1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 #include <linux/memblock.h> 22 23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 25 26 struct memblock memblock __initdata_memblock = { 27 .memory.regions = memblock_memory_init_regions, 28 .memory.cnt = 1, /* empty dummy entry */ 29 .memory.max = INIT_MEMBLOCK_REGIONS, 30 31 .reserved.regions = memblock_reserved_init_regions, 32 .reserved.cnt = 1, /* empty dummy entry */ 33 .reserved.max = INIT_MEMBLOCK_REGIONS, 34 35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 36 }; 37 38 int memblock_debug __initdata_memblock; 39 static int memblock_can_resize __initdata_memblock; 40 static int memblock_memory_in_slab __initdata_memblock = 0; 41 static int memblock_reserved_in_slab __initdata_memblock = 0; 42 43 /* inline so we don't get a warning when pr_debug is compiled out */ 44 static __init_memblock const char * 45 memblock_type_name(struct memblock_type *type) 46 { 47 if (type == &memblock.memory) 48 return "memory"; 49 else if (type == &memblock.reserved) 50 return "reserved"; 51 else 52 return "unknown"; 53 } 54 55 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 56 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 57 { 58 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); 59 } 60 61 /* 62 * Address comparison utilities 63 */ 64 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 65 phys_addr_t base2, phys_addr_t size2) 66 { 67 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 68 } 69 70 static long __init_memblock memblock_overlaps_region(struct memblock_type *type, 71 phys_addr_t base, phys_addr_t size) 72 { 73 unsigned long i; 74 75 for (i = 0; i < type->cnt; i++) { 76 phys_addr_t rgnbase = type->regions[i].base; 77 phys_addr_t rgnsize = type->regions[i].size; 78 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) 79 break; 80 } 81 82 return (i < type->cnt) ? i : -1; 83 } 84 85 /** 86 * memblock_find_in_range_node - find free area in given range and node 87 * @start: start of candidate range 88 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 89 * @size: size of free area to find 90 * @align: alignment of free area to find 91 * @nid: nid of the free area to find, %MAX_NUMNODES for any node 92 * 93 * Find @size free area aligned to @align in the specified range and node. 94 * 95 * RETURNS: 96 * Found address on success, %0 on failure. 97 */ 98 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start, 99 phys_addr_t end, phys_addr_t size, 100 phys_addr_t align, int nid) 101 { 102 phys_addr_t this_start, this_end, cand; 103 u64 i; 104 105 /* pump up @end */ 106 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 107 end = memblock.current_limit; 108 109 /* avoid allocating the first page */ 110 start = max_t(phys_addr_t, start, PAGE_SIZE); 111 end = max(start, end); 112 113 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) { 114 this_start = clamp(this_start, start, end); 115 this_end = clamp(this_end, start, end); 116 117 if (this_end < size) 118 continue; 119 120 cand = round_down(this_end - size, align); 121 if (cand >= this_start) 122 return cand; 123 } 124 return 0; 125 } 126 127 /** 128 * memblock_find_in_range - find free area in given range 129 * @start: start of candidate range 130 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 131 * @size: size of free area to find 132 * @align: alignment of free area to find 133 * 134 * Find @size free area aligned to @align in the specified range. 135 * 136 * RETURNS: 137 * Found address on success, %0 on failure. 138 */ 139 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 140 phys_addr_t end, phys_addr_t size, 141 phys_addr_t align) 142 { 143 return memblock_find_in_range_node(start, end, size, align, 144 MAX_NUMNODES); 145 } 146 147 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 148 { 149 type->total_size -= type->regions[r].size; 150 memmove(&type->regions[r], &type->regions[r + 1], 151 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 152 type->cnt--; 153 154 /* Special case for empty arrays */ 155 if (type->cnt == 0) { 156 WARN_ON(type->total_size != 0); 157 type->cnt = 1; 158 type->regions[0].base = 0; 159 type->regions[0].size = 0; 160 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 