xref: /linux/mm/madvise.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34 
35 #include <asm/tlb.h>
36 
37 #include "internal.h"
38 #include "swap.h"
39 
40 struct madvise_walk_private {
41 	struct mmu_gather *tlb;
42 	bool pageout;
43 };
44 
45 /*
46  * Any behaviour which results in changes to the vma->vm_flags needs to
47  * take mmap_lock for writing. Others, which simply traverse vmas, need
48  * to only take it for reading.
49  */
50 static int madvise_need_mmap_write(int behavior)
51 {
52 	switch (behavior) {
53 	case MADV_REMOVE:
54 	case MADV_WILLNEED:
55 	case MADV_DONTNEED:
56 	case MADV_DONTNEED_LOCKED:
57 	case MADV_COLD:
58 	case MADV_PAGEOUT:
59 	case MADV_FREE:
60 	case MADV_POPULATE_READ:
61 	case MADV_POPULATE_WRITE:
62 	case MADV_COLLAPSE:
63 		return 0;
64 	default:
65 		/* be safe, default to 1. list exceptions explicitly */
66 		return 1;
67 	}
68 }
69 
70 #ifdef CONFIG_ANON_VMA_NAME
71 struct anon_vma_name *anon_vma_name_alloc(const char *name)
72 {
73 	struct anon_vma_name *anon_name;
74 	size_t count;
75 
76 	/* Add 1 for NUL terminator at the end of the anon_name->name */
77 	count = strlen(name) + 1;
78 	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
79 	if (anon_name) {
80 		kref_init(&anon_name->kref);
81 		memcpy(anon_name->name, name, count);
82 	}
83 
84 	return anon_name;
85 }
86 
87 void anon_vma_name_free(struct kref *kref)
88 {
89 	struct anon_vma_name *anon_name =
90 			container_of(kref, struct anon_vma_name, kref);
91 	kfree(anon_name);
92 }
93 
94 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
95 {
96 	mmap_assert_locked(vma->vm_mm);
97 
98 	return vma->anon_name;
99 }
100 
101 /* mmap_lock should be write-locked */
102 static int replace_anon_vma_name(struct vm_area_struct *vma,
103 				 struct anon_vma_name *anon_name)
104 {
105 	struct anon_vma_name *orig_name = anon_vma_name(vma);
106 
107 	if (!anon_name) {
108 		vma->anon_name = NULL;
109 		anon_vma_name_put(orig_name);
110 		return 0;
111 	}
112 
113 	if (anon_vma_name_eq(orig_name, anon_name))
114 		return 0;
115 
116 	vma->anon_name = anon_vma_name_reuse(anon_name);
117 	anon_vma_name_put(orig_name);
118 
119 	return 0;
120 }
121 #else /* CONFIG_ANON_VMA_NAME */
122 static int replace_anon_vma_name(struct vm_area_struct *vma,
123 				 struct anon_vma_name *anon_name)
124 {
125 	if (anon_name)
126 		return -EINVAL;
127 
128 	return 0;
129 }
130 #endif /* CONFIG_ANON_VMA_NAME */
131 /*
132  * Update the vm_flags on region of a vma, splitting it or merging it as
133  * necessary.  Must be called with mmap_lock held for writing;
134  * Caller should ensure anon_name stability by raising its refcount even when
135  * anon_name belongs to a valid vma because this function might free that vma.
136  */
137 static int madvise_update_vma(struct vm_area_struct *vma,
138 			      struct vm_area_struct **prev, unsigned long start,
139 			      unsigned long end, unsigned long new_flags,
140 			      struct anon_vma_name *anon_name)
141 {
142 	struct mm_struct *mm = vma->vm_mm;
143 	int error;
144 	VMA_ITERATOR(vmi, mm, start);
145 
146 	if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
147 		*prev = vma;
148 		return 0;
149 	}
150 
151 	vma = vma_modify_flags_name(&vmi, *prev, vma, start, end, new_flags,
152 				    anon_name);
153 	if (IS_ERR(vma))
154 		return PTR_ERR(vma);
155 
156 	*prev = vma;
157 
158 	/* vm_flags is protected by the mmap_lock held in write mode. */
159 	vma_start_write(vma);
160 	vm_flags_reset(vma, new_flags);
161 	if (!vma->vm_file || vma_is_anon_shmem(vma)) {
162 		error = replace_anon_vma_name(vma, anon_name);
163 		if (error)
164 			return error;
165 	}
166 
167 	return 0;
168 }
169 
170 #ifdef CONFIG_SWAP
171 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
172 		unsigned long end, struct mm_walk *walk)
173 {
174 	struct vm_area_struct *vma = walk->private;
175 	struct swap_iocb *splug = NULL;
176 	pte_t *ptep = NULL;
177 	spinlock_t *ptl;
178 	unsigned long addr;
179 
180 	for (addr = start; addr < end; addr += PAGE_SIZE) {
181 		pte_t pte;
182 		swp_entry_t entry;
183 		struct folio *folio;
184 
185 		if (!ptep++) {
186 			ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
187 			if (!ptep)
188 				break;
189 		}
190 
191 		pte = ptep_get(ptep);
192 		if (!is_swap_pte(pte))
193 			continue;
194 		entry = pte_to_swp_entry(pte);
195 		if (unlikely(non_swap_entry(entry)))
196 			continue;
197 
198 		pte_unmap_unlock(ptep, ptl);
199 		ptep = NULL;
200 
201 		folio = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
202 					     vma, addr, &splug);
203 		if (folio)
204 			folio_put(folio);
205 	}
206 
207 	if (ptep)
208 		pte_unmap_unlock(ptep, ptl);
209 	swap_read_unplug(splug);
210 	cond_resched();
211 
212 	return 0;
213 }
214 
215 static const struct mm_walk_ops swapin_walk_ops = {
216 	.pmd_entry		= swapin_walk_pmd_entry,
217 	.walk_lock		= PGWALK_RDLOCK,
218 };
219 
220 static void shmem_swapin_range(struct vm_area_struct *vma,
221 		unsigned long start, unsigned long end,
222 		struct address_space *mapping)
223 {
224 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
225 	pgoff_t end_index = linear_page_index(vma, end) - 1;
226 	struct folio *folio;
227 	struct swap_iocb *splug = NULL;
228 
229 	rcu_read_lock();
230 	xas_for_each(&xas, folio, end_index) {
231 		unsigned long addr;
232 		swp_entry_t entry;
233 
234 		if (!xa_is_value(folio))
235 			continue;
236 		entry = radix_to_swp_entry(folio);
237 		/* There might be swapin error entries in shmem mapping. */
238 		if (non_swap_entry(entry))
239 			continue;
240 
241 		addr = vma->vm_start +
242 			((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT);
243 		xas_pause(&xas);
244 		rcu_read_unlock();
245 
246 		folio = read_swap_cache_async(entry, mapping_gfp_mask(mapping),
247 					     vma, addr, &splug);
248 		if (folio)
249 			folio_put(folio);
250 
251 		rcu_read_lock();
252 	}
253 	rcu_read_unlock();
254 	swap_read_unplug(splug);
255 }
256 #endif		/* CONFIG_SWAP */
257 
258 /*
259  * Schedule all required I/O operations.  Do not wait for completion.
