xref: /linux/mm/madvise.c (revision fb2ac84f8acccdec644d26dfc8ba6554f30cd6c0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34 
35 #include <asm/tlb.h>
36 
37 #include "internal.h"
38 #include "swap.h"
39 
40 struct madvise_walk_private {
41 	struct mmu_gather *tlb;
42 	bool pageout;
43 };
44 
45 /*
46  * Any behaviour which results in changes to the vma->vm_flags needs to
47  * take mmap_lock for writing. Others, which simply traverse vmas, need
48  * to only take it for reading.
49  */
50 static int madvise_need_mmap_write(int behavior)
51 {
52 	switch (behavior) {
53 	case MADV_REMOVE:
54 	case MADV_WILLNEED:
55 	case MADV_DONTNEED:
56 	case MADV_DONTNEED_LOCKED:
57 	case MADV_COLD:
58 	case MADV_PAGEOUT:
59 	case MADV_FREE:
60 	case MADV_POPULATE_READ:
61 	case MADV_POPULATE_WRITE:
62 		return 0;
63 	default:
64 		/* be safe, default to 1. list exceptions explicitly */
65 		return 1;
66 	}
67 }
68 
69 #ifdef CONFIG_ANON_VMA_NAME
70 struct anon_vma_name *anon_vma_name_alloc(const char *name)
71 {
72 	struct anon_vma_name *anon_name;
73 	size_t count;
74 
75 	/* Add 1 for NUL terminator at the end of the anon_name->name */
76 	count = strlen(name) + 1;
77 	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
78 	if (anon_name) {
79 		kref_init(&anon_name->kref);
80 		memcpy(anon_name->name, name, count);
81 	}
82 
83 	return anon_name;
84 }
85 
86 void anon_vma_name_free(struct kref *kref)
87 {
88 	struct anon_vma_name *anon_name =
89 			container_of(kref, struct anon_vma_name, kref);
90 	kfree(anon_name);
91 }
92 
93 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
94 {
95 	mmap_assert_locked(vma->vm_mm);
96 
97 	if (vma->vm_file)
98 		return NULL;
99 
100 	return vma->anon_name;
101 }
102 
103 /* mmap_lock should be write-locked */
104 static int replace_anon_vma_name(struct vm_area_struct *vma,
105 				 struct anon_vma_name *anon_name)
106 {
107 	struct anon_vma_name *orig_name = anon_vma_name(vma);
108 
109 	if (!anon_name) {
110 		vma->anon_name = NULL;
111 		anon_vma_name_put(orig_name);
112 		return 0;
113 	}
114 
115 	if (anon_vma_name_eq(orig_name, anon_name))
116 		return 0;
117 
118 	vma->anon_name = anon_vma_name_reuse(anon_name);
119 	anon_vma_name_put(orig_name);
120 
121 	return 0;
122 }
123 #else /* CONFIG_ANON_VMA_NAME */
124 static int replace_anon_vma_name(struct vm_area_struct *vma,
125 				 struct anon_vma_name *anon_name)
126 {
127 	if (anon_name)
128 		return -EINVAL;
129 
130 	return 0;
131 }
132 #endif /* CONFIG_ANON_VMA_NAME */
133 /*
134  * Update the vm_flags on region of a vma, splitting it or merging it as
135  * necessary.  Must be called with mmap_sem held for writing;
136  * Caller should ensure anon_name stability by raising its refcount even when
137  * anon_name belongs to a valid vma because this function might free that vma.
138  */
139 static int madvise_update_vma(struct vm_area_struct *vma,
140 			      struct vm_area_struct **prev, unsigned long start,
141 			      unsigned long end, unsigned long new_flags,
142 			      struct anon_vma_name *anon_name)
143 {
144 	struct mm_struct *mm = vma->vm_mm;
145 	int error;
146 	pgoff_t pgoff;
147 
148 	if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
149 		*prev = vma;
150 		return 0;
151 	}
152 
153 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
154 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
155 			  vma->vm_file, pgoff, vma_policy(vma),
156 			  vma->vm_userfaultfd_ctx, anon_name);
157 	if (*prev) {
158 		vma = *prev;
159 		goto success;
160 	}
161 
162 	*prev = vma;
163 
164 	if (start != vma->vm_start) {
165 		if (unlikely(mm->map_count >= sysctl_max_map_count))
166 			return -ENOMEM;
167 		error = __split_vma(mm, vma, start, 1);
168 		if (error)
169 			return error;
170 	}
171 
172 	if (end != vma->vm_end) {
173 		if (unlikely(mm->map_count >= sysctl_max_map_count))
174 			return -ENOMEM;
175 		error = __split_vma(mm, vma, end, 0);
176 		if (error)
177 			return error;
178 	}
179 
180 success:
181 	/*
182 	 * vm_flags is protected by the mmap_lock held in write mode.
