1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/madvise.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 2002 Christoph Hellwig 7 */ 8 9 #include <linux/mman.h> 10 #include <linux/pagemap.h> 11 #include <linux/syscalls.h> 12 #include <linux/mempolicy.h> 13 #include <linux/page-isolation.h> 14 #include <linux/page_idle.h> 15 #include <linux/userfaultfd_k.h> 16 #include <linux/hugetlb.h> 17 #include <linux/falloc.h> 18 #include <linux/fadvise.h> 19 #include <linux/sched.h> 20 #include <linux/sched/mm.h> 21 #include <linux/mm_inline.h> 22 #include <linux/string.h> 23 #include <linux/uio.h> 24 #include <linux/ksm.h> 25 #include <linux/fs.h> 26 #include <linux/file.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagewalk.h> 30 #include <linux/swap.h> 31 #include <linux/swapops.h> 32 #include <linux/shmem_fs.h> 33 #include <linux/mmu_notifier.h> 34 35 #include <asm/tlb.h> 36 37 #include "internal.h" 38 #include "swap.h" 39 40 struct madvise_walk_private { 41 struct mmu_gather *tlb; 42 bool pageout; 43 }; 44 45 /* 46 * Any behaviour which results in changes to the vma->vm_flags needs to 47 * take mmap_lock for writing. Others, which simply traverse vmas, need 48 * to only take it for reading. 49 */ 50 static int madvise_need_mmap_write(int behavior) 51 { 52 switch (behavior) { 53 case MADV_REMOVE: 54 case MADV_WILLNEED: 55 case MADV_DONTNEED: 56 case MADV_DONTNEED_LOCKED: 57 case MADV_COLD: 58 case MADV_PAGEOUT: 59 case MADV_FREE: 60 case MADV_POPULATE_READ: 61 case MADV_POPULATE_WRITE: 62 return 0; 63 default: 64 /* be safe, default to 1. list exceptions explicitly */ 65 return 1; 66 } 67 } 68 69 #ifdef CONFIG_ANON_VMA_NAME 70 struct anon_vma_name *anon_vma_name_alloc(const char *name) 71 { 72 struct anon_vma_name *anon_name; 73 size_t count; 74 75 /* Add 1 for NUL terminator at the end of the anon_name->name */ 76 count = strlen(name) + 1; 77 anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL); 78 if (anon_name) { 79 kref_init(&anon_name->kref); 80 memcpy(anon_name->name, name, count); 81 } 82 83 return anon_name; 84 } 85 86 void anon_vma_name_free(struct kref *kref) 87 { 88 struct anon_vma_name *anon_name = 89 container_of(kref, struct anon_vma_name, kref); 90 kfree(anon_name); 91 } 92 93 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) 94 { 95 mmap_assert_locked(vma->vm_mm); 96 97 if (vma->vm_file) 98 return NULL; 99 100 return vma->anon_name; 101 } 102 103 /* mmap_lock should be write-locked */ 104 static int replace_anon_vma_name(struct vm_area_struct *vma, 105 struct anon_vma_name *anon_name) 106 { 107 struct anon_vma_name *orig_name = anon_vma_name(vma); 108 109 if (!anon_name) { 110 vma->anon_name = NULL; 111 anon_vma_name_put(orig_name); 112 return 0; 113 } 114 115 if (anon_vma_name_eq(orig_name, anon_name)) 116 return 0; 117 118 vma->anon_name = anon_vma_name_reuse(anon_name); 119 anon_vma_name_put(orig_name); 120 121 return 0; 122 } 123 #else /* CONFIG_ANON_VMA_NAME */ 124 static int replace_anon_vma_name(struct vm_area_struct *vma, 125 struct anon_vma_name *anon_name) 126 { 127 if (anon_name) 128 return -EINVAL; 129 130 return 0; 131 } 132 #endif /* CONFIG_ANON_VMA_NAME */ 133 /* 134 * Update the vm_flags on region of a vma, splitting it or merging it as 135 * necessary. Must be called with mmap_sem held for writing; 136 * Caller should ensure anon_name stability by raising its refcount even when 137 * anon_name belongs to a valid vma because this function might free that vma. 138 */ 139 static int madvise_update_vma(struct vm_area_struct *vma, 140 struct vm_area_struct **prev, unsigned long start, 141 unsigned long end, unsigned long new_flags, 142 struct anon_vma_name *anon_name) 143 { 144 struct mm_struct *mm = vma->vm_mm; 145 int error; 146 pgoff_t pgoff; 147 148 if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) { 149 *prev = vma; 150 return 0; 151 } 152 153 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 154 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma, 155 vma->vm_file, pgoff, vma_policy(vma), 156 vma->vm_userfaultfd_ctx, anon_name); 157 if (*prev) { 158 vma = *prev; 159 goto success; 160 } 161 162 *prev = vma; 163 164 if (start != vma->vm_start) { 165 if (unlikely(mm->map_count >= sysctl_max_map_count)) 166 return -ENOMEM; 167 error = __split_vma(mm, vma, start, 1); 168 if (error) 169 return error; 170 } 171 172 if (end != vma->vm_end) { 173 if (unlikely(mm->map_count >= sysctl_max_map_count)) 174 return -ENOMEM; 175 error = __split_vma(mm, vma, end, 0); 176 if (error) 177 return error; 178 } 179 180 success: 181 /* 182 * vm_flags is protected by the mmap_lock held in write mode. 183 */ 184 vma->vm_flags = new_flags; 185 if (!vma->vm_file) { 186 error = replace_anon_vma_name(vma, anon_name); 187 if (error) 188 return error; 189 } 190 191 return 0; 192 } 193 194 #ifdef CONFIG_SWAP 195 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start, 196 unsigned long end, struct mm_walk *walk) 197 { 198 struct vm_area_struct *vma = walk->private; 199 unsigned long index; 200 struct swap_iocb *splug = NULL; 201 202 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 203 return 0; 204 205 for (index = start; index != end; index += PAGE_SIZE) { 206 pte_t pte; 207 swp_entry_t entry; 208 