260  */
261 static long madvise_willneed(struct vm_area_struct *vma,
262 			     struct vm_area_struct **prev,
263 			     unsigned long start, unsigned long end)
264 {
265 	struct mm_struct *mm = vma->vm_mm;
266 	struct file *file = vma->vm_file;
267 	loff_t offset;
268 
269 	*prev = vma;
270 #ifdef CONFIG_SWAP
271 	if (!file) {
272 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
273 		lru_add_drain(); /* Push any new pages onto the LRU now */
274 		return 0;
275 	}
276 
277 	if (shmem_mapping(file->f_mapping)) {
278 		shmem_swapin_range(vma, start, end, file->f_mapping);
279 		lru_add_drain(); /* Push any new pages onto the LRU now */
280 		return 0;
281 	}
282 #else
283 	if (!file)
284 		return -EBADF;
285 #endif
286 
287 	if (IS_DAX(file_inode(file))) {
288 		/* no bad return value, but ignore advice */
289 		return 0;
290 	}
291 
292 	/*
293 	 * Filesystem's fadvise may need to take various locks.  We need to
294 	 * explicitly grab a reference because the vma (and hence the
295 	 * vma's reference to the file) can go away as soon as we drop
296 	 * mmap_lock.
297 	 */
298 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
299 	get_file(file);
300 	offset = (loff_t)(start - vma->vm_start)
301 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
302 	mmap_read_unlock(mm);
303 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
304 	fput(file);
305 	mmap_read_lock(mm);
306 	return 0;
307 }
308 
309 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
310 {
311 	if (!vma->vm_file)
312 		return false;
313 	/*
314 	 * paging out pagecache only for non-anonymous mappings that correspond
315 	 * to the files the calling process could (if tried) open for writing;
316 	 * otherwise we'd be including shared non-exclusive mappings, which
317 	 * opens a side channel.
318 	 */
319 	return inode_owner_or_capable(&nop_mnt_idmap,
320 				      file_inode(vma->vm_file)) ||
321 	       file_permission(vma->vm_file, MAY_WRITE) == 0;
322 }
323 
324 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
325 				unsigned long addr, unsigned long end,
326 				struct mm_walk *walk)
327 {
328 	struct madvise_walk_private *private = walk->private;
329 	struct mmu_gather *tlb = private->tlb;
330 	bool pageout = private->pageout;
331 	struct mm_struct *mm = tlb->mm;
332 	struct vm_area_struct *vma = walk->vma;
333 	pte_t *start_pte, *pte, ptent;
334 	spinlock_t *ptl;
335 	struct folio *folio = NULL;
336 	LIST_HEAD(folio_list);
337 	bool pageout_anon_only_filter;
338 	unsigned int batch_count = 0;
339 
340 	if (fatal_signal_pending(current))
341 		return -EINTR;
342 
343 	pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
344 					!can_do_file_pageout(vma);
345 
346 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
347 	if (pmd_trans_huge(*pmd)) {
348 		pmd_t orig_pmd;
349 		unsigned long next = pmd_addr_end(addr, end);
350 
351 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
352 		ptl = pmd_trans_huge_lock(pmd, vma);
353 		if (!ptl)
354 			return 0;
355 
356 		orig_pmd = *pmd;
357 		if (is_huge_zero_pmd(orig_pmd))
358 			goto huge_unlock;
359 
360 		if (unlikely(!pmd_present(orig_pmd))) {
361 			VM_BUG_ON(thp_migration_supported() &&
362 					!is_pmd_migration_entry(orig_pmd));
363 			goto huge_unlock;
364 		}
365 
366 		folio = pfn_folio(pmd_pfn(orig_pmd));
367 
368 		/* Do not interfere with other mappings of this folio */
369 		if (folio_estimated_sharers(folio) != 1)
370 			goto huge_unlock;
371 
372 		if (pageout_anon_only_filter && !folio_test_anon(folio))
373 			goto huge_unlock;
374 
375 		if (next - addr != HPAGE_PMD_SIZE) {
376 			int err;
377 
378 			folio_get(folio);
379 			spin_unlock(ptl);
380 			folio_lock(folio);
381 			err = split_folio(folio);
382 			folio_unlock(folio);
383 			folio_put(folio);
384 			if (!err)
385 				goto regular_folio;
386 			return 0;
387 		}
388 
389 		if (!pageout && pmd_young(orig_pmd)) {
390 			pmdp_invalidate(vma, addr, pmd);
391 			orig_pmd = pmd_mkold(orig_pmd);
392 
393 			set_pmd_at(mm, addr, pmd, orig_pmd);
394 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
395 		}
396 
397 		folio_clear_referenced(folio);
398 		folio_test_clear_young(folio);
399 		if (folio_test_active(folio))
400 			folio_set_workingset(folio);
401 		if (pageout) {
402 			if (folio_isolate_lru(folio)) {
403 				if (folio_test_unevictable(folio))
404 					folio_putback_lru(folio);
405 				else
406 					list_add(&folio->lru, &folio_list);
407 			}
408 		} else
409 			folio_deactivate(folio);
410 huge_unlock:
411 		spin_unlock(ptl);
412 		if (pageout)
413 			reclaim_pages(&folio_list, true);
414 		return 0;
415 	}
416 
417 regular_folio:
418 #endif
419 	tlb_change_page_size(tlb, PAGE_SIZE);
420 restart:
421 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
422 	if (!start_pte)
423 		return 0;
424 	flush_tlb_batched_pending(mm);
425 	arch_enter_lazy_mmu_mode();
426 	for (; addr < end; pte++, addr += PAGE_SIZE) {
427 		ptent = ptep_get(pte);
428 
429 		if (++batch_count == SWAP_CLUSTER_MAX) {
430 			batch_count = 0;
431 			if (need_resched()) {
432 				arch_leave_lazy_mmu_mode();
433 				pte_unmap_unlock(start_pte, ptl);
434 				cond_resched();
435 				goto restart;
436 			}
437 		}
438 
439 		if (pte_none(ptent))
440 			continue;
441 
442 		if (!pte_present(ptent))
443 			continue;
444 
445 		folio = vm_normal_folio(vma, addr, ptent);
446 		if (!folio || folio_is_zone_device(folio))
447 			continue;
448 
449 		/*
450 		 * Creating a THP page is expensive so split it only if we
451 		 * are sure it's worth. Split it if we are only owner.
