1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/madvise.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 2002 Christoph Hellwig 7 */ 8 9 #include <linux/mman.h> 10 #include <linux/pagemap.h> 11 #include <linux/syscalls.h> 12 #include <linux/mempolicy.h> 13 #include <linux/page-isolation.h> 14 #include <linux/page_idle.h> 15 #include <linux/userfaultfd_k.h> 16 #include <linux/hugetlb.h> 17 #include <linux/falloc.h> 18 #include <linux/fadvise.h> 19 #include <linux/sched.h> 20 #include <linux/sched/mm.h> 21 #include <linux/mm_inline.h> 22 #include <linux/string.h> 23 #include <linux/uio.h> 24 #include <linux/ksm.h> 25 #include <linux/fs.h> 26 #include <linux/file.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagewalk.h> 30 #include <linux/swap.h> 31 #include <linux/swapops.h> 32 #include <linux/shmem_fs.h> 33 #include <linux/mmu_notifier.h> 34 35 #include <asm/tlb.h> 36 37 #include "internal.h" 38 #include "swap.h" 39 40 struct madvise_walk_private { 41 struct mmu_gather *tlb; 42 bool pageout; 43 }; 44 45 /* 46 * Any behaviour which results in changes to the vma->vm_flags needs to 47 * take mmap_lock for writing. Others, which simply traverse vmas, need 48 * to only take it for reading. 49 */ 50 static int madvise_need_mmap_write(int behavior) 51 { 52 switch (behavior) { 53 case MADV_REMOVE: 54 case MADV_WILLNEED: 55 case MADV_DONTNEED: 56 case MADV_DONTNEED_LOCKED: 57 case MADV_COLD: 58 case MADV_PAGEOUT: 59 case MADV_FREE: 60 case MADV_POPULATE_READ: 61 case MADV_POPULATE_WRITE: 62 case MADV_COLLAPSE: 63 return 0; 64 default: 65 /* be safe, default to 1. list exceptions explicitly */ 66 return 1; 67 } 68 } 69 70 #ifdef CONFIG_ANON_VMA_NAME 71 struct anon_vma_name *anon_vma_name_alloc(const char *name) 72 { 73 struct anon_vma_name *anon_name; 74 size_t count; 75 76 /* Add 1 for NUL terminator at the end of the anon_name->name */ 77 count = strlen(name) + 1; 78 anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL); 79 if (anon_name) { 80 kref_init(&anon_name->kref); 81 memcpy(anon_name->name, name, count); 82 } 83 84 return anon_name; 85 } 86 87 void anon_vma_name_free(struct kref *kref) 88 { 89 struct anon_vma_name *anon_name = 90 container_of(kref, struct anon_vma_name, kref); 91 kfree(anon_name); 92 } 93 94 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) 95 { 96 mmap_assert_locked(vma->vm_mm); 97 98 return vma->anon_name; 99 } 100 101 /* mmap_lock should be write-locked */ 102 static int replace_anon_vma_name(struct vm_area_struct *vma, 103 struct anon_vma_name *anon_name) 104 { 105 struct anon_vma_name *orig_name = anon_vma_name(vma); 106 107 if (!anon_name) { 108 vma->anon_name = NULL; 109 anon_vma_name_put(orig_name); 110 return 0; 111 } 112 113 if (anon_vma_name_eq(orig_name, anon_name)) 114 return 0; 115 116 vma->anon_name = anon_vma_name_reuse(anon_name); 117 anon_vma_name_put(orig_name); 118 119 return 0; 120 } 121 #else /* CONFIG_ANON_VMA_NAME */ 122 static int replace_anon_vma_name(struct vm_area_struct *vma, 123 struct anon_vma_name *anon_name) 124 { 125 if (anon_name) 126 return -EINVAL; 127 128 return 0; 129 } 130 #endif /* CONFIG_ANON_VMA_NAME */ 131 /* 132 * Update the vm_flags on region of a vma, splitting it or merging it as 133 * necessary. Must be called with mmap_lock held for writing; 134 * Caller should ensure anon_name stability by raising its refcount even when 135 * anon_name belongs to a valid vma because this function might free that vma. 136 */ 137 static int madvise_update_vma(struct vm_area_struct *vma, 138 struct vm_area_struct **prev, unsigned long start, 139 unsigned long end, unsigned long new_flags, 140 struct anon_vma_name *anon_name) 141 { 142 struct mm_struct *mm = vma->vm_mm; 143 int error; 144 VMA_ITERATOR(vmi, mm, start); 145 146 if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) { 147 *prev = vma; 148 return 0; 149 } 150 151 vma = vma_modify_flags_name(&vmi, *prev, vma, start, end, new_flags, 152 anon_name); 153 if (IS_ERR(vma)) 154 return PTR_ERR(vma); 155 156 *prev = vma; 157 158 /* vm_flags is protected by the mmap_lock held in write mode. */ 159 vma_start_write(vma); 160 vm_flags_reset(vma, new_flags); 161 if (!vma->vm_file || vma_is_anon_shmem(vma)) { 162 error = replace_anon_vma_name(vma, anon_name); 163 if (error) 164 return error; 165 } 166 167 return 0; 168 } 169 170 #ifdef CONFIG_SWAP 171 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start, 172 unsigned long end, struct mm_walk *walk) 173 { 174 struct vm_area_struct *vma = walk->private; 175 struct swap_iocb *splug = NULL; 176 pte_t *ptep = NULL; 177 spinlock_t *ptl; 178 unsigned long addr; 179 180 for (addr = start; addr < end; addr += PAGE_SIZE) { 181 pte_t pte; 182 swp_entry_t entry; 183 struct page *page; 184 185 if (!ptep++) { 186 ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 187 if (!ptep) 188 break; 189 } 190 191 pte = ptep_get(ptep); 192 if (!is_swap_pte(pte)) 193 continue; 194 entry = pte_to_swp_entry(pte); 195 if (unlikely(non_swap_entry(entry))) 196 continue; 197 198 pte_unmap_unlock(ptep, ptl); 199 ptep = NULL; 200 201 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE, 202 vma, addr, &splug); 203 if (page) 204 put_page(page); 205 } 206 207 if (ptep) 208 pte_unmap_unlock(ptep, ptl); 209 swap_read_unplug(splug); 210 cond_resched(); 211 212 return 0; 213 } 214 215 static const struct mm_walk_ops