfn;
106 unsigned long max_pfn;
107 unsigned long long max_possible_pfn;
108 
109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113 #endif
114 
115 struct memblock memblock __initdata_memblock = {
116 	.memory.regions		= memblock_memory_init_regions,
117 	.memory.cnt		= 1,	/* empty dummy entry */
118 	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
119 	.memory.name		= "memory",
120 
121 	.reserved.regions	= memblock_reserved_init_regions,
122 	.reserved.cnt		= 1,	/* empty dummy entry */
123 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
124 	.reserved.name		= "reserved",
125 
126 	.bottom_up		= false,
127 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
128 };
129 
130 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131 struct memblock_type physmem = {
132 	.regions		= memblock_physmem_init_regions,
133 	.cnt			= 1,	/* empty dummy entry */
134 	.max			= INIT_PHYSMEM_REGIONS,
135 	.name			= "physmem",
136 };
137 #endif
138 
139 /*
140  * keep a pointer to &memblock.memory in the text section to use it in
141  * __next_mem_range() and its helpers.
142  *  For architectures that do not keep memblock data after init, this
143  * pointer will be reset to NULL at memblock_discard()
144  */
145 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146 
147 #define for_each_memblock_type(i, memblock_type, rgn)			\
148 	for (i = 0, rgn = &memblock_type->regions[0];			\
149 	     i < memblock_type->cnt;					\
150 	     i++, rgn = &memblock_type->regions[i])
151 
152 #define memblock_dbg(fmt, ...)						\
153 	do {								\
154 		if (memblock_debug)					\
155 			pr_info(fmt, ##__VA_ARGS__);			\
156 	} while (0)
157 
158 static int memblock_debug __initdata_memblock;
159 static bool system_has_some_mirror __initdata_memblock;
160 static int memblock_can_resize __initdata_memblock;
161 static int memblock_memory_in_slab __initdata_memblock;
162 static int memblock_reserved_in_slab __initdata_memblock;
163 
164 bool __init_memblock memblock_has_mirror(void)
165 {
166 	return system_has_some_mirror;
167 }
168 
169 static enum memblock_flags __init_memblock choose_memblock_flags(void)
170 {
171 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
172 }
173 
174 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
175 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
176 {
177 	return *size = min(*size, PHYS_ADDR_MAX - base);
178 }
179 
180 /*
181  * Address comparison utilities
182  */
183 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
184 				       phys_addr_t base2, phys_addr_t size2)
185 {
186 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
187 }
188 
189 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
190 					phys_addr_t base, phys_addr_t size)
191 {
192 	unsigned long i;
193 
194 	memblock_cap_size(base, &size);
195 
196 	for (i = 0; i < type->cnt; i++)
197 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
198 					   type->regions[i].size))
199 			break;
200 	return i < type->cnt;
201 }
202 
203 /**
204  * __memblock_find_range_bottom_up - find free area utility in bottom-up
205  * @start: start of candidate range
206  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
207  *       %MEMBLOCK_ALLOC_ACCESSIBLE
208  * @size: size of free area to find
209  * @align: alignment of free area to find
210  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
211  * @flags: pick from blocks based on memory attributes
212  *
213  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
214  *
215  * Return:
216  * Found address on success, 0 on failure.
217  */
218 static phys_addr_t __init_memblock
219 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
220 				phys_addr_t size, phys_addr_t align, int nid,
221 				enum memblock_flags flags)
222 {
223 	phys_addr_t this_start, this_end, cand;
224 	u64 i;
225 
226 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
227 		this_start = clamp(this_start, start, end);
228 		this_end = clamp(this_end, start, end);
229 
230 		cand = round_up(this_start, align);
231 		if (cand < this_end && this_end - cand >= size)
232 			return cand;
233 	}
234 
235 	return 0;
236 }
237 
238 /**
239  * __memblock_find_range_top_down - find free area utility, in top-down
240  * @start: start of candidate range
241  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
242  *       %MEMBLOCK_ALLOC_ACCESSIBLE
243  * @size: size of free area to find
244  * @align: alignment of free area to find
245  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
246  * @flags: pick from blocks based on memory attributes
247  *
248  * Utility called from memblock_find_in_range_node(), find free area top-down.
249  *
250  * Return:
251  * Found address on success, 0 on failure.
252  */
253 static phys_addr_t __init_memblock
254 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
255 			       phys_addr_t size, phys_addr_t align, int nid,
256 			       enum memblock_flags flags)
257 {
258 	phys_addr_t this_start, this_end, cand;
259 	u64 i;
260 
261 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
262 					NULL) {
263 		this_start = clamp(this_start, start, end);
264 		this_end = clamp(this_end, start, end);
265 
266 		if (this_end < size)
267 			continue;
268 
269 		cand = round_down(this_end - size, align);
270 		if (cand >= this_start)
271 			return cand;
272 	}
273 
274 	return 0;
275 }
276 
277 /**
278  * memblock_find_in_range_node - find free area in given range and node
279  * @size: size of free area to find
280  * @align: alignment of free area to find
281  * @start: start of candidate range
282  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
283  *       %MEMBLOCK_ALLOC_ACCESSIBLE
284  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
285  * @flags: pick from blocks based on memory attributes
286  *
287  * Find @size free area aligned to @align in the specified range and node.
288  *
289  * Return:
290  * Found address on success, 0 on failure.
291  */
292 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
293 					phys_addr_t align, phys_addr_t start,
294 					phys_addr_t end, int nid,
295 					enum memblock_flags flags)
296 {
297 	/* pump up @end */
298 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
299 	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
300 		end = memblock.current_limit;
301 
302 	/* avoid allocating the first page */
303 	start = max_t(phys_addr_t, start, PAGE_SIZE);
304 	end = max(start, end);
305 
306 	if (memblock_bottom_up())
307 		return __memblock_find_range_bottom_up(start, end, size, align,
308 						       nid, flags);
309 	else
310 		return __memblock_find_range_top_down(start, end, size, align,
311 						      nid, flags);
312 }
313 
314 /**
315  * memblock_find_in_range - find free area in given range
316  * @start: start of candidate range
317  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
318  *       %MEMBLOCK_ALLOC_ACCESSIBLE
319  * @size: size of free area to find
320  * @align: alignment of free area to find
321  *
322  * Find @size free area aligned to @align in the specified range.
323  *
324  * Return:
325  * Found address on success, 0 on failure.
326  */
327 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
328 					phys_addr_t end, phys_addr_t size,
329 					phys_addr_t align)
330 {
331 	phys_addr_t ret;
332 	enum memblock_flags flags = choose_memblock_flags();
333 
334 again:
335 	ret = memblock_find_in_range_node(size, align, start, end,
336 					    NUMA_NO_NODE, flags);
337 
338 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
339 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
340 			&size);
341 		flags &= ~MEMBLOCK_MIRROR;
342 		goto again;
343 	}
344 
345 	return ret;
346 }
347 
348 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
349 {
350 	type->total_size -= type->regions[r].size;
351 	memmove(&type->regions[r], &type->regions[r + 1],
352 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
353 	type->cnt--;
354 
355 	/* Special case for empty arrays */
356 	if (type->cnt == 0) {
357 		WARN_ON(type->total_size != 0);
358 		type->cnt = 1;
359 		type->regions[0].base = 0;
360 		type->regions[0].size = 0;
361 		type->regions[0].flags = 0;
362 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
363 	}
364 }
365 
366 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
367 /**
368  * memblock_discard - discard memory and reserved arrays if they were allocated
369  */
370 void __init memblock_discard(void)
371 {
372 	phys_addr_t addr, size;
373 
374 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
375 		addr = __pa(memblock.reserved.regions);
376 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
377 				  memblock.reserved.max);
378 		if (memblock_reserved_in_slab)
379 			kfree(memblock.reserved.regions);
380 		else
381 			memblock_free_late(addr, size);
382 	}
383 
384 	if (memblock.memory.regions != memblock_memory_init_regions) {
385 		addr = __pa(memblock.memory.regions);
386 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
387 				  memblock.memory.max);
388 		if (memblock_memory_in_slab)
389 			kfree(memblock.memory.regions);
390 		else
391 			memblock_free_late(addr, size);
392 	}
393 
394 	memblock_memory = NULL;
395 }
396 #endif
397 
398 /**
399  * memblock_double_array - double the size of the memblock regions array
400  * @type: memblock type of the regions array being doubled
401  * @new_area_start: starting address of memory range to avoid overlap with
402  * @new_area_size: size of memory range to avoid overlap with
403  *
404  * Double the size of the @type regions array. If memblock is being used to
405  * allocate memory for a new reserved regions array and there is a previously
406  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
407  * waiting to be reserved, ensure the memory used by the new array does
408  * not overlap.