161 } 162 } 163 164 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( 165 phys_addr_t *addr) 166 { 167 if (memblock.reserved.regions == memblock_reserved_init_regions) 168 return 0; 169 170 *addr = __pa(memblock.reserved.regions); 171 172 return PAGE_ALIGN(sizeof(struct memblock_region) * 173 memblock.reserved.max); 174 } 175 176 /** 177 * memblock_double_array - double the size of the memblock regions array 178 * @type: memblock type of the regions array being doubled 179 * @new_area_start: starting address of memory range to avoid overlap with 180 * @new_area_size: size of memory range to avoid overlap with 181 * 182 * Double the size of the @type regions array. If memblock is being used to 183 * allocate memory for a new reserved regions array and there is a previously 184 * allocated memory range [@new_area_start,@new_area_start+@new_area_size] 185 * waiting to be reserved, ensure the memory used by the new array does 186 * not overlap. 187 * 188 * RETURNS: 189 * 0 on success, -1 on failure. 190 */ 191 static int __init_memblock memblock_double_array(struct memblock_type *type, 192 phys_addr_t new_area_start, 193 phys_addr_t new_area_size) 194 { 195 struct memblock_region *new_array, *old_array; 196 phys_addr_t old_alloc_size, new_alloc_size; 197 phys_addr_t old_size, new_size, addr; 198 int use_slab = slab_is_available(); 199 int *in_slab; 200 201 /* We don't allow resizing until we know about the reserved regions 202 * of memory that aren't suitable for allocation 203 */ 204 if (!memblock_can_resize) 205 return -1; 206 207 /* Calculate new doubled size */ 208 old_size = type->max * sizeof(struct memblock_region); 209 new_size = old_size << 1; 210 /* 211 * We need to allocated new one align to PAGE_SIZE, 212 * so we can free them completely later. 213 */ 214 old_alloc_size = PAGE_ALIGN(old_size); 215 new_alloc_size = PAGE_ALIGN(new_size); 216 217 /* Retrieve the slab flag */ 218 if (type == &memblock.memory) 219 in_slab = &memblock_memory_in_slab; 220 else 221 in_slab = &memblock_reserved_in_slab; 222 223 /* Try to find some space for it. 224 * 225 * WARNING: We assume that either slab_is_available() and we use it or 226 * we use MEMBLOCK for allocations. That means that this is unsafe to 227 * use when bootmem is currently active (unless bootmem itself is 228 * implemented on top of MEMBLOCK which isn't the case yet) 229 * 230 * This should however not be an issue for now, as we currently only 231 * call into MEMBLOCK while it's still active, or much later when slab 232 * is active for memory hotplug operations 233 */ 234 if (use_slab) { 235 new_array = kmalloc(new_size, GFP_KERNEL); 236 addr = new_array ? __pa(new_array) : 0; 237 } else { 238 /* only exclude range when trying to double reserved.regions */ 239 if (type != &memblock.reserved) 240 new_area_start = new_area_size = 0; 241 242 addr = memblock_find_in_range(new_area_start + new_area_size, 243 memblock.current_limit, 244 new_alloc_size, PAGE_SIZE); 245 if (!addr && new_area_size) 246 addr = memblock_find_in_range(0, 247 min(new_area_start, memblock.current_limit), 248 new_alloc_size, PAGE_SIZE); 249 250 new_array = addr ? __va(addr) : NULL; 251 } 252 if (!addr) { 253 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 254 memblock_type_name(type), type->max, type->max * 2); 255 return -1; 256 } 257 258 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", 259 memblock_type_name(type), type->max * 2, (u64)addr, 260 (u64)addr + new_size - 1); 261 262 /* 263 * Found space, we now need to move the array over before we add the 264 * reserved region since it may be our reserved array itself that is 265 * full. 266 */ 267 memcpy(new_array, type->regions, old_size); 268 memset(new_array + type->max, 0, old_size); 269 old_array = type->regions; 270 type->regions = new_array; 271 type->max <<= 1; 272 273 /* Free old array. We needn't free it if the array is the static one */ 274 if (*in_slab) 275 kfree(old_array); 276 else if (old_array != memblock_memory_init_regions && 277 old_array != memblock_reserved_init_regions) 278 memblock_free(__pa(old_array), old_alloc_size); 279 280 /* 281 * Reserve the new array if that comes from the memblock. Otherwise, we 282 * needn't do it 283 */ 284 if (!use_slab) 285 BUG_ON(memblock_reserve(addr, new_alloc_size)); 286 287 /* Update slab flag */ 288 *in_slab = use_slab; 289 290 return 0; 291 } 292 293 /** 294 * memblock_merge_regions - merge neighboring compatible regions 295 * @type: memblock type to scan 296 * 297 * Scan @type and merge neighboring compatible regions. 