452 		 */
453 		if (folio_test_large(folio)) {
454 			int err;
455 
456 			if (folio_estimated_sharers(folio) > 1)
457 				break;
458 			if (pageout_anon_only_filter && !folio_test_anon(folio))
459 				break;
460 			if (!folio_trylock(folio))
461 				break;
462 			folio_get(folio);
463 			arch_leave_lazy_mmu_mode();
464 			pte_unmap_unlock(start_pte, ptl);
465 			start_pte = NULL;
466 			err = split_folio(folio);
467 			folio_unlock(folio);
468 			folio_put(folio);
469 			if (err)
470 				break;
471 			start_pte = pte =
472 				pte_offset_map_lock(mm, pmd, addr, &ptl);
473 			if (!start_pte)
474 				break;
475 			arch_enter_lazy_mmu_mode();
476 			pte--;
477 			addr -= PAGE_SIZE;
478 			continue;
479 		}
480 
481 		/*
482 		 * Do not interfere with other mappings of this folio and
483 		 * non-LRU folio.
484 		 */
485 		if (!folio_test_lru(folio) || folio_mapcount(folio) != 1)
486 			continue;
487 
488 		if (pageout_anon_only_filter && !folio_test_anon(folio))
489 			continue;
490 
491 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
492 
493 		if (!pageout && pte_young(ptent)) {
494 			ptent = ptep_get_and_clear_full(mm, addr, pte,
495 							tlb->fullmm);
496 			ptent = pte_mkold(ptent);
497 			set_pte_at(mm, addr, pte, ptent);
498 			tlb_remove_tlb_entry(tlb, pte, addr);
499 		}
500 
501 		/*
502 		 * We are deactivating a folio for accelerating reclaiming.
503 		 * VM couldn't reclaim the folio unless we clear PG_young.
504 		 * As a side effect, it makes confuse idle-page tracking
505 		 * because they will miss recent referenced history.
506 		 */
507 		folio_clear_referenced(folio);
508 		folio_test_clear_young(folio);
509 		if (folio_test_active(folio))
510 			folio_set_workingset(folio);
511 		if (pageout) {
512 			if (folio_isolate_lru(folio)) {
513 				if (folio_test_unevictable(folio))
514 					folio_putback_lru(folio);
515 				else
516 					list_add(&folio->lru, &folio_list);
517 			}
518 		} else
519 			folio_deactivate(folio);
520 	}
521 
522 	if (start_pte) {
523 		arch_leave_lazy_mmu_mode();
524 		pte_unmap_unlock(start_pte, ptl);
525 	}
526 	if (pageout)
527 		reclaim_pages(&folio_list, true);
528 	cond_resched();
529 
530 	return 0;
531 }
532 
533 static const struct mm_walk_ops cold_walk_ops = {
534 	.pmd_entry = madvise_cold_or_pageout_pte_range,
535 	.walk_lock = PGWALK_RDLOCK,
536 };
537 
538 static void madvise_cold_page_range(struct mmu_gather *tlb,
539 			     struct vm_area_struct *vma,
540 			     unsigned long addr, unsigned long end)
541 {
542 	struct madvise_walk_private walk_private = {
543 		.pageout = false,
544 		.tlb = tlb,
545 	};
546 
547 	tlb_start_vma(tlb, vma);
548 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
549 	tlb_end_vma(tlb, vma);
550 }
551 
552 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
553 {
554 	return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
555 }
556 
557 static long madvise_cold(struct vm_area_struct *vma,
558 			struct vm_area_struct **prev,
559 			unsigned long start_addr, unsigned long end_addr)
560 {
561 	struct mm_struct *mm = vma->vm_mm;
562 	struct mmu_gather tlb;
563 
564 	*prev = vma;
565 	if (!can_madv_lru_vma(vma))
566 		return -EINVAL;
567 
568 	lru_add_drain();
569 	tlb_gather_mmu(&tlb, mm);
570 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
571 	tlb_finish_mmu(&tlb);
572 
573 	return 0;
574 }
575 
576 static void madvise_pageout_page_range(struct mmu_gather *tlb,
577 			     struct vm_area_struct *vma,
578 			     unsigned long addr, unsigned long end)
579 {
580 	struct madvise_walk_private walk_private = {
581 		.pageout = true,
582 		.tlb = tlb,
583 	};
584 
585 	tlb_start_vma(tlb, vma);
586 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
587 	tlb_end_vma(tlb, vma);
588 }
589 
590 static long madvise_pageout(struct vm_area_struct *vma,
591 			struct vm_area_struct **prev,
592 			unsigned long start_addr, unsigned long end_addr)
593 {
594 	struct mm_struct *mm = vma->vm_mm;
595 	struct mmu_gather tlb;
596 
597 	*prev = vma;
598 	if (!can_madv_lru_vma(vma))
599 		return -EINVAL;
600 
601 	/*
602 	 * If the VMA belongs to a private file mapping, there can be private
603 	 * dirty pages which can be paged out if even this process is neither
604 	 * owner nor write capable of the file. We allow private file mappings
605 	 * further to pageout dirty anon pages.