409  *
410  * Return:
411  * 0 on success, -1 on failure.
412  */
413 static int __init_memblock memblock_double_array(struct memblock_type *type,
414 						phys_addr_t new_area_start,
415 						phys_addr_t new_area_size)
416 {
417 	struct memblock_region *new_array, *old_array;
418 	phys_addr_t old_alloc_size, new_alloc_size;
419 	phys_addr_t old_size, new_size, addr, new_end;
420 	int use_slab = slab_is_available();
421 	int *in_slab;
422 
423 	/* We don't allow resizing until we know about the reserved regions
424 	 * of memory that aren't suitable for allocation
425 	 */
426 	if (!memblock_can_resize)
427 		panic("memblock: cannot resize %s array\n", type->name);
428 
429 	/* Calculate new doubled size */
430 	old_size = type->max * sizeof(struct memblock_region);
431 	new_size = old_size << 1;
432 	/*
433 	 * We need to allocated new one align to PAGE_SIZE,
434 	 *   so we can free them completely later.
435 	 */
436 	old_alloc_size = PAGE_ALIGN(old_size);
437 	new_alloc_size = PAGE_ALIGN(new_size);
438 
439 	/* Retrieve the slab flag */
440 	if (type == &memblock.memory)
441 		in_slab = &memblock_memory_in_slab;
442 	else
443 		in_slab = &memblock_reserved_in_slab;
444 
445 	/* Try to find some space for it */
446 	if (use_slab) {
447 		new_array = kmalloc(new_size, GFP_KERNEL);
448 		addr = new_array ? __pa(new_array) : 0;
449 	} else {
450 		/* only exclude range when trying to double reserved.regions */
451 		if (type != &memblock.reserved)
452 			new_area_start = new_area_size = 0;
453 
454 		addr = memblock_find_in_range(new_area_start + new_area_size,
455 						memblock.current_limit,
456 						new_alloc_size, PAGE_SIZE);
457 		if (!addr && new_area_size)
458 			addr = memblock_find_in_range(0,
459 				min(new_area_start, memblock.current_limit),
460 				new_alloc_size, PAGE_SIZE);
461 
462 		new_array = addr ? __va(addr) : NULL;
463 	}
464 	if (!addr) {
465 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
466 		       type->name, type->max, type->max * 2);
467 		return -1;
468 	}
469 
470 	new_end = addr + new_size - 1;
471 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
472 			type->name, type->max * 2, &addr, &new_end);
473 
474 	/*
475 	 * Found space, we now need to move the array over before we add the
476 	 * reserved region since it may be our reserved array itself that is
477 	 * full.
478 	 */
479 	memcpy(new_array, type->regions, old_size);
480 	memset(new_array + type->max, 0, old_size);
481 	old_array = type->regions;
482 	type->regions = new_array;
483 	type->max <<= 1;
484 
485 	/* Free old array. We needn't free it if the array is the static one */
486 	if (*in_slab)
487 		kfree(old_array);
488 	else if (old_array != memblock_memory_init_regions &&
489 		 old_array != memblock_reserved_init_regions)
490 		memblock_free(old_array, old_alloc_size);
491 
492 	/*
493 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
494 	 * needn't do it
495 	 */
496 	if (!use_slab)
497 		BUG_ON(memblock_reserve(addr, new_alloc_size));
498 
499 	/* Update slab flag */
500 	*in_slab = use_slab;
501 
502 	return 0;
503 }
504 
505 /**
506  * memblock_merge_regions - merge neighboring compatible regions
507  * @type: memblock type to scan
508  * @start_rgn: start scanning from (@start_rgn - 1)
509  * @end_rgn: end scanning at (@end_rgn - 1)
510  * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
511  */
512 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
513 						   unsigned long start_rgn,
514 						   unsigned long end_rgn)
515 {
516 	int i = 0;
517 	if (start_rgn)
518 		i = start_rgn - 1;
519 	end_rgn = min(end_rgn, type->cnt - 1);
520 	while (i < end_rgn) {
521 		struct memblock_region *this = &type->regions[i];
522 		struct memblock_region *next = &type->regions[i + 1];
523 
524 		if (this->base + this->size != next->base ||
525 		    memblock_get_region_node(this) !=
526 		    memblock_get_region_node(next) ||
527 		    this->flags != next->flags) {
528 			BUG_ON(this->base + this->size > next->base);
529 			i++;
530 			continue;
531 		}
532 
533 		this->size += next->size;
534 		/* move forward from next + 1, index of which is i + 2 */
535 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
536 		type->cnt--;
537 		end_rgn--;
538 	}
539 }
540 
541 /**
542  * memblock_insert_region - insert new memblock region
543  * @type:	memblock type to insert into
544  * @idx:	index for the insertion point
545  * @base:	base address of the new region
546  * @size:	size of the new region
547  * @nid:	node id of the new region
548  * @flags:	flags of the new region
549  *
550  * Insert new memblock region [@base, @base + @size) into @type at @idx.
551  * @type must already have extra room to accommodate the new region.
552  */
553 static void __init_memblock memblock_insert_region(struct memblock_type *type,
554 						   int idx, phys_addr_t base,
555 						   phys_addr_t size,
556 						   int nid,
557 						   enum memblock_flags flags)
558 {
559 	struct memblock_region *rgn = &type->regions[idx];
560 
561 	BUG_ON(type->cnt >= type->max);
562 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
563 	rgn->base = base;
564 	rgn->size = size;
565 	rgn->flags = flags;
566 	memblock_set_region_node(rgn, nid);
567 	type->cnt++;
568 	type->total_size += size;
569 }
570 
571 /**
572  * memblock_add_range - add new memblock region
573  * @type: memblock type to add new region into
574  * @base: base address of the new region
575  * @size: size of the new region
576  * @nid: nid of the new region
577  * @flags: flags of the new region
578  *
579  * Add new memblock region [@base, @base + @size) into @type.  The new region
580  * is allowed to overlap with existing ones - overlaps don't affect already
581  * existing regions.  @type is guaranteed to be minimal (all neighbouring
582  * compatible regions are merged) after the addition.
583  *
584  * Return:
585  * 0 on success, -errno on failure.
586  */
587 static int __init_memblock memblock_add_range(struct memblock_type *type,
588 				phys_addr_t base, phys_addr_t size,
589 				int nid, enum memblock_flags flags)
590 {
591 	bool insert = false;
592 	phys_addr_t obase = base;
593 	phys_addr_t end = base + memblock_cap_size(base, &size);
594 	int idx, nr_new, start_rgn = -1, end_rgn;
595 	struct memblock_region *rgn;
596 
597 	if (!size)
598 		return 0;
599 
600 	/* special case for empty array */
601 	if (type->regions[0].size == 0) {
602 		WARN_ON(type->cnt != 1 || type->total_size);
603 		type->regions[0].base = base;
604 		type->regions[0].size = size;
605 		type->regions[0].flags = flags;
606 		memblock_set_region_node(&type->regions[0], nid);
607 		type->total_size = size;
608 		return 0;
609 	}
610 
611 	/*
612 	 * The worst case is when new range overlaps all existing regions,
613 	 * then we'll need type->cnt + 1 empty regions in @type. So if
614 	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
615 	 * that there is enough empty regions in @type, and we can insert
616 	 * regions directly.
617 	 */
618 	if (type->cnt * 2 + 1 <= type->max)
619 		insert = true;
620 
621 repeat:
622 	/*
623 	 * The following is executed twice.  Once with %false @insert and
624 	 * then with %true.  The first counts the number of regions needed
625 	 * to accommodate the new area.  The second actually inserts them.
626 	 */
627 	base = obase;
628 	nr_new = 0;
629 
630 	for_each_memblock_type(idx, type, rgn) {
631 		phys_addr_t rbase = rgn->base;
632 		phys_addr_t rend = rbase + rgn->size;
633 
634 		if (rbase >= end)
635 			break;
636 		if (rend <= base)
637 			continue;
638 		/*
639 		 * @rgn overlaps.  If it separates the lower part of new
640 		 * area, insert that portion.