298 */ 299 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 300 { 301 int i = 0; 302 303 /* cnt never goes below 1 */ 304 while (i < type->cnt - 1) { 305 struct memblock_region *this = &type->regions[i]; 306 struct memblock_region *next = &type->regions[i + 1]; 307 308 if (this->base + this->size != next->base || 309 memblock_get_region_node(this) != 310 memblock_get_region_node(next)) { 311 BUG_ON(this->base + this->size > next->base); 312 i++; 313 continue; 314 } 315 316 this->size += next->size; 317 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next)); 318 type->cnt--; 319 } 320 } 321 322 /** 323 * memblock_insert_region - insert new memblock region 324 * @type: memblock type to insert into 325 * @idx: index for the insertion point 326 * @base: base address of the new region 327 * @size: size of the new region 328 * 329 * Insert new memblock region [@base,@base+@size) into @type at @idx. 330 * @type must already have extra room to accomodate the new region. 331 */ 332 static void __init_memblock memblock_insert_region(struct memblock_type *type, 333 int idx, phys_addr_t base, 334 phys_addr_t size, int nid) 335 { 336 struct memblock_region *rgn = &type->regions[idx]; 337 338 BUG_ON(type->cnt >= type->max); 339 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 340 rgn->base = base; 341 rgn->size = size; 342 memblock_set_region_node(rgn, nid); 343 type->cnt++; 344 type->total_size += size; 345 } 346 347 /** 348 * memblock_add_region - add new memblock region 349 * @type: memblock type to add new region into 350 * @base: base address of the new region 351 * @size: size of the new region 352 * @nid: nid of the new region 353 * 354 * Add new memblock region [@base,@base+@size) into @type. The new region 355 * is allowed to overlap with existing ones - overlaps don't affect already 356 * existing regions. @type is guaranteed to be minimal (all neighbouring 357 * compatible regions are merged) after the addition. 358 * 359 * RETURNS: 360 * 0 on success, -errno on failure. 361 */ 362 static int __init_memblock memblock_add_region(struct memblock_type *type, 363 phys_addr_t base, phys_addr_t size, int nid) 364 { 365 bool insert = false; 366 phys_addr_t obase = base; 367 phys_addr_t end = base + memblock_cap_size(base, &size); 368 int i, nr_new; 369 370 if (!size) 371 return 0; 372 373 /* special case for empty array */ 374 if (type->regions[0].size == 0) { 375 WARN_ON(type->cnt != 1 || type->total_size); 376 type->regions[0].base = base; 377 type->regions[0].size = size; 378 memblock_set_region_node(&type->regions[0], nid); 379 type->total_size = size; 380 return 0; 381 } 382 repeat: 383 /* 384 * The following is executed twice. Once with %false @insert and 385 * then with %true. The first counts the number of regions needed 386 * to accomodate the new area. The second actually inserts them. 387 */ 388 base = obase; 389 nr_new = 0; 390 391 for (i = 0; i < type->cnt; i++) { 392 struct memblock_region *rgn = &type->regions[i]; 393 phys_addr_t rbase = rgn->base; 394 phys_addr_t rend = rbase + rgn->size; 395 396 if (rbase >= end) 397 break; 398 if (rend <= base) 399 continue; 400 /* 401 * @rgn overlaps. If it separates the lower part of new 402 * area, insert that portion. 403 */ 404 if (rbase > base) { 405 nr_new++; 406 if (insert) 407 memblock_insert_region(type, i++, base, 408 rbase - base, nid); 409 } 410 /* area below @rend is dealt with, forget about it */ 411 base = min(rend, end); 412 } 413 414 /* insert the remaining portion */ 415 if (base < end) { 416 nr_new++; 417 if (insert) 418 memblock_insert_region(type, i, base, end - base, nid); 419 } 420 421 /* 422 * If this was the first round, resize array and repeat for actual 423 * insertions; otherwise, merge and return. 