xref: /linux/mm/madvise.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34 
35 #include <asm/tlb.h>
36 
37 #include "internal.h"
38 #include "swap.h"
39 
40 /*
41  * Maximum number of attempts we make to install guard pages before we give up
42  * and return -ERESTARTNOINTR to have userspace try again.
43  */
44 #define MAX_MADVISE_GUARD_RETRIES 3
45 
46 struct madvise_walk_private {
47 	struct mmu_gather *tlb;
48 	bool pageout;
49 };
50 
51 /*
52  * Any behaviour which results in changes to the vma->vm_flags needs to
53  * take mmap_lock for writing. Others, which simply traverse vmas, need
54  * to only take it for reading.
55  */
56 static int madvise_need_mmap_write(int behavior)
57 {
58 	switch (behavior) {
59 	case MADV_REMOVE:
60 	case MADV_WILLNEED:
61 	case MADV_DONTNEED:
62 	case MADV_DONTNEED_LOCKED:
63 	case MADV_COLD:
64 	case MADV_PAGEOUT:
65 	case MADV_FREE:
66 	case MADV_POPULATE_READ:
67 	case MADV_POPULATE_WRITE:
68 	case MADV_COLLAPSE:
69 	case MADV_GUARD_INSTALL:
70 	case MADV_GUARD_REMOVE:
71 		return 0;
72 	default:
73 		/* be safe, default to 1. list exceptions explicitly */
74 		return 1;
75 	}
76 }
77 
78 #ifdef CONFIG_ANON_VMA_NAME
79 struct anon_vma_name *anon_vma_name_alloc(const char *name)
80 {
81 	struct anon_vma_name *anon_name;
82 	size_t count;
83 
84 	/* Add 1 for NUL terminator at the end of the anon_name->name */
85 	count = strlen(name) + 1;
86 	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
87 	if (anon_name) {
88 		kref_init(&anon_name->kref);
89 		memcpy(anon_name->name, name, count);
90 	}
91 
92 	return anon_name;
93 }
94 
95 void anon_vma_name_free(struct kref *kref)
96 {
97 	struct anon_vma_name *anon_name =
98 			container_of(kref, struct anon_vma_name, kref);
99 	kfree(anon_name);
100 }
101 
102 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
103 {
104 	mmap_assert_locked(vma->vm_mm);
105 
106 	return vma->anon_name;
107 }
108 
109 /* mmap_lock should be write-locked */
110 static int replace_anon_vma_name(struct vm_area_struct *vma,
111 				 struct anon_vma_name *anon_name)
112 {
113 	struct anon_vma_name *orig_name = anon_vma_name(vma);
114 
115 	if (!anon_name) {
116 		vma->anon_name = NULL;
117 		anon_vma_name_put(orig_name);
118 		return 0;
119 	}
120 
121 	if (anon_vma_name_eq(orig_name, anon_name))
122 		return 0;
123 
124 	vma->anon_name = anon_vma_name_reuse(anon_name);
125 	anon_vma_name_put(orig_name);
126 
127 	return 0;
128 }
129 #else /* CONFIG_ANON_VMA_NAME */
130 static int replace_anon_vma_name(struct vm_area_struct *vma,
131 				 struct anon_vma_name *anon_name)
132 {
133 	if (anon_name)
134 		return -EINVAL;
135 
136 	return 0;
137 }
138 #endif /* CONFIG_ANON_VMA_NAME */
139 /*
140  * Update the vm_flags on region of a vma, splitting it or merging it as
141  * necessary.  Must be called with mmap_lock held for writing;
142  * Caller should ensure anon_name stability by raising its refcount even when
143  * anon_name belongs to a valid vma because this function might free that vma.