183 	 */
184 	vma->vm_flags = new_flags;
185 	if (!vma->vm_file) {
186 		error = replace_anon_vma_name(vma, anon_name);
187 		if (error)
188 			return error;
189 	}
190 
191 	return 0;
192 }
193 
194 #ifdef CONFIG_SWAP
195 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
196 	unsigned long end, struct mm_walk *walk)
197 {
198 	struct vm_area_struct *vma = walk->private;
199 	unsigned long index;
200 	struct swap_iocb *splug = NULL;
201 
202 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
203 		return 0;
204 
205 	for (index = start; index != end; index += PAGE_SIZE) {
206 		pte_t pte;
207 		swp_entry_t entry;
208 		struct page *page;
209 		spinlock_t *ptl;
210 		pte_t *ptep;
211 
212 		ptep = pte_offset_map_lock(vma->vm_mm, pmd, index, &ptl);
213 		pte = *ptep;
214 		pte_unmap_unlock(ptep, ptl);
215 
216 		if (!is_swap_pte(pte))
217 			continue;
218 		entry = pte_to_swp_entry(pte);
219 		if (unlikely(non_swap_entry(entry)))
220 			continue;
221 
222 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
223 					     vma, index, false, &splug);
224 		if (page)
225 			put_page(page);
226 	}
227 	swap_read_unplug(splug);
228 
229 	return 0;
230 }
231 
232 static const struct mm_walk_ops swapin_walk_ops = {
233 	.pmd_entry		= swapin_walk_pmd_entry,
234 };
235 
236 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
237 		unsigned long start, unsigned long end,
238 		struct address_space *mapping)
239 {
240 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
241 	pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
242 	struct page *page;
243 	struct swap_iocb *splug = NULL;
244 
245 	rcu_read_lock();
246 	xas_for_each(&xas, page, end_index) {
247 		swp_entry_t swap;
248 
249 		if (!xa_is_value(page))
250 			continue;
251 		swap = radix_to_swp_entry(page);
252 		/* There might be swapin error entries in shmem mapping. */
253 		if (non_swap_entry(swap))
254 			continue;
255 		xas_pause(&xas);
256 		rcu_read_unlock();
257 
258 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
259 					     NULL, 0, false, &splug);
260 		if (page)
261 			put_page(page);
262 
263 		rcu_read_lock();
264 	}
265 	rcu_read_unlock();
266 	swap_read_unplug(splug);
267 
268 	lru_add_drain();	/* Push any new pages onto the LRU now */
269 }
270 #endif		/* CONFIG_SWAP */
271 
272 /*
273  * Schedule all required I/O operations.  Do not wait for completion.
274  */
275 static long madvise_willneed(struct vm_area_struct *vma,
276 			     struct vm_area_struct **prev,
277 			     unsigned long start, unsigned long end)
278 {
279 	struct mm_struct *mm = vma->vm_mm;
280 	struct file *file = vma->vm_file;
281 	loff_t offset;
282 
283 	*prev = vma;
284 #ifdef CONFIG_SWAP
285 	if (!file) {
286 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
287 		lru_add_drain(); /* Push any new pages onto the LRU now */
288 		return 0;
289 	}
290 
291 	if (shmem_mapping(file->f_mapping)) {
292 		force_shm_swapin_readahead(vma, start, end,
293 					file->f_mapping);
294 		return 0;
295 	}
296 #else
297 	if (!file)
298 		return -EBADF;
299 #endif
300 
301 	if (IS_DAX(file_inode(file))) {
302 		/* no bad return value, but ignore advice */
303 		return 0;
304 	}
305 
306 	/*
307 	 * Filesystem's fadvise may need to take various locks.  We need to
308 	 * explicitly grab a reference because the vma (and hence the
309 	 * vma's reference to the file) can go away as soon as we drop
310 	 * mmap_lock.
311 	 */
312 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
313 	get_file(file);
314 	offset = (loff_t)(start - vma->vm_start)
315 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
316 	mmap_read_unlock(mm);
317 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
318 	fput(file);
319 	mmap_read_lock(mm);
320 	return 0;
321 }
322 
323 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
324 				unsigned long addr, unsigned long end,
325 				struct mm_walk *walk)
326 {
327 	struct madvise_walk_private *private = walk->private;
328 	struct mmu_gather *tlb = private->tlb;
329 	bool pageout = private->pageout;
330 	struct mm_struct *mm = tlb->mm;
331 	struct vm_area_struct *vma = walk->vma;
332 	pte_t *orig_pte, *pte, ptent;
333 	spinlock_t *ptl;
334 	struct page *page = NULL;
335 	LIST_HEAD(page_list);
336 
337 	if (fatal_signal_pending(current))
338 		return -EINTR;
339 
340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
341 	if (pmd_trans_huge(*pmd)) {
342 		pmd_t orig_pmd;
343 		unsigned long next = pmd_addr_end(addr, end);
344 
345 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
346 		ptl = pmd_trans_huge_lock(pmd, vma);
347 		if (!ptl)
348 			return 0;
349 
350 		orig_pmd = *pmd;
351 		if (is_huge_zero_pmd(orig_pmd))
352 			goto huge_unlock;
353 
354 		if (unlikely(!pmd_present(orig_pmd))) {
355 			VM_BUG_ON(thp_migration_supported() &&
356 					!is_pmd_migration_entry(orig_pmd));
357 			goto huge_unlock;
358 		}
359 
360 		page = pmd_page(orig_pmd);
361 
362 		/* Do not interfere with other mappings of this page */
363 		if (page_mapcount(page) != 1)
364 			goto huge_unlock;
365 
366 		if (next - addr != HPAGE_PMD_SIZE) {
367 			int err;
368 
369 			get_page(page);
370 			spin_unlock(ptl);
371 			lock_page(page);
372 			err = split_huge_page(page);
373 			unlock_page(page);
374 			put_page(page);
375 			if (!err)
376 				goto regular_page;
377 			return 0;
378 		}
379 
380 		if (pmd_young(orig_pmd)) {
381 			pmdp_invalidate(vma, addr, pmd);
382 			orig_pmd = pmd_mkold(orig_pmd);
383 
384 			set_pmd_at(mm, addr, pmd, orig_pmd);
385 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
386 		}
387 
388 		ClearPageReferenced(page);
389 		test_and_clear_page_young(page);
390 		if (pageout) {
391 			if (!isolate_lru_page(page)) {
392 				if (PageUnevictable(page))
393 					putback_lru_page(page);
394 				else
395 					list_add(&page->lru, &page_list);
396 			}
397 		} else
398 			deactivate_page(page);
399 huge_unlock:
400 		spin_unlock(ptl);
401 		if (pageout)
402 			reclaim_pages(&page_list);
403 		return 0;
404 	}
405 
406 regular_page:
407 	if (pmd_trans_unstable(pmd))
408 		return 0;
409 #endif
410 	tlb_change_page_size(tlb, PAGE_SIZE);
411 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
412 	flush_tlb_batched_pending(mm);
413 	arch_enter_lazy_mmu_mode();
414 	for (; addr < end; pte++, addr += PAGE_SIZE) {
415 		ptent = *pte;
416 
417 		if (pte_none(ptent))
418 			continue;
419 
420 		if (!pte_present(ptent))
421 			continue;
422 
423 		page = vm_normal_page(vma, addr, ptent);
424 		if (!page || is_zone_device_page(page))
425 			continue;
426 
427 		/*
428 		 * Creating a THP page is expensive so split it only if we
429 		 * are sure it's worth. Split it if we are only owner.