424 */ 425 if (!insert) { 426 while (type->cnt + nr_new > type->max) 427 if (memblock_double_array(type, obase, size) < 0) 428 return -ENOMEM; 429 insert = true; 430 goto repeat; 431 } else { 432 memblock_merge_regions(type); 433 return 0; 434 } 435 } 436 437 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 438 int nid) 439 { 440 return memblock_add_region(&memblock.memory, base, size, nid); 441 } 442 443 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 444 { 445 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES); 446 } 447 448 /** 449 * memblock_isolate_range - isolate given range into disjoint memblocks 450 * @type: memblock type to isolate range for 451 * @base: base of range to isolate 452 * @size: size of range to isolate 453 * @start_rgn: out parameter for the start of isolated region 454 * @end_rgn: out parameter for the end of isolated region 455 * 456 * Walk @type and ensure that regions don't cross the boundaries defined by 457 * [@base,@base+@size). Crossing regions are split at the boundaries, 458 * which may create at most two more regions. The index of the first 459 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 460 * 461 * RETURNS: 462 * 0 on success, -errno on failure. 463 */ 464 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 465 phys_addr_t base, phys_addr_t size, 466 int *start_rgn, int *end_rgn) 467 { 468 phys_addr_t end = base + memblock_cap_size(base, &size); 469 int i; 470 471 *start_rgn = *end_rgn = 0; 472 473 if (!size) 474 return 0; 475 476 /* we'll create at most two more regions */ 477 while (type->cnt + 2 > type->max) 478 if (memblock_double_array(type, base, size) < 0) 479 return -ENOMEM; 480 481 for (i = 0; i < type->cnt; i++) { 482 struct memblock_region *rgn = &type->regions[i]; 483 phys_addr_t rbase = rgn->base; 484 phys_addr_t rend = rbase + rgn->size; 485 486 if (rbase >= end) 487 break; 488 if (rend <= base) 489 continue; 490 491 if (rbase < base) { 492 /* 493 * @rgn intersects from below. Split and continue 494 * to process the next region - the new top half. 495 */ 496 rgn->base = base; 497 rgn->size -= base - rbase; 498 type->total_size -= base - rbase; 499 memblock_insert_region(type, i, rbase, base - rbase, 500 memblock_get_region_node(rgn)); 501 } else if (rend > end) { 502 /* 503 * @rgn intersects from above. Split and redo the 504 * current region - the new bottom half. 505 */ 506 rgn->base = end; 507 rgn->size -= end - rbase; 508 type->total_size -= end - rbase; 509 memblock_insert_region(type, i--, rbase, end - rbase, 510 memblock_get_region_node(rgn)); 511 } else { 512 /* @rgn is fully contained, record it */ 513 if (!*end_rgn) 514 *start_rgn = i; 515 *end_rgn = i + 1; 516 } 517 } 518 519 return 0; 520 } 521 522 static int __init_memblock __memblock_remove(struct memblock_type *type, 523 phys_addr_t base, phys_addr_t size) 524 { 525 int start_rgn, end_rgn; 526 int i, ret; 527 528 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 529 if (ret) 530 return ret; 531 532 for (i = end_rgn - 1; i >= start_rgn; i--) 533 memblock_remove_region(type, i); 534 return 0; 535 } 536 537 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 538 { 539 return __memblock_remove(&memblock.memory, base, size); 540 } 541 542 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 543 { 544 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", 545 (unsigned long long)base, 546 (unsigned long long)base + size, 547 (void *)_RET_IP_); 548 549 return __memblock_remove(&memblock.reserved, base, size); 550 } 551 552 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 553 { 554 struct memblock_type *_rgn = &memblock.reserved; 555 556 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n", 557 (unsigned long long)base, 558 (unsigned long long)base + size, 559 (void *)_RET_IP_); 560 561 return memblock_add_region(_rgn, base, size, MAX_NUMNODES); 562 } 563 564 /** 565 * __next_free_mem_range - next function for for_each_free_mem_range() 566 * @idx: pointer to u64 loop variable 567 * @nid: nid: node selector, %MAX_NUMNODES for all nodes 568 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 569 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 570 * @out_nid: ptr to int for nid of the range, can be %NULL 571 * 572 * Find the first free area from *@idx which matches @nid, fill the out 573 * parameters, and update *@idx for the next iteration. The lower 32bit of 574 * *@idx contains index into memory region and the upper 32bit indexes the 575 * areas before each reserved region. For example, if reserved regions 576 * look like the following, 577 * 578 * 0:[0-16), 1:[32-48), 2:[128-130) 579 * 580 * The upper 32bit indexes the following regions. 