struct page *page; 209 spinlock_t *ptl; 210 pte_t *ptep; 211 212 ptep = pte_offset_map_lock(vma->vm_mm, pmd, index, &ptl); 213 pte = *ptep; 214 pte_unmap_unlock(ptep, ptl); 215 216 if (!is_swap_pte(pte)) 217 continue; 218 entry = pte_to_swp_entry(pte); 219 if (unlikely(non_swap_entry(entry))) 220 continue; 221 222 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE, 223 vma, index, false, &splug); 224 if (page) 225 put_page(page); 226 } 227 swap_read_unplug(splug); 228 229 return 0; 230 } 231 232 static const struct mm_walk_ops swapin_walk_ops = { 233 .pmd_entry = swapin_walk_pmd_entry, 234 }; 235 236 static void force_shm_swapin_readahead(struct vm_area_struct *vma, 237 unsigned long start, unsigned long end, 238 struct address_space *mapping) 239 { 240 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start)); 241 pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1); 242 struct page *page; 243 struct swap_iocb *splug = NULL; 244 245 rcu_read_lock(); 246 xas_for_each(&xas, page, end_index) { 247 swp_entry_t swap; 248 249 if (!xa_is_value(page)) 250 continue; 251 swap = radix_to_swp_entry(page); 252 /* There might be swapin error entries in shmem mapping. */ 253 if (non_swap_entry(swap)) 254 continue; 255 xas_pause(&xas); 256 rcu_read_unlock(); 257 258 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE, 259 NULL, 0, false, &splug); 260 if (page) 261 put_page(page); 262 263 rcu_read_lock(); 264 } 265 rcu_read_unlock(); 266 swap_read_unplug(splug); 267 268 lru_add_drain(); /* Push any new pages onto the LRU now */ 269 } 270 #endif /* CONFIG_SWAP */ 271 272 /* 273 * Schedule all required I/O operations. Do not wait for completion. 274 */ 275 static long madvise_willneed(struct vm_area_struct *vma, 276 struct vm_area_struct **prev, 277 unsigned long start, unsigned long end) 278 { 279 struct mm_struct *mm = vma->vm_mm; 280 struct file *file = vma->vm_file; 281 loff_t offset; 282 283 *prev = vma; 284 #ifdef CONFIG_SWAP 285 if (!file) { 286 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma); 287 lru_add_drain(); /* Push any new pages onto the LRU now */ 288 return 0; 289 } 290 291 if (shmem_mapping(file->f_mapping)) { 292 force_shm_swapin_readahead(vma, start, end, 293 file->f_mapping); 294 return 0; 295 } 296 #else 297 if (!file) 298 return -EBADF; 299 #endif 300 301 if (IS_DAX(file_inode(file))) { 302 /* no bad return value, but ignore advice */ 303 return 0; 304 } 305 306 /* 307 * Filesystem's fadvise may need to take various locks. We need to 308 * explicitly grab a reference because the vma (and hence the 309 * vma's reference to the file) can go away as soon as we drop 310 * mmap_lock. 311 */ 312 *prev = NULL; /* tell sys_madvise we drop mmap_lock */ 313 get_file(file); 314 offset = (loff_t)(start - vma->vm_start) 315 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 316 mmap_read_unlock(mm); 317 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED); 318 fput(file); 319 mmap_read_lock(mm); 320 return 0; 321 } 322 323 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd, 324 unsigned long addr, unsigned long end, 325 struct mm_walk *walk) 326 { 327 struct madvise_walk_private *private = walk->private; 328 struct mmu_gather *tlb = private->tlb; 329 bool pageout = private->pageout; 330 struct mm_struct *mm = tlb->mm; 331 struct vm_area_struct *vma = walk->vma; 332 pte_t *orig_pte, *pte, ptent; 333 spinlock_t *ptl; 334 struct page *page = NULL; 335 LIST_HEAD(page_list); 336 337 if (fatal_signal_pending(current)) 338 return -EINTR; 339 340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 341 if (pmd_trans_huge(*pmd)) { 342 pmd_t orig_pmd; 343 unsigned long next = pmd_addr_end(addr, end); 344 345 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 346 ptl = pmd_trans_huge_lock(pmd, vma); 347 if (!ptl) 348 return 0; 349 350 orig_pmd = *pmd; 351 if (is_huge_zero_pmd(orig_pmd)) 352 goto huge_unlock; 353 354 if (unlikely(!pmd_present(orig_pmd))) { 355 VM_BUG_ON(thp_migration_supported() && 356 !is_pmd_migration_entry(orig_pmd)); 357 goto huge_unlock; 358 } 359 360 page = pmd_page(orig_pmd); 361 362 /* Do not interfere with other mappings of this page */ 363 if (page_mapcount(page) != 1) 364 goto huge_unlock; 365 366 if (next - addr != HPAGE_PMD_SIZE) { 367 int err; 368 369 get_page(page); 370 spin_unlock(ptl); 371 lock_page(page); 372 err = split_huge_page(page); 373 unlock_page(page); 374 put_page(page); 375 if (!err) 376 goto regular_page; 377 return 0; 378 } 379 380 if (pmd_young(orig_pmd)) { 381 pmdp_invalidate(vma, addr, pmd); 382 orig_pmd = pmd_mkold(orig_pmd); 383 384 set_pmd_at(mm, addr, pmd, orig_pmd); 385 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 386 } 387 388 ClearPageReferenced(page); 389 test_and_clear_page_young(page); 390 if (pageout) { 391 if (!isolate_lru_page(page)) { 392 if (PageUnevictable(page)) 393 putback_lru_page(page); 394 else 395 list_add(&page->lru, &page_list); 396 } 397 } else 398 deactivate_page(page); 399 huge_unlock: 400 spin_unlock(ptl); 401 if (pageout) 402 reclaim_pages(&page_list); 403 return 0; 404 } 405 406 regular_page: 407 if (pmd_trans_unstable(pmd)) 408 return 0; 409 #endif 410 tlb_change_page_size(tlb, PAGE_SIZE); 411 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 412 flush_tlb_batched_pending(mm); 413 arch_enter_lazy_mmu_mode(); 414 for (; addr < end; pte++, addr += PAGE_SIZE) { 415 ptent = *pte; 416 417 if (pte_none(ptent)) 418 continue; 419 420 if (!pte_present(ptent)) 421 continue; 422 423 page = vm_normal_page(vma, addr, ptent); 424 if (!page || is_zone_device_page(page)) 425 continue; 426 427 /* 428 * Creating a THP page is expensive so split it only if we 429 * are sure it's worth. Split it if we are only owner. 