xref: /linux/mm/madvise.c (revision a68e9da48568a0adf5dc817ef81971c0d1aa0672)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/uio.h>
22 #include <linux/ksm.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/pagewalk.h>
28 #include <linux/swap.h>
29 #include <linux/swapops.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/mmu_notifier.h>
32 
33 #include <asm/tlb.h>
34 
35 #include "internal.h"
36 
37 struct madvise_walk_private {
38 	struct mmu_gather *tlb;
39 	bool pageout;
40 };
41 
42 /*
43  * Any behaviour which results in changes to the vma->vm_flags needs to
44  * take mmap_lock for writing. Others, which simply traverse vmas, need
45  * to only take it for reading.
46  */
47 static int madvise_need_mmap_write(int behavior)
48 {
49 	switch (behavior) {
50 	case MADV_REMOVE:
51 	case MADV_WILLNEED:
52 	case MADV_DONTNEED:
53 	case MADV_COLD:
54 	case MADV_PAGEOUT:
55 	case MADV_FREE:
56 	case MADV_POPULATE_READ:
57 	case MADV_POPULATE_WRITE:
58 		return 0;
59 	default:
60 		/* be safe, default to 1. list exceptions explicitly */
61 		return 1;
62 	}
63 }
64 
65 /*
66  * We can potentially split a vm area into separate
67  * areas, each area with its own behavior.
68  */
69 static long madvise_behavior(struct vm_area_struct *vma,
70 		     struct vm_area_struct **prev,
71 		     unsigned long start, unsigned long end, int behavior)
72 {
73 	struct mm_struct *mm = vma->vm_mm;
74 	int error = 0;
75 	pgoff_t pgoff;
76 	unsigned long new_flags = vma->vm_flags;
77 
78 	switch (behavior) {
79 	case MADV_NORMAL:
80 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
81 		break;
82 	case MADV_SEQUENTIAL:
83 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
84 		break;
85 	case MADV_RANDOM:
86 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
87 		break;
88 	case MADV_DONTFORK:
89 		new_flags |= VM_DONTCOPY;
90 		break;
91 	case MADV_DOFORK:
92 		if (vma->vm_flags & VM_IO) {
93 			error = -EINVAL;
94 			goto out;
95 		}
96 		new_flags &= ~VM_DONTCOPY;
97 		break;
98 	case MADV_WIPEONFORK:
99 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
100 		if (vma->vm_file || vma->vm_flags & VM_SHARED) {
101 			error = -EINVAL;
102 			goto out;
103 		}
104 		new_flags |= VM_WIPEONFORK;
105 		break;
106 	case MADV_KEEPONFORK:
107 		new_flags &= ~VM_WIPEONFORK;
108 		break;
109 	case MADV_DONTDUMP:
110 		new_flags |= VM_DONTDUMP;
111 		break;
112 	case MADV_DODUMP:
113 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
114 			error = -EINVAL;
115 			goto out;
116 		}
117 		new_flags &= ~VM_DONTDUMP;
118 		break;
119 	case MADV_MERGEABLE:
120 	case MADV_UNMERGEABLE:
121 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
122 		if (error)
123 			goto out_convert_errno;
124 		break;
125 	case MADV_HUGEPAGE:
126 	case MADV_NOHUGEPAGE:
127 		error = hugepage_madvise(vma, &new_flags, behavior);
128 		if (error)
129 			goto out_convert_errno;
130 		break;
131 	}
132 
133 	if (new_flags == vma->vm_flags) {
134 		*prev = vma;
135 		goto out;
136 	}
137 
138 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
139 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
140 			  vma->vm_file, pgoff, vma_policy(vma),
141 			  vma->vm_userfaultfd_ctx);
142 	if (*prev) {
143 		vma = *prev;
144 		goto success;
145 	}
146 
147 	*prev = vma;
148 
149 	if (start != vma->vm_start) {
150 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
151 			error = -ENOMEM;
152 			goto out;
153 		}
154 		error = __split_vma(mm, vma, start, 1);
155 		if (error)
156 			goto out_convert_errno;
157 	}
158 
159 	if (end != vma->vm_end) {
160 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
161 			error = -ENOMEM;
162 			goto out;
163 		}
164 		error = __split_vma(mm, vma, end, 0);
165 		if (error)
166 			goto out_convert_errno;
167 	}
168 
169 success:
170 	/*
171 	 * vm_flags is protected by the mmap_lock held in write mode.
172 	 */
173 	vma->vm_flags = new_flags;
174 
175 out_convert_errno:
176 	/*
177 	 * madvise() returns EAGAIN if kernel resources, such as
178 	 * slab, are temporarily unavailable.