swapin_walk_ops = { 216 .pmd_entry = swapin_walk_pmd_entry, 217 .walk_lock = PGWALK_RDLOCK, 218 }; 219 220 static void shmem_swapin_range(struct vm_area_struct *vma, 221 unsigned long start, unsigned long end, 222 struct address_space *mapping) 223 { 224 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start)); 225 pgoff_t end_index = linear_page_index(vma, end) - 1; 226 struct page *page; 227 struct swap_iocb *splug = NULL; 228 229 rcu_read_lock(); 230 xas_for_each(&xas, page, end_index) { 231 unsigned long addr; 232 swp_entry_t entry; 233 234 if (!xa_is_value(page)) 235 continue; 236 entry = radix_to_swp_entry(page); 237 /* There might be swapin error entries in shmem mapping. */ 238 if (non_swap_entry(entry)) 239 continue; 240 241 addr = vma->vm_start + 242 ((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT); 243 xas_pause(&xas); 244 rcu_read_unlock(); 245 246 page = read_swap_cache_async(entry, mapping_gfp_mask(mapping), 247 vma, addr, &splug); 248 if (page) 249 put_page(page); 250 251 rcu_read_lock(); 252 } 253 rcu_read_unlock(); 254 swap_read_unplug(splug); 255 } 256 #endif /* CONFIG_SWAP */ 257 258 /* 259 * Schedule all required I/O operations. Do not wait for completion. 260 */ 261 static long madvise_willneed(struct vm_area_struct *vma, 262 struct vm_area_struct **prev, 263 unsigned long start, unsigned long end) 264 { 265 struct mm_struct *mm = vma->vm_mm; 266 struct file *file = vma->vm_file; 267 loff_t offset; 268 269 *prev = vma; 270 #ifdef CONFIG_SWAP 271 if (!file) { 272 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma); 273 lru_add_drain(); /* Push any new pages onto the LRU now */ 274 return 0; 275 } 276 277 if (shmem_mapping(file->f_mapping)) { 278 shmem_swapin_range(vma, start, end, file->f_mapping); 279 lru_add_drain(); /* Push any new pages onto the LRU now */ 280 return 0; 281 } 282 #else 283 if (!file) 284 return -EBADF; 285 #endif 286 287 if (IS_DAX(file_inode(file))) { 288 /* no bad return value, but ignore advice */ 289 return 0; 290 } 291 292 /* 293 * Filesystem's fadvise may need to take various locks. We need to 294 * explicitly grab a reference because the vma (and hence the 295 * vma's reference to the file) can go away as soon as we drop 296 * mmap_lock. 297 */ 298 *prev = NULL; /* tell sys_madvise we drop mmap_lock */ 299 get_file(file); 300 offset = (loff_t)(start - vma->vm_start) 301 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 302 mmap_read_unlock(mm); 303 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED); 304 fput(file); 305 mmap_read_lock(mm); 306 return 0; 307 } 308 309 static inline bool can_do_file_pageout(struct vm_area_struct *vma) 310 { 311 if (!vma->vm_file) 312 return false; 313 /* 314 * paging out pagecache only for non-anonymous mappings that correspond 315 * to the files the calling process could (if tried) open for writing; 316 * otherwise we'd be including shared non-exclusive mappings, which 317 * opens a side channel. 318 */ 319 return inode_owner_or_capable(&nop_mnt_idmap, 320 file_inode(vma->vm_file)) || 321 file_permission(vma->vm_file, MAY_WRITE) == 0; 322 } 323 324 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd, 325 unsigned long addr, unsigned long end, 326 struct mm_walk *walk) 327 { 328 struct madvise_walk_private *private = walk->private; 329 struct mmu_gather *tlb = private->tlb; 330 bool pageout = private->pageout; 331 struct mm_struct *mm = tlb->mm; 332 struct vm_area_struct *vma = walk->vma; 333 pte_t *start_pte, *pte, ptent; 334 spinlock_t *ptl; 335 struct folio *folio = NULL; 336 LIST_HEAD(folio_list); 337 bool pageout_anon_only_filter; 338 339 if (fatal_signal_pending(current)) 340 return -EINTR; 341 342 pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) && 343 !can_do_file_pageout(vma); 344 345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 346 if (pmd_trans_huge(*pmd)) { 347 pmd_t orig_pmd; 348 unsigned long next = pmd_addr_end(addr, end); 349 350 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 351 ptl = pmd_trans_huge_lock(pmd, vma); 352 if (!ptl) 353 return 0; 354 355 orig_pmd = *pmd; 356 if (is_huge_zero_pmd(orig_pmd)) 357 goto huge_unlock; 358 359 if (unlikely(!pmd_present(orig_pmd))) { 360 VM_BUG_ON(thp_migration_supported() && 361 !is_pmd_migration_entry(orig_pmd)); 362 goto huge_unlock; 363 } 364 365 folio = pfn_folio(pmd_pfn(orig_pmd)); 366 367 /* Do not interfere with other mappings of this folio */ 368 if (folio_estimated_sharers(folio) != 1) 369 goto huge_unlock; 370 371 if (pageout_anon_only_filter && !folio_test_anon(folio)) 372 goto huge_unlock; 373 374 if (next - addr != HPAGE_PMD_SIZE) { 375 int err; 376 377 folio_get(folio); 378 spin_unlock(ptl); 379 folio_lock(folio); 380 err = split_folio(folio); 381 folio_unlock(folio); 382 folio_put(folio); 383 if (!err) 384 goto regular_folio; 385 return 0; 386 } 387 388 if (pmd_young(orig_pmd)) { 389 pmdp_invalidate(vma, addr, pmd); 390 orig_pmd = pmd_mkold(orig_pmd); 391 392 set_pmd_at(mm, addr, pmd, orig_pmd); 393 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 394 } 395 396 folio_clear_referenced(folio); 397 folio_test_clear_young(folio); 398 if (folio_test_active(folio)) 399 folio_set_workingset(folio); 400 if (pageout) { 401 if (folio_isolate_lru(folio)) { 402 if (folio_test_unevictable(folio)) 403 folio_putback_lru(folio); 404 else 405 list_add(&folio->lru, &folio_list); 