430 */ 431 if (PageTransCompound(page)) { 432 if (page_mapcount(page) != 1) 433 break; 434 get_page(page); 435 if (!trylock_page(page)) { 436 put_page(page); 437 break; 438 } 439 pte_unmap_unlock(orig_pte, ptl); 440 if (split_huge_page(page)) { 441 unlock_page(page); 442 put_page(page); 443 orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 444 break; 445 } 446 unlock_page(page); 447 put_page(page); 448 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 449 pte--; 450 addr -= PAGE_SIZE; 451 continue; 452 } 453 454 /* 455 * Do not interfere with other mappings of this page and 456 * non-LRU page. 457 */ 458 if (!PageLRU(page) || page_mapcount(page) != 1) 459 continue; 460 461 VM_BUG_ON_PAGE(PageTransCompound(page), page); 462 463 if (pte_young(ptent)) { 464 ptent = ptep_get_and_clear_full(mm, addr, pte, 465 tlb->fullmm); 466 ptent = pte_mkold(ptent); 467 set_pte_at(mm, addr, pte, ptent); 468 tlb_remove_tlb_entry(tlb, pte, addr); 469 } 470 471 /* 472 * We are deactivating a page for accelerating reclaiming. 473 * VM couldn't reclaim the page unless we clear PG_young. 474 * As a side effect, it makes confuse idle-page tracking 475 * because they will miss recent referenced history. 476 */ 477 ClearPageReferenced(page); 478 test_and_clear_page_young(page); 479 if (pageout) { 480 if (!isolate_lru_page(page)) { 481 if (PageUnevictable(page)) 482 putback_lru_page(page); 483 else 484 list_add(&page->lru, &page_list); 485 } 486 } else 487 deactivate_page(page); 488 } 489 490 arch_leave_lazy_mmu_mode(); 491 pte_unmap_unlock(orig_pte, ptl); 492 if (pageout) 493 reclaim_pages(&page_list); 494 cond_resched(); 495 496 return 0; 497 } 498 499 static const struct mm_walk_ops cold_walk_ops = { 500 .pmd_entry = madvise_cold_or_pageout_pte_range, 501 }; 502 503 static void madvise_cold_page_range(struct mmu_gather *tlb, 504 struct vm_area_struct *vma, 505 unsigned long addr, unsigned long end) 506 { 507 struct madvise_walk_private walk_private = { 508 .pageout = false, 509 .tlb = tlb, 510 }; 511 512 tlb_start_vma(tlb, vma); 513 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 514 tlb_end_vma(tlb, vma); 515 } 516 517 static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 518 { 519 return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB)); 520 } 521 522 static long madvise_cold(struct vm_area_struct *vma, 523 struct vm_area_struct **prev, 524 unsigned long start_addr, unsigned long end_addr) 525 { 526 struct mm_struct *mm = vma->vm_mm; 527 struct mmu_gather tlb; 528 529 *prev = vma; 530 if (!can_madv_lru_vma(vma)) 531 return -EINVAL; 532 533 lru_add_drain(); 534 tlb_gather_mmu(&tlb, mm); 535 madvise_cold_page_range(&tlb, vma, start_addr, end_addr); 536 tlb_finish_mmu(&tlb); 537 538 return 0; 539 } 540 541 static void madvise_pageout_page_range(struct mmu_gather *tlb, 542 struct vm_area_struct *vma, 543 unsigned long addr, unsigned long end) 544 { 545 struct madvise_walk_private walk_private = { 546 .pageout = true, 547 .tlb = tlb, 548 }; 549 550 tlb_start_vma(tlb, vma); 551 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 552 tlb_end_vma(tlb, vma); 553 } 554 555 static inline bool can_do_pageout(struct vm_area_struct *vma) 556 { 557 if (vma_is_anonymous(vma)) 558 return true; 559 if (!vma->vm_file) 560 return false; 561 /* 562 * paging out pagecache only for non-anonymous mappings that correspond 563 * to the files the calling process could (if tried) open for writing; 564 * otherwise we'd be including shared non-exclusive mappings, which 565 * opens a side channel. 566 */ 567 return inode_owner_or_capable(&init_user_ns, 568 file_inode(vma->vm_file)) || 569 file_permission(vma->vm_file, MAY_WRITE) == 0; 570 } 571 572 static long madvise_pageout(struct vm_area_struct *vma, 573 struct vm_area_struct **prev, 574 unsigned long start_addr, unsigned long end_addr) 575 { 576 struct mm_struct *mm = vma->vm_mm; 577 struct mmu_gather tlb; 578 579 *prev = vma; 580 if (!can_madv_lru_vma(vma)) 581 return -EINVAL; 582 583 if (!can_do_pageout(vma)) 584 return 0; 585 586 lru_add_drain(); 587 tlb_gather_mmu(&tlb, mm); 588 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr); 589 tlb_finish_mmu(&tlb); 590 591 return 0; 592 } 593 594 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr, 595 unsigned long end, struct mm_walk *walk) 596 597 { 598 struct mmu_gather *tlb = walk->private; 599 struct mm_struct *mm = tlb->mm; 600 struct vm_area_struct *vma = walk->vma; 601 spinlock_t *ptl; 602 pte_t *orig_pte, *pte, ptent; 603 struct page *page; 604 int nr_swap = 0; 605 unsigned long next; 606 607 next = pmd_addr_end(addr, end); 608 if (pmd_trans_huge(*pmd)) 609 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next)) 610 goto next; 611 612 if (pmd_trans_unstable(pmd)) 613 return 0; 614 615 tlb_change_page_size(tlb, PAGE_SIZE); 616 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 617 flush_tlb_batched_pending(mm); 618 arch_enter_lazy_mmu_mode(); 619 for (; addr != end; pte++, addr += PAGE_SIZE) { 620 ptent = *pte; 621 622 if (pte_none(ptent)) 623 continue; 624 /* 625 * If the pte has swp_entry, just clear page table to 626 * prevent swap-in which is more expensive rather than 627 * (page allocation + zeroing). 