606 	 */
607 	if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
608 				(vma->vm_flags & VM_MAYSHARE)))
609 		return 0;
610 
611 	lru_add_drain();
612 	tlb_gather_mmu(&tlb, mm);
613 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
614 	tlb_finish_mmu(&tlb);
615 
616 	return 0;
617 }
618 
619 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
620 				unsigned long end, struct mm_walk *walk)
621 
622 {
623 	struct mmu_gather *tlb = walk->private;
624 	struct mm_struct *mm = tlb->mm;
625 	struct vm_area_struct *vma = walk->vma;
626 	spinlock_t *ptl;
627 	pte_t *start_pte, *pte, ptent;
628 	struct folio *folio;
629 	int nr_swap = 0;
630 	unsigned long next;
631 
632 	next = pmd_addr_end(addr, end);
633 	if (pmd_trans_huge(*pmd))
634 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
635 			return 0;
636 
637 	tlb_change_page_size(tlb, PAGE_SIZE);
638 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
639 	if (!start_pte)
640 		return 0;
641 	flush_tlb_batched_pending(mm);
642 	arch_enter_lazy_mmu_mode();
643 	for (; addr != end; pte++, addr += PAGE_SIZE) {
644 		ptent = ptep_get(pte);
645 
646 		if (pte_none(ptent))
647 			continue;
648 		/*
649 		 * If the pte has swp_entry, just clear page table to
650 		 * prevent swap-in which is more expensive rather than
651 		 * (page allocation + zeroing).
652 		 */
653 		if (!pte_present(ptent)) {
654 			swp_entry_t entry;
655 
656 			entry = pte_to_swp_entry(ptent);
657 			if (!non_swap_entry(entry)) {
658 				nr_swap--;
659 				free_swap_and_cache(entry);
660 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
661 			} else if (is_hwpoison_entry(entry) ||
662 				   is_poisoned_swp_entry(entry)) {
663 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
664 			}
665 			continue;
666 		}
667 
668 		folio = vm_normal_folio(vma, addr, ptent);
669 		if (!folio || folio_is_zone_device(folio))
670 			continue;
671 
672 		/*
673 		 * If pmd isn't transhuge but the folio is large and
674 		 * is owned by only this process, split it and
675 		 * deactivate all pages.
676 		 */
677 		if (folio_test_large(folio)) {
678 			int err;
679 
680 			if (folio_estimated_sharers(folio) != 1)
681 				break;
682 			if (!folio_trylock(folio))
683 				break;
684 			folio_get(folio);
685 			arch_leave_lazy_mmu_mode();
686 			pte_unmap_unlock(start_pte, ptl);
687 			start_pte = NULL;
688 			err = split_folio(folio);
689 			folio_unlock(folio);
690 			folio_put(folio);
691 			if (err)
692 				break;
693 			start_pte = pte =
694 				pte_offset_map_lock(mm, pmd, addr, &ptl);
695 			if (!start_pte)
696 				break;
697 			arch_enter_lazy_mmu_mode();
698 			pte--;
699 			addr -= PAGE_SIZE;
700 			continue;
701 		}
702 
703 		if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
704 			if (!folio_trylock(folio))
705 				continue;
706 			/*
707 			 * If folio is shared with others, we mustn't clear
708 			 * the folio's dirty flag.
709 			 */
710 			if (folio_mapcount(folio) != 1) {
711 				folio_unlock(folio);
712 				continue;
713 			}
714 
715 			if (folio_test_swapcache(folio) &&
716 			    !folio_free_swap(folio)) {
717 				folio_unlock(folio);
718 				continue;
719 			}
720 
721 			folio_clear_dirty(folio);
722 			folio_unlock(folio);
723 		}
724 
725 		if (pte_young(ptent) || pte_dirty(ptent)) {
726 			/*
727 			 * Some of architecture(ex, PPC) don't update TLB
728 			 * with set_pte_at and tlb_remove_tlb_entry so for
729 			 * the portability, remap the pte with old|clean
730 			 * after pte clearing.
731 			 */
732 			ptent = ptep_get_and_clear_full(mm, addr, pte,
733 							tlb->fullmm);
734 
735 			ptent = pte_mkold(ptent);
736 			ptent = pte_mkclean(ptent);
737 			set_pte_at(mm, addr, pte, ptent);
738 			tlb_remove_tlb_entry(tlb, pte, addr);
739 		}
740 		folio_mark_lazyfree(folio);
741 	}
742 
743 	if (nr_swap)
744 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
745 	if (start_pte) {
746 		arch_leave_lazy_mmu_mode();
747 		pte_unmap_unlock(start_pte, ptl);
748 	}
749 	cond_resched();
750 
751 	return 0;
752 }
753 
754 static const struct mm_walk_ops madvise_free_walk_ops = {
755 	.pmd_entry		= madvise_free_pte_range,
756 	.walk_lock		= PGWALK_RDLOCK,
757 };
758 
759 static int madvise_free_single_vma(struct vm_area_struct *vma,
760 			unsigned long start_addr, unsigned long end_addr)
761 {
762 	struct mm_struct *mm = vma->vm_mm;
763 	struct mmu_notifier_range range;
764 	struct mmu_gather tlb;
765 
766 	/* MADV_FREE works for only anon vma at the moment */
767 	if (!vma_is_anonymous(vma))
768 		return -EINVAL;
769 
770 	range.start = max(vma->vm_start, start_addr);
771 	if (range.start >= vma->vm_end)
772 		return -EINVAL;
773 	range.end = min(vma->vm_end, end_addr);
774 	if (range.end <= vma->vm_start)
775 		return -EINVAL;
776 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
777 				range.start, range.end);
778 
779 	lru_add_drain();
780 	tlb_gather_mmu(&tlb, mm);
781 	update_hiwater_rss(mm);
782 
783 	mmu_notifier_invalidate_range_start(&range);
784 	tlb_start_vma(&tlb, vma);
785 	walk_page_range(vma->vm_mm, range.start, range.end,
786 			&madvise_free_walk_ops, &tlb);
787 	tlb_end_vma(&tlb, vma);
788 	mmu_notifier_invalidate_range_end(&range);
789 	tlb_finish_mmu(&tlb);
790 
791 	return 0;
792 }
793 
794 /*
795  * Application no longer needs these pages.  If the pages are dirty,
796  * it's OK to just throw them away.  The app will be more careful about
797  * data it wants to keep.  Be sure to free swap resources too.  The
798  * zap_page_range_single call sets things up for shrink_active_list to actually
799  * free these pages later if no one else has touched them in the meantime,
800  * although we could add these pages to a global reuse list for
801  * shrink_active_list to pick up before reclaiming other pages.