144  */
145 static int madvise_update_vma(struct vm_area_struct *vma,
146 			      struct vm_area_struct **prev, unsigned long start,
147 			      unsigned long end, unsigned long new_flags,
148 			      struct anon_vma_name *anon_name)
149 {
150 	struct mm_struct *mm = vma->vm_mm;
151 	int error;
152 	VMA_ITERATOR(vmi, mm, start);
153 
154 	if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
155 		*prev = vma;
156 		return 0;
157 	}
158 
159 	vma = vma_modify_flags_name(&vmi, *prev, vma, start, end, new_flags,
160 				    anon_name);
161 	if (IS_ERR(vma))
162 		return PTR_ERR(vma);
163 
164 	*prev = vma;
165 
166 	/* vm_flags is protected by the mmap_lock held in write mode. */
167 	vma_start_write(vma);
168 	vm_flags_reset(vma, new_flags);
169 	if (!vma->vm_file || vma_is_anon_shmem(vma)) {
170 		error = replace_anon_vma_name(vma, anon_name);
171 		if (error)
172 			return error;
173 	}
174 
175 	return 0;
176 }
177 
178 #ifdef CONFIG_SWAP
179 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
180 		unsigned long end, struct mm_walk *walk)
181 {
182 	struct vm_area_struct *vma = walk->private;
183 	struct swap_iocb *splug = NULL;
184 	pte_t *ptep = NULL;
185 	spinlock_t *ptl;
186 	unsigned long addr;
187 
188 	for (addr = start; addr < end; addr += PAGE_SIZE) {
189 		pte_t pte;
190 		swp_entry_t entry;
191 		struct folio *folio;
192 
193 		if (!ptep++) {
194 			ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
195 			if (!ptep)
196 				break;
197 		}
198 
199 		pte = ptep_get(ptep);
200 		if (!is_swap_pte(pte))
201 			continue;
202 		entry = pte_to_swp_entry(pte);
203 		if (unlikely(non_swap_entry(entry)))
204 			continue;
205 
206 		pte_unmap_unlock(ptep, ptl);
207 		ptep = NULL;
208 
209 		folio = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
210 					     vma, addr, &splug);
211 		if (folio)
212 			folio_put(folio);
213 	}
214 
215 	if (ptep)
216 		pte_unmap_unlock(ptep, ptl);
217 	swap_read_unplug(splug);
218 	cond_resched();
219 
220 	return 0;
221 }
222 
223 static const struct mm_walk_ops swapin_walk_ops = {
224 	.pmd_entry		= swapin_walk_pmd_entry,
225 	.walk_lock		= PGWALK_RDLOCK,
226 };
227 
228 static void shmem_swapin_range(struct vm_area_struct *vma,
229 		unsigned long start, unsigned long end,
230 		struct address_space *mapping)
231 {
232 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
233 	pgoff_t end_index = linear_page_index(vma, end) - 1;
234 	struct folio *folio;
235 	struct swap_iocb *splug = NULL;
236 
237 	rcu_read_lock();
238 	xas_for_each(&xas, folio, end_index) {
239 		unsigned long addr;
240 		swp_entry_t entry;
241 
242 		if (!xa_is_value(folio))
243 			continue;
244 		entry = radix_to_swp_entry(folio);
245 		/* There might be swapin error entries in shmem mapping. */
246 		if (non_swap_entry(entry))
247 			continue;
248 
249 		addr = vma->vm_start +
250 			((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT);
251 		xas_pause(&xas);
252 		rcu_read_unlock();
253 
254 		folio = read_swap_cache_async(entry, mapping_gfp_mask(mapping),
255 					     vma, addr, &splug);
256 		if (folio)
257 			folio_put(folio);
258 
259 		rcu_read_lock();
260 	}
261 	rcu_read_unlock();
262 	swap_read_unplug(splug);
263 }
264 #endif		/* CONFIG_SWAP */
265 
266 /*
267  * Schedule all required I/O operations.  Do not wait for completion.
268  */
269 static long madvise_willneed(struct vm_area_struct *vma,
270 			     struct vm_area_struct **prev,
271 			     unsigned long start, unsigned long end)
272 {
273 	struct mm_struct *mm = vma->vm_mm;
274 	struct file *file = vma->vm_file;
275 	loff_t offset;
276 
277 	*prev = vma;
278 #ifdef CONFIG_SWAP
279 	if (!file) {
280 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
281 		lru_add_drain(); /* Push any new pages onto the LRU now */
282 		return 0;
283 	}
284 
285 	if (shmem_mapping(file->f_mapping)) {
286 		shmem_swapin_range(vma, start, end, file->f_mapping);
287 		lru_add_drain(); /* Push any new pages onto the LRU now */
288 		return 0;
289 	}
290 #else
291 	if (!file)
292 		return -EBADF;
293 #endif
294 
295 	if (IS_DAX(file_inode(file))) {
296 		/* no bad return value, but ignore advice */
297 		return 0;
298 	}
299 
300 	/*
301 	 * Filesystem's fadvise may need to take various locks.  We need to
302 	 * explicitly grab a reference because the vma (and hence the
303 	 * vma's reference to the file) can go away as soon as we drop
304 	 * mmap_lock.