628 */ 629 if (!pte_present(ptent)) { 630 swp_entry_t entry; 631 632 entry = pte_to_swp_entry(ptent); 633 if (!non_swap_entry(entry)) { 634 nr_swap--; 635 free_swap_and_cache(entry); 636 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 637 } else if (is_hwpoison_entry(entry) || 638 is_swapin_error_entry(entry)) { 639 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 640 } 641 continue; 642 } 643 644 page = vm_normal_page(vma, addr, ptent); 645 if (!page || is_zone_device_page(page)) 646 continue; 647 648 /* 649 * If pmd isn't transhuge but the page is THP and 650 * is owned by only this process, split it and 651 * deactivate all pages. 652 */ 653 if (PageTransCompound(page)) { 654 if (page_mapcount(page) != 1) 655 goto out; 656 get_page(page); 657 if (!trylock_page(page)) { 658 put_page(page); 659 goto out; 660 } 661 pte_unmap_unlock(orig_pte, ptl); 662 if (split_huge_page(page)) { 663 unlock_page(page); 664 put_page(page); 665 orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 666 goto out; 667 } 668 unlock_page(page); 669 put_page(page); 670 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 671 pte--; 672 addr -= PAGE_SIZE; 673 continue; 674 } 675 676 VM_BUG_ON_PAGE(PageTransCompound(page), page); 677 678 if (PageSwapCache(page) || PageDirty(page)) { 679 if (!trylock_page(page)) 680 continue; 681 /* 682 * If page is shared with others, we couldn't clear 683 * PG_dirty of the page. 684 */ 685 if (page_mapcount(page) != 1) { 686 unlock_page(page); 687 continue; 688 } 689 690 if (PageSwapCache(page) && !try_to_free_swap(page)) { 691 unlock_page(page); 692 continue; 693 } 694 695 ClearPageDirty(page); 696 unlock_page(page); 697 } 698 699 if (pte_young(ptent) || pte_dirty(ptent)) { 700 /* 701 * Some of architecture(ex, PPC) don't update TLB 702 * with set_pte_at and tlb_remove_tlb_entry so for 703 * the portability, remap the pte with old|clean 704 * after pte clearing. 705 */ 706 ptent = ptep_get_and_clear_full(mm, addr, pte, 707 tlb->fullmm); 708 709 ptent = pte_mkold(ptent); 710 ptent = pte_mkclean(ptent); 711 set_pte_at(mm, addr, pte, ptent); 712 tlb_remove_tlb_entry(tlb, pte, addr); 713 } 714 mark_page_lazyfree(page); 715 } 716 out: 717 if (nr_swap) { 718 if (current->mm == mm) 719 sync_mm_rss(mm); 720 721 add_mm_counter(mm, MM_SWAPENTS, nr_swap); 722 } 723 arch_leave_lazy_mmu_mode(); 724 pte_unmap_unlock(orig_pte, ptl); 725 cond_resched(); 726 next: 727 return 0; 728 } 729 730 static const struct mm_walk_ops madvise_free_walk_ops = { 731 .pmd_entry = madvise_free_pte_range, 732 }; 733 734 static int madvise_free_single_vma(struct vm_area_struct *vma, 735 unsigned long start_addr, unsigned long end_addr) 736 { 737 struct mm_struct *mm = vma->vm_mm; 738 struct mmu_notifier_range range; 739 struct mmu_gather tlb; 740 741 /* MADV_FREE works for only anon vma at the moment */ 742 if (!vma_is_anonymous(vma)) 743 return -EINVAL; 744 745 range.start = max(vma->vm_start, start_addr); 746 if (range.start >= vma->vm_end) 747 return -EINVAL; 748 range.end = min(vma->vm_end, end_addr); 749 if (range.end <= vma->vm_start) 750 return -EINVAL; 751 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 752 range.start, range.end); 753 754 lru_add_drain(); 755 tlb_gather_mmu(&tlb, mm); 756 update_hiwater_rss(mm); 757 758 mmu_notifier_invalidate_range_start(&range); 759 tlb_start_vma(&tlb, vma); 760 walk_page_range(vma->vm_mm, range.start, range.end, 761 &madvise_free_walk_ops, &tlb); 762 tlb_end_vma(&tlb, vma); 763 mmu_notifier_invalidate_range_end(&range); 764 tlb_finish_mmu(&tlb); 765 766 return 0; 767 } 768 769 /* 770 * Application no longer needs these pages. If the pages are dirty, 771 * it's OK to just throw them away. The app will be more careful about 772 * data it wants to keep. Be sure to free swap resources too. The 773 * zap_page_range call sets things up for shrink_active_list to actually free 774 * these pages later if no one else has touched them in the meantime, 775 * although we could add these pages to a global reuse list for 776 * shrink_active_list to pick up before reclaiming other pages. 777 * 778 * NB: This interface discards data rather than pushes it out to swap, 779 * as some implementations do. This has performance implications for 780 * applications like large transactional databases which want to discard 781 * pages in anonymous maps after committing to backing store the data 782 * that was kept in them. There is no reason to write this data out to 783 * the swap area if the application is discarding it. 784 * 785 * An interface that causes the system to free clean pages and flush 786 * dirty pages is already available as msync(MS_INVALIDATE). 