641 		 */
642 		if (rbase > base) {
643 #ifdef CONFIG_NUMA
644 			WARN_ON(nid != memblock_get_region_node(rgn));
645 #endif
646 			WARN_ON(flags != rgn->flags);
647 			nr_new++;
648 			if (insert) {
649 				if (start_rgn == -1)
650 					start_rgn = idx;
651 				end_rgn = idx + 1;
652 				memblock_insert_region(type, idx++, base,
653 						       rbase - base, nid,
654 						       flags);
655 			}
656 		}
657 		/* area below @rend is dealt with, forget about it */
658 		base = min(rend, end);
659 	}
660 
661 	/* insert the remaining portion */
662 	if (base < end) {
663 		nr_new++;
664 		if (insert) {
665 			if (start_rgn == -1)
666 				start_rgn = idx;
667 			end_rgn = idx + 1;
668 			memblock_insert_region(type, idx, base, end - base,
669 					       nid, flags);
670 		}
671 	}
672 
673 	if (!nr_new)
674 		return 0;
675 
676 	/*
677 	 * If this was the first round, resize array and repeat for actual
678 	 * insertions; otherwise, merge and return.
679 	 */
680 	if (!insert) {
681 		while (type->cnt + nr_new > type->max)
682 			if (memblock_double_array(type, obase, size) < 0)
683 				return -ENOMEM;
684 		insert = true;
685 		goto repeat;
686 	} else {
687 		memblock_merge_regions(type, start_rgn, end_rgn);
688 		return 0;
689 	}
690 }
691 
692 /**
693  * memblock_add_node - add new memblock region within a NUMA node
694  * @base: base address of the new region
695  * @size: size of the new region
696  * @nid: nid of the new region
697  * @flags: flags of the new region
698  *
699  * Add new memblock region [@base, @base + @size) to the "memory"
700  * type. See memblock_add_range() description for mode details
701  *
702  * Return:
703  * 0 on success, -errno on failure.
704  */
705 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
706 				      int nid, enum memblock_flags flags)
707 {
708 	phys_addr_t end = base + size - 1;
709 
710 	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
711 		     &base, &end, nid, flags, (void *)_RET_IP_);
712 
713 	return memblock_add_range(&memblock.memory, base, size, nid, flags);
714 }
715 
716 /**
717  * memblock_add - add new memblock region
718  * @base: base address of the new region
719  * @size: size of the new region
720  *
721  * Add new memblock region [@base, @base + @size) to the "memory"
722  * type. See memblock_add_range() description for mode details
723  *
724  * Return:
725  * 0 on success, -errno on failure.
726  */
727 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
728 {
729 	phys_addr_t end = base + size - 1;
730 
731 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
732 		     &base, &end, (void *)_RET_IP_);
733 
734 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
735 }
736 
737 /**
738  * memblock_isolate_range - isolate given range into disjoint memblocks
739  * @type: memblock type to isolate range for
740  * @base: base of range to isolate
741  * @size: size of range to isolate
742  * @start_rgn: out parameter for the start of isolated region
743  * @end_rgn: out parameter for the end of isolated region
744  *
745  * Walk @type and ensure that regions don't cross the boundaries defined by
746  * [@base, @base + @size).  Crossing regions are split at the boundaries,
747  * which may create at most two more regions.  The index of the first
748  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
749  *
750  * Return:
751  * 0 on success, -errno on failure.
752  */
753 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
754 					phys_addr_t base, phys_addr_t size,
755 					int *start_rgn, int *end_rgn)
756 {
757 	phys_addr_t end = base + memblock_cap_size(base, &size);
758 	int idx;
759 	struct memblock_region *rgn;
760 
761 	*start_rgn = *end_rgn = 0;
762 
763 	if (!size)
764 		return 0;
765 
766 	/* we'll create at most two more regions */
767 	while (type->cnt + 2 > type->max)
768 		if (memblock_double_array(type, base, size) < 0)
769 			return -ENOMEM;
770 
771 	for_each_memblock_type(idx, type, rgn) {
772 		phys_addr_t rbase = rgn->base;
773 		phys_addr_t rend = rbase + rgn->size;
774 
775 		if (rbase >= end)
776 			break;
777 		if (rend <= base)
778 			continue;
779 
780 		if (rbase < base) {
781 			/*
782 			 * @rgn intersects from below.  Split and continue
783 			 * to process the next region - the new top half.
784 			 */
785 			rgn->base = base;
786 			rgn->size -= base - rbase;
787 			type->total_size -= base - rbase;
788 			memblock_insert_region(type, idx, rbase, base - rbase,
789 					       memblock_get_region_node(rgn),
790 					       rgn->flags);
791 		} else if (rend > end) {
792 			/*
793 			 * @rgn intersects from above.  Split and redo the
794 			 * current region - the new bottom half.
795 			 */
796 			rgn->base = end;
797 			rgn->size -= end - rbase;
798 			type->total_size -= end - rbase;
799 			memblock_insert_region(type, idx--, rbase, end - rbase,
800 					       memblock_get_region_node(rgn),
801 					       rgn->flags);
802 		} else {
803 			/* @rgn is fully contained, record it */
804 			if (!*end_rgn)
805 				*start_rgn = idx;
806 			*end_rgn = idx + 1;
807 		}
808 	}
809 
810 	return 0;
811 }
812 
813 static int __init_memblock memblock_remove_range(struct memblock_type *type,
814 					  phys_addr_t base, phys_addr_t size)
815 {
816 	int start_rgn, end_rgn;
817 	int i, ret;
818 
819 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
820 	if (ret)
821 		return ret;
822 
823 	for (i = end_rgn - 1; i >= start_rgn; i--)
824 		memblock_remove_region(type, i);
825 	return 0;
826 }
827 
828 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
829 {
830 	phys_addr_t end = base + size - 1;
831 
832 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
833 		     &base, &end, (void *)_RET_IP_);
834 
835 	return memblock_remove_range(&memblock.memory, base, size);
836 }
837 
838 /**
839  * memblock_free - free boot memory allocation
840  * @ptr: starting address of the  boot memory allocation
841  * @size: size of the boot memory block in bytes
842  *
843  * Free boot memory block previously allocated by memblock_alloc_xx() API.
844  * The freeing memory will not be released to the buddy allocator.
845  */
846 void __init_memblock memblock_free(void *ptr, size_t size)
847 {
848 	if (ptr)
849 		memblock_phys_free(__pa(ptr), size);
850 }
851 
852 /**
853  * memblock_phys_free - free boot memory block
854  * @base: phys starting address of the  boot memory block
855  * @size: size of the boot memory block in bytes
856  *
857  * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
858  * The freeing memory will not be released to the buddy allocator.
859  */
860 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
861 {
862 	phys_addr_t end = base + size - 1;
863 
864 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
865 		     &base, &end, (void *)_RET_IP_);
866 
867 	kmemleak_free_part_phys(base, size);
868 	return memblock_remove_range(&memblock.reserved, base, size);
869 }
870 
871 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
872 {
873 	phys_addr_t end = base + size - 1;
874 
875 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
876 		     &base, &end, (void *)_RET_IP_);
877 
878 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
879 }
880 
881 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
882 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
883 {
884 	phys_addr_t end = base + size - 1;
885 
886 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
887 		     &base, &end, (void *)_RET_IP_);
888 
889 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
890 }
891 #endif
892 
893 /**
894  * memblock_setclr_flag - set or clear flag for a memory region
895  * @type: memblock type to set/clear flag for
896  * @base: base address of the region
897  * @size: size of the region
898  * @set: set or clear the flag
899  * @flag: the flag to update
900  *
901  * This function isolates region [@base, @base + @size), and sets/clears flag
902  *
903  * Return: 0 on success, -errno on failure.
904  */
905 static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
906 				phys_addr_t base, phys_addr_t size, int set, int flag)
907 {
908 	int i, ret, start_rgn, end_rgn;
909 
910 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
911 	if (ret)
912 		return ret;
913 
914 	for (i = start_rgn; i < end_rgn; i++) {
915 		struct memblock_region *r = &type->regions[i];
916 
917 		if (set)
918 			r->flags |= flag;
919 		else
920 			r->flags &= ~flag;
921 	}
922 
923 	memblock_merge_regions(type, start_rgn, end_rgn);
924 	return 0;
925 }
926 
927 /**
928  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
929  * @base: the base phys addr of the region
930  * @size: the size of the region
931  *
932  * Return: 0 on success, -errno on failure.