430 		 */
431 		if (PageTransCompound(page)) {
432 			if (page_mapcount(page) != 1)
433 				break;
434 			get_page(page);
435 			if (!trylock_page(page)) {
436 				put_page(page);
437 				break;
438 			}
439 			pte_unmap_unlock(orig_pte, ptl);
440 			if (split_huge_page(page)) {
441 				unlock_page(page);
442 				put_page(page);
443 				orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
444 				break;
445 			}
446 			unlock_page(page);
447 			put_page(page);
448 			orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
449 			pte--;
450 			addr -= PAGE_SIZE;
451 			continue;
452 		}
453 
454 		/* Do not interfere with other mappings of this page */
455 		if (page_mapcount(page) != 1)
456 			continue;
457 
458 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
459 
460 		if (pte_young(ptent)) {
461 			ptent = ptep_get_and_clear_full(mm, addr, pte,
462 							tlb->fullmm);
463 			ptent = pte_mkold(ptent);
464 			set_pte_at(mm, addr, pte, ptent);
465 			tlb_remove_tlb_entry(tlb, pte, addr);
466 		}
467 
468 		/*
469 		 * We are deactivating a page for accelerating reclaiming.
470 		 * VM couldn't reclaim the page unless we clear PG_young.
471 		 * As a side effect, it makes confuse idle-page tracking
472 		 * because they will miss recent referenced history.
473 		 */
474 		ClearPageReferenced(page);
475 		test_and_clear_page_young(page);
476 		if (pageout) {
477 			if (!isolate_lru_page(page)) {
478 				if (PageUnevictable(page))
479 					putback_lru_page(page);
480 				else
481 					list_add(&page->lru, &page_list);
482 			}
483 		} else
484 			deactivate_page(page);
485 	}
486 
487 	arch_leave_lazy_mmu_mode();
488 	pte_unmap_unlock(orig_pte, ptl);
489 	if (pageout)
490 		reclaim_pages(&page_list);
491 	cond_resched();
492 
493 	return 0;
494 }
495 
496 static const struct mm_walk_ops cold_walk_ops = {
497 	.pmd_entry = madvise_cold_or_pageout_pte_range,
498 };
499 
500 static void madvise_cold_page_range(struct mmu_gather *tlb,
501 			     struct vm_area_struct *vma,
502 			     unsigned long addr, unsigned long end)
503 {
504 	struct madvise_walk_private walk_private = {
505 		.pageout = false,
506 		.tlb = tlb,
507 	};
508 
509 	tlb_start_vma(tlb, vma);
510 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
511 	tlb_end_vma(tlb, vma);
512 }
513 
514 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
515 {
516 	return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
517 }
518 
519 static long madvise_cold(struct vm_area_struct *vma,
520 			struct vm_area_struct **prev,
521 			unsigned long start_addr, unsigned long end_addr)
522 {
523 	struct mm_struct *mm = vma->vm_mm;
524 	struct mmu_gather tlb;
525 
526 	*prev = vma;
527 	if (!can_madv_lru_vma(vma))
528 		return -EINVAL;
529 
530 	lru_add_drain();
531 	tlb_gather_mmu(&tlb, mm);
532 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
533 	tlb_finish_mmu(&tlb);
534 
535 	return 0;
536 }
537 
538 static void madvise_pageout_page_range(struct mmu_gather *tlb,
539 			     struct vm_area_struct *vma,
540 			     unsigned long addr, unsigned long end)
541 {
542 	struct madvise_walk_private walk_private = {
543 		.pageout = true,
544 		.tlb = tlb,
545 	};
546 
547 	tlb_start_vma(tlb, vma);
548 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
549 	tlb_end_vma(tlb, vma);
550 }
551 
552 static inline bool can_do_pageout(struct vm_area_struct *vma)
553 {
554 	if (vma_is_anonymous(vma))
555 		return true;
556 	if (!vma->vm_file)
557 		return false;
558 	/*
559 	 * paging out pagecache only for non-anonymous mappings that correspond
560 	 * to the files the calling process could (if tried) open for writing;
561 	 * otherwise we'd be including shared non-exclusive mappings, which
562 	 * opens a side channel.
563 	 */
564 	return inode_owner_or_capable(&init_user_ns,
565 				      file_inode(vma->vm_file)) ||
566 	       file_permission(vma->vm_file, MAY_WRITE) == 0;
567 }
568 
569 static long madvise_pageout(struct vm_area_struct *vma,
570 			struct vm_area_struct **prev,
571 			unsigned long start_addr, unsigned long end_addr)
572 {
573 	struct mm_struct *mm = vma->vm_mm;
574 	struct mmu_gather tlb;
575 
576 	*prev = vma;
577 	if (!can_madv_lru_vma(vma))
578 		return -EINVAL;
579 
580 	if (!can_do_pageout(vma))
581 		return 0;
582 
583 	lru_add_drain();
584 	tlb_gather_mmu(&tlb, mm);
585 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
586 	tlb_finish_mmu(&tlb);
587 
588 	return 0;
589 }
590 
591 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
592 				unsigned long end, struct mm_walk *walk)
593 
594 {
595 	struct mmu_gather *tlb = walk->private;
596 	struct mm_struct *mm = tlb->mm;
597 	struct vm_area_struct *vma = walk->vma;
598 	spinlock_t *ptl;
599 	pte_t *orig_pte, *pte, ptent;
600 	struct page *page;
601 	int nr_swap = 0;
602 	unsigned long next;
603 
604 	next = pmd_addr_end(addr, end);
605 	if (pmd_trans_huge(*pmd))
606 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
607 			goto next;
608 
609 	if (pmd_trans_unstable(pmd))
610 		return 0;
611 
612 	tlb_change_page_size(tlb, PAGE_SIZE);
613 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
614 	flush_tlb_batched_pending(mm);
615 	arch_enter_lazy_mmu_mode();
616 	for (; addr != end; pte++, addr += PAGE_SIZE) {
617 		ptent = *pte;
618 
619 		if (pte_none(ptent))
620 			continue;
621 		/*
622 		 * If the pte has swp_entry, just clear page table to
623 		 * prevent swap-in which is more expensive rather than
624 		 * (page allocation + zeroing).