802  *
803  * NB: This interface discards data rather than pushes it out to swap,
804  * as some implementations do.  This has performance implications for
805  * applications like large transactional databases which want to discard
806  * pages in anonymous maps after committing to backing store the data
807  * that was kept in them.  There is no reason to write this data out to
808  * the swap area if the application is discarding it.
809  *
810  * An interface that causes the system to free clean pages and flush
811  * dirty pages is already available as msync(MS_INVALIDATE).
812  */
813 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
814 					unsigned long start, unsigned long end)
815 {
816 	zap_page_range_single(vma, start, end - start, NULL);
817 	return 0;
818 }
819 
820 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
821 					    unsigned long start,
822 					    unsigned long *end,
823 					    int behavior)
824 {
825 	if (!is_vm_hugetlb_page(vma)) {
826 		unsigned int forbidden = VM_PFNMAP;
827 
828 		if (behavior != MADV_DONTNEED_LOCKED)
829 			forbidden |= VM_LOCKED;
830 
831 		return !(vma->vm_flags & forbidden);
832 	}
833 
834 	if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
835 		return false;
836 	if (start & ~huge_page_mask(hstate_vma(vma)))
837 		return false;
838 
839 	/*
840 	 * Madvise callers expect the length to be rounded up to PAGE_SIZE
841 	 * boundaries, and may be unaware that this VMA uses huge pages.
842 	 * Avoid unexpected data loss by rounding down the number of
843 	 * huge pages freed.
844 	 */
845 	*end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
846 
847 	return true;
848 }
849 
850 static long madvise_dontneed_free(struct vm_area_struct *vma,
851 				  struct vm_area_struct **prev,
852 				  unsigned long start, unsigned long end,
853 				  int behavior)
854 {
855 	struct mm_struct *mm = vma->vm_mm;
856 
857 	*prev = vma;
858 	if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
859 		return -EINVAL;
860 
861 	if (start == end)
862 		return 0;
863 
864 	if (!userfaultfd_remove(vma, start, end)) {
865 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
866 
867 		mmap_read_lock(mm);
868 		vma = vma_lookup(mm, start);
869 		if (!vma)
870 			return -ENOMEM;
871 		/*
872 		 * Potential end adjustment for hugetlb vma is OK as
873 		 * the check below keeps end within vma.
874 		 */
875 		if (!madvise_dontneed_free_valid_vma(vma, start, &end,
876 						     behavior))
877 			return -EINVAL;
878 		if (end > vma->vm_end) {
879 			/*
880 			 * Don't fail if end > vma->vm_end. If the old
881 			 * vma was split while the mmap_lock was
882 			 * released the effect of the concurrent
883 			 * operation may not cause madvise() to
884 			 * have an undefined result. There may be an
885 			 * adjacent next vma that we'll walk
886 			 * next. userfaultfd_remove() will generate an
887 			 * UFFD_EVENT_REMOVE repetition on the
888 			 * end-vma->vm_end range, but the manager can
889 			 * handle a repetition fine.
890 			 */
891 			end = vma->vm_end;
892 		}
893 		VM_WARN_ON(start >= end);
894 	}
895 
896 	if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
897 		return madvise_dontneed_single_vma(vma, start, end);
898 	else if (behavior == MADV_FREE)
899 		return madvise_free_single_vma(vma, start, end);
900 	else
901 		return -EINVAL;
902 }
903 
904 static long madvise_populate(struct vm_area_struct *vma,
905 			     struct vm_area_struct **prev,
906 			     unsigned long start, unsigned long end,
907 			     int behavior)
908 {
909 	const bool write = behavior == MADV_POPULATE_WRITE;
910 	struct mm_struct *mm = vma->vm_mm;
911 	unsigned long tmp_end;
912 	int locked = 1;
913 	long pages;
914 
915 	*prev = vma;
916 
917 	while (start < end) {
918 		/*
919 		 * We might have temporarily dropped the lock. For example,
920 		 * our VMA might have been split.
921 		 */
922 		if (!vma || start >= vma->vm_end) {
923 			vma = vma_lookup(mm, start);
924 			if (!vma)
925 				return -ENOMEM;
926 		}
927 
928 		tmp_end = min_t(unsigned long, end, vma->vm_end);
929 		/* Populate (prefault) page tables readable/writable. */
930 		pages = faultin_vma_page_range(vma, start, tmp_end, write,
931 					       &locked);
932 		if (!locked) {
933 			mmap_read_lock(mm);
934 			locked = 1;
935 			*prev = NULL;
936 			vma = NULL;
937 		}
938 		if (pages < 0) {
939 			switch (pages) {
940 			case -EINTR:
941 				return -EINTR;
942 			case -EINVAL: /* Incompatible mappings / permissions. */
943 				return -EINVAL;
944 			case -EHWPOISON:
945 				return -EHWPOISON;
946 			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
947 				return -EFAULT;
948 			default:
949 				pr_warn_once("%s: unhandled return value: %ld\n",
950 					     __func__, pages);
951 				fallthrough;
952 			case -ENOMEM:
953 				return -ENOMEM;
954 			}
955 		}
956 		start += pages * PAGE_SIZE;
957 	}
958 	return 0;
959 }
960 
961 /*
962  * Application wants to free up the pages and associated backing store.
963  * This is effectively punching a hole into the middle of a file.