787 */ 788 static long madvise_dontneed_single_vma(struct vm_area_struct *vma, 789 unsigned long start, unsigned long end) 790 { 791 zap_page_range(vma, start, end - start); 792 return 0; 793 } 794 795 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma, 796 unsigned long start, 797 unsigned long *end, 798 int behavior) 799 { 800 if (!is_vm_hugetlb_page(vma)) { 801 unsigned int forbidden = VM_PFNMAP; 802 803 if (behavior != MADV_DONTNEED_LOCKED) 804 forbidden |= VM_LOCKED; 805 806 return !(vma->vm_flags & forbidden); 807 } 808 809 if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED) 810 return false; 811 if (start & ~huge_page_mask(hstate_vma(vma))) 812 return false; 813 814 *end = ALIGN(*end, huge_page_size(hstate_vma(vma))); 815 return true; 816 } 817 818 static long madvise_dontneed_free(struct vm_area_struct *vma, 819 struct vm_area_struct **prev, 820 unsigned long start, unsigned long end, 821 int behavior) 822 { 823 struct mm_struct *mm = vma->vm_mm; 824 825 *prev = vma; 826 if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior)) 827 return -EINVAL; 828 829 if (!userfaultfd_remove(vma, start, end)) { 830 *prev = NULL; /* mmap_lock has been dropped, prev is stale */ 831 832 mmap_read_lock(mm); 833 vma = find_vma(mm, start); 834 if (!vma) 835 return -ENOMEM; 836 if (start < vma->vm_start) { 837 /* 838 * This "vma" under revalidation is the one 839 * with the lowest vma->vm_start where start 840 * is also < vma->vm_end. If start < 841 * vma->vm_start it means an hole materialized 842 * in the user address space within the 843 * virtual range passed to MADV_DONTNEED 844 * or MADV_FREE. 845 */ 846 return -ENOMEM; 847 } 848 /* 849 * Potential end adjustment for hugetlb vma is OK as 850 * the check below keeps end within vma. 851 */ 852 if (!madvise_dontneed_free_valid_vma(vma, start, &end, 853 behavior)) 854 return -EINVAL; 855 if (end > vma->vm_end) { 856 /* 857 * Don't fail if end > vma->vm_end. If the old 858 * vma was split while the mmap_lock was 859 * released the effect of the concurrent 860 * operation may not cause madvise() to 861 * have an undefined result. There may be an 862 * adjacent next vma that we'll walk 863 * next. userfaultfd_remove() will generate an 864 * UFFD_EVENT_REMOVE repetition on the 865 * end-vma->vm_end range, but the manager can 866 * handle a repetition fine. 867 */ 868 end = vma->vm_end; 869 } 870 VM_WARN_ON(start >= end); 871 } 872 873 if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED) 874 return madvise_dontneed_single_vma(vma, start, end); 875 else if (behavior == MADV_FREE) 876 return madvise_free_single_vma(vma, start, end); 877 else 878 return -EINVAL; 879 } 880 881 static long madvise_populate(struct vm_area_struct *vma, 882 struct vm_area_struct **prev, 883 unsigned long start, unsigned long end, 884 int behavior) 885 { 886 const bool write = behavior == MADV_POPULATE_WRITE; 887 struct mm_struct *mm = vma->vm_mm; 888 unsigned long tmp_end; 889 int locked = 1; 890 long pages; 891 892 *prev = vma; 893 894 while (start < end) { 895 /* 896 * We might have temporarily dropped the lock. For example, 897 * our VMA might have been split. 898 */ 899 if (!vma || start >= vma->vm_end) { 900 vma = vma_lookup(mm, start); 901 if (!vma) 902 return -ENOMEM; 903 } 904 905 tmp_end = min_t(unsigned long, end, vma->vm_end); 906 /* Populate (prefault) page tables readable/writable. */ 907 pages = faultin_vma_page_range(vma, start, tmp_end, write, 908 &locked); 909 if (!locked) { 910 mmap_read_lock(mm); 911 locked = 1; 912 *prev = NULL; 913 vma = NULL; 914 } 915 if (pages < 0) { 916 switch (pages) { 917 case -EINTR: 918 return -EINTR; 919 case -EINVAL: /* Incompatible mappings / permissions. */ 920 return -EINVAL; 921 case -EHWPOISON: 922 return -EHWPOISON; 923 case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */ 924 return -EFAULT; 925 default: 926 pr_warn_once("%s: unhandled return value: %ld\n", 927 __func__, pages); 928 fallthrough; 929 case -ENOMEM: 930 return -ENOMEM; 931 } 932 } 933 start += pages * PAGE_SIZE; 934 } 935 return 0; 936 } 937 938 /* 939 * Application wants to free up the pages and associated backing store. 940 * This is effectively punching a hole into the middle of a file. 941 */ 942 static long madvise_remove(struct vm_area_struct *vma, 943 struct vm_area_struct **prev, 944 unsigned long start, unsigned long end) 945 { 946 loff_t offset; 947 int error; 948 struct file *f; 949 struct mm_struct *mm = vma->vm_mm; 950 951 *prev = NULL; /* tell sys_madvise we drop mmap_lock */ 952 953 if (vma->vm_flags & VM_LOCKED) 954 return -EINVAL; 955 956 f = vma->vm_file; 957 958 if (!f || !f->f_mapping || !f->f_mapping->host) { 959 return -EINVAL; 960 } 961 962 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE)) 963 return -EACCES; 964 965 offset = (loff_t)(start - vma->vm_start) 966 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 967 968 /* 969 * Filesystem's fallocate may need to take i_rwsem. We need to 970 * explicitly grab a reference because the vma (and hence the 971 * vma's reference to the file) can go away as soon as we drop 972 * mmap_lock. 973 */ 974 get_file(f); 975 if (userfaultfd_remove(vma, start, end)) { 976 /* mmap_lock was not released by userfaultfd_remove() */ 977 mmap_read_unlock(mm); 978 } 979 error = vfs_fallocate(f, 980 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 981 offset, end - start); 982 fput(f); 983 mmap_read_lock(mm); 984 return error; 985 } 986 987 /* 988 * Apply an madvise behavior to a region of a vma. madvise_update_vma 989 * will handle splitting a vm area into separate areas, each area with its own 990 * behavior. 