933  */
934 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
935 {
936 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
937 }
938 
939 /**
940  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
941  * @base: the base phys addr of the region
942  * @size: the size of the region
943  *
944  * Return: 0 on success, -errno on failure.
945  */
946 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
947 {
948 	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
949 }
950 
951 /**
952  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
953  * @base: the base phys addr of the region
954  * @size: the size of the region
955  *
956  * Return: 0 on success, -errno on failure.
957  */
958 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
959 {
960 	if (!mirrored_kernelcore)
961 		return 0;
962 
963 	system_has_some_mirror = true;
964 
965 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
966 }
967 
968 /**
969  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
970  * @base: the base phys addr of the region
971  * @size: the size of the region
972  *
973  * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
974  * direct mapping of the physical memory. These regions will still be
975  * covered by the memory map. The struct page representing NOMAP memory
976  * frames in the memory map will be PageReserved()
977  *
978  * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
979  * memblock, the caller must inform kmemleak to ignore that memory
980  *
981  * Return: 0 on success, -errno on failure.
982  */
983 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
984 {
985 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
986 }
987 
988 /**
989  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
990  * @base: the base phys addr of the region
991  * @size: the size of the region
992  *
993  * Return: 0 on success, -errno on failure.
994  */
995 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
996 {
997 	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
998 }
999 
1000 /**
1001  * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1002  * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1003  * for this region.
1004  * @base: the base phys addr of the region
1005  * @size: the size of the region
1006  *
1007  * struct pages will not be initialized for reserved memory regions marked with
1008  * %MEMBLOCK_RSRV_NOINIT.
1009  *
1010  * Return: 0 on success, -errno on failure.
1011  */
1012 int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1013 {
1014 	return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1015 				    MEMBLOCK_RSRV_NOINIT);
1016 }
1017 
1018 static bool should_skip_region(struct memblock_type *type,
1019 			       struct memblock_region *m,
1020 			       int nid, int flags)
1021 {
1022 	int m_nid = memblock_get_region_node(m);
1023 
1024 	/* we never skip regions when iterating memblock.reserved or physmem */
1025 	if (type != memblock_memory)
1026 		return false;
1027 
1028 	/* only memory regions are associated with nodes, check it */
1029 	if (nid != NUMA_NO_NODE && nid != m_nid)
1030 		return true;
1031 
1032 	/* skip hotpluggable memory regions if needed */
1033 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1034 	    !(flags & MEMBLOCK_HOTPLUG))
1035 		return true;
1036 
1037 	/* if we want mirror memory skip non-mirror memory regions */
1038 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1039 		return true;
1040 
1041 	/* skip nomap memory unless we were asked for it explicitly */
1042 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1043 		return true;
1044 
1045 	/* skip driver-managed memory unless we were asked for it explicitly */
1046 	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1047 		return true;
1048 
1049 	return false;
1050 }
1051 
1052 /**
1053  * __next_mem_range - next function for for_each_free_mem_range() etc.
1054  * @idx: pointer to u64 loop variable
1055  * @nid: node selector, %NUMA_NO_NODE for all nodes
1056  * @flags: pick from blocks based on memory attributes
1057  * @type_a: pointer to memblock_type from where the range is taken
1058  * @type_b: pointer to memblock_type which excludes memory from being taken
1059  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1060  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1061  * @out_nid: ptr to int for nid of the range, can be %NULL
1062  *
1063  * Find the first area from *@idx which matches @nid, fill the out
1064  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1065  * *@idx contains index into type_a and the upper 32bit indexes the
1066  * areas before each region in type_b.	For example, if type_b regions
1067  * look like the following,
1068  *
1069  *	0:[0-16), 1:[32-48), 2:[128-130)
1070  *
1071  * The upper 32bit indexes the following regions.
1072  *
1073  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1074  *
1075  * As both region arrays are sorted, the function advances the two indices
1076  * in lockstep and returns each intersection.
1077  */
1078 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1079 		      struct memblock_type *type_a,
1080 		      struct memblock_type *type_b, phys_addr_t *out_start,
1081 		      phys_addr_t *out_end, int *out_nid)
1082 {
1083 	int idx_a = *idx & 0xffffffff;
1084 	int idx_b = *idx >> 32;
1085 
1086 	if (WARN_ONCE(nid == MAX_NUMNODES,
1087 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1088 		nid = NUMA_NO_NODE;
1089 
1090 	for (; idx_a < type_a->cnt; idx_a++) {
1091 		struct memblock_region *m = &type_a->regions[idx_a];
1092 
1093 		phys_addr_t m_start = m->base;
1094 		phys_addr_t m_end = m->base + m->size;
1095 		int	    m_nid = memblock_get_region_node(m);
1096 
1097 		if (should_skip_region(type_a, m, nid, flags))
1098 			continue;
1099 
1100 		if (!type_b) {
1101 			if (out_start)
1102 				*out_start = m_start;
1103 			if (out_end)
1104 				*out_end = m_end;
1105 			if (out_nid)
1106 				*out_nid = m_nid;
1107 			idx_a++;
1108 			*idx = (u32)idx_a | (u64)idx_b << 32;
1109 			return;
1110 		}
1111 
1112 		/* scan areas before each reservation */
1113 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1114 			struct memblock_region *r;
1115 			phys_addr_t r_start;
1116 			phys_addr_t r_end;
1117 
1118 			r = &type_b->regions[idx_b];
1119 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1120 			r_end = idx_b < type_b->cnt ?
1121 				r->base : PHYS_ADDR_MAX;
1122 
1123 			/*
1124 			 * if idx_b advanced past idx_a,
1125 			 * break out to advance idx_a
1126 			 */
1127 			if (r_start >= m_end)
1128 				break;
1129 			/* if the two regions intersect, we're done */
1130 			if (m_start < r_end) {
1131 				if (out_start)
1132 					*out_start =
1133 						max(m_start, r_start);
1134 				if (out_end)
1135 					*out_end = min(m_end, r_end);
1136 				if (out_nid)
1137 					*out_nid = m_nid;
1138 				/*
1139 				 * The region which ends first is
1140 				 * advanced for the next iteration.
1141 				 */
1142 				if (m_end <= r_end)
1143 					idx_a++;
1144 				else
1145 					idx_b++;
1146 				*idx = (u32)idx_a | (u64)idx_b << 32;
1147 				return;
1148 			}
1149 		}
1150 	}
1151 
1152 	/* signal end of iteration */
1153 	*idx = ULLONG_MAX;
1154 }
1155 
1156 /**
1157  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1158  *
1159  * @idx: pointer to u64 loop variable
1160  * @nid: node selector, %NUMA_NO_NODE for all nodes
1161  * @flags: pick from blocks based on memory attributes
1162  * @type_a: pointer to memblock_type from where the range is taken
1163  * @type_b: pointer to memblock_type which excludes memory from being taken
1164  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1165  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1166  * @out_nid: ptr to int for nid of the range, can be %NULL
1167  *
1168  * Finds the next range from type_a which is not marked as unsuitable
1169  * in type_b.
1170  *
1171  * Reverse of __next_mem_range().
1172  */
1173 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1174 					  enum memblock_flags flags,
1175 					  struct memblock_type *type_a,
1176 					  struct memblock_type *type_b,
1177 					  phys_addr_t *out_start,
1178 					  phys_addr_t *out_end, int *out_nid)
1179 {
1180 	int idx_a = *idx & 0xffffffff;
1181 	int idx_b = *idx >> 32;
1182 
1183 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1184 		nid = NUMA_NO_NODE;
1185 
1186 	if (*idx == (u64)ULLONG_MAX) {
1187 		idx_a = type_a->cnt - 1;
1188 		if (type_b != NULL)
1189 			idx_b = type_b->cnt;
1190 		else
1191 			idx_b = 0;
1192 	}
1193 
1194 	for (; idx_a >= 0; idx_a--) {
1195 		struct memblock_region *m = &type_a->regions[idx_a];
1196 
1197 		phys_addr_t m_start = m->base;
1198 		phys_addr_t m_end = m->base + m->size;
1199 		int m_nid = memblock_get_region_node(m);
1200 
1201 		if (should_skip_region(type_a, m, nid, flags))
1202 			continue;
1203 
1204 		if (!type_b) {
1205 			if (out_start)
1206 				*out_start = m_start;
1207 			if (out_end)
1208 				*out_end = m_end;
1209 			if (out_nid)
1210 				*out_nid = m_nid;
1211 			idx_a--;
1212 			*idx = (u32)idx_a | (u64)idx_b << 32;
1213 			return;
1214 		}
1215 
1216 		/* scan areas before each reservation */
1217 		for (; idx_b >= 0; idx_b--) {
1218 			struct memblock_region *r;
1219 			phys_addr_t r_start;
1220 			phys_addr_t r_end;
1221 
1222 			r = &type_b->regions[idx_b];
1223 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1224 			r_end = idx_b < type_b->cnt ?