964  */
965 static long madvise_remove(struct vm_area_struct *vma,
966 				struct vm_area_struct **prev,
967 				unsigned long start, unsigned long end)
968 {
969 	loff_t offset;
970 	int error;
971 	struct file *f;
972 	struct mm_struct *mm = vma->vm_mm;
973 
974 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
975 
976 	if (vma->vm_flags & VM_LOCKED)
977 		return -EINVAL;
978 
979 	f = vma->vm_file;
980 
981 	if (!f || !f->f_mapping || !f->f_mapping->host) {
982 			return -EINVAL;
983 	}
984 
985 	if (!vma_is_shared_maywrite(vma))
986 		return -EACCES;
987 
988 	offset = (loff_t)(start - vma->vm_start)
989 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
990 
991 	/*
992 	 * Filesystem's fallocate may need to take i_rwsem.  We need to
993 	 * explicitly grab a reference because the vma (and hence the
994 	 * vma's reference to the file) can go away as soon as we drop
995 	 * mmap_lock.
996 	 */
997 	get_file(f);
998 	if (userfaultfd_remove(vma, start, end)) {
999 		/* mmap_lock was not released by userfaultfd_remove() */
1000 		mmap_read_unlock(mm);
1001 	}
1002 	error = vfs_fallocate(f,
1003 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1004 				offset, end - start);
1005 	fput(f);
1006 	mmap_read_lock(mm);
1007 	return error;
1008 }
1009 
1010 /*
1011  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
1012  * will handle splitting a vm area into separate areas, each area with its own
1013  * behavior.
1014  */
1015 static int madvise_vma_behavior(struct vm_area_struct *vma,
1016 				struct vm_area_struct **prev,
1017 				unsigned long start, unsigned long end,
1018 				unsigned long behavior)
1019 {
1020 	int error;
1021 	struct anon_vma_name *anon_name;
1022 	unsigned long new_flags = vma->vm_flags;
1023 
1024 	switch (behavior) {
1025 	case MADV_REMOVE:
1026 		return madvise_remove(vma, prev, start, end);
1027 	case MADV_WILLNEED:
1028 		return madvise_willneed(vma, prev, start, end);
1029 	case MADV_COLD:
1030 		return madvise_cold(vma, prev, start, end);
1031 	case MADV_PAGEOUT:
1032 		return madvise_pageout(vma, prev, start, end);
1033 	case MADV_FREE:
1034 	case MADV_DONTNEED:
1035 	case MADV_DONTNEED_LOCKED:
1036 		return madvise_dontneed_free(vma, prev, start, end, behavior);
1037 	case MADV_POPULATE_READ:
1038 	case MADV_POPULATE_WRITE:
1039 		return madvise_populate(vma, prev, start, end, behavior);
1040 	case MADV_NORMAL:
1041 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1042 		break;
1043 	case MADV_SEQUENTIAL:
1044 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1045 		break;
1046 	case MADV_RANDOM:
1047 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1048 		break;
1049 	case MADV_DONTFORK:
1050 		new_flags |= VM_DONTCOPY;
1051 		break;
1052 	case MADV_DOFORK:
1053 		if (vma->vm_flags & VM_IO)
1054 			return -EINVAL;
1055 		new_flags &= ~VM_DONTCOPY;
1056 		break;
1057 	case MADV_WIPEONFORK:
1058 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
1059 		if (vma->vm_file || vma->vm_flags & VM_SHARED)
1060 			return -EINVAL;
1061 		new_flags |= VM_WIPEONFORK;
1062 		break;
1063 	case MADV_KEEPONFORK:
1064 		new_flags &= ~VM_WIPEONFORK;
1065 		break;
1066 	case MADV_DONTDUMP:
1067 		new_flags |= VM_DONTDUMP;
1068 		break;
1069 	case MADV_DODUMP:
1070 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1071 			return -EINVAL;
1072 		new_flags &= ~VM_DONTDUMP;
1073 		break;
1074 	case MADV_MERGEABLE:
1075 	case MADV_UNMERGEABLE:
1076 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
1077 		if (error)
1078 			goto out;
1079 		break;
1080 	case MADV_HUGEPAGE:
1081 	case MADV_NOHUGEPAGE:
1082 		error = hugepage_madvise(vma, &new_flags, behavior);
1083 		if (error)
1084 			goto out;
1085 		break;
1086 	case MADV_COLLAPSE:
1087 		return madvise_collapse(vma, prev, start, end);
1088 	}
1089 
1090 	anon_name = anon_vma_name(vma);
1091 	anon_vma_name_get(anon_name);
1092 	error = madvise_update_vma(vma, prev, start, end, new_flags,
1093 				   anon_name);
1094 	anon_vma_name_put(anon_name);
1095 
1096 out:
1097 	/*
1098 	 * madvise() returns EAGAIN if kernel resources, such as
1099 	 * slab, are temporarily unavailable.
1100 	 */
1101 	if (error == -ENOMEM)
1102 		error = -EAGAIN;
1103 	return error;
1104 }
1105 
1106 #ifdef CONFIG_MEMORY_FAILURE
1107 /*
1108  * Error injection support for memory error handling.
1109  */
1110 static int madvise_inject_error(int behavior,
1111 		unsigned long start, unsigned long end)
1112 {
1113 	unsigned long size;
1114 
1115 	if (!capable(CAP_SYS_ADMIN))
1116 		return -EPERM;
1117 
1118 
1119 	for (; start < end; start += size) {
1120 		unsigned long pfn;
1121 		struct page *page;
1122 		int ret;
1123 
1124 		ret = get_user_pages_fast(start, 1, 0, &page);
1125 		if (ret != 1)
1126 			return ret;
1127 		pfn = page_to_pfn(page);
1128 
1129 		/*
1130 		 * When soft offlining hugepages, after migrating the page
1131 		 * we dissolve it, therefore in the second loop "page" will
1132 		 * no longer be a compound page.