581 * 582 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 583 * 584 * As both region arrays are sorted, the function advances the two indices 585 * in lockstep and returns each intersection. 586 */ 587 void __init_memblock __next_free_mem_range(u64 *idx, int nid, 588 phys_addr_t *out_start, 589 phys_addr_t *out_end, int *out_nid) 590 { 591 struct memblock_type *mem = &memblock.memory; 592 struct memblock_type *rsv = &memblock.reserved; 593 int mi = *idx & 0xffffffff; 594 int ri = *idx >> 32; 595 596 for ( ; mi < mem->cnt; mi++) { 597 struct memblock_region *m = &mem->regions[mi]; 598 phys_addr_t m_start = m->base; 599 phys_addr_t m_end = m->base + m->size; 600 601 /* only memory regions are associated with nodes, check it */ 602 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) 603 continue; 604 605 /* scan areas before each reservation for intersection */ 606 for ( ; ri < rsv->cnt + 1; ri++) { 607 struct memblock_region *r = &rsv->regions[ri]; 608 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; 609 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; 610 611 /* if ri advanced past mi, break out to advance mi */ 612 if (r_start >= m_end) 613 break; 614 /* if the two regions intersect, we're done */ 615 if (m_start < r_end) { 616 if (out_start) 617 *out_start = max(m_start, r_start); 618 if (out_end) 619 *out_end = min(m_end, r_end); 620 if (out_nid) 621 *out_nid = memblock_get_region_node(m); 622 /* 623 * The region which ends first is advanced 624 * for the next iteration. 625 */ 626 if (m_end <= r_end) 627 mi++; 628 else 629 ri++; 630 *idx = (u32)mi | (u64)ri << 32; 631 return; 632 } 633 } 634 } 635 636 /* signal end of iteration */ 637 *idx = ULLONG_MAX; 638 } 639 640 /** 641 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse() 642 * @idx: pointer to u64 loop variable 643 * @nid: nid: node selector, %MAX_NUMNODES for all nodes 644 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 645 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 646 * @out_nid: ptr to int for nid of the range, can be %NULL 647 * 648 * Reverse of __next_free_mem_range(). 649 */ 650 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid, 651 phys_addr_t *out_start, 652 phys_addr_t *out_end, int *out_nid) 653 { 654 struct memblock_type *mem = &memblock.memory; 655 struct memblock_type *rsv = &memblock.reserved; 656 int mi = *idx & 0xffffffff; 657 int ri = *idx >> 32; 658 659 if (*idx == (u64)ULLONG_MAX) { 660 mi = mem->cnt - 1; 661 ri = rsv->cnt; 662 } 663 664 for ( ; mi >= 0; mi--) { 665 struct memblock_region *m = &mem->regions[mi]; 666 phys_addr_t m_start = m->base; 667 phys_addr_t m_end = m->base + m->size; 668 669 /* only memory regions are associated with nodes, check it */ 670 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) 671 continue; 672 673 /* scan areas before each reservation for intersection */ 674 for ( ; ri >= 0; ri--) { 675 struct memblock_region *r = &rsv->regions[ri]; 676 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; 677 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; 678 679 /* if ri advanced past mi, break out to advance mi */ 680 if (r_end <= m_start) 681 break; 682 /* if the two regions intersect, we're done */ 683 if (m_end > r_start) { 684 if (out_start) 685 *out_start = max(m_start, r_start); 686 if (out_end) 687 *out_end = min(m_end, r_end); 688 if (out_nid) 689 *out_nid = memblock_get_region_node(m); 690 691 if (m_start >= r_start) 692 mi--; 693 else 694 ri--; 695 *idx = (u32)mi | (u64)ri << 32; 696 return; 697 } 698 } 699 } 700 701 *idx = ULLONG_MAX; 702 } 703 704 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 705 /* 706 * Common iterator interface used to define for_each_mem_range(). 