991 */ 992 static int madvise_vma_behavior(struct vm_area_struct *vma, 993 struct vm_area_struct **prev, 994 unsigned long start, unsigned long end, 995 unsigned long behavior) 996 { 997 int error; 998 struct anon_vma_name *anon_name; 999 unsigned long new_flags = vma->vm_flags; 1000 1001 switch (behavior) { 1002 case MADV_REMOVE: 1003 return madvise_remove(vma, prev, start, end); 1004 case MADV_WILLNEED: 1005 return madvise_willneed(vma, prev, start, end); 1006 case MADV_COLD: 1007 return madvise_cold(vma, prev, start, end); 1008 case MADV_PAGEOUT: 1009 return madvise_pageout(vma, prev, start, end); 1010 case MADV_FREE: 1011 case MADV_DONTNEED: 1012 case MADV_DONTNEED_LOCKED: 1013 return madvise_dontneed_free(vma, prev, start, end, behavior); 1014 case MADV_POPULATE_READ: 1015 case MADV_POPULATE_WRITE: 1016 return madvise_populate(vma, prev, start, end, behavior); 1017 case MADV_NORMAL: 1018 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; 1019 break; 1020 case MADV_SEQUENTIAL: 1021 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; 1022 break; 1023 case MADV_RANDOM: 1024 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; 1025 break; 1026 case MADV_DONTFORK: 1027 new_flags |= VM_DONTCOPY; 1028 break; 1029 case MADV_DOFORK: 1030 if (vma->vm_flags & VM_IO) 1031 return -EINVAL; 1032 new_flags &= ~VM_DONTCOPY; 1033 break; 1034 case MADV_WIPEONFORK: 1035 /* MADV_WIPEONFORK is only supported on anonymous memory. */ 1036 if (vma->vm_file || vma->vm_flags & VM_SHARED) 1037 return -EINVAL; 1038 new_flags |= VM_WIPEONFORK; 1039 break; 1040 case MADV_KEEPONFORK: 1041 new_flags &= ~VM_WIPEONFORK; 1042 break; 1043 case MADV_DONTDUMP: 1044 new_flags |= VM_DONTDUMP; 1045 break; 1046 case MADV_DODUMP: 1047 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) 1048 return -EINVAL; 1049 new_flags &= ~VM_DONTDUMP; 1050 break; 1051 case MADV_MERGEABLE: 1052 case MADV_UNMERGEABLE: 1053 error = ksm_madvise(vma, start, end, behavior, &new_flags); 1054 if (error) 1055 goto out; 1056 break; 1057 case MADV_HUGEPAGE: 1058 case MADV_NOHUGEPAGE: 1059 error = hugepage_madvise(vma, &new_flags, behavior); 1060 if (error) 1061 goto out; 1062 break; 1063 } 1064 1065 anon_name = anon_vma_name(vma); 1066 anon_vma_name_get(anon_name); 1067 error = madvise_update_vma(vma, prev, start, end, new_flags, 1068 anon_name); 1069 anon_vma_name_put(anon_name); 1070 1071 out: 1072 /* 1073 * madvise() returns EAGAIN if kernel resources, such as 1074 * slab, are temporarily unavailable. 1075 */ 1076 if (error == -ENOMEM) 1077 error = -EAGAIN; 1078 return error; 1079 } 1080 1081 #ifdef CONFIG_MEMORY_FAILURE 1082 /* 1083 * Error injection support for memory error handling. 1084 */ 1085 static int madvise_inject_error(int behavior, 1086 unsigned long start, unsigned long end) 1087 { 1088 unsigned long size; 1089 1090 if (!capable(CAP_SYS_ADMIN)) 1091 return -EPERM; 1092 1093 1094 for (; start < end; start += size) { 1095 unsigned long pfn; 1096 struct page *page; 1097 int ret; 1098 1099 ret = get_user_pages_fast(start, 1, 0, &page); 1100 if (ret != 1) 1101 return ret; 1102 pfn = page_to_pfn(page); 1103 1104 /* 1105 * When soft offlining hugepages, after migrating the page 1106 * we dissolve it, therefore in the second loop "page" will 1107 * no longer be a compound page. 1108 */ 1109 size = page_size(compound_head(page)); 1110 1111 if (behavior == MADV_SOFT_OFFLINE) { 1112 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n", 1113 pfn, start); 1114 ret = soft_offline_page(pfn, MF_COUNT_INCREASED); 1115 } else { 1116 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n", 1117 pfn, start); 1118 ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED); 1119 if (ret == -EOPNOTSUPP) 1120 ret = 0; 1121 } 1122 1123 if (ret) 1124 return ret; 1125 } 1126 1127 return 0; 1128 } 1129 #endif 1130 1131 static bool 1132 madvise_behavior_valid(int behavior) 1133 { 1134 switch (behavior) { 1135 case MADV_DOFORK: 1136 case MADV_DONTFORK: 1137 case MADV_NORMAL: 1138 case MADV_SEQUENTIAL: 1139 case MADV_RANDOM: 1140 case MADV_REMOVE: 1141 case MADV_WILLNEED: 1142 case MADV_DONTNEED: 1143 case MADV_DONTNEED_LOCKED: 1144 case MADV_FREE: 1145 case MADV_COLD: 1146 case MADV_PAGEOUT: 1147 case MADV_POPULATE_READ: 1148 case MADV_POPULATE_WRITE: 1149 #ifdef CONFIG_KSM 1150 case MADV_MERGEABLE: 1151 case MADV_UNMERGEABLE: 1152 #endif 1153 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1154 case MADV_HUGEPAGE: 1155 case MADV_NOHUGEPAGE: 1156 #endif 1157 case MADV_DONTDUMP: 1158 case MADV_DODUMP: 1159 case MADV_WIPEONFORK: 1160 case MADV_KEEPONFORK: 1161 #ifdef CONFIG_MEMORY_FAILURE 1162 case MADV_SOFT_OFFLINE: 1163 case MADV_HWPOISON: 1164 #endif 1165 return true; 1166 1167 default: 1168 return false; 1169 } 1170 } 1171 1172 static bool 1173 process_madvise_behavior_valid(int behavior) 1174 { 1175 switch (behavior) { 1176 case MADV_COLD: 1177 case MADV_PAGEOUT: 1178 case MADV_WILLNEED: 1179 return true; 1180 default: 1181 return false; 1182 } 1183 } 1184 1185 /* 1186 * Walk the vmas in range [start,end), and call the visit function on each one. 1187 * The visit function will get start and end parameters that cover the overlap 1188 * between the current vma and the original range. Any unmapped regions in the 1189 * original range will result in this function returning -ENOMEM while still 1190 * calling the visit function on all of the existing vmas in the range. 