305 	 */
306 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
307 	get_file(file);
308 	offset = (loff_t)(start - vma->vm_start)
309 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
310 	mmap_read_unlock(mm);
311 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
312 	fput(file);
313 	mmap_read_lock(mm);
314 	return 0;
315 }
316 
317 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
318 {
319 	if (!vma->vm_file)
320 		return false;
321 	/*
322 	 * paging out pagecache only for non-anonymous mappings that correspond
323 	 * to the files the calling process could (if tried) open for writing;
324 	 * otherwise we'd be including shared non-exclusive mappings, which
325 	 * opens a side channel.
326 	 */
327 	return inode_owner_or_capable(&nop_mnt_idmap,
328 				      file_inode(vma->vm_file)) ||
329 	       file_permission(vma->vm_file, MAY_WRITE) == 0;
330 }
331 
332 static inline int madvise_folio_pte_batch(unsigned long addr, unsigned long end,
333 					  struct folio *folio, pte_t *ptep,
334 					  pte_t pte, bool *any_young,
335 					  bool *any_dirty)
336 {
337 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
338 	int max_nr = (end - addr) / PAGE_SIZE;
339 
340 	return folio_pte_batch(folio, addr, ptep, pte, max_nr, fpb_flags, NULL,
341 			       any_young, any_dirty);
342 }
343 
344 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
345 				unsigned long addr, unsigned long end,
346 				struct mm_walk *walk)
347 {
348 	struct madvise_walk_private *private = walk->private;
349 	struct mmu_gather *tlb = private->tlb;
350 	bool pageout = private->pageout;
351 	struct mm_struct *mm = tlb->mm;
352 	struct vm_area_struct *vma = walk->vma;
353 	pte_t *start_pte, *pte, ptent;
354 	spinlock_t *ptl;
355 	struct folio *folio = NULL;
356 	LIST_HEAD(folio_list);
357 	bool pageout_anon_only_filter;
358 	unsigned int batch_count = 0;
359 	int nr;
360 
361 	if (fatal_signal_pending(current))
362 		return -EINTR;
363 
364 	pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
365 					!can_do_file_pageout(vma);
366 
367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
368 	if (pmd_trans_huge(*pmd)) {
369 		pmd_t orig_pmd;
370 		unsigned long next = pmd_addr_end(addr, end);
371 
372 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
373 		ptl = pmd_trans_huge_lock(pmd, vma);
374 		if (!ptl)
375 			return 0;
376 
377 		orig_pmd = *pmd;
378 		if (is_huge_zero_pmd(orig_pmd))
379 			goto huge_unlock;
380 
381 		if (unlikely(!pmd_present(orig_pmd))) {
382 			VM_BUG_ON(thp_migration_supported() &&
383 					!is_pmd_migration_entry(orig_pmd));
384 			goto huge_unlock;
385 		}
386 
387 		folio = pmd_folio(orig_pmd);
388 
389 		/* Do not interfere with other mappings of this folio */
390 		if (folio_likely_mapped_shared(folio))
391 			goto huge_unlock;
392 
393 		if (pageout_anon_only_filter && !folio_test_anon(folio))
394 			goto huge_unlock;
395 
396 		if (next - addr != HPAGE_PMD_SIZE) {
397 			int err;
398 
399 			folio_get(folio);
400 			spin_unlock(ptl);
401 			folio_lock(folio);
402 			err = split_folio(folio);
403 			folio_unlock(folio);
404 			folio_put(folio);
405 			if (!err)
406 				goto regular_folio;
407 			return 0;
408 		}
409 
410 		if (!pageout && pmd_young(orig_pmd)) {
411 			pmdp_invalidate(vma, addr, pmd);
412 			orig_pmd = pmd_mkold(orig_pmd);
413 
414 			set_pmd_at(mm, addr, pmd, orig_pmd);
415 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
416 		}
417 
418 		folio_clear_referenced(folio);