179 	 */
180 	if (error == -ENOMEM)
181 		error = -EAGAIN;
182 out:
183 	return error;
184 }
185 
186 #ifdef CONFIG_SWAP
187 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
188 	unsigned long end, struct mm_walk *walk)
189 {
190 	pte_t *orig_pte;
191 	struct vm_area_struct *vma = walk->private;
192 	unsigned long index;
193 
194 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
195 		return 0;
196 
197 	for (index = start; index != end; index += PAGE_SIZE) {
198 		pte_t pte;
199 		swp_entry_t entry;
200 		struct page *page;
201 		spinlock_t *ptl;
202 
203 		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
204 		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
205 		pte_unmap_unlock(orig_pte, ptl);
206 
207 		if (pte_present(pte) || pte_none(pte))
208 			continue;
209 		entry = pte_to_swp_entry(pte);
210 		if (unlikely(non_swap_entry(entry)))
211 			continue;
212 
213 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
214 							vma, index, false);
215 		if (page)
216 			put_page(page);
217 	}
218 
219 	return 0;
220 }
221 
222 static const struct mm_walk_ops swapin_walk_ops = {
223 	.pmd_entry		= swapin_walk_pmd_entry,
224 };
225 
226 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
227 		unsigned long start, unsigned long end,
228 		struct address_space *mapping)
229 {
230 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
231 	pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
232 	struct page *page;
233 
234 	rcu_read_lock();
235 	xas_for_each(&xas, page, end_index) {
236 		swp_entry_t swap;
237 
238 		if (!xa_is_value(page))
239 			continue;
240 		xas_pause(&xas);
241 		rcu_read_unlock();
242 
243 		swap = radix_to_swp_entry(page);
244 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
245 							NULL, 0, false);
246 		if (page)
247 			put_page(page);
248 
249 		rcu_read_lock();
250 	}
251 	rcu_read_unlock();
252 
253 	lru_add_drain();	/* Push any new pages onto the LRU now */
254 }
255 #endif		/* CONFIG_SWAP */
256 
257 /*
258  * Schedule all required I/O operations.  Do not wait for completion.
259  */
260 static long madvise_willneed(struct vm_area_struct *vma,
261 			     struct vm_area_struct **prev,
262 			     unsigned long start, unsigned long end)
263 {
264 	struct mm_struct *mm = vma->vm_mm;
265 	struct file *file = vma->vm_file;
266 	loff_t offset;
267 
268 	*prev = vma;
269 #ifdef CONFIG_SWAP
270 	if (!file) {
271 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
272 		lru_add_drain(); /* Push any new pages onto the LRU now */
273 		return 0;
274 	}
275 
276 	if (shmem_mapping(file->f_mapping)) {
277 		force_shm_swapin_readahead(vma, start, end,
278 					file->f_mapping);
279 		return 0;
280 	}
281 #else
282 	if (!file)
283 		return -EBADF;
284 #endif
285 
286 	if (IS_DAX(file_inode(file))) {
287 		/* no bad return value, but ignore advice */
288 		return 0;
289 	}
290 
291 	/*
292 	 * Filesystem's fadvise may need to take various locks.  We need to
293 	 * explicitly grab a reference because the vma (and hence the
294 	 * vma's reference to the file) can go away as soon as we drop
295 	 * mmap_lock.
296 	 */
297 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
298 	get_file(file);
299 	offset = (loff_t)(start - vma->vm_start)
300 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
301 	mmap_read_unlock(mm);
302 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
303 	fput(file);
304 	mmap_read_lock(mm);
305 	return 0;
306 }
307 
308 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
309 				unsigned long addr, unsigned long end,
310 				struct mm_walk *walk)
311 {
312 	struct madvise_walk_private *private = walk->private;
313 	struct mmu_gather *tlb = private->tlb;
314 	bool pageout = private->pageout;
315 	struct mm_struct *mm = tlb->mm;
316 	struct vm_area_struct *vma = walk->vma;
317 	pte_t *orig_pte, *pte, ptent;
318 	spinlock_t *ptl;
319 	struct page *page = NULL;
320 	LIST_HEAD(page_list);
321 
322 	if (fatal_signal_pending(current))
323 		return -EINTR;
324 
325 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
326 	if (pmd_trans_huge(*pmd)) {
327 		pmd_t orig_pmd;
328 		unsigned long next = pmd_addr_end(addr, end);
329 
330 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
331 		ptl = pmd_trans_huge_lock(pmd, vma);
332 		if (!ptl)
333 			return 0;
334 
335 		orig_pmd = *pmd;
336 		if (is_huge_zero_pmd(orig_pmd))
337 			goto huge_unlock;
338 
339 		if (unlikely(!pmd_present(orig_pmd))) {
340 			VM_BUG_ON(thp_migration_supported() &&
341 					!is_pmd_migration_entry(orig_pmd));
342 			goto huge_unlock;
343 		}
344 
345 		page = pmd_page(orig_pmd);
346 
347 		/* Do not interfere with other mappings of this page */
348 		if (page_mapcount(page) != 1)
349 			goto huge_unlock;
350 
351 		if (next - addr != HPAGE_PMD_SIZE) {
352 			int err;
353 
354 			get_page(page);
355 			spin_unlock(ptl);
356 			lock_page(page);
357 			err = split_huge_page(page);
358 			unlock_page(page);
359 			put_page(page);
360 			if (!err)
361 				goto regular_page;
362 			return 0;
363 		}
364 
365 		if (pmd_young(orig_pmd)) {
366 			pmdp_invalidate(vma, addr, pmd);
367 			orig_pmd = pmd_mkold(orig_pmd);
368 
369 			set_pmd_at(mm, addr, pmd, orig_pmd);
370 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
371 		}
372 
373 		ClearPageReferenced(page);
374 		test_and_clear_page_young(page);
375 		if (pageout) {
376 			if (!isolate_lru_page(page)) {
377 				if (PageUnevictable(page))
378 					putback_lru_page(page);
379 				else
380 					list_add(&page->lru, &page_list);
381 			}
382 		} else
383 			deactivate_page(page);
384 huge_unlock:
385 		spin_unlock(ptl);
386 		if (pageout)
387 			reclaim_pages(&page_list);
388 		return 0;
389 	}
390 
391 regular_page:
392 	if (pmd_trans_unstable(pmd))
393 		return 0;
394 #endif
395 	tlb_change_page_size(tlb, PAGE_SIZE);
396 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
397 	flush_tlb_batched_pending(mm);
398 	arch_enter_lazy_mmu_mode();
399 	for (; addr < end; pte++, addr += PAGE_SIZE) {
400 		ptent = *pte;
401 
402 		if (pte_none(ptent))
403 			continue;
404 
405 		if (!pte_present(ptent))
406 			continue;
407 
408 		page = vm_normal_page(vma, addr, ptent);
409 		if (!page)
410 			continue;
411 
412 		/*
413 		 * Creating a THP page is expensive so split it only if we
414 		 * are sure it's worth. Split it if we are only owner.