1225 				r->base : PHYS_ADDR_MAX;
1226 			/*
1227 			 * if idx_b advanced past idx_a,
1228 			 * break out to advance idx_a
1229 			 */
1230 
1231 			if (r_end <= m_start)
1232 				break;
1233 			/* if the two regions intersect, we're done */
1234 			if (m_end > r_start) {
1235 				if (out_start)
1236 					*out_start = max(m_start, r_start);
1237 				if (out_end)
1238 					*out_end = min(m_end, r_end);
1239 				if (out_nid)
1240 					*out_nid = m_nid;
1241 				if (m_start >= r_start)
1242 					idx_a--;
1243 				else
1244 					idx_b--;
1245 				*idx = (u32)idx_a | (u64)idx_b << 32;
1246 				return;
1247 			}
1248 		}
1249 	}
1250 	/* signal end of iteration */
1251 	*idx = ULLONG_MAX;
1252 }
1253 
1254 /*
1255  * Common iterator interface used to define for_each_mem_pfn_range().
1256  */
1257 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1258 				unsigned long *out_start_pfn,
1259 				unsigned long *out_end_pfn, int *out_nid)
1260 {
1261 	struct memblock_type *type = &memblock.memory;
1262 	struct memblock_region *r;
1263 	int r_nid;
1264 
1265 	while (++*idx < type->cnt) {
1266 		r = &type->regions[*idx];
1267 		r_nid = memblock_get_region_node(r);
1268 
1269 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1270 			continue;
1271 		if (nid == MAX_NUMNODES || nid == r_nid)
1272 			break;
1273 	}
1274 	if (*idx >= type->cnt) {
1275 		*idx = -1;
1276 		return;
1277 	}
1278 
1279 	if (out_start_pfn)
1280 		*out_start_pfn = PFN_UP(r->base);
1281 	if (out_end_pfn)
1282 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1283 	if (out_nid)
1284 		*out_nid = r_nid;
1285 }
1286 
1287 /**
1288  * memblock_set_node - set node ID on memblock regions
1289  * @base: base of area to set node ID for
1290  * @size: size of area to set node ID for
1291  * @type: memblock type to set node ID for
1292  * @nid: node ID to set
1293  *
1294  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1295  * Regions which cross the area boundaries are split as necessary.
1296  *
1297  * Return:
1298  * 0 on success, -errno on failure.
1299  */
1300 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1301 				      struct memblock_type *type, int nid)
1302 {
1303 #ifdef CONFIG_NUMA
1304 	int start_rgn, end_rgn;
1305 	int i, ret;
1306 
1307 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1308 	if (ret)
1309 		return ret;
1310 
1311 	for (i = start_rgn; i < end_rgn; i++)
1312 		memblock_set_region_node(&type->regions[i], nid);
1313 
1314 	memblock_merge_regions(type, start_rgn, end_rgn);
1315 #endif
1316 	return 0;
1317 }
1318 
1319 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1320 /**
1321  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1322  *
1323  * @idx: pointer to u64 loop variable
1324  * @zone: zone in which all of the memory blocks reside
1325  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1326  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1327  *
1328  * This function is meant to be a zone/pfn specific wrapper for the
1329  * for_each_mem_range type iterators. Specifically they are used in the
1330  * deferred memory init routines and as such we were duplicating much of
1331  * this logic throughout the code. So instead of having it in multiple
1332  * locations it seemed like it would make more sense to centralize this to
1333  * one new iterator that does everything they need.
1334  */
1335 void __init_memblock
1336 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1337 			     unsigned long *out_spfn, unsigned long *out_epfn)
1338 {
1339 	int zone_nid = zone_to_nid(zone);
1340 	phys_addr_t spa, epa;
1341 
1342 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1343 			 &memblock.memory, &memblock.reserved,
1344 			 &spa, &epa, NULL);
1345 
1346 	while (*idx != U64_MAX) {
1347 		unsigned long epfn = PFN_DOWN(epa);
1348 		unsigned long spfn = PFN_UP(spa);
1349 
1350 		/*
1351 		 * Verify the end is at least past the start of the zone and
1352 		 * that we have at least one PFN to initialize.
1353 		 */
1354 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1355 			/* if we went too far just stop searching */
1356 			if (zone_end_pfn(zone) <= spfn) {
1357 				*idx = U64_MAX;
1358 				break;
1359 			}
1360 
1361 			if (out_spfn)
1362 				*out_spfn = max(zone->zone_start_pfn, spfn);
1363 			if (out_epfn)
1364 				*out_epfn = min(zone_end_pfn(zone), epfn);
1365 
1366 			return;
1367 		}
1368 
1369 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1370 				 &memblock.memory, &memblock.reserved,
1371 				 &spa, &epa, NULL);
1372 	}
1373 
1374 	/* signal end of iteration */
1375 	if (out_spfn)
1376 		*out_spfn = ULONG_MAX;
1377 	if (out_epfn)
1378 		*out_epfn = 0;
1379 }
1380 
1381 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1382 
1383 /**
1384  * memblock_alloc_range_nid - allocate boot memory block
1385  * @size: size of memory block to be allocated in bytes
1386  * @align: alignment of the region and block's size
1387  * @start: the lower bound of the memory region to allocate (phys address)
1388  * @end: the upper bound of the memory region to allocate (phys address)
1389  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1390  * @exact_nid: control the allocation fall back to other nodes
1391  *
1392  * The allocation is performed from memory region limited by
1393  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1394  *
1395  * If the specified node can not hold the requested memory and @exact_nid
1396  * is false, the allocation falls back to any node in the system.
1397  *
1398  * For systems with memory mirroring, the allocation is attempted first
1399  * from the regions with mirroring enabled and then retried from any
1400  * memory region.
1401  *
1402  * In addition, function using kmemleak_alloc_phys for allocated boot
1403  * memory block, it is never reported as leaks.
1404  *
1405  * Return:
1406  * Physical address of allocated memory block on success, %0 on failure.
1407  */
1408 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1409 					phys_addr_t align, phys_addr_t start,
1410 					phys_addr_t end, int nid,
1411 					bool exact_nid)
1412 {
1413 	enum memblock_flags flags = choose_memblock_flags();
1414 	phys_addr_t found;
1415 
1416 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1417 		nid = NUMA_NO_NODE;
1418 
1419 	if (!align) {
1420 		/* Can't use WARNs this early in boot on powerpc */
1421 		dump_stack();
1422 		align = SMP_CACHE_BYTES;
1423 	}
1424 
1425 again:
1426 	found = memblock_find_in_range_node(size, align, start, end, nid,
1427 					    flags);
1428 	if (found && !memblock_reserve(found, size))
1429 		goto done;
1430 
1431 	if (nid != NUMA_NO_NODE && !exact_nid) {
1432 		found = memblock_find_in_range_node(size, align, start,
1433 						    end, NUMA_NO_NODE,
1434 						    flags);
1435 		if (found && !memblock_reserve(found, size))
1436 			goto done;
1437 	}
1438 
1439 	if (flags & MEMBLOCK_MIRROR) {
1440 		flags &= ~MEMBLOCK_MIRROR;
1441 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1442 			&size);
1443 		goto again;
1444 	}
1445 
1446 	return 0;
1447 
1448 done:
1449 	/*
1450 	 * Skip kmemleak for those places like kasan_init() and
1451 	 * early_pgtable_alloc() due to high volume.