1191 * Must be called with the mmap_lock held for reading or writing. 1192 */ 1193 static 1194 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start, 1195 unsigned long end, unsigned long arg, 1196 int (*visit)(struct vm_area_struct *vma, 1197 struct vm_area_struct **prev, unsigned long start, 1198 unsigned long end, unsigned long arg)) 1199 { 1200 struct vm_area_struct *vma; 1201 struct vm_area_struct *prev; 1202 unsigned long tmp; 1203 int unmapped_error = 0; 1204 1205 /* 1206 * If the interval [start,end) covers some unmapped address 1207 * ranges, just ignore them, but return -ENOMEM at the end. 1208 * - different from the way of handling in mlock etc. 1209 */ 1210 vma = find_vma_prev(mm, start, &prev); 1211 if (vma && start > vma->vm_start) 1212 prev = vma; 1213 1214 for (;;) { 1215 int error; 1216 1217 /* Still start < end. */ 1218 if (!vma) 1219 return -ENOMEM; 1220 1221 /* Here start < (end|vma->vm_end). */ 1222 if (start < vma->vm_start) { 1223 unmapped_error = -ENOMEM; 1224 start = vma->vm_start; 1225 if (start >= end) 1226 break; 1227 } 1228 1229 /* Here vma->vm_start <= start < (end|vma->vm_end) */ 1230 tmp = vma->vm_end; 1231 if (end < tmp) 1232 tmp = end; 1233 1234 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */ 1235 error = visit(vma, &prev, start, tmp, arg); 1236 if (error) 1237 return error; 1238 start = tmp; 1239 if (prev && start < prev->vm_end) 1240 start = prev->vm_end; 1241 if (start >= end) 1242 break; 1243 if (prev) 1244 vma = prev->vm_next; 1245 else /* madvise_remove dropped mmap_lock */ 1246 vma = find_vma(mm, start); 1247 } 1248 1249 return unmapped_error; 1250 } 1251 1252 #ifdef CONFIG_ANON_VMA_NAME 1253 static int madvise_vma_anon_name(struct vm_area_struct *vma, 1254 struct vm_area_struct **prev, 1255 unsigned long start, unsigned long end, 1256 unsigned long anon_name) 1257 { 1258 int error; 1259 1260 /* Only anonymous mappings can be named */ 1261 if (vma->vm_file) 1262 return -EBADF; 1263 1264 error = madvise_update_vma(vma, prev, start, end, vma->vm_flags, 1265 (struct anon_vma_name *)anon_name); 1266 1267 /* 1268 * madvise() returns EAGAIN if kernel resources, such as 1269 * slab, are temporarily unavailable. 1270 */ 1271 if (error == -ENOMEM) 1272 error = -EAGAIN; 1273 return error; 1274 } 1275 1276 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 1277 unsigned long len_in, struct anon_vma_name *anon_name) 1278 { 1279 unsigned long end; 1280 unsigned long len; 1281 1282 if (start & ~PAGE_MASK) 1283 return -EINVAL; 1284 len = (len_in + ~PAGE_MASK) & PAGE_MASK; 1285 1286 /* Check to see whether len was rounded up from small -ve to zero */ 1287 if (len_in && !len) 1288 return -EINVAL; 1289 1290 end = start + len; 1291 if (end < start) 1292 return -EINVAL; 1293 1294 if (end == start) 1295 return 0; 1296 1297 return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name, 1298 madvise_vma_anon_name); 1299 } 1300 #endif /* CONFIG_ANON_VMA_NAME */ 1301 /* 1302 * The madvise(2) system call. 1303 * 1304 * Applications can use madvise() to advise the kernel how it should 1305 * handle paging I/O in this VM area. The idea is to help the kernel 1306 * use appropriate read-ahead and caching techniques. The information 1307 * provided is advisory only, and can be safely disregarded by the 1308 * kernel without affecting the correct operation of the application. 1309 * 1310 * behavior values: 1311 * MADV_NORMAL - the default behavior is to read clusters. This 1312 * results in some read-ahead and read-behind. 1313 * MADV_RANDOM - the system should read the minimum amount of data 1314 * on any access, since it is unlikely that the appli- 1315 * cation will need more than what it asks for. 1316 * MADV_SEQUENTIAL - pages in the given range will probably be accessed 1317 * once, so they can be aggressively read ahead, and 1318 * can be freed soon after they are accessed. 1319 * MADV_WILLNEED - the application is notifying the system to read 1320 * some pages ahead. 1321 * MADV_DONTNEED - the application is finished with the given range, 1322 * so the kernel can free resources associated with it. 1323 * MADV_FREE - the application marks pages in the given range as lazy free, 1324 * where actual purges are postponed until memory pressure happens. 1325 * MADV_REMOVE - the application wants to free up the given range of 1326 * pages and associated backing store. 1327 * MADV_DONTFORK - omit this area from child's address space when forking: 1328 * typically, to avoid COWing pages pinned by get_user_pages(). 1329 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking. 1330 * MADV_WIPEONFORK - present the child process with zero-filled memory in this 1331 * range after a fork. 1332 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK 1333 * MADV_HWPOISON - trigger memory error handler as if the given memory range 1334 * were corrupted by unrecoverable hardware memory failure. 