1133 		 */
1134 		size = page_size(compound_head(page));
1135 
1136 		if (behavior == MADV_SOFT_OFFLINE) {
1137 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1138 				 pfn, start);
1139 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1140 		} else {
1141 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1142 				 pfn, start);
1143 			ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED);
1144 			if (ret == -EOPNOTSUPP)
1145 				ret = 0;
1146 		}
1147 
1148 		if (ret)
1149 			return ret;
1150 	}
1151 
1152 	return 0;
1153 }
1154 #endif
1155 
1156 static bool
1157 madvise_behavior_valid(int behavior)
1158 {
1159 	switch (behavior) {
1160 	case MADV_DOFORK:
1161 	case MADV_DONTFORK:
1162 	case MADV_NORMAL:
1163 	case MADV_SEQUENTIAL:
1164 	case MADV_RANDOM:
1165 	case MADV_REMOVE:
1166 	case MADV_WILLNEED:
1167 	case MADV_DONTNEED:
1168 	case MADV_DONTNEED_LOCKED:
1169 	case MADV_FREE:
1170 	case MADV_COLD:
1171 	case MADV_PAGEOUT:
1172 	case MADV_POPULATE_READ:
1173 	case MADV_POPULATE_WRITE:
1174 #ifdef CONFIG_KSM
1175 	case MADV_MERGEABLE:
1176 	case MADV_UNMERGEABLE:
1177 #endif
1178 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1179 	case MADV_HUGEPAGE:
1180 	case MADV_NOHUGEPAGE:
1181 	case MADV_COLLAPSE:
1182 #endif
1183 	case MADV_DONTDUMP:
1184 	case MADV_DODUMP:
1185 	case MADV_WIPEONFORK:
1186 	case MADV_KEEPONFORK:
1187 #ifdef CONFIG_MEMORY_FAILURE
1188 	case MADV_SOFT_OFFLINE:
1189 	case MADV_HWPOISON:
1190 #endif
1191 		return true;
1192 
1193 	default:
1194 		return false;
1195 	}
1196 }
1197 
1198 static bool process_madvise_behavior_valid(int behavior)
1199 {
1200 	switch (behavior) {
1201 	case MADV_COLD:
1202 	case MADV_PAGEOUT:
1203 	case MADV_WILLNEED:
1204 	case MADV_COLLAPSE:
1205 		return true;
1206 	default:
1207 		return false;
1208 	}
1209 }
1210 
1211 /*
1212  * Walk the vmas in range [start,end), and call the visit function on each one.
1213  * The visit function will get start and end parameters that cover the overlap
1214  * between the current vma and the original range.  Any unmapped regions in the
1215  * original range will result in this function returning -ENOMEM while still
1216  * calling the visit function on all of the existing vmas in the range.
1217  * Must be called with the mmap_lock held for reading or writing.
1218  */
1219 static
1220 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1221 		      unsigned long end, unsigned long arg,
1222 		      int (*visit)(struct vm_area_struct *vma,
1223 				   struct vm_area_struct **prev, unsigned long start,
1224 				   unsigned long end, unsigned long arg))
1225 {
1226 	struct vm_area_struct *vma;
1227 	struct vm_area_struct *prev;
1228 	unsigned long tmp;
1229 	int unmapped_error = 0;
1230 
1231 	/*
1232 	 * If the interval [start,end) covers some unmapped address
1233 	 * ranges, just ignore them, but return -ENOMEM at the end.
1234 	 * - different from the way of handling in mlock etc.
1235 	 */
1236 	vma = find_vma_prev(mm, start, &prev);
1237 	if (vma && start > vma->vm_start)
1238 		prev = vma;
1239 
1240 	for (;;) {
1241 		int error;
1242 
1243 		/* Still start < end. */
1244 		if (!vma)
1245 			return -ENOMEM;
1246 
1247 		/* Here start < (end|vma->vm_end). */
1248 		if (start < vma->vm_start) {
1249 			unmapped_error = -ENOMEM;
1250 			start = vma->vm_start;
1251 			if (start >= end)
1252 				break;
1253 		}
1254 
1255 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1256 		tmp = vma->vm_end;
1257 		if (end < tmp)
1258 			tmp = end;
1259 
1260 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1261 		error = visit(vma, &prev, start, tmp, arg);
1262 		if (error)
1263 			return error;
1264 		start = tmp;
1265 		if (prev && start < prev->vm_end)
1266 			start = prev->vm_end;
1267 		if (start >= end)
1268 			break;
1269 		if (prev)
1270 			vma = find_vma(mm, prev->vm_end);
1271 		else	/* madvise_remove dropped mmap_lock */
1272 			vma = find_vma(mm, start);
1273 	}
1274 
1275 	return unmapped_error;
1276 }
1277 
1278 #ifdef CONFIG_ANON_VMA_NAME
1279 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1280 				 struct vm_area_struct **prev,
1281 				 unsigned long start, unsigned long end,
1282 				 unsigned long anon_name)
1283 {
1284 	int error;
1285 
1286 	/* Only anonymous mappings can be named */
1287 	if (vma->vm_file && !vma_is_anon_shmem(vma))
1288 		return -EBADF;
1289 
1290 	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1291 				   (struct anon_vma_name *)anon_name);
1292 
1293 	/*
1294 	 * madvise() returns EAGAIN if kernel resources, such as
1295 	 * slab, are temporarily unavailable.
1296 	 */
1297 	if (error == -ENOMEM)
1298 		error = -EAGAIN;
1299 	return error;
1300 }
1301 
1302 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1303 			  unsigned long len_in, struct anon_vma_name *anon_name)
1304 {
1305 	unsigned long end;
1306 	unsigned long len;
1307 
1308 	if (start & ~PAGE_MASK)
1309 		return -EINVAL;
1310 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1311 
1312 	/* Check to see whether len was rounded up from small -ve to zero */
1313 	if (len_in && !len)
1314 		return -EINVAL;
1315 
1316 	end = start + len;
1317 	if (end < start)
1318 		return -EINVAL;
1319 
1320 	if (end == start)
1321 		return 0;
1322 
1323 	return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1324 				 madvise_vma_anon_name);
1325 }
1326 #endif /* CONFIG_ANON_VMA_NAME */
1327 /*
1328  * The madvise(2) system call.
1329  *
1330  * Applications can use madvise() to advise the kernel how it should
1331  * handle paging I/O in this VM area.  The idea is to help the kernel
1332  * use appropriate read-ahead and caching techniques.  The information
1333  * provided is advisory only, and can be safely disregarded by the
1334  * kernel without affecting the correct operation of the application.
1335  *
1336  * behavior values:
1337  *  MADV_NORMAL - the default behavior is to read clusters.  This
1338  *		results in some read-ahead and read-behind.
1339  *  MADV_RANDOM - the system should read the minimum amount of data
1340  *		on any access, since it is unlikely that the appli-
1341  *		cation will need more than what it asks for.