625 		 */
626 		if (!pte_present(ptent)) {
627 			swp_entry_t entry;
628 
629 			entry = pte_to_swp_entry(ptent);
630 			if (!non_swap_entry(entry)) {
631 				nr_swap--;
632 				free_swap_and_cache(entry);
633 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
634 			} else if (is_hwpoison_entry(entry) ||
635 				   is_swapin_error_entry(entry)) {
636 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
637 			}
638 			continue;
639 		}
640 
641 		page = vm_normal_page(vma, addr, ptent);
642 		if (!page || is_zone_device_page(page))
643 			continue;
644 
645 		/*
646 		 * If pmd isn't transhuge but the page is THP and
647 		 * is owned by only this process, split it and
648 		 * deactivate all pages.
649 		 */
650 		if (PageTransCompound(page)) {
651 			if (page_mapcount(page) != 1)
652 				goto out;
653 			get_page(page);
654 			if (!trylock_page(page)) {
655 				put_page(page);
656 				goto out;
657 			}
658 			pte_unmap_unlock(orig_pte, ptl);
659 			if (split_huge_page(page)) {
660 				unlock_page(page);
661 				put_page(page);
662 				orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
663 				goto out;
664 			}
665 			unlock_page(page);
666 			put_page(page);
667 			orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
668 			pte--;
669 			addr -= PAGE_SIZE;
670 			continue;
671 		}
672 
673 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
674 
675 		if (PageSwapCache(page) || PageDirty(page)) {
676 			if (!trylock_page(page))
677 				continue;
678 			/*
679 			 * If page is shared with others, we couldn't clear
680 			 * PG_dirty of the page.
681 			 */
682 			if (page_mapcount(page) != 1) {
683 				unlock_page(page);
684 				continue;
685 			}
686 
687 			if (PageSwapCache(page) && !try_to_free_swap(page)) {
688 				unlock_page(page);
689 				continue;
690 			}
691 
692 			ClearPageDirty(page);
693 			unlock_page(page);
694 		}
695 
696 		if (pte_young(ptent) || pte_dirty(ptent)) {
697 			/*
698 			 * Some of architecture(ex, PPC) don't update TLB
699 			 * with set_pte_at and tlb_remove_tlb_entry so for
700 			 * the portability, remap the pte with old|clean
701 			 * after pte clearing.
702 			 */
703 			ptent = ptep_get_and_clear_full(mm, addr, pte,
704 							tlb->fullmm);
705 
706 			ptent = pte_mkold(ptent);
707 			ptent = pte_mkclean(ptent);
708 			set_pte_at(mm, addr, pte, ptent);
709 			tlb_remove_tlb_entry(tlb, pte, addr);
710 		}
711 		mark_page_lazyfree(page);
712 	}
713 out:
714 	if (nr_swap) {
715 		if (current->mm == mm)
716 			sync_mm_rss(mm);
717 
718 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
719 	}
720 	arch_leave_lazy_mmu_mode();
721 	pte_unmap_unlock(orig_pte, ptl);
722 	cond_resched();
723 next:
724 	return 0;
725 }
726 
727 static const struct mm_walk_ops madvise_free_walk_ops = {
728 	.pmd_entry		= madvise_free_pte_range,
729 };
730 
731 static int madvise_free_single_vma(struct vm_area_struct *vma,
732 			unsigned long start_addr, unsigned long end_addr)
733 {
734 	struct mm_struct *mm = vma->vm_mm;
735 	struct mmu_notifier_range range;
736 	struct mmu_gather tlb;
737 
738 	/* MADV_FREE works for only anon vma at the moment */
739 	if (!vma_is_anonymous(vma))
740 		return -EINVAL;
741 
742 	range.start = max(vma->vm_start, start_addr);
743 	if (range.start >= vma->vm_end)
744 		return -EINVAL;
745 	range.end = min(vma->vm_end, end_addr);
746 	if (range.end <= vma->vm_start)
747 		return -EINVAL;
748 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
749 				range.start, range.end);
750 
751 	lru_add_drain();
752 	tlb_gather_mmu(&tlb, mm);
753 	update_hiwater_rss(mm);
754 
755 	mmu_notifier_invalidate_range_start(&range);
756 	tlb_start_vma(&tlb, vma);
757 	walk_page_range(vma->vm_mm, range.start, range.end,
758 			&madvise_free_walk_ops, &tlb);
759 	tlb_end_vma(&tlb, vma);
760 	mmu_notifier_invalidate_range_end(&range);
761 	tlb_finish_mmu(&tlb);
762 
763 	return 0;
764 }
765 
766 /*
767  * Application no longer needs these pages.  If the pages are dirty,
768  * it's OK to just throw them away.  The app will be more careful about
769  * data it wants to keep.  Be sure to free swap resources too.  The
770  * zap_page_range call sets things up for shrink_active_list to actually free
771  * these pages later if no one else has touched them in the meantime,
772  * although we could add these pages to a global reuse list for
773  * shrink_active_list to pick up before reclaiming other pages.
774  *
775  * NB: This interface discards data rather than pushes it out to swap,
776  * as some implementations do.  This has performance implications for
777  * applications like large transactional databases which want to discard
778  * pages in anonymous maps after committing to backing store the data
779  * that was kept in them.  There is no reason to write this data out to
780  * the swap area if the application is discarding it.