707 */ 708 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 709 unsigned long *out_start_pfn, 710 unsigned long *out_end_pfn, int *out_nid) 711 { 712 struct memblock_type *type = &memblock.memory; 713 struct memblock_region *r; 714 715 while (++*idx < type->cnt) { 716 r = &type->regions[*idx]; 717 718 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 719 continue; 720 if (nid == MAX_NUMNODES || nid == r->nid) 721 break; 722 } 723 if (*idx >= type->cnt) { 724 *idx = -1; 725 return; 726 } 727 728 if (out_start_pfn) 729 *out_start_pfn = PFN_UP(r->base); 730 if (out_end_pfn) 731 *out_end_pfn = PFN_DOWN(r->base + r->size); 732 if (out_nid) 733 *out_nid = r->nid; 734 } 735 736 /** 737 * memblock_set_node - set node ID on memblock regions 738 * @base: base of area to set node ID for 739 * @size: size of area to set node ID for 740 * @nid: node ID to set 741 * 742 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid. 743 * Regions which cross the area boundaries are split as necessary. 744 * 745 * RETURNS: 746 * 0 on success, -errno on failure. 747 */ 748 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 749 int nid) 750 { 751 struct memblock_type *type = &memblock.memory; 752 int start_rgn, end_rgn; 753 int i, ret; 754 755 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 756 if (ret) 757 return ret; 758 759 for (i = start_rgn; i < end_rgn; i++) 760 memblock_set_region_node(&type->regions[i], nid); 761 762 memblock_merge_regions(type); 763 return 0; 764 } 765 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 766 767 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 768 phys_addr_t align, phys_addr_t max_addr, 769 int nid) 770 { 771 phys_addr_t found; 772 773 /* align @size to avoid excessive fragmentation on reserved array */ 774 size = round_up(size, align); 775 776 found = memblock_find_in_range_node(0, max_addr, size, align, nid); 777 if (found && !memblock_reserve(found, size)) 778 return found; 779 780 return 0; 781 } 782 783 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 784 { 785 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 786 } 787 788 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 789 { 790 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES); 791 } 792 793 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 794 { 795 phys_addr_t alloc; 796 797 alloc = __memblock_alloc_base(size, align, max_addr); 798 799 if (alloc == 0) 800 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", 801 (unsigned long long) size, (unsigned long long) max_addr); 802 803 return alloc; 804 } 805 806 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 807 { 808 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 809 } 810 811 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 812 { 813 phys_addr_t res = memblock_alloc_nid(size, align, nid); 814 815 if (res) 816 return res; 817 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 818 } 819 820 821 /* 822 * Remaining API functions 823 */ 824 825 phys_addr_t __init memblock_phys_mem_size(void) 826 { 827 return memblock.memory.total_size; 828 } 829 830 /* lowest address */ 831 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 832 { 833 return memblock.memory.regions[0].base; 834 } 835 836 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 837 { 838 int idx = memblock.memory.cnt - 1; 839 840 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 841 } 842 843 void __init memblock_enforce_memory_limit(phys_addr_t limit) 844 { 845 unsigned long i; 846 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 847 848 if (!limit) 849 return; 850 851 /* find out max address */ 852 for (i = 0; i < memblock.memory.cnt; i++) { 853 struct memblock_region *r = &memblock.memory.regions[i]; 854 855 if (limit <= r->size) { 856 max_addr = r->base + limit; 857 break; 858 } 859 limit -= r->size; 860 } 861 862 /* truncate both memory and reserved regions */ 863 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX); 864 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX); 865 } 866 867 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 868 { 869 unsigned int left = 0, right = type->cnt; 870 871 do { 872 unsigned int mid = (right + left) / 2; 873 874 if (addr < type->regions[mid].base) 875 right = mid; 876 else if (addr >= (type->regions[mid].base + 877 type->regions[mid].size)) 878 left = mid + 1; 879 else 880 return mid; 881 } while (left < right); 882 return -1; 883 } 884 885 int __init memblock_is_reserved(phys_addr_t addr) 886 { 887 return memblock_search(&memblock.reserved, addr) != -1; 888 } 889 890 int __init_memblock memblock_is_memory(phys_addr_t addr) 891 { 892 return memblock_search(&memblock.memory, addr) != -1; 893 } 894 895 /** 896 * memblock_is_region_memory - check if a region is a subset of memory 897 * @base: base of region to check 898 * @size: size of region to check 899 * 900 * Check if the region [@base, @base+@size) is a subset of a memory block. 