406 } 407 } else 408 folio_deactivate(folio); 409 huge_unlock: 410 spin_unlock(ptl); 411 if (pageout) 412 reclaim_pages(&folio_list); 413 return 0; 414 } 415 416 regular_folio: 417 #endif 418 tlb_change_page_size(tlb, PAGE_SIZE); 419 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 420 if (!start_pte) 421 return 0; 422 flush_tlb_batched_pending(mm); 423 arch_enter_lazy_mmu_mode(); 424 for (; addr < end; pte++, addr += PAGE_SIZE) { 425 ptent = ptep_get(pte); 426 427 if (pte_none(ptent)) 428 continue; 429 430 if (!pte_present(ptent)) 431 continue; 432 433 folio = vm_normal_folio(vma, addr, ptent); 434 if (!folio || folio_is_zone_device(folio)) 435 continue; 436 437 /* 438 * Creating a THP page is expensive so split it only if we 439 * are sure it's worth. Split it if we are only owner. 440 */ 441 if (folio_test_large(folio)) { 442 int err; 443 444 if (folio_estimated_sharers(folio) != 1) 445 break; 446 if (pageout_anon_only_filter && !folio_test_anon(folio)) 447 break; 448 if (!folio_trylock(folio)) 449 break; 450 folio_get(folio); 451 arch_leave_lazy_mmu_mode(); 452 pte_unmap_unlock(start_pte, ptl); 453 start_pte = NULL; 454 err = split_folio(folio); 455 folio_unlock(folio); 456 folio_put(folio); 457 if (err) 458 break; 459 start_pte = pte = 460 pte_offset_map_lock(mm, pmd, addr, &ptl); 461 if (!start_pte) 462 break; 463 arch_enter_lazy_mmu_mode(); 464 pte--; 465 addr -= PAGE_SIZE; 466 continue; 467 } 468 469 /* 470 * Do not interfere with other mappings of this folio and 471 * non-LRU folio. 472 */ 473 if (!folio_test_lru(folio) || folio_mapcount(folio) != 1) 474 continue; 475 476 if (pageout_anon_only_filter && !folio_test_anon(folio)) 477 continue; 478 479 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 480 481 if (pte_young(ptent)) { 482 ptent = ptep_get_and_clear_full(mm, addr, pte, 483 tlb->fullmm); 484 ptent = pte_mkold(ptent); 485 set_pte_at(mm, addr, pte, ptent); 486 tlb_remove_tlb_entry(tlb, pte, addr); 487 } 488 489 /* 490 * We are deactivating a folio for accelerating reclaiming. 491 * VM couldn't reclaim the folio unless we clear PG_young. 492 * As a side effect, it makes confuse idle-page tracking 493 * because they will miss recent referenced history. 494 */ 495 folio_clear_referenced(folio); 496 folio_test_clear_young(folio); 497 if (folio_test_active(folio)) 498 folio_set_workingset(folio); 499 if (pageout) { 500 if (folio_isolate_lru(folio)) { 501 if (folio_test_unevictable(folio)) 502 folio_putback_lru(folio); 503 else 504 list_add(&folio->lru, &folio_list); 505 } 506 } else 507 folio_deactivate(folio); 508 } 509 510 if (start_pte) { 511 arch_leave_lazy_mmu_mode(); 512 pte_unmap_unlock(start_pte, ptl); 513 } 514 if (pageout) 515 reclaim_pages(&folio_list); 516 cond_resched(); 517 518 return 0; 519 } 520 521 static const struct mm_walk_ops cold_walk_ops = { 522 .pmd_entry = madvise_cold_or_pageout_pte_range, 523 .walk_lock = PGWALK_RDLOCK, 524 }; 525 526 static void madvise_cold_page_range(struct mmu_gather *tlb, 527 struct vm_area_struct *vma, 528 unsigned long addr, unsigned long end) 529 { 530 struct madvise_walk_private walk_private = { 531 .pageout = false, 532 .tlb = tlb, 533 }; 534 535 tlb_start_vma(tlb, vma); 536 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 537 tlb_end_vma(tlb, vma); 538 } 539 540 static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 541 { 542 return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB)); 543 } 544 545 static long madvise_cold(struct vm_area_struct *vma, 546 struct vm_area_struct **prev, 547 unsigned long start_addr, unsigned long end_addr) 548 { 549 struct mm_struct *mm = vma->vm_mm; 550 struct mmu_gather tlb; 551 552 *prev = vma; 553 if (!can_madv_lru_vma(vma)) 554 return -EINVAL; 555 556 lru_add_drain(); 557 tlb_gather_mmu(&tlb, mm); 558 madvise_cold_page_range(&tlb, vma, start_addr, end_addr); 559 tlb_finish_mmu(&tlb); 560 561 return 0; 562 } 563 564 static void madvise_pageout_page_range(struct mmu_gather *tlb, 565 struct vm_area_struct *vma, 566 unsigned long addr, unsigned long end) 567 { 568 struct madvise_walk_private walk_private = { 569 .pageout = true, 570 .tlb = tlb, 571 }; 572 573 tlb_start_vma(tlb, vma); 574 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 575 tlb_end_vma(tlb, vma); 576 } 577 578 static long madvise_pageout(struct vm_area_struct *vma, 579 struct vm_area_struct **prev, 580 unsigned long start_addr, unsigned long end_addr) 581 { 582 struct mm_struct *mm = vma->vm_mm; 583 struct mmu_gather tlb; 584 585 *prev = vma; 586 if (!can_madv_lru_vma(vma)) 587 return -EINVAL; 588 589 /* 590 * If the VMA belongs to a private file mapping, there can be private 591 * dirty pages which can be paged out if even this process is neither 592 * owner nor write capable of the file. We allow private file mappings 593 * further to pageout dirty anon pages. 