415 		 */
416 		if (PageTransCompound(page)) {
417 			if (page_mapcount(page) != 1)
418 				break;
419 			get_page(page);
420 			if (!trylock_page(page)) {
421 				put_page(page);
422 				break;
423 			}
424 			pte_unmap_unlock(orig_pte, ptl);
425 			if (split_huge_page(page)) {
426 				unlock_page(page);
427 				put_page(page);
428 				pte_offset_map_lock(mm, pmd, addr, &ptl);
429 				break;
430 			}
431 			unlock_page(page);
432 			put_page(page);
433 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
434 			pte--;
435 			addr -= PAGE_SIZE;
436 			continue;
437 		}
438 
439 		/* Do not interfere with other mappings of this page */
440 		if (page_mapcount(page) != 1)
441 			continue;
442 
443 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
444 
445 		if (pte_young(ptent)) {
446 			ptent = ptep_get_and_clear_full(mm, addr, pte,
447 							tlb->fullmm);
448 			ptent = pte_mkold(ptent);
449 			set_pte_at(mm, addr, pte, ptent);
450 			tlb_remove_tlb_entry(tlb, pte, addr);
451 		}
452 
453 		/*
454 		 * We are deactivating a page for accelerating reclaiming.
455 		 * VM couldn't reclaim the page unless we clear PG_young.
456 		 * As a side effect, it makes confuse idle-page tracking
457 		 * because they will miss recent referenced history.
458 		 */
459 		ClearPageReferenced(page);
460 		test_and_clear_page_young(page);
461 		if (pageout) {
462 			if (!isolate_lru_page(page)) {
463 				if (PageUnevictable(page))
464 					putback_lru_page(page);
465 				else
466 					list_add(&page->lru, &page_list);
467 			}
468 		} else
469 			deactivate_page(page);
470 	}
471 
472 	arch_leave_lazy_mmu_mode();
473 	pte_unmap_unlock(orig_pte, ptl);
474 	if (pageout)
475 		reclaim_pages(&page_list);
476 	cond_resched();
477 
478 	return 0;
479 }
480 
481 static const struct mm_walk_ops cold_walk_ops = {
482 	.pmd_entry = madvise_cold_or_pageout_pte_range,
483 };
484 
485 static void madvise_cold_page_range(struct mmu_gather *tlb,
486 			     struct vm_area_struct *vma,
487 			     unsigned long addr, unsigned long end)
488 {
489 	struct madvise_walk_private walk_private = {
490 		.pageout = false,
491 		.tlb = tlb,
492 	};
493 
494 	tlb_start_vma(tlb, vma);
495 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
496 	tlb_end_vma(tlb, vma);
497 }
498 
499 static long madvise_cold(struct vm_area_struct *vma,
500 			struct vm_area_struct **prev,
501 			unsigned long start_addr, unsigned long end_addr)
502 {
503 	struct mm_struct *mm = vma->vm_mm;
504 	struct mmu_gather tlb;
505 
506 	*prev = vma;
507 	if (!can_madv_lru_vma(vma))
508 		return -EINVAL;
509 
510 	lru_add_drain();
511 	tlb_gather_mmu(&tlb, mm);
512 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
513 	tlb_finish_mmu(&tlb);
514 
515 	return 0;
516 }
517 
518 static void madvise_pageout_page_range(struct mmu_gather *tlb,
519 			     struct vm_area_struct *vma,
520 			     unsigned long addr, unsigned long end)
521 {
522 	struct madvise_walk_private walk_private = {
523 		.pageout = true,
524 		.tlb = tlb,
525 	};
526 
527 	tlb_start_vma(tlb, vma);
528 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
529 	tlb_end_vma(tlb, vma);
530 }
531 
532 static inline bool can_do_pageout(struct vm_area_struct *vma)
533 {
534 	if (vma_is_anonymous(vma))
535 		return true;
536 	if (!vma->vm_file)
537 		return false;
538 	/*
539 	 * paging out pagecache only for non-anonymous mappings that correspond
540 	 * to the files the calling process could (if tried) open for writing;
541 	 * otherwise we'd be including shared non-exclusive mappings, which
542 	 * opens a side channel.