1342  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1343  *		once, so they can be aggressively read ahead, and
1344  *		can be freed soon after they are accessed.
1345  *  MADV_WILLNEED - the application is notifying the system to read
1346  *		some pages ahead.
1347  *  MADV_DONTNEED - the application is finished with the given range,
1348  *		so the kernel can free resources associated with it.
1349  *  MADV_FREE - the application marks pages in the given range as lazy free,
1350  *		where actual purges are postponed until memory pressure happens.
1351  *  MADV_REMOVE - the application wants to free up the given range of
1352  *		pages and associated backing store.
1353  *  MADV_DONTFORK - omit this area from child's address space when forking:
1354  *		typically, to avoid COWing pages pinned by get_user_pages().
1355  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1356  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1357  *              range after a fork.
1358  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1359  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1360  *		were corrupted by unrecoverable hardware memory failure.
1361  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1362  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1363  *		this area with pages of identical content from other such areas.
1364  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1365  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1366  *		huge pages in the future. Existing pages might be coalesced and
1367  *		new pages might be allocated as THP.
1368  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1369  *		transparent huge pages so the existing pages will not be
1370  *		coalesced into THP and new pages will not be allocated as THP.
1371  *  MADV_COLLAPSE - synchronously coalesce pages into new THP.
1372  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1373  *		from being included in its core dump.
1374  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1375  *  MADV_COLD - the application is not expected to use this memory soon,
1376  *		deactivate pages in this range so that they can be reclaimed
1377  *		easily if memory pressure happens.
1378  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1379  *		page out the pages in this range immediately.
1380  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1381  *		triggering read faults if required
1382  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1383  *		triggering write faults if required
1384  *
1385  * return values:
1386  *  zero    - success
1387  *  -EINVAL - start + len < 0, start is not page-aligned,
1388  *		"behavior" is not a valid value, or application
1389  *		is attempting to release locked or shared pages,
1390  *		or the specified address range includes file, Huge TLB,
1391  *		MAP_SHARED or VMPFNMAP range.
1392  *  -ENOMEM - addresses in the specified range are not currently
1393  *		mapped, or are outside the AS of the process.
1394  *  -EIO    - an I/O error occurred while paging in data.
1395  *  -EBADF  - map exists, but area maps something that isn't a file.
1396  *  -EAGAIN - a kernel resource was temporarily unavailable.
1397  */
1398 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1399 {
1400 	unsigned long end;
1401 	int error;
1402 	int write;
1403 	size_t len;
1404 	struct blk_plug plug;
1405 
1406 	if (!madvise_behavior_valid(behavior))
1407 		return -EINVAL;
1408 
1409 	if (!PAGE_ALIGNED(start))
1410 		return -EINVAL;
1411 	len = PAGE_ALIGN(len_in);
1412 
1413 	/* Check to see whether len was rounded up from small -ve to zero */
1414 	if (len_in && !len)
1415 		return -EINVAL;
1416 
1417 	end = start + len;
1418 	if (end < start)
1419 		return -EINVAL;
1420 
1421 	if (end == start)
1422 		return 0;
1423 
1424 #ifdef CONFIG_MEMORY_FAILURE
1425 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1426 		return madvise_inject_error(behavior, start, start + len_in);
1427 #endif
1428 
1429 	write = madvise_need_mmap_write(behavior);
1430 	if (write) {
1431 		if (mmap_write_lock_killable(mm))
1432 			return -EINTR;
1433 	} else {
1434 		mmap_read_lock(mm);
1435 	}
1436 
1437 	start = untagged_addr_remote(mm, start);
1438 	end = start + len;
1439 
1440 	blk_start_plug(&plug);
1441 	error = madvise_walk_vmas(mm, start, end, behavior,
1442 			madvise_vma_behavior);
1443 	blk_finish_plug(&plug);
1444 	if (write)
1445 		mmap_write_unlock(mm);
1446 	else
1447 		mmap_read_unlock(mm);
1448 
1449 	return error;
1450 }
1451 
1452 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1453 {
1454 	return do_madvise(current->mm, start, len_in, behavior);
1455 }
1456 
1457 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1458 		size_t, vlen, int, behavior, unsigned int, flags)
1459 {
1460 	ssize_t ret;
1461 	struct iovec iovstack[UIO_FASTIOV];
1462 	struct iovec *iov = iovstack;
1463 	struct iov_iter iter;
1464 	struct task_struct *task;
1465 	struct mm_struct *mm;
1466 	size_t total_len;
1467 	unsigned int f_flags;
1468 
1469 	if (flags != 0) {
1470 		ret = -EINVAL;
1471 		goto out;
1472 	}
1473 
1474 	ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1475 	if (ret < 0)
1476 		goto out;
1477 
1478 	task = pidfd_get_task(pidfd, &f_flags);
1479 	if (IS_ERR(task)) {
1480 		ret = PTR_ERR(task);
1481 		goto free_iov;
1482 	}
1483 
1484 	if (!process_madvise_behavior_valid(behavior)) {
1485 		ret = -EINVAL;
1486 		goto release_task;
1487 	}
1488 
1489 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1490 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1491 	if (IS_ERR_OR_NULL(mm)) {
1492 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1493 		goto release_task;
1494 	}
1495 
1496 	/*
1497 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1498 	 * only non-destructive hints are currently supported.
1499 	 */
1500 	if (!capable(CAP_SYS_NICE)) {
1501 		ret = -EPERM;
1502 		goto release_mm;
1503 	}
1504 
1505 	total_len = iov_iter_count(&iter);
1506 
1507 	while (iov_iter_count(&iter)) {
1508 		ret = do_madvise(mm, (unsigned long)iter_iov_addr(&iter),
1509 					iter_iov_len(&iter), behavior);
1510 		if (ret < 0)
1511 			break;
1512 		iov_iter_advance(&iter, iter_iov_len(&iter));
1513 	}
1514 
1515 	ret = (total_len - iov_iter_count(&iter)) ? : ret;
1516 
1517 release_mm:
1518 	mmput(mm);
1519 release_task:
1520 	put_task_struct(task);
1521 free_iov:
1522 	kfree(iov);
1523 out:
1524 	return ret;
1525 }
1526