419 		folio_test_clear_young(folio);
420 		if (folio_test_active(folio))
421 			folio_set_workingset(folio);
422 		if (pageout) {
423 			if (folio_isolate_lru(folio)) {
424 				if (folio_test_unevictable(folio))
425 					folio_putback_lru(folio);
426 				else
427 					list_add(&folio->lru, &folio_list);
428 			}
429 		} else
430 			folio_deactivate(folio);
431 huge_unlock:
432 		spin_unlock(ptl);
433 		if (pageout)
434 			reclaim_pages(&folio_list);
435 		return 0;
436 	}
437 
438 regular_folio:
439 #endif
440 	tlb_change_page_size(tlb, PAGE_SIZE);
441 restart:
442 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
443 	if (!start_pte)
444 		return 0;
445 	flush_tlb_batched_pending(mm);
446 	arch_enter_lazy_mmu_mode();
447 	for (; addr < end; pte += nr, addr += nr * PAGE_SIZE) {
448 		nr = 1;
449 		ptent = ptep_get(pte);
450 
451 		if (++batch_count == SWAP_CLUSTER_MAX) {
452 			batch_count = 0;
453 			if (need_resched()) {
454 				arch_leave_lazy_mmu_mode();
455 				pte_unmap_unlock(start_pte, ptl);
456 				cond_resched();
457 				goto restart;
458 			}
459 		}
460 
461 		if (pte_none(ptent))
462 			continue;
463 
464 		if (!pte_present(ptent))
465 			continue;
466 
467 		folio = vm_normal_folio(vma, addr, ptent);
468 		if (!folio || folio_is_zone_device(folio))
469 			continue;
470 
471 		/*
472 		 * If we encounter a large folio, only split it if it is not
473 		 * fully mapped within the range we are operating on. Otherwise
474 		 * leave it as is so that it can be swapped out whole. If we
475 		 * fail to split a folio, leave it in place and advance to the
476 		 * next pte in the range.
477 		 */
478 		if (folio_test_large(folio)) {
479 			bool any_young;
480 
481 			nr = madvise_folio_pte_batch(addr, end, folio, pte,
482 						     ptent, &any_young, NULL);
483 			if (any_young)
484 				ptent = pte_mkyoung(ptent);
485 
486 			if (nr < folio_nr_pages(folio)) {
487 				int err;
488 
489 				if (folio_likely_mapped_shared(folio))
490 					continue;
491 				if (pageout_anon_only_filter && !folio_test_anon(folio))
492 					continue;
493 				if (!folio_trylock(folio))
494 					continue;
495 				folio_get(folio);
496 				arch_leave_lazy_mmu_mode();
497 				pte_unmap_unlock(start_pte, ptl);
498 				start_pte = NULL;
499 				err = split_folio(folio);
500 				folio_unlock(folio);
501 				folio_put(folio);
502 				start_pte = pte =
503 					pte_offset_map_lock(mm, pmd, addr, &ptl);
504 				if (!start_pte)
505 					break;
506 				arch_enter_lazy_mmu_mode();
507 				if (!err)
508 					nr = 0;
509 				continue;
510 			}
511 		}
512 
513 		/*
514 		 * Do not interfere with other mappings of this folio and
515 		 * non-LRU folio. If we have a large folio at this point, we
516 		 * know it is fully mapped so if its mapcount is the same as its
517 		 * number of pages, it must be exclusive.
518 		 */
519 		if (!folio_test_lru(folio) ||
520 		    folio_mapcount(folio) != folio_nr_pages(folio))
521 			continue;
522 
523 		if (pageout_anon_only_filter && !folio_test_anon(folio))
524 			continue;
525 
526 		if (!pageout && pte_young(ptent)) {
527 			clear_young_dirty_ptes(vma, addr, pte, nr,
528 					       CYDP_CLEAR_YOUNG);
529 			tlb_remove_tlb_entries(tlb, pte, nr, addr);
530 		}
531 
532 		/*
533 		 * We are deactivating a folio for accelerating reclaiming.
534 		 * VM couldn't reclaim the folio unless we clear PG_young.
535 		 * As a side effect, it makes confuse idle-page tracking
536 		 * because they will miss recent referenced history.