1452 	 */
1453 	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1454 		/*
1455 		 * Memblock allocated blocks are never reported as
1456 		 * leaks. This is because many of these blocks are
1457 		 * only referred via the physical address which is
1458 		 * not looked up by kmemleak.
1459 		 */
1460 		kmemleak_alloc_phys(found, size, 0);
1461 
1462 	/*
1463 	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1464 	 * require memory to be accepted before it can be used by the
1465 	 * guest.
1466 	 *
1467 	 * Accept the memory of the allocated buffer.
1468 	 */
1469 	accept_memory(found, found + size);
1470 
1471 	return found;
1472 }
1473 
1474 /**
1475  * memblock_phys_alloc_range - allocate a memory block inside specified range
1476  * @size: size of memory block to be allocated in bytes
1477  * @align: alignment of the region and block's size
1478  * @start: the lower bound of the memory region to allocate (physical address)
1479  * @end: the upper bound of the memory region to allocate (physical address)
1480  *
1481  * Allocate @size bytes in the between @start and @end.
1482  *
1483  * Return: physical address of the allocated memory block on success,
1484  * %0 on failure.
1485  */
1486 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1487 					     phys_addr_t align,
1488 					     phys_addr_t start,
1489 					     phys_addr_t end)
1490 {
1491 	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1492 		     __func__, (u64)size, (u64)align, &start, &end,
1493 		     (void *)_RET_IP_);
1494 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1495 					false);
1496 }
1497 
1498 /**
1499  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1500  * @size: size of memory block to be allocated in bytes
1501  * @align: alignment of the region and block's size
1502  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1503  *
1504  * Allocates memory block from the specified NUMA node. If the node
1505  * has no available memory, attempts to allocated from any node in the
1506  * system.
1507  *
1508  * Return: physical address of the allocated memory block on success,
1509  * %0 on failure.
1510  */
1511 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1512 {
1513 	return memblock_alloc_range_nid(size, align, 0,
1514 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1515 }
1516 
1517 /**
1518  * memblock_alloc_internal - allocate boot memory block
1519  * @size: size of memory block to be allocated in bytes
1520  * @align: alignment of the region and block's size
1521  * @min_addr: the lower bound of the memory region to allocate (phys address)
1522  * @max_addr: the upper bound of the memory region to allocate (phys address)
1523  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1524  * @exact_nid: control the allocation fall back to other nodes
1525  *
1526  * Allocates memory block using memblock_alloc_range_nid() and
1527  * converts the returned physical address to virtual.
1528  *
1529  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1530  * will fall back to memory below @min_addr. Other constraints, such
1531  * as node and mirrored memory will be handled again in
1532  * memblock_alloc_range_nid().
1533  *
1534  * Return:
1535  * Virtual address of allocated memory block on success, NULL on failure.
1536  */
1537 static void * __init memblock_alloc_internal(
1538 				phys_addr_t size, phys_addr_t align,
1539 				phys_addr_t min_addr, phys_addr_t max_addr,
1540 				int nid, bool exact_nid)
1541 {
1542 	phys_addr_t alloc;
1543 
1544 	/*
1545 	 * Detect any accidental use of these APIs after slab is ready, as at
1546 	 * this moment memblock may be deinitialized already and its
1547 	 * internal data may be destroyed (after execution of memblock_free_all)
1548 	 */
1549 	if (WARN_ON_ONCE(slab_is_available()))
1550 		return kzalloc_node(size, GFP_NOWAIT, nid);
1551 
1552 	if (max_addr > memblock.current_limit)
1553 		max_addr = memblock.current_limit;
1554 
1555 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1556 					exact_nid);
1557 
1558 	/* retry allocation without lower limit */
1559 	if (!alloc && min_addr)
1560 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1561 						exact_nid);
1562 
1563 	if (!alloc)
1564 		return NULL;
1565 
1566 	return phys_to_virt(alloc);
1567 }
1568 
1569 /**
1570  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1571  * without zeroing memory
1572  * @size: size of memory block to be allocated in bytes
1573  * @align: alignment of the region and block's size
1574  * @min_addr: the lower bound of the memory region from where the allocation
1575  *	  is preferred (phys address)
1576  * @max_addr: the upper bound of the memory region from where the allocation
1577  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1578  *	      allocate only from memory limited by memblock.current_limit value
1579  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1580  *
1581  * Public function, provides additional debug information (including caller
1582  * info), if enabled. Does not zero allocated memory.
1583  *
1584  * Return:
1585  * Virtual address of allocated memory block on success, NULL on failure.
1586  */
1587 void * __init memblock_alloc_exact_nid_raw(
1588 			phys_addr_t size, phys_addr_t align,
1589 			phys_addr_t min_addr, phys_addr_t max_addr,
1590 			int nid)
1591 {
1592 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1593 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1594 		     &max_addr, (void *)_RET_IP_);
1595 
1596 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1597 				       true);
1598 }
1599 
1600 /**
1601  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1602  * memory and without panicking
1603  * @size: size of memory block to be allocated in bytes
1604  * @align: alignment of the region and block's size
1605  * @min_addr: the lower bound of the memory region from where the allocation
1606  *	  is preferred (phys address)
1607  * @max_addr: the upper bound of the memory region from where the allocation
1608  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1609  *	      allocate only from memory limited by memblock.current_limit value
1610  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1611  *
1612  * Public function, provides additional debug information (including caller
1613  * info), if enabled. Does not zero allocated memory, does not panic if request
1614  * cannot be satisfied.
1615  *
1616  * Return:
1617  * Virtual address of allocated memory block on success, NULL on failure.
1618  */
1619 void * __init memblock_alloc_try_nid_raw(
1620 			phys_addr_t size, phys_addr_t align,
1621 			phys_addr_t min_addr, phys_addr_t max_addr,
1622 			int nid)
1623 {
1624 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1625 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1626 		     &max_addr, (void *)_RET_IP_);
1627 
1628 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1629 				       false);
1630 }
1631 
1632 /**
1633  * memblock_alloc_try_nid - allocate boot memory block
1634  * @size: size of memory block to be allocated in bytes
1635  * @align: alignment of the region and block's size
1636  * @min_addr: the lower bound of the memory region from where the allocation
1637  *	  is preferred (phys address)
1638  * @max_addr: the upper bound of the memory region from where the allocation
1639  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1640  *	      allocate only from memory limited by memblock.current_limit value
1641  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1642  *
1643  * Public function, provides additional debug information (including caller
1644  * info), if enabled. This function zeroes the allocated memory.
1645  *
1646  * Return:
1647  * Virtual address of allocated memory block on success, NULL on failure.
1648  */
1649 void * __init memblock_alloc_try_nid(
1650 			phys_addr_t size, phys_addr_t align,
1651 			phys_addr_t min_addr, phys_addr_t max_addr,
1652 			int nid)
1653 {
1654 	void *ptr;
1655 
1656 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1657 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1658 		     &max_addr, (void *)_RET_IP_);
1659 	ptr = memblock_alloc_internal(size, align,
1660 					   min_addr, max_addr, nid, false);
1661 	if (ptr)
1662 		memset(ptr, 0, size);
1663 
1664 	return ptr;
1665 }
1666 
1667 /**
1668  * memblock_free_late - free pages directly to buddy allocator
1669  * @base: phys starting address of the  boot memory block
1670  * @size: size of the boot memory block in bytes
1671  *
1672  * This is only useful when the memblock allocator has already been torn
1673  * down, but we are still initializing the system.  Pages are released directly
1674  * to the buddy allocator.