543 	 */
544 	return inode_owner_or_capable(&init_user_ns,
545 				      file_inode(vma->vm_file)) ||
546 	       file_permission(vma->vm_file, MAY_WRITE) == 0;
547 }
548 
549 static long madvise_pageout(struct vm_area_struct *vma,
550 			struct vm_area_struct **prev,
551 			unsigned long start_addr, unsigned long end_addr)
552 {
553 	struct mm_struct *mm = vma->vm_mm;
554 	struct mmu_gather tlb;
555 
556 	*prev = vma;
557 	if (!can_madv_lru_vma(vma))
558 		return -EINVAL;
559 
560 	if (!can_do_pageout(vma))
561 		return 0;
562 
563 	lru_add_drain();
564 	tlb_gather_mmu(&tlb, mm);
565 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
566 	tlb_finish_mmu(&tlb);
567 
568 	return 0;
569 }
570 
571 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
572 				unsigned long end, struct mm_walk *walk)
573 
574 {
575 	struct mmu_gather *tlb = walk->private;
576 	struct mm_struct *mm = tlb->mm;
577 	struct vm_area_struct *vma = walk->vma;
578 	spinlock_t *ptl;
579 	pte_t *orig_pte, *pte, ptent;
580 	struct page *page;
581 	int nr_swap = 0;
582 	unsigned long next;
583 
584 	next = pmd_addr_end(addr, end);
585 	if (pmd_trans_huge(*pmd))
586 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
587 			goto next;
588 
589 	if (pmd_trans_unstable(pmd))
590 		return 0;
591 
592 	tlb_change_page_size(tlb, PAGE_SIZE);
593 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
594 	flush_tlb_batched_pending(mm);
595 	arch_enter_lazy_mmu_mode();
596 	for (; addr != end; pte++, addr += PAGE_SIZE) {
597 		ptent = *pte;
598 
599 		if (pte_none(ptent))
600 			continue;
601 		/*
602 		 * If the pte has swp_entry, just clear page table to
603 		 * prevent swap-in which is more expensive rather than
604 		 * (page allocation + zeroing).
605 		 */
606 		if (!pte_present(ptent)) {
607 			swp_entry_t entry;
608 
609 			entry = pte_to_swp_entry(ptent);
610 			if (non_swap_entry(entry))
611 				continue;
612 			nr_swap--;
613 			free_swap_and_cache(entry);
614 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
615 			continue;
616 		}
617 
618 		page = vm_normal_page(vma, addr, ptent);
619 		if (!page)
620 			continue;
621 
622 		/*
623 		 * If pmd isn't transhuge but the page is THP and
624 		 * is owned by only this process, split it and
625 		 * deactivate all pages.
626 		 */
627 		if (PageTransCompound(page)) {
628 			if (page_mapcount(page) != 1)
629 				goto out;
630 			get_page(page);
631 			if (!trylock_page(page)) {
632 				put_page(page);
633 				goto out;
634 			}
635 			pte_unmap_unlock(orig_pte, ptl);
636 			if (split_huge_page(page)) {
637 				unlock_page(page);
638 				put_page(page);
639 				pte_offset_map_lock(mm, pmd, addr, &ptl);
640 				goto out;
641 			}
642 			unlock_page(page);
643 			put_page(page);
644 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
645 			pte--;
646 			addr -= PAGE_SIZE;
647 			continue;
648 		}
649 
650 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
651 
652 		if (PageSwapCache(page) || PageDirty(page)) {
653 			if (!trylock_page(page))
654 				continue;
655 			/*
656 			 * If page is shared with others, we couldn't clear
657 			 * PG_dirty of the page.
658 			 */
659 			if (page_mapcount(page) != 1) {
660 				unlock_page(page);
661 				continue;
662 			}
663 
664 			if (PageSwapCache(page) && !try_to_free_swap(page)) {
665 				unlock_page(page);
666 				continue;
667 			}
668 
669 			ClearPageDirty(page);
670 			unlock_page(page);
671 		}
672 
673 		if (pte_young(ptent) || pte_dirty(ptent)) {
674 			/*
675 			 * Some of architecture(ex, PPC) don't update TLB
676 			 * with set_pte_at and tlb_remove_tlb_entry so for
677 			 * the portability, remap the pte with old|clean
678 			 * after pte clearing.