537 		 */
538 		folio_clear_referenced(folio);
539 		folio_test_clear_young(folio);
540 		if (folio_test_active(folio))
541 			folio_set_workingset(folio);
542 		if (pageout) {
543 			if (folio_isolate_lru(folio)) {
544 				if (folio_test_unevictable(folio))
545 					folio_putback_lru(folio);
546 				else
547 					list_add(&folio->lru, &folio_list);
548 			}
549 		} else
550 			folio_deactivate(folio);
551 	}
552 
553 	if (start_pte) {
554 		arch_leave_lazy_mmu_mode();
555 		pte_unmap_unlock(start_pte, ptl);
556 	}
557 	if (pageout)
558 		reclaim_pages(&folio_list);
559 	cond_resched();
560 
561 	return 0;
562 }
563 
564 static const struct mm_walk_ops cold_walk_ops = {
565 	.pmd_entry = madvise_cold_or_pageout_pte_range,
566 	.walk_lock = PGWALK_RDLOCK,
567 };
568 
569 static void madvise_cold_page_range(struct mmu_gather *tlb,
570 			     struct vm_area_struct *vma,
571 			     unsigned long addr, unsigned long end)
572 {
573 	struct madvise_walk_private walk_private = {
574 		.pageout = false,
575 		.tlb = tlb,
576 	};
577 
578 	tlb_start_vma(tlb, vma);
579 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
580 	tlb_end_vma(tlb, vma);
581 }
582 
583 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
584 {
585 	return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
586 }
587 
588 static long madvise_cold(struct vm_area_struct *vma,
589 			struct vm_area_struct **prev,
590 			unsigned long start_addr, unsigned long end_addr)
591 {
592 	struct mm_struct *mm = vma->vm_mm;
593 	struct mmu_gather tlb;
594 
595 	*prev = vma;
596 	if (!can_madv_lru_vma(vma))
597 		return -EINVAL;
598 
599 	lru_add_drain();
600 	tlb_gather_mmu(&tlb, mm);
601 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
602 	tlb_finish_mmu(&tlb);
603 
604 	return 0;
605 }
606 
607 static void madvise_pageout_page_range(struct mmu_gather *tlb,
608 			     struct vm_area_struct *vma,
609 			     unsigned long addr, unsigned long end)
610 {
611 	struct madvise_walk_private walk_private = {
612 		.pageout = true,
613 		.tlb = tlb,
614 	};
615 
616 	tlb_start_vma(tlb, vma);
617 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
618 	tlb_end_vma(tlb, vma);
619 }
620 
621 static long madvise_pageout(struct vm_area_struct *vma,
622 			struct vm_area_struct **prev,
623 			unsigned long start_addr, unsigned long end_addr)
624 {
625 	struct mm_struct *mm = vma->vm_mm;
626 	struct mmu_gather tlb;
627 
628 	*prev = vma;
629 	if (!can_madv_lru_vma(vma))
630 		return -EINVAL;
631 
632 	/*
633 	 * If the VMA belongs to a private file mapping, there can be private
634 	 * dirty pages which can be paged out if even this process is neither
635 	 * owner nor write capable of the file. We allow private file mappings
636 	 * further to pageout dirty anon pages.
637 	 */
638 	if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
639 				(vma->vm_flags & VM_MAYSHARE)))
640 		return 0;
641 
642 	lru_add_drain();
643 	tlb_gather_mmu(&tlb, mm);
644 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
645 	tlb_finish_mmu(&tlb);
646 
647 	return 0;
648 }
649 
650 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
651 				unsigned long end, struct mm_walk *walk)
652 
653 {
654 	const cydp_t cydp_flags = CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY;
655 	struct mmu_gather *tlb = walk->private;
656 	struct mm_struct *mm = tlb->mm;
657 	struct vm_area_struct *vma = walk->vma;
658 	spinlock_t *ptl;
659 	pte_t *start_pte, *pte, ptent;
660 	struct folio *folio;
661 	int nr_swap = 0;
662 	unsigned long next;
663 	int nr, max_nr;
664 
665 	next = pmd_addr_end(addr, end);
666 	if (pmd_trans_huge(*pmd))
667 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
668 			return 0;
669 
670 	tlb_change_page_size(tlb, PAGE_SIZE);
671 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
672 	if (!start_pte)
673 		return 0;
674 	flush_tlb_batched_pending(mm);
675 	arch_enter_lazy_mmu_mode();
676 	for (; addr != end; pte += nr, addr += PAGE_SIZE * nr) {
677 		nr = 1;
678 		ptent = ptep_get(pte);
679 
680 		if (pte_none(ptent))
681 			continue;
682 		/*
683 		 * If the pte has swp_entry, just clear page table to
684 		 * prevent swap-in which is more expensive rather than
685 		 * (page allocation + zeroing).