901 * 902 * RETURNS: 903 * 0 if false, non-zero if true 904 */ 905 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 906 { 907 int idx = memblock_search(&memblock.memory, base); 908 phys_addr_t end = base + memblock_cap_size(base, &size); 909 910 if (idx == -1) 911 return 0; 912 return memblock.memory.regions[idx].base <= base && 913 (memblock.memory.regions[idx].base + 914 memblock.memory.regions[idx].size) >= end; 915 } 916 917 /** 918 * memblock_is_region_reserved - check if a region intersects reserved memory 919 * @base: base of region to check 920 * @size: size of region to check 921 * 922 * Check if the region [@base, @base+@size) intersects a reserved memory block. 923 * 924 * RETURNS: 925 * 0 if false, non-zero if true 926 */ 927 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 928 { 929 memblock_cap_size(base, &size); 930 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; 931 } 932 933 934 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 935 { 936 memblock.current_limit = limit; 937 } 938 939 static void __init_memblock memblock_dump(struct memblock_type *type, char *name) 940 { 941 unsigned long long base, size; 942 int i; 943 944 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); 945 946 for (i = 0; i < type->cnt; i++) { 947 struct memblock_region *rgn = &type->regions[i]; 948 char nid_buf[32] = ""; 949 950 base = rgn->base; 951 size = rgn->size; 952 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 953 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 954 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 955 memblock_get_region_node(rgn)); 956 #endif 957 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n", 958 name, i, base, base + size - 1, size, nid_buf); 959 } 960 } 961 962 void __init_memblock __memblock_dump_all(void) 963 { 964 pr_info("MEMBLOCK configuration:\n"); 965 pr_info(" memory size = %#llx reserved size = %#llx\n", 966 (unsigned long long)memblock.memory.total_size, 967 (unsigned long long)memblock.reserved.total_size); 968 969 memblock_dump(&memblock.memory, "memory"); 970 memblock_dump(&memblock.reserved, "reserved"); 971 } 972 973 void __init memblock_allow_resize(void) 974 { 975 memblock_can_resize = 1; 976 } 977 978 static int __init early_memblock(char *p) 979 { 980 if (p && strstr(p, "debug")) 981 memblock_debug = 1; 982 return 0; 983 } 984 early_param("memblock", early_memblock); 985 986 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 987 988 static int memblock_debug_show(struct seq_file *m, void *private) 989 { 990 struct memblock_type *type = m->private; 991 struct memblock_region *reg; 992 int i; 993 994 for (i = 0; i < type->cnt; i++) { 995 reg = &type->regions[i]; 996 seq_printf(m, "%4d: ", i); 997 if (sizeof(phys_addr_t) == 4) 998 seq_printf(m, "0x%08lx..0x%08lx\n", 999 (unsigned long)reg->base, 1000 (unsigned long)(reg->base + reg->size - 1)); 1001 else 1002 seq_printf(m, "0x%016llx..0x%016llx\n", 1003 (unsigned long long)reg->base, 1004 (unsigned long long)(reg->base + reg->size - 1)); 1005 1006 } 1007 return 0; 1008 } 1009 1010 static int memblock_debug_open(struct inode *inode, struct file *file) 1011 { 1012 return single_open(file, memblock_debug_show, inode->i_private); 1013 } 1014 1015 static const struct file_operations memblock_debug_fops = { 1016 .open = memblock_debug_open, 1017 .read = seq_read, 1018 .llseek = seq_lseek, 1019 .release = single_release, 1020 }; 1021 1022 static int __init memblock_init_debugfs(void) 1023 { 1024 struct dentry *root = debugfs_create_dir("memblock", NULL); 1025 if (!root) 1026 return -ENXIO; 1027 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 1028 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 1029 1030 return 0; 1031 } 1032 __initcall(memblock_init_debugfs); 1033 1034 #endif /* CONFIG_DEBUG_FS */ 1035