679 			 */
680 			ptent = ptep_get_and_clear_full(mm, addr, pte,
681 							tlb->fullmm);
682 
683 			ptent = pte_mkold(ptent);
684 			ptent = pte_mkclean(ptent);
685 			set_pte_at(mm, addr, pte, ptent);
686 			tlb_remove_tlb_entry(tlb, pte, addr);
687 		}
688 		mark_page_lazyfree(page);
689 	}
690 out:
691 	if (nr_swap) {
692 		if (current->mm == mm)
693 			sync_mm_rss(mm);
694 
695 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
696 	}
697 	arch_leave_lazy_mmu_mode();
698 	pte_unmap_unlock(orig_pte, ptl);
699 	cond_resched();
700 next:
701 	return 0;
702 }
703 
704 static const struct mm_walk_ops madvise_free_walk_ops = {
705 	.pmd_entry		= madvise_free_pte_range,
706 };
707 
708 static int madvise_free_single_vma(struct vm_area_struct *vma,
709 			unsigned long start_addr, unsigned long end_addr)
710 {
711 	struct mm_struct *mm = vma->vm_mm;
712 	struct mmu_notifier_range range;
713 	struct mmu_gather tlb;
714 
715 	/* MADV_FREE works for only anon vma at the moment */
716 	if (!vma_is_anonymous(vma))
717 		return -EINVAL;
718 
719 	range.start = max(vma->vm_start, start_addr);
720 	if (range.start >= vma->vm_end)
721 		return -EINVAL;
722 	range.end = min(vma->vm_end, end_addr);
723 	if (range.end <= vma->vm_start)
724 		return -EINVAL;
725 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
726 				range.start, range.end);
727 
728 	lru_add_drain();
729 	tlb_gather_mmu(&tlb, mm);
730 	update_hiwater_rss(mm);
731 
732 	mmu_notifier_invalidate_range_start(&range);
733 	tlb_start_vma(&tlb, vma);
734 	walk_page_range(vma->vm_mm, range.start, range.end,
735 			&madvise_free_walk_ops, &tlb);
736 	tlb_end_vma(&tlb, vma);
737 	mmu_notifier_invalidate_range_end(&range);
738 	tlb_finish_mmu(&tlb);
739 
740 	return 0;
741 }
742 
743 /*
744  * Application no longer needs these pages.  If the pages are dirty,
745  * it's OK to just throw them away.  The app will be more careful about
746  * data it wants to keep.  Be sure to free swap resources too.  The
747  * zap_page_range call sets things up for shrink_active_list to actually free
748  * these pages later if no one else has touched them in the meantime,
749  * although we could add these pages to a global reuse list for
750  * shrink_active_list to pick up before reclaiming other pages.
751  *
752  * NB: This interface discards data rather than pushes it out to swap,
753  * as some implementations do.  This has performance implications for
754  * applications like large transactional databases which want to discard
755  * pages in anonymous maps after committing to backing store the data
756  * that was kept in them.  There is no reason to write this data out to
757  * the swap area if the application is discarding it.
758  *
759  * An interface that causes the system to free clean pages and flush
760  * dirty pages is already available as msync(MS_INVALIDATE).
761  */
762 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
763 					unsigned long start, unsigned long end)
764 {
765 	zap_page_range(vma, start, end - start);
766 	return 0;
767 }
768 
769 static long madvise_dontneed_free(struct vm_area_struct *vma,
770 				  struct vm_area_struct **prev,
771 				  unsigned long start, unsigned long end,
772 				  int behavior)
773 {
774 	struct mm_struct *mm = vma->vm_mm;
775 
776 	*prev = vma;
777 	if (!can_madv_lru_vma(vma))
778 		return -EINVAL;
779 
780 	if (!userfaultfd_remove(vma, start, end)) {
781 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
782 
783 		mmap_read_lock(mm);
784 		vma = find_vma(mm, start);
785 		if (!vma)
786 			return -ENOMEM;
787 		if (start < vma->vm_start) {
788 			/*
789 			 * This "vma" under revalidation is the one
790 			 * with the lowest vma->vm_start where start
791 			 * is also < vma->vm_end. If start <
792 			 * vma->vm_start it means an hole materialized
793 			 * in the user address space within the
794 			 * virtual range passed to MADV_DONTNEED
795 			 * or MADV_FREE.
796 			 */
797 			return -ENOMEM;
798 		}
799 		if (!can_madv_lru_vma(vma))
800 			return -EINVAL;
801 		if (end > vma->vm_end) {
802 			/*
803 			 * Don't fail if end > vma->vm_end. If the old
804 			 * vma was split while the mmap_lock was
805 			 * released the effect of the concurrent
806 			 * operation may not cause madvise() to
807 			 * have an undefined result. There may be an
808 			 * adjacent next vma that we'll walk
809 			 * next. userfaultfd_remove() will generate an
810 			 * UFFD_EVENT_REMOVE repetition on the
811 			 * end-vma->vm_end range, but the manager can
812 			 * handle a repetition fine.
813 			 */
814 			end = vma->vm_end;
815 		}
816 		VM_WARN_ON(start >= end);
817 	}
818 
819 	if (behavior == MADV_DONTNEED)
820 		return madvise_dontneed_single_vma(vma, start, end);
821 	else if (behavior == MADV_FREE)
822 		return madvise_free_single_vma(vma, start, end);
823 	else
824 		return -EINVAL;
825 }
826 
827 static long madvise_populate(struct vm_area_struct *vma,
828 			     struct vm_area_struct **prev,
829 			     unsigned long start, unsigned long end,
830 			     int behavior)
831 {
832 	const bool write = behavior == MADV_POPULATE_WRITE;
833 	struct mm_struct *mm = vma->vm_mm;
834 	unsigned long tmp_end;
835 	int locked = 1;
836 	long pages;
837 
838 	*prev = vma;
839 
840 	while (start < end) {
841 		/*
842 		 * We might have temporarily dropped the lock. For example,
843 		 * our VMA might have been split.