686 		 */
687 		if (!pte_present(ptent)) {
688 			swp_entry_t entry;
689 
690 			entry = pte_to_swp_entry(ptent);
691 			if (!non_swap_entry(entry)) {
692 				max_nr = (end - addr) / PAGE_SIZE;
693 				nr = swap_pte_batch(pte, max_nr, ptent);
694 				nr_swap -= nr;
695 				free_swap_and_cache_nr(entry, nr);
696 				clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
697 			} else if (is_hwpoison_entry(entry) ||
698 				   is_poisoned_swp_entry(entry)) {
699 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
700 			}
701 			continue;
702 		}
703 
704 		folio = vm_normal_folio(vma, addr, ptent);
705 		if (!folio || folio_is_zone_device(folio))
706 			continue;
707 
708 		/*
709 		 * If we encounter a large folio, only split it if it is not
710 		 * fully mapped within the range we are operating on. Otherwise
711 		 * leave it as is so that it can be marked as lazyfree. If we
712 		 * fail to split a folio, leave it in place and advance to the
713 		 * next pte in the range.
714 		 */
715 		if (folio_test_large(folio)) {
716 			bool any_young, any_dirty;
717 
718 			nr = madvise_folio_pte_batch(addr, end, folio, pte,
719 						     ptent, &any_young, &any_dirty);
720 
721 			if (nr < folio_nr_pages(folio)) {
722 				int err;
723 
724 				if (folio_likely_mapped_shared(folio))
725 					continue;
726 				if (!folio_trylock(folio))
727 					continue;
728 				folio_get(folio);
729 				arch_leave_lazy_mmu_mode();
730 				pte_unmap_unlock(start_pte, ptl);
731 				start_pte = NULL;
732 				err = split_folio(folio);
733 				folio_unlock(folio);
734 				folio_put(folio);
735 				pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
736 				start_pte = pte;
737 				if (!start_pte)
738 					break;
739 				arch_enter_lazy_mmu_mode();
740 				if (!err)
741 					nr = 0;
742 				continue;
743 			}
744 
745 			if (any_young)
746 				ptent = pte_mkyoung(ptent);
747 			if (any_dirty)
748 				ptent = pte_mkdirty(ptent);
749 		}
750 
751 		if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
752 			if (!folio_trylock(folio))
753 				continue;
754 			/*
755 			 * If we have a large folio at this point, we know it is
756 			 * fully mapped so if its mapcount is the same as its
757 			 * number of pages, it must be exclusive.
758 			 */
759 			if (folio_mapcount(folio) != folio_nr_pages(folio)) {
760 				folio_unlock(folio);
761 				continue;
762 			}
763 
764 			if (folio_test_swapcache(folio) &&
765 			    !folio_free_swap(folio)) {
766 				folio_unlock(folio);
767 				continue;
768 			}
769 
770 			folio_clear_dirty(folio);
771 			folio_unlock(folio);
772 		}
773 
774 		if (pte_young(ptent) || pte_dirty(ptent)) {
775 			clear_young_dirty_ptes(vma, addr, pte, nr, cydp_flags);
776 			tlb_remove_tlb_entries(tlb, pte, nr, addr);
777 		}
778 		folio_mark_lazyfree(folio);
779 	}
780 
781 	if (nr_swap)
782 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
783 	if (start_pte) {
784 		arch_leave_lazy_mmu_mode();
785 		pte_unmap_unlock(start_pte, ptl);
786 	}
787 	cond_resched();
788 
789 	return 0;
790 }
791 
792 static const struct mm_walk_ops madvise_free_walk_ops = {
793 	.pmd_entry		= madvise_free_pte_range,
794 	.walk_lock		= PGWALK_RDLOCK,
795 };
796 
797 static int madvise_free_single_vma(struct vm_area_struct *vma,
798 			unsigned long start_addr, unsigned long end_addr)
799 {
800 	struct mm_struct *mm = vma->vm_mm;
801 	struct mmu_notifier_range range;
802 	struct mmu_gather tlb;
803 
804 	/* MADV_FREE works for only anon vma at the moment */
805 	if (!vma_is_anonymous(vma))
806 		return -EINVAL;
807 
808 	range.start = max(vma->vm_start, start_addr);
809 	if (range.start >= vma->vm_end)
810 		return -EINVAL;
811 	range.end = min(vma->vm_end, end_addr);
812 	if (range.end <= vma->vm_start)
813 		return -EINVAL;
814 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
815 				range.start, range.end);
816 
817 	lru_add_drain();
818 	tlb_gather_mmu(&tlb, mm);