594 */ 595 if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) && 596 (vma->vm_flags & VM_MAYSHARE))) 597 return 0; 598 599 lru_add_drain(); 600 tlb_gather_mmu(&tlb, mm); 601 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr); 602 tlb_finish_mmu(&tlb); 603 604 return 0; 605 } 606 607 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr, 608 unsigned long end, struct mm_walk *walk) 609 610 { 611 struct mmu_gather *tlb = walk->private; 612 struct mm_struct *mm = tlb->mm; 613 struct vm_area_struct *vma = walk->vma; 614 spinlock_t *ptl; 615 pte_t *start_pte, *pte, ptent; 616 struct folio *folio; 617 int nr_swap = 0; 618 unsigned long next; 619 620 next = pmd_addr_end(addr, end); 621 if (pmd_trans_huge(*pmd)) 622 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next)) 623 return 0; 624 625 tlb_change_page_size(tlb, PAGE_SIZE); 626 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 627 if (!start_pte) 628 return 0; 629 flush_tlb_batched_pending(mm); 630 arch_enter_lazy_mmu_mode(); 631 for (; addr != end; pte++, addr += PAGE_SIZE) { 632 ptent = ptep_get(pte); 633 634 if (pte_none(ptent)) 635 continue; 636 /* 637 * If the pte has swp_entry, just clear page table to 638 * prevent swap-in which is more expensive rather than 639 * (page allocation + zeroing). 640 */ 641 if (!pte_present(ptent)) { 642 swp_entry_t entry; 643 644 entry = pte_to_swp_entry(ptent); 645 if (!non_swap_entry(entry)) { 646 nr_swap--; 647 free_swap_and_cache(entry); 648 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 649 } else if (is_hwpoison_entry(entry) || 650 is_poisoned_swp_entry(entry)) { 651 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 652 } 653 continue; 654 } 655 656 folio = vm_normal_folio(vma, addr, ptent); 657 if (!folio || folio_is_zone_device(folio)) 658 continue; 659 660 /* 661 * If pmd isn't transhuge but the folio is large and 662 * is owned by only this process, split it and 663 * deactivate all pages. 664 */ 665 if (folio_test_large(folio)) { 666 int err; 667 668 if (folio_estimated_sharers(folio) != 1) 669 break; 670 if (!folio_trylock(folio)) 671 break; 672 folio_get(folio); 673 arch_leave_lazy_mmu_mode(); 674 pte_unmap_unlock(start_pte, ptl); 675 start_pte = NULL; 676 err = split_folio(folio); 677 folio_unlock(folio); 678 folio_put(folio); 679 if (err) 680 break; 681 start_pte = pte = 682 pte_offset_map_lock(mm, pmd, addr, &ptl); 683 if (!start_pte) 684 break; 685 arch_enter_lazy_mmu_mode(); 686 pte--; 687 addr -= PAGE_SIZE; 688 continue; 689 } 690 691 if (folio_test_swapcache(folio) || folio_test_dirty(folio)) { 692 if (!folio_trylock(folio)) 693 continue; 694 /* 695 * If folio is shared with others, we mustn't clear 696 * the folio's dirty flag. 697 */ 698 if (folio_mapcount(folio) != 1) { 699 folio_unlock(folio); 700 continue; 701 } 702 703 if (folio_test_swapcache(folio) && 704 !folio_free_swap(folio)) { 705 folio_unlock(folio); 706 continue; 707 } 708 709 folio_clear_dirty(folio); 710 folio_unlock(folio); 711 } 712 713 if (pte_young(ptent) || pte_dirty(ptent)) { 714 /* 715 * Some of architecture(ex, PPC) don't update TLB 716 * with set_pte_at and tlb_remove_tlb_entry so for 717 * the portability, remap the pte with old|clean 718 * after pte clearing. 719 */ 720 ptent = ptep_get_and_clear_full(mm, addr, pte, 721 tlb->fullmm); 722 723 ptent = pte_mkold(ptent); 724 ptent = pte_mkclean(ptent); 725 set_pte_at(mm, addr, pte, ptent); 726 tlb_remove_tlb_entry(tlb, pte, addr); 727 } 728 folio_mark_lazyfree(folio); 729 } 730 731 if (nr_swap) 732 add_mm_counter(mm, MM_SWAPENTS, nr_swap); 733 if (start_pte) { 734 arch_leave_lazy_mmu_mode(); 735 pte_unmap_unlock(start_pte, ptl); 736 } 737 cond_resched(); 738 739 return 0; 740 } 741 742 static const struct mm_walk_ops madvise_free_walk_ops = { 743 .pmd_entry = madvise_free_pte_range, 744 .walk_lock = PGWALK_RDLOCK, 745 }; 746 747 static int madvise_free_single_vma(struct vm_area_struct *vma, 748 unsigned long start_addr, unsigned long end_addr) 749 { 750 struct mm_struct *mm = vma->vm_mm; 751 struct mmu_notifier_range range; 752 struct mmu_gather tlb; 753 754 /* MADV_FREE works for only anon vma at the moment */ 755 if (!vma_is_anonymous(vma)) 756 return -EINVAL; 757 758 range.start = max(vma->vm_start, start_addr); 759 if (range.start >= vma->vm_end) 760 return -EINVAL; 761 range.end = min(vma->vm_end, end_addr); 762 if (range.end <= vma->vm_start) 763 return -EINVAL; 764 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 765 range.start, range.end); 766 767 lru_add_drain(); 768 tlb_gather_mmu(&tlb, mm); 769 update_hiwater_rss(mm); 770 771 mmu_notifier_invalidate_range_start(&range); 772 tlb_start_vma(&tlb, vma); 773 walk_page_range(vma->vm_mm, range.start, range.end, 774 &madvise_free_walk_ops, &tlb); 775 tlb_end_vma(&tlb, vma); 776 mmu_notifier_invalidate_range_end(&range); 777 tlb_finish_mmu(&tlb); 778 779 return 0; 780 } 781 782 /* 783 * Application no longer needs these pages. If the pages are dirty, 784 * it's OK to just throw them away. The app will be more careful about 785 * data it wants to keep. Be sure to free swap resources too. The 786 * zap_page_range_single call sets things up for shrink_active_list to actually 787 * free these pages later if no one else has touched them in the meantime, 788 * although we could add these pages to a global reuse list for 789 * shrink_active_list to pick up before reclaiming other pages. 790 * 791 * NB: This interface discards data rather than pushes it out to swap, 792 * as some implementations do. This has performance implications for 793 * applications like large transactional databases which want to discard 794 * pages in anonymous maps after committing to backing store the data 795 * that was kept in them. There is no reason to write this data out to 796 * the swap area if the application is discarding it. 797 * 798 * An interface that causes the system to free clean pages and flush 799 * dirty pages is already available as msync(MS_INVALIDATE). 