844 		 */
845 		if (!vma || start >= vma->vm_end) {
846 			vma = find_vma(mm, start);
847 			if (!vma || start < vma->vm_start)
848 				return -ENOMEM;
849 		}
850 
851 		tmp_end = min_t(unsigned long, end, vma->vm_end);
852 		/* Populate (prefault) page tables readable/writable. */
853 		pages = faultin_vma_page_range(vma, start, tmp_end, write,
854 					       &locked);
855 		if (!locked) {
856 			mmap_read_lock(mm);
857 			locked = 1;
858 			*prev = NULL;
859 			vma = NULL;
860 		}
861 		if (pages < 0) {
862 			switch (pages) {
863 			case -EINTR:
864 				return -EINTR;
865 			case -EINVAL: /* Incompatible mappings / permissions. */
866 				return -EINVAL;
867 			case -EHWPOISON:
868 				return -EHWPOISON;
869 			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
870 				return -EFAULT;
871 			default:
872 				pr_warn_once("%s: unhandled return value: %ld\n",
873 					     __func__, pages);
874 				fallthrough;
875 			case -ENOMEM:
876 				return -ENOMEM;
877 			}
878 		}
879 		start += pages * PAGE_SIZE;
880 	}
881 	return 0;
882 }
883 
884 /*
885  * Application wants to free up the pages and associated backing store.
886  * This is effectively punching a hole into the middle of a file.
887  */
888 static long madvise_remove(struct vm_area_struct *vma,
889 				struct vm_area_struct **prev,
890 				unsigned long start, unsigned long end)
891 {
892 	loff_t offset;
893 	int error;
894 	struct file *f;
895 	struct mm_struct *mm = vma->vm_mm;
896 
897 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
898 
899 	if (vma->vm_flags & VM_LOCKED)
900 		return -EINVAL;
901 
902 	f = vma->vm_file;
903 
904 	if (!f || !f->f_mapping || !f->f_mapping->host) {
905 			return -EINVAL;
906 	}
907 
908 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
909 		return -EACCES;
910 
911 	offset = (loff_t)(start - vma->vm_start)
912 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
913 
914 	/*
915 	 * Filesystem's fallocate may need to take i_rwsem.  We need to
916 	 * explicitly grab a reference because the vma (and hence the
917 	 * vma's reference to the file) can go away as soon as we drop
918 	 * mmap_lock.
919 	 */
920 	get_file(f);
921 	if (userfaultfd_remove(vma, start, end)) {
922 		/* mmap_lock was not released by userfaultfd_remove() */
923 		mmap_read_unlock(mm);
924 	}
925 	error = vfs_fallocate(f,
926 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
927 				offset, end - start);
928 	fput(f);
929 	mmap_read_lock(mm);
930 	return error;
931 }
932 
933 #ifdef CONFIG_MEMORY_FAILURE
934 /*
935  * Error injection support for memory error handling.
936  */
937 static int madvise_inject_error(int behavior,
938 		unsigned long start, unsigned long end)
939 {
940 	unsigned long size;
941 
942 	if (!capable(CAP_SYS_ADMIN))
943 		return -EPERM;
944 
945 
946 	for (; start < end; start += size) {
947 		unsigned long pfn;
948 		struct page *page;
949 		int ret;
950 
951 		ret = get_user_pages_fast(start, 1, 0, &page);
952 		if (ret != 1)
953 			return ret;
954 		pfn = page_to_pfn(page);
955 
956 		/*
957 		 * When soft offlining hugepages, after migrating the page
958 		 * we dissolve it, therefore in the second loop "page" will
959 		 * no longer be a compound page.