819 	update_hiwater_rss(mm);
820 
821 	mmu_notifier_invalidate_range_start(&range);
822 	tlb_start_vma(&tlb, vma);
823 	walk_page_range(vma->vm_mm, range.start, range.end,
824 			&madvise_free_walk_ops, &tlb);
825 	tlb_end_vma(&tlb, vma);
826 	mmu_notifier_invalidate_range_end(&range);
827 	tlb_finish_mmu(&tlb);
828 
829 	return 0;
830 }
831 
832 /*
833  * Application no longer needs these pages.  If the pages are dirty,
834  * it's OK to just throw them away.  The app will be more careful about
835  * data it wants to keep.  Be sure to free swap resources too.  The
836  * zap_page_range_single call sets things up for shrink_active_list to actually
837  * free these pages later if no one else has touched them in the meantime,
838  * although we could add these pages to a global reuse list for
839  * shrink_active_list to pick up before reclaiming other pages.
840  *
841  * NB: This interface discards data rather than pushes it out to swap,
842  * as some implementations do.  This has performance implications for
843  * applications like large transactional databases which want to discard
844  * pages in anonymous maps after committing to backing store the data
845  * that was kept in them.  There is no reason to write this data out to
846  * the swap area if the application is discarding it.
847  *
848  * An interface that causes the system to free clean pages and flush
849  * dirty pages is already available as msync(MS_INVALIDATE).
850  */
851 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
852 					unsigned long start, unsigned long end)
853 {
854 	zap_page_range_single(vma, start, end - start, NULL);
855 	return 0;
856 }
857 
858 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
859 					    unsigned long start,
860 					    unsigned long *end,
861 					    int behavior)
862 {
863 	if (!is_vm_hugetlb_page(vma)) {
864 		unsigned int forbidden = VM_PFNMAP;
865 
866 		if (behavior != MADV_DONTNEED_LOCKED)
867 			forbidden |= VM_LOCKED;
868 
869 		return !(vma->vm_flags & forbidden);
870 	}
871 
872 	if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
873 		return false;
874 	if (start & ~huge_page_mask(hstate_vma(vma)))
875 		return false;
876 
877 	/*
878 	 * Madvise callers expect the length to be rounded up to PAGE_SIZE
879 	 * boundaries, and may be unaware that this VMA uses huge pages.
880 	 * Avoid unexpected data loss by rounding down the number of
881 	 * huge pages freed.
882 	 */
883 	*end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
884 
885 	return true;
886 }
887 
888 static long madvise_dontneed_free(struct vm_area_struct *vma,
889 				  struct vm_area_struct **prev,
890 				  unsigned long start, unsigned long end,
891 				  int behavior)
892 {
893 	struct mm_struct *mm = vma->vm_mm;
894 
895 	*prev = vma;
896 	if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
897 		return -EINVAL;
898 
899 	if (start == end)
900 		return 0;
901 
902 	if (!userfaultfd_remove(vma, start, end)) {
903 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
904 
905 		mmap_read_lock(mm);
906 		vma = vma_lookup(mm, start);
907 		if (!vma)
908 			return -ENOMEM;
909 		/*
910 		 * Potential end adjustment for hugetlb vma is OK as
911 		 * the check below keeps end within vma.
912 		 */
913 		if (!madvise_dontneed_free_valid_vma(vma, start, &end,
914 						     behavior))
915 			return -EINVAL;
916 		if (end > vma->vm_end) {
917 			/*
918 			 * Don't fail if end > vma->vm_end. If the old
919 			 * vma was split while the mmap_lock was
920 			 * released the effect of the concurrent
921 			 * operation may not cause madvise() to
922 			 * have an undefined result. There may be an
923 			 * adjacent next vma that we'll walk
924 			 * next. userfaultfd_remove() will generate an
925 			 * UFFD_EVENT_REMOVE repetition on the
926 			 * end-vma->vm_end range, but the manager can
927 			 * handle a repetition fine.