781  *
782  * An interface that causes the system to free clean pages and flush
783  * dirty pages is already available as msync(MS_INVALIDATE).
784  */
785 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
786 					unsigned long start, unsigned long end)
787 {
788 	zap_page_range(vma, start, end - start);
789 	return 0;
790 }
791 
792 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
793 					    unsigned long start,
794 					    unsigned long *end,
795 					    int behavior)
796 {
797 	if (!is_vm_hugetlb_page(vma)) {
798 		unsigned int forbidden = VM_PFNMAP;
799 
800 		if (behavior != MADV_DONTNEED_LOCKED)
801 			forbidden |= VM_LOCKED;
802 
803 		return !(vma->vm_flags & forbidden);
804 	}
805 
806 	if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
807 		return false;
808 	if (start & ~huge_page_mask(hstate_vma(vma)))
809 		return false;
810 
811 	*end = ALIGN(*end, huge_page_size(hstate_vma(vma)));
812 	return true;
813 }
814 
815 static long madvise_dontneed_free(struct vm_area_struct *vma,
816 				  struct vm_area_struct **prev,
817 				  unsigned long start, unsigned long end,
818 				  int behavior)
819 {
820 	struct mm_struct *mm = vma->vm_mm;
821 
822 	*prev = vma;
823 	if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
824 		return -EINVAL;
825 
826 	if (!userfaultfd_remove(vma, start, end)) {
827 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
828 
829 		mmap_read_lock(mm);
830 		vma = find_vma(mm, start);
831 		if (!vma)
832 			return -ENOMEM;
833 		if (start < vma->vm_start) {
834 			/*
835 			 * This "vma" under revalidation is the one
836 			 * with the lowest vma->vm_start where start
837 			 * is also < vma->vm_end. If start <
838 			 * vma->vm_start it means an hole materialized
839 			 * in the user address space within the
840 			 * virtual range passed to MADV_DONTNEED
841 			 * or MADV_FREE.
842 			 */
843 			return -ENOMEM;
844 		}
845 		/*
846 		 * Potential end adjustment for hugetlb vma is OK as
847 		 * the check below keeps end within vma.
848 		 */
849 		if (!madvise_dontneed_free_valid_vma(vma, start, &end,
850 						     behavior))
851 			return -EINVAL;
852 		if (end > vma->vm_end) {
853 			/*
854 			 * Don't fail if end > vma->vm_end. If the old
855 			 * vma was split while the mmap_lock was
856 			 * released the effect of the concurrent
857 			 * operation may not cause madvise() to
858 			 * have an undefined result. There may be an
859 			 * adjacent next vma that we'll walk
860 			 * next. userfaultfd_remove() will generate an
861 			 * UFFD_EVENT_REMOVE repetition on the
862 			 * end-vma->vm_end range, but the manager can
863 			 * handle a repetition fine.
864 			 */
865 			end = vma->vm_end;
866 		}
867 		VM_WARN_ON(start >= end);
868 	}
869 
870 	if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
871 		return madvise_dontneed_single_vma(vma, start, end);
872 	else if (behavior == MADV_FREE)
873 		return madvise_free_single_vma(vma, start, end);
874 	else
875 		return -EINVAL;
876 }
877 
878 static long madvise_populate(struct vm_area_struct *vma,
879 			     struct vm_area_struct **prev,
880 			     unsigned long start, unsigned long end,
881 			     int behavior)
882 {
883 	const bool write = behavior == MADV_POPULATE_WRITE;
884 	struct mm_struct *mm = vma->vm_mm;
885 	unsigned long tmp_end;
886 	int locked = 1;
887 	long pages;
888 
889 	*prev = vma;
890 
891 	while (start < end) {
892 		/*
893 		 * We might have temporarily dropped the lock. For example,
894 		 * our VMA might have been split.
895 		 */
896 		if (!vma || start >= vma->vm_end) {
897 			vma = vma_lookup(mm, start);
898 			if (!vma)
899 				return -ENOMEM;
900 		}
901 
902 		tmp_end = min_t(unsigned long, end, vma->vm_end);
903 		/* Populate (prefault) page tables readable/writable. */
904 		pages = faultin_vma_page_range(vma, start, tmp_end, write,
905 					       &locked);
906 		if (!locked) {
907 			mmap_read_lock(mm);
908 			locked = 1;
909 			*prev = NULL;
910 			vma = NULL;
911 		}
912 		if (pages < 0) {
913 			switch (pages) {
914 			case -EINTR:
915 				return -EINTR;
916 			case -EINVAL: /* Incompatible mappings / permissions. */
917 				return -EINVAL;
918 			case -EHWPOISON:
919 				return -EHWPOISON;
920 			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
921 				return -EFAULT;
922 			default:
923 				pr_warn_once("%s: unhandled return value: %ld\n",
924 					     __func__, pages);
925 				fallthrough;
926 			case -ENOMEM:
927 				return -ENOMEM;
928 			}
929 		}
930 		start += pages * PAGE_SIZE;
931 	}
932 	return 0;
933 }
934 
935 /*
936  * Application wants to free up the pages and associated backing store.
937  * This is effectively punching a hole into the middle of a file.
938  */
939 static long madvise_remove(struct vm_area_struct *vma,
940 				struct vm_area_struct **prev,
941 				unsigned long start, unsigned long end)
942 {
943 	loff_t offset;
944 	int error;
945 	struct file *f;
946 	struct mm_struct *mm = vma->vm_mm;
947 
948 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
949 
950 	if (vma->vm_flags & VM_LOCKED)
951 		return -EINVAL;
952 
953 	f = vma->vm_file;
954 
955 	if (!f || !f->f_mapping || !f->f_mapping->host) {
956 			return -EINVAL;
957 	}
958 
959 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
960 		return -EACCES;
961 
962 	offset = (loff_t)(start - vma->vm_start)
963 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
964 
965 	/*
966 	 * Filesystem's fallocate may need to take i_rwsem.  We need to
967 	 * explicitly grab a reference because the vma (and hence the
968 	 * vma's reference to the file) can go away as soon as we drop
969 	 * mmap_lock.