800 */ 801 static long madvise_dontneed_single_vma(struct vm_area_struct *vma, 802 unsigned long start, unsigned long end) 803 { 804 zap_page_range_single(vma, start, end - start, NULL); 805 return 0; 806 } 807 808 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma, 809 unsigned long start, 810 unsigned long *end, 811 int behavior) 812 { 813 if (!is_vm_hugetlb_page(vma)) { 814 unsigned int forbidden = VM_PFNMAP; 815 816 if (behavior != MADV_DONTNEED_LOCKED) 817 forbidden |= VM_LOCKED; 818 819 return !(vma->vm_flags & forbidden); 820 } 821 822 if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED) 823 return false; 824 if (start & ~huge_page_mask(hstate_vma(vma))) 825 return false; 826 827 /* 828 * Madvise callers expect the length to be rounded up to PAGE_SIZE 829 * boundaries, and may be unaware that this VMA uses huge pages. 830 * Avoid unexpected data loss by rounding down the number of 831 * huge pages freed. 832 */ 833 *end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma))); 834 835 return true; 836 } 837 838 static long madvise_dontneed_free(struct vm_area_struct *vma, 839 struct vm_area_struct **prev, 840 unsigned long start, unsigned long end, 841 int behavior) 842 { 843 struct mm_struct *mm = vma->vm_mm; 844 845 *prev = vma; 846 if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior)) 847 return -EINVAL; 848 849 if (start == end) 850 return 0; 851 852 if (!userfaultfd_remove(vma, start, end)) { 853 *prev = NULL; /* mmap_lock has been dropped, prev is stale */ 854 855 mmap_read_lock(mm); 856 vma = vma_lookup(mm, start); 857 if (!vma) 858 return -ENOMEM; 859 /* 860 * Potential end adjustment for hugetlb vma is OK as 861 * the check below keeps end within vma. 862 */ 863 if (!madvise_dontneed_free_valid_vma(vma, start, &end, 864 behavior)) 865 return -EINVAL; 866 if (end > vma->vm_end) { 867 /* 868 * Don't fail if end > vma->vm_end. If the old 869 * vma was split while the mmap_lock was 870 * released the effect of the concurrent 871 * operation may not cause madvise() to 872 * have an undefined result. There may be an 873 * adjacent next vma that we'll walk 874 * next. userfaultfd_remove() will generate an 875 * UFFD_EVENT_REMOVE repetition on the 876 * end-vma->vm_end range, but the manager can 877 * handle a repetition fine. 878 */ 879 end = vma->vm_end; 880 } 881 VM_WARN_ON(start >= end); 882 } 883 884 if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED) 885 return madvise_dontneed_single_vma(vma, start, end); 886 else if (behavior == MADV_FREE) 887 return madvise_free_single_vma(vma, start, end); 888 else 889 return -EINVAL; 890 } 891 892 static long madvise_populate(struct vm_area_struct *vma, 893 struct vm_area_struct **prev, 894 unsigned long start, unsigned long end, 895 int behavior) 896 { 897 const bool write = behavior == MADV_POPULATE_WRITE; 898 struct mm_struct *mm = vma->vm_mm; 899 unsigned long tmp_end; 900 int locked = 1; 901 long pages; 902 903 *prev = vma; 904 905 while (start < end) { 906 /* 907 * We might have temporarily dropped the lock. For example, 908 * our VMA might have been split. 909 */ 910 if (!vma || start >= vma->vm_end) { 911 vma = vma_lookup(mm, start); 912 if (!vma) 913 return -ENOMEM; 914 } 915 916 tmp_end = min_t(unsigned long, end, vma->vm_end); 917 /* Populate (prefault) page tables readable/writable. */ 918 pages = faultin_vma_page_range(vma, start, tmp_end, write, 919 &locked); 920 if (!locked) { 921 mmap_read_lock(mm); 922 locked = 1; 923 *prev = NULL; 924 vma = NULL; 925 } 926 if (pages < 0) { 927 switch (pages) { 928 case -EINTR: 929 return -EINTR; 930 case -EINVAL: /* Incompatible mappings / permissions. */ 931 return -EINVAL; 932 case -EHWPOISON: 933 return -EHWPOISON; 934 case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */ 935 return -EFAULT; 936 default: 937 pr_warn_once("%s: unhandled return value: %ld\n", 938 __func__, pages); 939 fallthrough; 940 case -ENOMEM: 941 return -ENOMEM; 942 } 943 } 944 start += pages * PAGE_SIZE; 945 } 946 return 0; 947 } 948 949 /* 950 * Application wants to free up the pages and associated backing store. 951 * This is effectively punching a hole into the middle of a file. 952 */ 953 static long madvise_remove(struct vm_area_struct *vma, 954 struct vm_area_struct **prev, 955 unsigned long start, unsigned long end) 956 { 957 loff_t offset; 958 int error; 959 struct file *f; 960 struct mm_struct *mm = vma->vm_mm; 961 962 *prev = NULL; /* tell sys_madvise we drop mmap_lock */ 963 964 if (vma->vm_flags & VM_LOCKED) 965 return -EINVAL; 966 967 f = vma->vm_file; 968 969 if (!f || !f->f_mapping || !f->f_mapping->host) { 970 return -EINVAL; 971 } 972 973 if (!vma_is_shared_maywrite(vma)) 974 return -EACCES; 975 976 offset = (loff_t)(start - vma->vm_start) 977 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 978 979 /* 980 * Filesystem's fallocate may need to take i_rwsem. We need to 981 * explicitly grab a reference because the vma (and hence the 982 * vma's reference to the file) can go away as soon as we drop 983 * mmap_lock. 984 */ 985 get_file(f); 986 if (userfaultfd_remove(vma, start, end)) { 987 /* mmap_lock was not released by userfaultfd_remove() */ 988 mmap_read_unlock(mm); 989 } 990 error = vfs_fallocate(f, 991 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 992 offset, end - start); 993 fput(f); 994 mmap_read_lock(mm); 995 return error; 996 } 997 998 /* 999 * Apply an madvise behavior to a region of a vma. madvise_update_vma 1000 * will handle splitting a vm area into separate areas, each area with its own 1001 * behavior. 