960 		 */
961 		size = page_size(compound_head(page));
962 
963 		if (behavior == MADV_SOFT_OFFLINE) {
964 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
965 				 pfn, start);
966 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
967 		} else {
968 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
969 				 pfn, start);
970 			ret = memory_failure(pfn, MF_COUNT_INCREASED);
971 		}
972 
973 		if (ret)
974 			return ret;
975 	}
976 
977 	return 0;
978 }
979 #endif
980 
981 static long
982 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
983 		unsigned long start, unsigned long end, int behavior)
984 {
985 	switch (behavior) {
986 	case MADV_REMOVE:
987 		return madvise_remove(vma, prev, start, end);
988 	case MADV_WILLNEED:
989 		return madvise_willneed(vma, prev, start, end);
990 	case MADV_COLD:
991 		return madvise_cold(vma, prev, start, end);
992 	case MADV_PAGEOUT:
993 		return madvise_pageout(vma, prev, start, end);
994 	case MADV_FREE:
995 	case MADV_DONTNEED:
996 		return madvise_dontneed_free(vma, prev, start, end, behavior);
997 	case MADV_POPULATE_READ:
998 	case MADV_POPULATE_WRITE:
999 		return madvise_populate(vma, prev, start, end, behavior);
1000 	default:
1001 		return madvise_behavior(vma, prev, start, end, behavior);
1002 	}
1003 }
1004 
1005 static bool
1006 madvise_behavior_valid(int behavior)
1007 {
1008 	switch (behavior) {
1009 	case MADV_DOFORK:
1010 	case MADV_DONTFORK:
1011 	case MADV_NORMAL:
1012 	case MADV_SEQUENTIAL:
1013 	case MADV_RANDOM:
1014 	case MADV_REMOVE:
1015 	case MADV_WILLNEED:
1016 	case MADV_DONTNEED:
1017 	case MADV_FREE:
1018 	case MADV_COLD:
1019 	case MADV_PAGEOUT:
1020 	case MADV_POPULATE_READ:
1021 	case MADV_POPULATE_WRITE:
1022 #ifdef CONFIG_KSM
1023 	case MADV_MERGEABLE:
1024 	case MADV_UNMERGEABLE:
1025 #endif
1026 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1027 	case MADV_HUGEPAGE:
1028 	case MADV_NOHUGEPAGE:
1029 #endif
1030 	case MADV_DONTDUMP:
1031 	case MADV_DODUMP:
1032 	case MADV_WIPEONFORK:
1033 	case MADV_KEEPONFORK:
1034 #ifdef CONFIG_MEMORY_FAILURE
1035 	case MADV_SOFT_OFFLINE:
1036 	case MADV_HWPOISON:
1037 #endif
1038 		return true;
1039 
1040 	default:
1041 		return false;
1042 	}
1043 }
1044 
1045 static bool
1046 process_madvise_behavior_valid(int behavior)
1047 {
1048 	switch (behavior) {
1049 	case MADV_COLD:
1050 	case MADV_PAGEOUT:
1051 	case MADV_WILLNEED:
1052 		return true;
1053 	default:
1054 		return false;
1055 	}
1056 }
1057 
1058 /*
1059  * The madvise(2) system call.
1060  *
1061  * Applications can use madvise() to advise the kernel how it should
1062  * handle paging I/O in this VM area.  The idea is to help the kernel
1063  * use appropriate read-ahead and caching techniques.  The information
1064  * provided is advisory only, and can be safely disregarded by the
1065  * kernel without affecting the correct operation of the application.
1066  *
1067  * behavior values:
1068  *  MADV_NORMAL - the default behavior is to read clusters.  This
1069  *		results in some read-ahead and read-behind.
1070  *  MADV_RANDOM - the system should read the minimum amount of data
1071  *		on any access, since it is unlikely that the appli-
1072  *		cation will need more than what it asks for.
1073  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1074  *		once, so they can be aggressively read ahead, and
1075  *		can be freed soon after they are accessed.
1076  *  MADV_WILLNEED - the application is notifying the system to read
1077  *		some pages ahead.
1078  *  MADV_DONTNEED - the application is finished with the given range,
1079  *		so the kernel can free resources associated with it.
1080  *  MADV_FREE - the application marks pages in the given range as lazy free,
1081  *		where actual purges are postponed until memory pressure happens.
1082  *  MADV_REMOVE - the application wants to free up the given range of
1083  *		pages and associated backing store.
1084  *  MADV_DONTFORK - omit this area from child's address space when forking:
1085  *		typically, to avoid COWing pages pinned by get_user_pages().
1086  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1087  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1088  *              range after a fork.
1089  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1090  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1091  *		were corrupted by unrecoverable hardware memory failure.
1092  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1093  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1094  *		this area with pages of identical content from other such areas.
1095  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1096  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1097  *		huge pages in the future. Existing pages might be coalesced and
1098  *		new pages might be allocated as THP.
1099  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1100  *		transparent huge pages so the existing pages will not be
1101  *		coalesced into THP and new pages will not be allocated as THP.
1102  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1103  *		from being included in its core dump.
1104  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1105  *  MADV_COLD - the application is not expected to use this memory soon,
1106  *		deactivate pages in this range so that they can be reclaimed
1107  *		easily if memory pressure happens.
1108  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1109  *		page out the pages in this range immediately.
1110  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1111  *		triggering read faults if required
1112  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1113  *		triggering write faults if required
1114  *
1115  * return values:
1116  *  zero    - success
1117  *  -EINVAL - start + len < 0, start is not page-aligned,
1118  *		"behavior" is not a valid value, or application
1119  *		is attempting to release locked or shared pages,
1120  *		or the specified address range includes file, Huge TLB,
1121  *		MAP_SHARED or VMPFNMAP range.
1122  *  -ENOMEM - addresses in the specified range are not currently
1123  *		mapped, or are outside the AS of the process.
1124  *  -EIO    - an I/O error occurred while paging in data.
1125  *  -EBADF  - map exists, but area maps something that isn't a file.
1126  *  -EAGAIN - a kernel resource was temporarily unavailable.