970 	 */
971 	get_file(f);
972 	if (userfaultfd_remove(vma, start, end)) {
973 		/* mmap_lock was not released by userfaultfd_remove() */
974 		mmap_read_unlock(mm);
975 	}
976 	error = vfs_fallocate(f,
977 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
978 				offset, end - start);
979 	fput(f);
980 	mmap_read_lock(mm);
981 	return error;
982 }
983 
984 /*
985  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
986  * will handle splitting a vm area into separate areas, each area with its own
987  * behavior.
988  */
989 static int madvise_vma_behavior(struct vm_area_struct *vma,
990 				struct vm_area_struct **prev,
991 				unsigned long start, unsigned long end,
992 				unsigned long behavior)
993 {
994 	int error;
995 	struct anon_vma_name *anon_name;
996 	unsigned long new_flags = vma->vm_flags;
997 
998 	switch (behavior) {
999 	case MADV_REMOVE:
1000 		return madvise_remove(vma, prev, start, end);
1001 	case MADV_WILLNEED:
1002 		return madvise_willneed(vma, prev, start, end);
1003 	case MADV_COLD:
1004 		return madvise_cold(vma, prev, start, end);
1005 	case MADV_PAGEOUT:
1006 		return madvise_pageout(vma, prev, start, end);
1007 	case MADV_FREE:
1008 	case MADV_DONTNEED:
1009 	case MADV_DONTNEED_LOCKED:
1010 		return madvise_dontneed_free(vma, prev, start, end, behavior);
1011 	case MADV_POPULATE_READ:
1012 	case MADV_POPULATE_WRITE:
1013 		return madvise_populate(vma, prev, start, end, behavior);
1014 	case MADV_NORMAL:
1015 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1016 		break;
1017 	case MADV_SEQUENTIAL:
1018 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1019 		break;
1020 	case MADV_RANDOM:
1021 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1022 		break;
1023 	case MADV_DONTFORK:
1024 		new_flags |= VM_DONTCOPY;
1025 		break;
1026 	case MADV_DOFORK:
1027 		if (vma->vm_flags & VM_IO)
1028 			return -EINVAL;
1029 		new_flags &= ~VM_DONTCOPY;
1030 		break;
1031 	case MADV_WIPEONFORK:
1032 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
1033 		if (vma->vm_file || vma->vm_flags & VM_SHARED)
1034 			return -EINVAL;
1035 		new_flags |= VM_WIPEONFORK;
1036 		break;
1037 	case MADV_KEEPONFORK:
1038 		new_flags &= ~VM_WIPEONFORK;
1039 		break;
1040 	case MADV_DONTDUMP:
1041 		new_flags |= VM_DONTDUMP;
1042 		break;
1043 	case MADV_DODUMP:
1044 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1045 			return -EINVAL;
1046 		new_flags &= ~VM_DONTDUMP;
1047 		break;
1048 	case MADV_MERGEABLE:
1049 	case MADV_UNMERGEABLE:
1050 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
1051 		if (error)
1052 			goto out;
1053 		break;
1054 	case MADV_HUGEPAGE:
1055 	case MADV_NOHUGEPAGE:
1056 		error = hugepage_madvise(vma, &new_flags, behavior);
1057 		if (error)
1058 			goto out;
1059 		break;
1060 	}
1061 
1062 	anon_name = anon_vma_name(vma);
1063 	anon_vma_name_get(anon_name);
1064 	error = madvise_update_vma(vma, prev, start, end, new_flags,
1065 				   anon_name);
1066 	anon_vma_name_put(anon_name);
1067 
1068 out:
1069 	/*
1070 	 * madvise() returns EAGAIN if kernel resources, such as
1071 	 * slab, are temporarily unavailable.
1072 	 */
1073 	if (error == -ENOMEM)
1074 		error = -EAGAIN;
1075 	return error;
1076 }
1077 
1078 #ifdef CONFIG_MEMORY_FAILURE
1079 /*
1080  * Error injection support for memory error handling.
1081  */
1082 static int madvise_inject_error(int behavior,
1083 		unsigned long start, unsigned long end)
1084 {
1085 	unsigned long size;
1086 
1087 	if (!capable(CAP_SYS_ADMIN))
1088 		return -EPERM;
1089 
1090 
1091 	for (; start < end; start += size) {
1092 		unsigned long pfn;
1093 		struct page *page;
1094 		int ret;
1095 
1096 		ret = get_user_pages_fast(start, 1, 0, &page);
1097 		if (ret != 1)
1098 			return ret;
1099 		pfn = page_to_pfn(page);
1100 
1101 		/*
1102 		 * When soft offlining hugepages, after migrating the page
1103 		 * we dissolve it, therefore in the second loop "page" will
1104 		 * no longer be a compound page.