1002 */ 1003 static int madvise_vma_behavior(struct vm_area_struct *vma, 1004 struct vm_area_struct **prev, 1005 unsigned long start, unsigned long end, 1006 unsigned long behavior) 1007 { 1008 int error; 1009 struct anon_vma_name *anon_name; 1010 unsigned long new_flags = vma->vm_flags; 1011 1012 switch (behavior) { 1013 case MADV_REMOVE: 1014 return madvise_remove(vma, prev, start, end); 1015 case MADV_WILLNEED: 1016 return madvise_willneed(vma, prev, start, end); 1017 case MADV_COLD: 1018 return madvise_cold(vma, prev, start, end); 1019 case MADV_PAGEOUT: 1020 return madvise_pageout(vma, prev, start, end); 1021 case MADV_FREE: 1022 case MADV_DONTNEED: 1023 case MADV_DONTNEED_LOCKED: 1024 return madvise_dontneed_free(vma, prev, start, end, behavior); 1025 case MADV_POPULATE_READ: 1026 case MADV_POPULATE_WRITE: 1027 return madvise_populate(vma, prev, start, end, behavior); 1028 case MADV_NORMAL: 1029 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; 1030 break; 1031 case MADV_SEQUENTIAL: 1032 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; 1033 break; 1034 case MADV_RANDOM: 1035 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; 1036 break; 1037 case MADV_DONTFORK: 1038 new_flags |= VM_DONTCOPY; 1039 break; 1040 case MADV_DOFORK: 1041 if (vma->vm_flags & VM_IO) 1042 return -EINVAL; 1043 new_flags &= ~VM_DONTCOPY; 1044 break; 1045 case MADV_WIPEONFORK: 1046 /* MADV_WIPEONFORK is only supported on anonymous memory. */ 1047 if (vma->vm_file || vma->vm_flags & VM_SHARED) 1048 return -EINVAL; 1049 new_flags |= VM_WIPEONFORK; 1050 break; 1051 case MADV_KEEPONFORK: 1052 new_flags &= ~VM_WIPEONFORK; 1053 break; 1054 case MADV_DONTDUMP: 1055 new_flags |= VM_DONTDUMP; 1056 break; 1057 case MADV_DODUMP: 1058 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) 1059 return -EINVAL; 1060 new_flags &= ~VM_DONTDUMP; 1061 break; 1062 case MADV_MERGEABLE: 1063 case MADV_UNMERGEABLE: 1064 error = ksm_madvise(vma, start, end, behavior, &new_flags); 1065 if (error) 1066 goto out; 1067 break; 1068 case MADV_HUGEPAGE: 1069 case MADV_NOHUGEPAGE: 1070 error = hugepage_madvise(vma, &new_flags, behavior); 1071 if (error) 1072 goto out; 1073 break; 1074 case MADV_COLLAPSE: 1075 return madvise_collapse(vma, prev, start, end); 1076 } 1077 1078 anon_name = anon_vma_name(vma); 1079 anon_vma_name_get(anon_name); 1080 error = madvise_update_vma(vma, prev, start, end, new_flags, 1081 anon_name); 1082 anon_vma_name_put(anon_name); 1083 1084 out: 1085 /* 1086 * madvise() returns EAGAIN if kernel resources, such as 1087 * slab, are temporarily unavailable. 1088 */ 1089 if (error == -ENOMEM) 1090 error = -EAGAIN; 1091 return error; 1092 } 1093 1094 #ifdef CONFIG_MEMORY_FAILURE 1095 /* 1096 * Error injection support for memory error handling. 1097 */ 1098 static int madvise_inject_error(int behavior, 1099 unsigned long start, unsigned long end) 1100 { 1101 unsigned long size; 1102 1103 if (!capable(CAP_SYS_ADMIN)) 1104 return -EPERM; 1105 1106 1107 for (; start < end; start += size) { 1108 unsigned long pfn; 1109 struct page *page; 1110 int ret; 1111 1112 ret = get_user_pages_fast(start, 1, 0, &page); 1113 if (ret != 1) 1114 return ret; 1115 pfn = page_to_pfn(page); 1116 1117 /* 1118 * When soft offlining hugepages, after migrating the page 1119 * we dissolve it, therefore in the second loop "page" will 1120 * no longer be a compound page. 1121 */ 1122 size = page_size(compound_head(page)); 1123 1124 if (behavior == MADV_SOFT_OFFLINE) { 1125 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n", 1126 pfn, start); 1127 ret = soft_offline_page(pfn, MF_COUNT_INCREASED); 1128 } else { 1129 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n", 1130 pfn, start); 1131 ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED); 1132 if (ret == -EOPNOTSUPP) 1133 ret = 0; 1134 } 1135 1136 if (ret) 1137 return ret; 1138 } 1139 1140 return 0; 1141 } 1142 #endif 1143 1144 static bool 1145 madvise_behavior_valid(int behavior) 1146 { 1147 switch (behavior) { 1148 case MADV_DOFORK: 1149 case MADV_DONTFORK: 1150 case MADV_NORMAL: 1151 case MADV_SEQUENTIAL: 1152 case MADV_RANDOM: 1153 case MADV_REMOVE: 1154 case MADV_WILLNEED: 1155 case MADV_DONTNEED: 1156 case MADV_DONTNEED_LOCKED: 1157 case MADV_FREE: 1158 case MADV_COLD: 1159 case MADV_PAGEOUT: 1160 case MADV_POPULATE_READ: 1161 case MADV_POPULATE_WRITE: 1162 #ifdef CONFIG_KSM 1163 case MADV_MERGEABLE: 1164 case MADV_UNMERGEABLE: 1165 #endif 1166 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1167 case MADV_HUGEPAGE: 1168 case MADV_NOHUGEPAGE: 1169 case MADV_COLLAPSE: 1170 #endif 1171 case MADV_DONTDUMP: 1172 case MADV_DODUMP: 1173 case MADV_WIPEONFORK: 1174 case MADV_KEEPONFORK: 1175 #ifdef CONFIG_MEMORY_FAILURE 1176 case MADV_SOFT_OFFLINE: 1177 case MADV_HWPOISON: 1178 #endif 1179 return true; 1180 1181 default: 1182 return false; 1183 } 1184 } 1185 1186 static bool process_madvise_behavior_valid(int behavior) 1187 { 1188 switch (behavior) { 1189 case MADV_COLD: 1190 case MADV_PAGEOUT: 1191 case MADV_WILLNEED: 1192 case MADV_COLLAPSE: 1193 return true; 1194 default: 1195 return false; 1196 } 1197 } 1198 1199 /* 1200 * Walk the vmas in range [start,end), and call the visit function on each one. 1201 * The visit function will get start and end parameters that cover the overlap 1202 * between the current vma and the original range. Any unmapped regions in the 1203 * original range will result in this function returning -ENOMEM while still 1204 * calling the visit function on all of the existing vmas in the range. 