1675  */
1676 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1677 {
1678 	phys_addr_t cursor, end;
1679 
1680 	end = base + size - 1;
1681 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1682 		     __func__, &base, &end, (void *)_RET_IP_);
1683 	kmemleak_free_part_phys(base, size);
1684 	cursor = PFN_UP(base);
1685 	end = PFN_DOWN(base + size);
1686 
1687 	for (; cursor < end; cursor++) {
1688 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1689 		totalram_pages_inc();
1690 	}
1691 }
1692 
1693 /*
1694  * Remaining API functions
1695  */
1696 
1697 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1698 {
1699 	return memblock.memory.total_size;
1700 }
1701 
1702 phys_addr_t __init_memblock memblock_reserved_size(void)
1703 {
1704 	return memblock.reserved.total_size;
1705 }
1706 
1707 /* lowest address */
1708 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1709 {
1710 	return memblock.memory.regions[0].base;
1711 }
1712 
1713 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1714 {
1715 	int idx = memblock.memory.cnt - 1;
1716 
1717 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1718 }
1719 
1720 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1721 {
1722 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1723 	struct memblock_region *r;
1724 
1725 	/*
1726 	 * translate the memory @limit size into the max address within one of
1727 	 * the memory memblock regions, if the @limit exceeds the total size
1728 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1729 	 */
1730 	for_each_mem_region(r) {
1731 		if (limit <= r->size) {
1732 			max_addr = r->base + limit;
1733 			break;
1734 		}
1735 		limit -= r->size;
1736 	}
1737 
1738 	return max_addr;
1739 }
1740 
1741 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1742 {
1743 	phys_addr_t max_addr;
1744 
1745 	if (!limit)
1746 		return;
1747 
1748 	max_addr = __find_max_addr(limit);
1749 
1750 	/* @limit exceeds the total size of the memory, do nothing */
1751 	if (max_addr == PHYS_ADDR_MAX)
1752 		return;
1753 
1754 	/* truncate both memory and reserved regions */
1755 	memblock_remove_range(&memblock.memory, max_addr,
1756 			      PHYS_ADDR_MAX);
1757 	memblock_remove_range(&memblock.reserved, max_addr,
1758 			      PHYS_ADDR_MAX);
1759 }
1760 
1761 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1762 {
1763 	int start_rgn, end_rgn;
1764 	int i, ret;
1765 
1766 	if (!size)
1767 		return;
1768 
1769 	if (!memblock_memory->total_size) {
1770 		pr_warn("%s: No memory registered yet\n", __func__);
1771 		return;
1772 	}
1773 
1774 	ret = memblock_isolate_range(&memblock.memory, base, size,
1775 						&start_rgn, &end_rgn);
1776 	if (ret)
1777 		return;
1778 
1779 	/* remove all the MAP regions */
1780 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1781 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1782 			memblock_remove_region(&memblock.memory, i);
1783 
1784 	for (i = start_rgn - 1; i >= 0; i--)
1785 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1786 			memblock_remove_region(&memblock.memory, i);
1787 
1788 	/* truncate the reserved regions */
1789 	memblock_remove_range(&memblock.reserved, 0, base);
1790 	memblock_remove_range(&memblock.reserved,
1791 			base + size, PHYS_ADDR_MAX);
1792 }
1793 
1794 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1795 {
1796 	phys_addr_t max_addr;
1797 
1798 	if (!limit)
1799 		return;
1800 
1801 	max_addr = __find_max_addr(limit);
1802 
1803 	/* @limit exceeds the total size of the memory, do nothing */
1804 	if (max_addr == PHYS_ADDR_MAX)
1805 		return;
1806 
1807 	memblock_cap_memory_range(0, max_addr);
1808 }
1809 
1810 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1811 {
1812 	unsigned int left = 0, right = type->cnt;
1813 
1814 	do {
1815 		unsigned int mid = (right + left) / 2;
1816 
1817 		if (addr < type->regions[mid].base)
1818 			right = mid;
1819 		else if (addr >= (type->regions[mid].base +
1820 				  type->regions[mid].size))
1821 			left = mid + 1;
1822 		else
1823 			return mid;
1824 	} while (left < right);
1825 	return -1;
1826 }
1827 
1828 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1829 {
1830 	return memblock_search(&memblock.reserved, addr) != -1;
1831 }
1832 
1833 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1834 {
1835 	return memblock_search(&memblock.memory, addr) != -1;
1836 }
1837 
1838 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1839 {
1840 	int i = memblock_search(&memblock.memory, addr);
1841 
1842 	if (i == -1)
1843 		return false;
1844 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1845 }
1846 
1847 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1848 			 unsigned long *start_pfn, unsigned long *end_pfn)
1849 {
1850 	struct memblock_type *type = &memblock.memory;
1851 	int mid = memblock_search(type, PFN_PHYS(pfn));
1852 
1853 	if (mid == -1)
1854 		return -1;
1855 
1856 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1857 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1858 
1859 	return memblock_get_region_node(&type->regions[mid]);
1860 }
1861 
1862 /**
1863  * memblock_is_region_memory - check if a region is a subset of memory
1864  * @base: base of region to check
1865  * @size: size of region to check
1866  *
1867  * Check if the region [@base, @base + @size) is a subset of a memory block.
1868  *
1869  * Return:
1870  * 0 if false, non-zero if true
1871  */
1872 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1873 {
1874 	int idx = memblock_search(&memblock.memory, base);
1875 	phys_addr_t end = base + memblock_cap_size(base, &size);
1876 
1877 	if (idx == -1)
1878 		return false;
1879 	return (memblock.memory.regions[idx].base +
1880 		 memblock.memory.regions[idx].size) >= end;
1881 }
1882 
1883 /**
1884  * memblock_is_region_reserved - check if a region intersects reserved memory
1885  * @base: base of region to check
1886  * @size: size of region to check
1887  *
1888  * Check if the region [@base, @base + @size) intersects a reserved
1889  * memory block.
1890  *
1891  * Return:
1892  * True if they intersect, false if not.
1893  */
1894 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1895 {
1896 	return memblock_overlaps_region(&memblock.reserved, base, size);
1897 }
1898 
1899 void __init_memblock memblock_trim_memory(phys_addr_t align)
1900 {
1901 	phys_addr_t start, end, orig_start, orig_end;
1902 	struct memblock_region *r;
1903 
1904 	for_each_mem_region(r) {
1905 		orig_start = r->base;
1906 		orig_end = r->base + r->size;
1907 		start = round_up(orig_start, align);
1908 		end = round_down(orig_end, align);
1909 
1910 		if (start == orig_start && end == orig_end)
1911 			continue;
1912 
1913 		if (start < end) {
1914 			r->base = start;
1915 			r->size = end - start;
1916 		} else {
1917 			memblock_remove_region(&memblock.memory,
1918 					       r - memblock.memory.regions);
1919 			r--;
1920 		}
1921 	}
1922 }
1923 
1924 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1925 {
1926 	memblock.current_limit = limit;
1927 }
1928 
1929 phys_addr_t __init_memblock memblock_get_current_limit(void)
1930 {
1931 	return memblock.current_limit;
1932 }
1933 
1934 static void __init_memblock memblock_dump(struct memblock_type *type)
1935 {
1936 	phys_addr_t base, end, size;
1937 	enum memblock_flags flags;
1938 	int idx;
1939 	struct memblock_region *rgn;
1940 
1941 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1942 
1943 	for_each_memblock_type(idx, type, rgn) {
1944 		char nid_buf[32] = "";
1945 
1946 		base = rgn->base;
1947 		size = rgn->size;
1948 		end = base + size - 1;
1949 		flags = rgn->flags;
1950 #ifdef CONFIG_NUMA
1951 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1952 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1953 				 memblock_get_region_node(rgn));
1954 #endif
1955 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1956 			type->name, idx, &base, &end, &size, nid_buf, flags);
1957 	}
1958 }
1959 
1960 static void __init_memblock __memblock_dump_all(void)
1961 {
1962 	pr_info("MEMBLOCK configuration:\n");
1963 	pr_info(" memory size = %pa reserved size = %pa\n",
1964 		&memblock.memory.total_size,
1965 		&memblock.reserved.total_size);
1966 
1967 	memblock_dump(&memblock.memory);
1968 	memblock_dump(&memblock.reserved);
1969 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1970 	memblock_dump(&physmem);
1971 #endif
1972 }
1973 
1974 void __init_memblock memblock_dump_all(void)
1975 {
1976 	if (memblock_debug)
1977 		__memblock_dump_all();
1978 }
1979 
1980 void __init memblock_allow_resize(void)
1981 {
1982 	memblock_can_resize = 1;
1983 }
1984 
1985 static int __init early_memblock(char *p)
1986 {
1987 	if (p && strstr(p, "debug"))
1988 		memblock_debug = 1;
1989 	return 0;
1990 }
1991 early_param("memblock", early_memblock);
1992 
1993 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1994 {
1995 	struct page *start_pg, *end_pg;
1996 	phys_addr_t pg, pgend;
1997 
1998 	/*
1999 	 * Convert start_pfn/end_pfn to a struct page pointer.