1105 		 */
1106 		size = page_size(compound_head(page));
1107 
1108 		if (behavior == MADV_SOFT_OFFLINE) {
1109 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1110 				 pfn, start);
1111 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1112 		} else {
1113 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1114 				 pfn, start);
1115 			ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED);
1116 			if (ret == -EOPNOTSUPP)
1117 				ret = 0;
1118 		}
1119 
1120 		if (ret)
1121 			return ret;
1122 	}
1123 
1124 	return 0;
1125 }
1126 #endif
1127 
1128 static bool
1129 madvise_behavior_valid(int behavior)
1130 {
1131 	switch (behavior) {
1132 	case MADV_DOFORK:
1133 	case MADV_DONTFORK:
1134 	case MADV_NORMAL:
1135 	case MADV_SEQUENTIAL:
1136 	case MADV_RANDOM:
1137 	case MADV_REMOVE:
1138 	case MADV_WILLNEED:
1139 	case MADV_DONTNEED:
1140 	case MADV_DONTNEED_LOCKED:
1141 	case MADV_FREE:
1142 	case MADV_COLD:
1143 	case MADV_PAGEOUT:
1144 	case MADV_POPULATE_READ:
1145 	case MADV_POPULATE_WRITE:
1146 #ifdef CONFIG_KSM
1147 	case MADV_MERGEABLE:
1148 	case MADV_UNMERGEABLE:
1149 #endif
1150 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1151 	case MADV_HUGEPAGE:
1152 	case MADV_NOHUGEPAGE:
1153 #endif
1154 	case MADV_DONTDUMP:
1155 	case MADV_DODUMP:
1156 	case MADV_WIPEONFORK:
1157 	case MADV_KEEPONFORK:
1158 #ifdef CONFIG_MEMORY_FAILURE
1159 	case MADV_SOFT_OFFLINE:
1160 	case MADV_HWPOISON:
1161 #endif
1162 		return true;
1163 
1164 	default:
1165 		return false;
1166 	}
1167 }
1168 
1169 static bool
1170 process_madvise_behavior_valid(int behavior)
1171 {
1172 	switch (behavior) {
1173 	case MADV_COLD:
1174 	case MADV_PAGEOUT:
1175 	case MADV_WILLNEED:
1176 		return true;
1177 	default:
1178 		return false;
1179 	}
1180 }
1181 
1182 /*
1183  * Walk the vmas in range [start,end), and call the visit function on each one.
1184  * The visit function will get start and end parameters that cover the overlap
1185  * between the current vma and the original range.  Any unmapped regions in the
1186  * original range will result in this function returning -ENOMEM while still
1187  * calling the visit function on all of the existing vmas in the range.
1188  * Must be called with the mmap_lock held for reading or writing.
1189  */
1190 static
1191 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1192 		      unsigned long end, unsigned long arg,
1193 		      int (*visit)(struct vm_area_struct *vma,
1194 				   struct vm_area_struct **prev, unsigned long start,
1195 				   unsigned long end, unsigned long arg))
1196 {
1197 	struct vm_area_struct *vma;
1198 	struct vm_area_struct *prev;
1199 	unsigned long tmp;
1200 	int unmapped_error = 0;
1201 
1202 	/*
1203 	 * If the interval [start,end) covers some unmapped address
1204 	 * ranges, just ignore them, but return -ENOMEM at the end.
1205 	 * - different from the way of handling in mlock etc.
1206 	 */
1207 	vma = find_vma_prev(mm, start, &prev);
1208 	if (vma && start > vma->vm_start)
1209 		prev = vma;
1210 
1211 	for (;;) {
1212 		int error;
1213 
1214 		/* Still start < end. */
1215 		if (!vma)
1216 			return -ENOMEM;
1217 
1218 		/* Here start < (end|vma->vm_end). */
1219 		if (start < vma->vm_start) {
1220 			unmapped_error = -ENOMEM;
1221 			start = vma->vm_start;
1222 			if (start >= end)
1223 				break;
1224 		}
1225 
1226 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1227 		tmp = vma->vm_end;
1228 		if (end < tmp)
1229 			tmp = end;
1230 
1231 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1232 		error = visit(vma, &prev, start, tmp, arg);
1233 		if (error)
1234 			return error;
1235 		start = tmp;
1236 		if (prev && start < prev->vm_end)
1237 			start = prev->vm_end;
1238 		if (start >= end)
1239 			break;
1240 		if (prev)
1241 			vma = prev->vm_next;
1242 		else	/* madvise_remove dropped mmap_lock */
1243 			vma = find_vma(mm, start);
1244 	}
1245 
1246 	return unmapped_error;
1247 }
1248 
1249 #ifdef CONFIG_ANON_VMA_NAME
1250 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1251 				 struct vm_area_struct **prev,
1252 				 unsigned long start, unsigned long end,
1253 				 unsigned long anon_name)
1254 {
1255 	int error;
1256 
1257 	/* Only anonymous mappings can be named */
1258 	if (vma->vm_file)
1259 		return -EBADF;
1260 
1261 	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1262 				   (struct anon_vma_name *)anon_name);
1263 
1264 	/*
1265 	 * madvise() returns EAGAIN if kernel resources, such as
1266 	 * slab, are temporarily unavailable.
1267 	 */
1268 	if (error == -ENOMEM)
1269 		error = -EAGAIN;
1270 	return error;
1271 }
1272 
1273 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1274 			  unsigned long len_in, struct anon_vma_name *anon_name)
1275 {
1276 	unsigned long end;
1277 	unsigned long len;
1278 
1279 	if (start & ~PAGE_MASK)
1280 		return -EINVAL;
1281 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1282 
1283 	/* Check to see whether len was rounded up from small -ve to zero */
1284 	if (len_in && !len)
1285 		return -EINVAL;
1286 
1287 	end = start + len;
1288 	if (end < start)
1289 		return -EINVAL;
1290 
1291 	if (end == start)
1292 		return 0;
1293 
1294 	return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1295 				 madvise_vma_anon_name);
1296 }
1297 #endif /* CONFIG_ANON_VMA_NAME */
1298 /*
1299  * The madvise(2) system call.
1300  *
1301  * Applications can use madvise() to advise the kernel how it should
1302  * handle paging I/O in this VM area.  The idea is to help the kernel
1303  * use appropriate read-ahead and caching techniques.  The information
1304  * provided is advisory only, and can be safely disregarded by the
1305  * kernel without affecting the correct operation of the application.
1306  *
1307  * behavior values:
1308  *  MADV_NORMAL - the default behavior is to read clusters.  This
1309  *		results in some read-ahead and read-behind.
1310  *  MADV_RANDOM - the system should read the minimum amount of data
1311  *		on any access, since it is unlikely that the appli-
1312  *		cation will need more than what it asks for.
1313  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1314  *		once, so they can be aggressively read ahead, and
1315  *		can be freed soon after they are accessed.