1335 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory. 1336 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in 1337 * this area with pages of identical content from other such areas. 1338 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others. 1339 * MADV_HUGEPAGE - the application wants to back the given range by transparent 1340 * huge pages in the future. Existing pages might be coalesced and 1341 * new pages might be allocated as THP. 1342 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by 1343 * transparent huge pages so the existing pages will not be 1344 * coalesced into THP and new pages will not be allocated as THP. 1345 * MADV_DONTDUMP - the application wants to prevent pages in the given range 1346 * from being included in its core dump. 1347 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump. 1348 * MADV_COLD - the application is not expected to use this memory soon, 1349 * deactivate pages in this range so that they can be reclaimed 1350 * easily if memory pressure happens. 1351 * MADV_PAGEOUT - the application is not expected to use this memory soon, 1352 * page out the pages in this range immediately. 1353 * MADV_POPULATE_READ - populate (prefault) page tables readable by 1354 * triggering read faults if required 1355 * MADV_POPULATE_WRITE - populate (prefault) page tables writable by 1356 * triggering write faults if required 1357 * 1358 * return values: 1359 * zero - success 1360 * -EINVAL - start + len < 0, start is not page-aligned, 1361 * "behavior" is not a valid value, or application 1362 * is attempting to release locked or shared pages, 1363 * or the specified address range includes file, Huge TLB, 1364 * MAP_SHARED or VMPFNMAP range. 1365 * -ENOMEM - addresses in the specified range are not currently 1366 * mapped, or are outside the AS of the process. 1367 * -EIO - an I/O error occurred while paging in data. 1368 * -EBADF - map exists, but area maps something that isn't a file. 1369 * -EAGAIN - a kernel resource was temporarily unavailable. 1370 */ 1371 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior) 1372 { 1373 unsigned long end; 1374 int error; 1375 int write; 1376 size_t len; 1377 struct blk_plug plug; 1378 1379 start = untagged_addr(start); 1380 1381 if (!madvise_behavior_valid(behavior)) 1382 return -EINVAL; 1383 1384 if (!PAGE_ALIGNED(start)) 1385 return -EINVAL; 1386 len = PAGE_ALIGN(len_in); 1387 1388 /* Check to see whether len was rounded up from small -ve to zero */ 1389 if (len_in && !len) 1390 return -EINVAL; 1391 1392 end = start + len; 1393 if (end < start) 1394 return -EINVAL; 1395 1396 if (end == start) 1397 return 0; 1398 1399 #ifdef CONFIG_MEMORY_FAILURE 1400 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE) 1401 return madvise_inject_error(behavior, start, start + len_in); 1402 #endif 1403 1404 write = madvise_need_mmap_write(behavior); 1405 if (write) { 1406 if (mmap_write_lock_killable(mm)) 1407 return -EINTR; 1408 } else { 1409 mmap_read_lock(mm); 1410 } 1411 1412 blk_start_plug(&plug); 1413 error = madvise_walk_vmas(mm, start, end, behavior, 1414 madvise_vma_behavior); 1415 blk_finish_plug(&plug); 1416 if (write) 1417 mmap_write_unlock(mm); 1418 else 1419 mmap_read_unlock(mm); 1420 1421 return error; 1422 } 1423 1424 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior) 1425 { 1426 return do_madvise(current->mm, start, len_in, behavior); 1427 } 1428 1429 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec, 1430 size_t, vlen, int, behavior, unsigned int, flags) 1431 { 1432 ssize_t ret; 1433 struct iovec iovstack[UIO_FASTIOV], iovec; 1434 struct iovec *iov = iovstack; 1435 struct iov_iter iter; 1436 struct task_struct *task; 1437 struct mm_struct *mm; 1438 size_t total_len; 1439 unsigned int f_flags; 1440 1441 if (flags != 0) { 1442 ret = -EINVAL; 1443 goto out; 1444 } 1445 1446 ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter); 1447 if (ret < 0) 1448 goto out; 1449 1450 task = pidfd_get_task(pidfd, &f_flags); 1451 if (IS_ERR(task)) { 1452 ret = PTR_ERR(task); 1453 goto free_iov; 1454 } 1455 1456 if (!process_madvise_behavior_valid(behavior)) { 1457 ret = -EINVAL; 1458 goto release_task; 1459 } 1460 1461 /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */ 1462 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 1463 if (IS_ERR_OR_NULL(mm)) { 1464 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH; 1465 goto release_task; 1466 } 1467 1468 /* 1469 * Require CAP_SYS_NICE for influencing process performance. Note that 1470 * only non-destructive hints are currently supported. 1471 */ 1472 if (!capable(CAP_SYS_NICE)) { 1473 ret = -EPERM; 1474 goto release_mm; 1475 } 1476 1477 total_len = iov_iter_count(&iter); 1478 1479 while (iov_iter_count(&iter)) { 1480 iovec = iov_iter_iovec(&iter); 1481 ret = do_madvise(mm, (unsigned long)iovec.iov_base, 1482 iovec.iov_len, behavior); 1483 if (ret < 0) 1484 break; 1485 iov_iter_advance(&iter, iovec.iov_len); 1486 } 1487 1488 ret = (total_len - iov_iter_count(&iter)) ? : ret; 1489 1490 release_mm: 1491 mmput(mm); 1492 release_task: 1493 put_task_struct(task); 1494 free_iov: 1495 kfree(iov); 1496 out: 1497 return ret; 1498 } 1499