2000 	 */
2001 	start_pg = pfn_to_page(start_pfn - 1) + 1;
2002 	end_pg = pfn_to_page(end_pfn - 1) + 1;
2003 
2004 	/*
2005 	 * Convert to physical addresses, and round start upwards and end
2006 	 * downwards.
2007 	 */
2008 	pg = PAGE_ALIGN(__pa(start_pg));
2009 	pgend = __pa(end_pg) & PAGE_MASK;
2010 
2011 	/*
2012 	 * If there are free pages between these, free the section of the
2013 	 * memmap array.
2014 	 */
2015 	if (pg < pgend)
2016 		memblock_phys_free(pg, pgend - pg);
2017 }
2018 
2019 /*
2020  * The mem_map array can get very big.  Free the unused area of the memory map.
2021  */
2022 static void __init free_unused_memmap(void)
2023 {
2024 	unsigned long start, end, prev_end = 0;
2025 	int i;
2026 
2027 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2028 	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2029 		return;
2030 
2031 	/*
2032 	 * This relies on each bank being in address order.
2033 	 * The banks are sorted previously in bootmem_init().
2034 	 */
2035 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2036 #ifdef CONFIG_SPARSEMEM
2037 		/*
2038 		 * Take care not to free memmap entries that don't exist
2039 		 * due to SPARSEMEM sections which aren't present.
2040 		 */
2041 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2042 #endif
2043 		/*
2044 		 * Align down here since many operations in VM subsystem
2045 		 * presume that there are no holes in the memory map inside
2046 		 * a pageblock
2047 		 */
2048 		start = pageblock_start_pfn(start);
2049 
2050 		/*
2051 		 * If we had a previous bank, and there is a space
2052 		 * between the current bank and the previous, free it.
2053 		 */
2054 		if (prev_end && prev_end < start)
2055 			free_memmap(prev_end, start);
2056 
2057 		/*
2058 		 * Align up here since many operations in VM subsystem
2059 		 * presume that there are no holes in the memory map inside
2060 		 * a pageblock
2061 		 */
2062 		prev_end = pageblock_align(end);
2063 	}
2064 
2065 #ifdef CONFIG_SPARSEMEM
2066 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2067 		prev_end = pageblock_align(end);
2068 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2069 	}
2070 #endif
2071 }
2072 
2073 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2074 {
2075 	int order;
2076 
2077 	while (start < end) {
2078 		/*
2079 		 * Free the pages in the largest chunks alignment allows.
2080 		 *
2081 		 * __ffs() behaviour is undefined for 0. start == 0 is
2082 		 * MAX_ORDER-aligned, set order to MAX_ORDER for the case.
2083 		 */
2084 		if (start)
2085 			order = min_t(int, MAX_ORDER, __ffs(start));
2086 		else
2087 			order = MAX_ORDER;
2088 
2089 		while (start + (1UL << order) > end)
2090 			order--;
2091 
2092 		memblock_free_pages(pfn_to_page(start), start, order);
2093 
2094 		start += (1UL << order);
2095 	}
2096 }
2097 
2098 static unsigned long __init __free_memory_core(phys_addr_t start,
2099 				 phys_addr_t end)
2100 {
2101 	unsigned long start_pfn = PFN_UP(start);
2102 	unsigned long end_pfn = min_t(unsigned long,
2103 				      PFN_DOWN(end), max_low_pfn);
2104 
2105 	if (start_pfn >= end_pfn)
2106 		return 0;
2107 
2108 	__free_pages_memory(start_pfn, end_pfn);
2109 
2110 	return end_pfn - start_pfn;
2111 }
2112 
2113 static void __init memmap_init_reserved_pages(void)
2114 {
2115 	struct memblock_region *region;
2116 	phys_addr_t start, end;
2117 	int nid;
2118 
2119 	/*
2120 	 * set nid on all reserved pages and also treat struct
2121 	 * pages for the NOMAP regions as PageReserved
2122 	 */
2123 	for_each_mem_region(region) {
2124 		nid = memblock_get_region_node(region);
2125 		start = region->base;
2126 		end = start + region->size;
2127 
2128 		if (memblock_is_nomap(region))
2129 			reserve_bootmem_region(start, end, nid);
2130 
2131 		memblock_set_node(start, end, &memblock.reserved, nid);
2132 	}
2133 
2134 	/*
2135 	 * initialize struct pages for reserved regions that don't have
2136 	 * the MEMBLOCK_RSRV_NOINIT flag set
2137 	 */
2138 	for_each_reserved_mem_region(region) {
2139 		if (!memblock_is_reserved_noinit(region)) {
2140 			nid = memblock_get_region_node(region);
2141 			start = region->base;
2142 			end = start + region->size;
2143 
2144 			reserve_bootmem_region(start, end, nid);
2145 		}
2146 	}
2147 }
2148 
2149 static unsigned long __init free_low_memory_core_early(void)
2150 {
2151 	unsigned long count = 0;
2152 	phys_addr_t start, end;
2153 	u64 i;
2154 
2155 	memblock_clear_hotplug(0, -1);
2156 
2157 	memmap_init_reserved_pages();
2158 
2159 	/*
2160 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2161 	 *  because in some case like Node0 doesn't have RAM installed
2162 	 *  low ram will be on Node1
2163 	 */
2164 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2165 				NULL)
2166 		count += __free_memory_core(start, end);
2167 
2168 	return count;
2169 }
2170 
2171 static int reset_managed_pages_done __initdata;
2172 
2173 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2174 {
2175 	struct zone *z;
2176 
2177 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2178 		atomic_long_set(&z->managed_pages, 0);
2179 }
2180 
2181 void __init reset_all_zones_managed_pages(void)
2182 {
2183 	struct pglist_data *pgdat;
2184 
2185 	if (reset_managed_pages_done)
2186 		return;
2187 
2188 	for_each_online_pgdat(pgdat)
2189 		reset_node_managed_pages(pgdat);
2190 
2191 	reset_managed_pages_done = 1;
2192 }
2193 
2194 /**
2195  * memblock_free_all - release free pages to the buddy allocator
2196  */
2197 void __init memblock_free_all(void)
2198 {
2199 	unsigned long pages;
2200 
2201 	free_unused_memmap();
2202 	reset_all_zones_managed_pages();
2203 
2204 	pages = free_low_memory_core_early();
2205 	totalram_pages_add(pages);
2206 }
2207 
2208 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2209 static const char * const flagname[] = {
2210 	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2211 	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2212 	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2213 	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2214 };
2215 
2216 static int memblock_debug_show(struct seq_file *m, void *private)
2217 {
2218 	struct memblock_type *type = m->private;
2219 	struct memblock_region *reg;
2220 	int i, j, nid;
2221 	unsigned int count = ARRAY_SIZE(flagname);
2222 	phys_addr_t end;
2223 
2224 	for (i = 0; i < type->cnt; i++) {
2225 		reg = &type->regions[i];
2226 		end = reg->base + reg->size - 1;
2227 		nid = memblock_get_region_node(reg);
2228 
2229 		seq_printf(m, "%4d: ", i);
2230 		seq_printf(m, "%pa..%pa ", &reg->base, &end);
2231 		if (nid != MAX_NUMNODES)
2232 			seq_printf(m, "%4d ", nid);
2233 		else
2234 			seq_printf(m, "%4c ", 'x');
2235 		if (reg->flags) {
2236 			for (j = 0; j < count; j++) {
2237 				if (reg->flags & (1U << j)) {
2238 					seq_printf(m, "%s\n", flagname[j]);
2239 					break;
2240 				}
2241 			}
2242 			if (j == count)
2243 				seq_printf(m, "%s\n", "UNKNOWN");
2244 		} else {
2245 			seq_printf(m, "%s\n", "NONE");
2246 		}
2247 	}
2248 	return 0;
2249 }
2250 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2251 
2252 static int __init memblock_init_debugfs(void)
2253 {
2254 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2255 
2256 	debugfs_create_file("memory", 0444, root,
2257 			    &memblock.memory, &memblock_debug_fops);
2258 	debugfs_create_file("reserved", 0444, root,
2259 			    &memblock.reserved, &memblock_debug_fops);
2260 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2261 	debugfs_create_file("physmem", 0444, root, &physmem,
2262 			    &memblock_debug_fops);
2263 #endif
2264 
2265 	return 0;
2266 }
2267 __initcall(memblock_init_debugfs);
2268 
2269 #endif /* CONFIG_DEBUG_FS */
2270