1316  *  MADV_WILLNEED - the application is notifying the system to read
1317  *		some pages ahead.
1318  *  MADV_DONTNEED - the application is finished with the given range,
1319  *		so the kernel can free resources associated with it.
1320  *  MADV_FREE - the application marks pages in the given range as lazy free,
1321  *		where actual purges are postponed until memory pressure happens.
1322  *  MADV_REMOVE - the application wants to free up the given range of
1323  *		pages and associated backing store.
1324  *  MADV_DONTFORK - omit this area from child's address space when forking:
1325  *		typically, to avoid COWing pages pinned by get_user_pages().
1326  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1327  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1328  *              range after a fork.
1329  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1330  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1331  *		were corrupted by unrecoverable hardware memory failure.
1332  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1333  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1334  *		this area with pages of identical content from other such areas.
1335  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1336  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1337  *		huge pages in the future. Existing pages might be coalesced and
1338  *		new pages might be allocated as THP.
1339  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1340  *		transparent huge pages so the existing pages will not be
1341  *		coalesced into THP and new pages will not be allocated as THP.
1342  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1343  *		from being included in its core dump.
1344  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1345  *  MADV_COLD - the application is not expected to use this memory soon,
1346  *		deactivate pages in this range so that they can be reclaimed
1347  *		easily if memory pressure happens.
1348  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1349  *		page out the pages in this range immediately.
1350  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1351  *		triggering read faults if required
1352  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1353  *		triggering write faults if required
1354  *
1355  * return values:
1356  *  zero    - success
1357  *  -EINVAL - start + len < 0, start is not page-aligned,
1358  *		"behavior" is not a valid value, or application
1359  *		is attempting to release locked or shared pages,
1360  *		or the specified address range includes file, Huge TLB,
1361  *		MAP_SHARED or VMPFNMAP range.
1362  *  -ENOMEM - addresses in the specified range are not currently
1363  *		mapped, or are outside the AS of the process.
1364  *  -EIO    - an I/O error occurred while paging in data.
1365  *  -EBADF  - map exists, but area maps something that isn't a file.
1366  *  -EAGAIN - a kernel resource was temporarily unavailable.
1367  */
1368 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1369 {
1370 	unsigned long end;
1371 	int error;
1372 	int write;
1373 	size_t len;
1374 	struct blk_plug plug;
1375 
1376 	start = untagged_addr(start);
1377 
1378 	if (!madvise_behavior_valid(behavior))
1379 		return -EINVAL;
1380 
1381 	if (!PAGE_ALIGNED(start))
1382 		return -EINVAL;
1383 	len = PAGE_ALIGN(len_in);
1384 
1385 	/* Check to see whether len was rounded up from small -ve to zero */
1386 	if (len_in && !len)
1387 		return -EINVAL;
1388 
1389 	end = start + len;
1390 	if (end < start)
1391 		return -EINVAL;
1392 
1393 	if (end == start)
1394 		return 0;
1395 
1396 #ifdef CONFIG_MEMORY_FAILURE
1397 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1398 		return madvise_inject_error(behavior, start, start + len_in);
1399 #endif
1400 
1401 	write = madvise_need_mmap_write(behavior);
1402 	if (write) {
1403 		if (mmap_write_lock_killable(mm))
1404 			return -EINTR;
1405 	} else {
1406 		mmap_read_lock(mm);
1407 	}
1408 
1409 	blk_start_plug(&plug);
1410 	error = madvise_walk_vmas(mm, start, end, behavior,
1411 			madvise_vma_behavior);
1412 	blk_finish_plug(&plug);
1413 	if (write)
1414 		mmap_write_unlock(mm);
1415 	else
1416 		mmap_read_unlock(mm);
1417 
1418 	return error;
1419 }
1420 
1421 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1422 {
1423 	return do_madvise(current->mm, start, len_in, behavior);
1424 }
1425 
1426 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1427 		size_t, vlen, int, behavior, unsigned int, flags)
1428 {
1429 	ssize_t ret;
1430 	struct iovec iovstack[UIO_FASTIOV], iovec;
1431 	struct iovec *iov = iovstack;
1432 	struct iov_iter iter;
1433 	struct task_struct *task;
1434 	struct mm_struct *mm;
1435 	size_t total_len;
1436 	unsigned int f_flags;
1437 
1438 	if (flags != 0) {
1439 		ret = -EINVAL;
1440 		goto out;
1441 	}
1442 
1443 	ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1444 	if (ret < 0)
1445 		goto out;
1446 
1447 	task = pidfd_get_task(pidfd, &f_flags);
1448 	if (IS_ERR(task)) {
1449 		ret = PTR_ERR(task);
1450 		goto free_iov;
1451 	}
1452 
1453 	if (!process_madvise_behavior_valid(behavior)) {
1454 		ret = -EINVAL;
1455 		goto release_task;
1456 	}
1457 
1458 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1459 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1460 	if (IS_ERR_OR_NULL(mm)) {
1461 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1462 		goto release_task;
1463 	}
1464 
1465 	/*
1466 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1467 	 * only non-destructive hints are currently supported.
1468 	 */
1469 	if (!capable(CAP_SYS_NICE)) {
1470 		ret = -EPERM;
1471 		goto release_mm;
1472 	}
1473 
1474 	total_len = iov_iter_count(&iter);
1475 
1476 	while (iov_iter_count(&iter)) {
1477 		iovec = iov_iter_iovec(&iter);
1478 		ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1479 					iovec.iov_len, behavior);
1480 		if (ret < 0)
1481 			break;
1482 		iov_iter_advance(&iter, iovec.iov_len);
1483 	}
1484 
1485 	ret = (total_len - iov_iter_count(&iter)) ? : ret;
1486 
1487 release_mm:
1488 	mmput(mm);
1489 release_task:
1490 	put_task_struct(task);
1491 free_iov:
1492 	kfree(iov);
1493 out:
1494 	return ret;
1495 }
1496