1127  */
1128 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1129 {
1130 	unsigned long end, tmp;
1131 	struct vm_area_struct *vma, *prev;
1132 	int unmapped_error = 0;
1133 	int error = -EINVAL;
1134 	int write;
1135 	size_t len;
1136 	struct blk_plug plug;
1137 
1138 	start = untagged_addr(start);
1139 
1140 	if (!madvise_behavior_valid(behavior))
1141 		return error;
1142 
1143 	if (!PAGE_ALIGNED(start))
1144 		return error;
1145 	len = PAGE_ALIGN(len_in);
1146 
1147 	/* Check to see whether len was rounded up from small -ve to zero */
1148 	if (len_in && !len)
1149 		return error;
1150 
1151 	end = start + len;
1152 	if (end < start)
1153 		return error;
1154 
1155 	error = 0;
1156 	if (end == start)
1157 		return error;
1158 
1159 #ifdef CONFIG_MEMORY_FAILURE
1160 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1161 		return madvise_inject_error(behavior, start, start + len_in);
1162 #endif
1163 
1164 	write = madvise_need_mmap_write(behavior);
1165 	if (write) {
1166 		if (mmap_write_lock_killable(mm))
1167 			return -EINTR;
1168 	} else {
1169 		mmap_read_lock(mm);
1170 	}
1171 
1172 	/*
1173 	 * If the interval [start,end) covers some unmapped address
1174 	 * ranges, just ignore them, but return -ENOMEM at the end.
1175 	 * - different from the way of handling in mlock etc.
1176 	 */
1177 	vma = find_vma_prev(mm, start, &prev);
1178 	if (vma && start > vma->vm_start)
1179 		prev = vma;
1180 
1181 	blk_start_plug(&plug);
1182 	for (;;) {
1183 		/* Still start < end. */
1184 		error = -ENOMEM;
1185 		if (!vma)
1186 			goto out;
1187 
1188 		/* Here start < (end|vma->vm_end). */
1189 		if (start < vma->vm_start) {
1190 			unmapped_error = -ENOMEM;
1191 			start = vma->vm_start;
1192 			if (start >= end)
1193 				goto out;
1194 		}
1195 
1196 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1197 		tmp = vma->vm_end;
1198 		if (end < tmp)
1199 			tmp = end;
1200 
1201 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1202 		error = madvise_vma(vma, &prev, start, tmp, behavior);
1203 		if (error)
1204 			goto out;
1205 		start = tmp;
1206 		if (prev && start < prev->vm_end)
1207 			start = prev->vm_end;
1208 		error = unmapped_error;
1209 		if (start >= end)
1210 			goto out;
1211 		if (prev)
1212 			vma = prev->vm_next;
1213 		else	/* madvise_remove dropped mmap_lock */
1214 			vma = find_vma(mm, start);
1215 	}
1216 out:
1217 	blk_finish_plug(&plug);
1218 	if (write)
1219 		mmap_write_unlock(mm);
1220 	else
1221 		mmap_read_unlock(mm);
1222 
1223 	return error;
1224 }
1225 
1226 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1227 {
1228 	return do_madvise(current->mm, start, len_in, behavior);
1229 }
1230 
1231 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1232 		size_t, vlen, int, behavior, unsigned int, flags)
1233 {
1234 	ssize_t ret;
1235 	struct iovec iovstack[UIO_FASTIOV], iovec;
1236 	struct iovec *iov = iovstack;
1237 	struct iov_iter iter;
1238 	struct pid *pid;
1239 	struct task_struct *task;
1240 	struct mm_struct *mm;
1241 	size_t total_len;
1242 	unsigned int f_flags;
1243 
1244 	if (flags != 0) {
1245 		ret = -EINVAL;
1246 		goto out;
1247 	}
1248 
1249 	ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1250 	if (ret < 0)
1251 		goto out;
1252 
1253 	pid = pidfd_get_pid(pidfd, &f_flags);
1254 	if (IS_ERR(pid)) {
1255 		ret = PTR_ERR(pid);
1256 		goto free_iov;
1257 	}
1258 
1259 	task = get_pid_task(pid, PIDTYPE_PID);
1260 	if (!task) {
1261 		ret = -ESRCH;
1262 		goto put_pid;
1263 	}
1264 
1265 	if (!process_madvise_behavior_valid(behavior)) {
1266 		ret = -EINVAL;
1267 		goto release_task;
1268 	}
1269 
1270 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1271 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1272 	if (IS_ERR_OR_NULL(mm)) {
1273 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1274 		goto release_task;
1275 	}
1276 
1277 	/*
1278 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1279 	 * only non-destructive hints are currently supported.
1280 	 */
1281 	if (!capable(CAP_SYS_NICE)) {
1282 		ret = -EPERM;
1283 		goto release_mm;
1284 	}
1285 
1286 	total_len = iov_iter_count(&iter);
1287 
1288 	while (iov_iter_count(&iter)) {
1289 		iovec = iov_iter_iovec(&iter);
1290 		ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1291 					iovec.iov_len, behavior);
1292 		if (ret < 0)
1293 			break;
1294 		iov_iter_advance(&iter, iovec.iov_len);
1295 	}
1296 
1297 	if (ret == 0)
1298 		ret = total_len - iov_iter_count(&iter);
1299 
1300 release_mm:
1301 	mmput(mm);
1302 release_task:
1303 	put_task_struct(task);
1304 put_pid:
1305 	put_pid(pid);
1306 free_iov:
1307 	kfree(iov);
1308 out:
1309 	return ret;
1310 }
1311