1205 * Must be called with the mmap_lock held for reading or writing. 1206 */ 1207 static 1208 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start, 1209 unsigned long end, unsigned long arg, 1210 int (*visit)(struct vm_area_struct *vma, 1211 struct vm_area_struct **prev, unsigned long start, 1212 unsigned long end, unsigned long arg)) 1213 { 1214 struct vm_area_struct *vma; 1215 struct vm_area_struct *prev; 1216 unsigned long tmp; 1217 int unmapped_error = 0; 1218 1219 /* 1220 * If the interval [start,end) covers some unmapped address 1221 * ranges, just ignore them, but return -ENOMEM at the end. 1222 * - different from the way of handling in mlock etc. 1223 */ 1224 vma = find_vma_prev(mm, start, &prev); 1225 if (vma && start > vma->vm_start) 1226 prev = vma; 1227 1228 for (;;) { 1229 int error; 1230 1231 /* Still start < end. */ 1232 if (!vma) 1233 return -ENOMEM; 1234 1235 /* Here start < (end|vma->vm_end). */ 1236 if (start < vma->vm_start) { 1237 unmapped_error = -ENOMEM; 1238 start = vma->vm_start; 1239 if (start >= end) 1240 break; 1241 } 1242 1243 /* Here vma->vm_start <= start < (end|vma->vm_end) */ 1244 tmp = vma->vm_end; 1245 if (end < tmp) 1246 tmp = end; 1247 1248 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */ 1249 error = visit(vma, &prev, start, tmp, arg); 1250 if (error) 1251 return error; 1252 start = tmp; 1253 if (prev && start < prev->vm_end) 1254 start = prev->vm_end; 1255 if (start >= end) 1256 break; 1257 if (prev) 1258 vma = find_vma(mm, prev->vm_end); 1259 else /* madvise_remove dropped mmap_lock */ 1260 vma = find_vma(mm, start); 1261 } 1262 1263 return unmapped_error; 1264 } 1265 1266 #ifdef CONFIG_ANON_VMA_NAME 1267 static int madvise_vma_anon_name(struct vm_area_struct *vma, 1268 struct vm_area_struct **prev, 1269 unsigned long start, unsigned long end, 1270 unsigned long anon_name) 1271 { 1272 int error; 1273 1274 /* Only anonymous mappings can be named */ 1275 if (vma->vm_file && !vma_is_anon_shmem(vma)) 1276 return -EBADF; 1277 1278 error = madvise_update_vma(vma, prev, start, end, vma->vm_flags, 1279 (struct anon_vma_name *)anon_name); 1280 1281 /* 1282 * madvise() returns EAGAIN if kernel resources, such as 1283 * slab, are temporarily unavailable. 1284 */ 1285 if (error == -ENOMEM) 1286 error = -EAGAIN; 1287 return error; 1288 } 1289 1290 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 1291 unsigned long len_in, struct anon_vma_name *anon_name) 1292 { 1293 unsigned long end; 1294 unsigned long len; 1295 1296 if (start & ~PAGE_MASK) 1297 return -EINVAL; 1298 len = (len_in + ~PAGE_MASK) & PAGE_MASK; 1299 1300 /* Check to see whether len was rounded up from small -ve to zero */ 1301 if (len_in && !len) 1302 return -EINVAL; 1303 1304 end = start + len; 1305 if (end < start) 1306 return -EINVAL; 1307 1308 if (end == start) 1309 return 0; 1310 1311 return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name, 1312 madvise_vma_anon_name); 1313 } 1314 #endif /* CONFIG_ANON_VMA_NAME */ 1315 /* 1316 * The madvise(2) system call. 1317 * 1318 * Applications can use madvise() to advise the kernel how it should 1319 * handle paging I/O in this VM area. The idea is to help the kernel 1320 * use appropriate read-ahead and caching techniques. The information 1321 * provided is advisory only, and can be safely disregarded by the 1322 * kernel without affecting the correct operation of the application. 1323 * 1324 * behavior values: 1325 * MADV_NORMAL - the default behavior is to read clusters. This 1326 * results in some read-ahead and read-behind. 1327 * MADV_RANDOM - the system should read the minimum amount of data 1328 * on any access, since it is unlikely that the appli- 1329 * cation will need more than what it asks for. 1330 * MADV_SEQUENTIAL - pages in the given range will probably be accessed 1331 * once, so they can be aggressively read ahead, and 1332 * can be freed soon after they are accessed. 1333 * MADV_WILLNEED - the application is notifying the system to read 1334 * some pages ahead. 1335 * MADV_DONTNEED - the application is finished with the given range, 1336 * so the kernel can free resources associated with it. 1337 * MADV_FREE - the application marks pages in the given range as lazy free, 1338 * where actual purges are postponed until memory pressure happens. 1339 * MADV_REMOVE - the application wants to free up the given range of 1340 * pages and associated backing store. 1341 * MADV_DONTFORK - omit this area from child's address space when forking: 1342 * typically, to avoid COWing pages pinned by get_user_pages(). 1343 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking. 1344 * MADV_WIPEONFORK - present the child process with zero-filled memory in this 1345 * range after a fork. 1346 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK 1347 * MADV_HWPOISON - trigger memory error handler as if the given memory range 1348 * were corrupted by unrecoverable hardware memory failure. 1349 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory. 1350 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in 1351 * this area with pages of identical content from other such areas. 1352 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others. 1353 * MADV_HUGEPAGE - the application wants to back the given range by transparent 1354 * huge pages in the future. Existing pages might be coalesced and 1355 * new pages might be allocated as THP. 1356 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by 1357 * transparent huge pages so the existing pages will not be 1358 * coalesced into THP and new pages will not be allocated as THP. 1359 * MADV_COLLAPSE - synchronously coalesce pages into new THP. 1360 * MADV_DONTDUMP - the application wants to prevent pages in the given range 1361 * from being included in its core dump. 1362 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump. 1363 * MADV_COLD - the application is not expected to use this memory soon, 1364 * deactivate pages in this range so that they can be reclaimed 1365 * easily if memory pressure happens. 1366 * MADV_PAGEOUT - the application is not expected to use this memory soon, 1367 * page out the pages in this range immediately. 1368 * MADV_POPULATE_READ - populate (prefault) page tables readable by 1369 * triggering read faults if required 1370 * MADV_POPULATE_WRITE - populate (prefault) page tables writable by 1371 * triggering write faults if required 1372 * 1373 * return values: 1374 * zero - success 1375 * -EINVAL - start + len < 0, start is not page-aligned, 1376 * "behavior" is not a valid value, or application 1377 * is attempting to release locked or shared pages, 1378 * or the specified address range includes file, Huge TLB, 1379 * MAP_SHARED or VMPFNMAP range. 1380 * -ENOMEM - addresses in the specified range are not currently 1381 * mapped, or are outside the AS of the process. 1382 * -EIO - an I/O error occurred while paging in data. 1383 * -EBADF - map exists, but area maps something that isn't a file. 1384 * -EAGAIN - a kernel resource was temporarily unavailable. 1385 */ 1386 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior) 1387 { 1388 unsigned long end; 1389 int error; 1390 int write; 1391 size_t len; 1392 struct blk_plug plug; 1393 1394 if (!madvise_behavior_valid(behavior)) 1395 return -EINVAL; 1396 1397 if (!PAGE_ALIGNED(start)) 1398 return -EINVAL; 1399 len = PAGE_ALIGN(len_in); 1400 1401 /* Check to see whether len was rounded up from small -ve to zero */ 1402 if (len_in && !len) 1403 return -EINVAL; 1404 1405 end = start + len; 1406 if (end < start) 1407 return -EINVAL; 1408 1409 if (end == start) 1410 return 0; 1411 1412 #ifdef CONFIG_MEMORY_FAILURE 1413 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE) 1414 return madvise_inject_error(behavior, start, start + len_in); 1415 #endif 1416 1417 write = madvise_need_mmap_write(behavior); 1418 if (write) { 1419 if (mmap_write_lock_killable(mm)) 1420 return -EINTR; 1421 } else { 1422 mmap_read_lock(mm); 1423 } 1424 1425 start = untagged_addr_remote(mm, start); 1426 end = start + len; 1427 1428 blk_start_plug(&plug); 1429 error = madvise_walk_vmas(mm, start, end, behavior, 1430 madvise_vma_behavior); 1431 blk_finish_plug(&plug); 1432 if (write) 1433 mmap_write_unlock(mm); 1434 else 1435 mmap_read_unlock(mm); 1436 1437 return error; 1438 } 1439 1440 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior) 1441 { 1442 return do_madvise(current->mm, start, len_in, behavior); 1443 } 1444 1445 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec, 1446 size_t, vlen, int, behavior, unsigned int, flags) 1447 { 1448 ssize_t ret; 1449 struct iovec iovstack[UIO_FASTIOV]; 1450 struct iovec *iov = iovstack; 1451 struct iov_iter iter; 1452 struct task_struct *task; 1453 struct mm_struct *mm; 1454 size_t total_len; 1455 unsigned int f_flags; 1456 1457 if (flags != 0) { 1458 ret = -EINVAL; 1459 goto out; 1460 } 1461 1462 ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter); 1463 if (ret < 0) 1464 goto out; 1465 1466 task = pidfd_get_task(pidfd, &f_flags); 1467 if (IS_ERR(task)) { 1468 ret = PTR_ERR(task); 1469 goto free_iov; 1470 } 1471 1472 if (!process_madvise_behavior_valid(behavior)) { 1473 ret = -EINVAL; 1474 goto release_task; 1475 } 1476 1477 /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */ 1478 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 1479 if (IS_ERR_OR_NULL(mm)) { 1480 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH; 1481 goto release_task; 1482 } 1483 1484 /* 1485 * Require CAP_SYS_NICE for influencing process performance. Note that 1486 * only non-destructive hints are currently supported. 1487 */ 1488 if (!capable(CAP_SYS_NICE)) { 1489 ret = -EPERM; 1490 goto release_mm; 1491 } 1492 1493 total_len = iov_iter_count(&iter); 1494 1495 while (iov_iter_count(&iter)) { 1496 ret = do_madvise(mm, (unsigned long)iter_iov_addr(&iter), 1497 iter_iov_len(&iter), behavior); 1498 if (ret < 0) 1499 break; 1500 iov_iter_advance(&iter, iter_iov_len(&iter)); 1501 } 1502 1503 ret = (total_len - iov_iter_count(&iter)) ? : ret; 1504 1505 release_mm: 1506 mmput(mm); 1507 release_task: 1508 put_task_struct(task); 1509 free_iov: 1510 kfree(iov); 1511 out: 1512 return ret; 1513 } 1514