928 			 */
929 			end = vma->vm_end;
930 		}
931 		VM_WARN_ON(start >= end);
932 	}
933 
934 	if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
935 		return madvise_dontneed_single_vma(vma, start, end);
936 	else if (behavior == MADV_FREE)
937 		return madvise_free_single_vma(vma, start, end);
938 	else
939 		return -EINVAL;
940 }
941 
942 static long madvise_populate(struct mm_struct *mm, unsigned long start,
943 		unsigned long end, int behavior)
944 {
945 	const bool write = behavior == MADV_POPULATE_WRITE;
946 	int locked = 1;
947 	long pages;
948 
949 	while (start < end) {
950 		/* Populate (prefault) page tables readable/writable. */
951 		pages = faultin_page_range(mm, start, end, write, &locked);
952 		if (!locked) {
953 			mmap_read_lock(mm);
954 			locked = 1;
955 		}
956 		if (pages < 0) {
957 			switch (pages) {
958 			case -EINTR:
959 				return -EINTR;
960 			case -EINVAL: /* Incompatible mappings / permissions. */
961 				return -EINVAL;
962 			case -EHWPOISON:
963 				return -EHWPOISON;
964 			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
965 				return -EFAULT;
966 			default:
967 				pr_warn_once("%s: unhandled return value: %ld\n",
968 					     __func__, pages);
969 				fallthrough;
970 			case -ENOMEM: /* No VMA or out of memory. */
971 				return -ENOMEM;
972 			}
973 		}
974 		start += pages * PAGE_SIZE;
975 	}
976 	return 0;
977 }
978 
979 /*
980  * Application wants to free up the pages and associated backing store.
981  * This is effectively punching a hole into the middle of a file.
982  */
983 static long madvise_remove(struct vm_area_struct *vma,
984 				struct vm_area_struct **prev,
985 				unsigned long start, unsigned long end)
986 {
987 	loff_t offset;
988 	int error;
989 	struct file *f;
990 	struct mm_struct *mm = vma->vm_mm;
991 
992 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
993 
994 	if (vma->vm_flags & VM_LOCKED)
995 		return -EINVAL;
996 
997 	f = vma->vm_file;
998 
999 	if (!f || !f->f_mapping || !f->f_mapping->host) {
1000 			return -EINVAL;
1001 	}
1002 
1003 	if (!vma_is_shared_maywrite(vma))
1004 		return -EACCES;
1005 
1006 	offset = (loff_t)(start - vma->vm_start)
1007 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
1008 
1009 	/*
1010 	 * Filesystem's fallocate may need to take i_rwsem.  We need to
1011 	 * explicitly grab a reference because the vma (and hence the
1012 	 * vma's reference to the file) can go away as soon as we drop
1013 	 * mmap_lock.
1014 	 */
1015 	get_file(f);
1016 	if (userfaultfd_remove(vma, start, end)) {
1017 		/* mmap_lock was not released by userfaultfd_remove() */
1018 		mmap_read_unlock(mm);
1019 	}
1020 	error = vfs_fallocate(f,
1021 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1022 				offset, end - start);
1023 	fput(f);
1024 	mmap_read_lock(mm);
1025 	return error;
1026 }
1027 
1028 static bool is_valid_guard_vma(struct vm_area_struct *vma, bool allow_locked)
1029 {
1030 	vm_flags_t disallowed = VM_SPECIAL | VM_HUGETLB;
1031 
1032 	/*
1033 	 * A user could lock after setting a guard range but that's fine, as
1034 	 * they'd not be able to fault in. The issue arises when we try to zap
1035 	 * existing locked VMAs. We don't want to do that.
1036 	 */
1037 	if (!allow_locked)
1038 		disallowed |= VM_LOCKED;
1039 
1040 	if (!vma_is_anonymous(vma))
1041 		return false;
1042 
1043 	if ((vma->vm_flags & (VM_MAYWRITE | disallowed)) != VM_MAYWRITE)
1044 		return false;
1045 
1046 	return true;
1047 }
1048 
1049 static bool is_guard_pte_marker(pte_t ptent)
1050 {
1051 	return is_pte_marker(ptent) &&
1052 		is_guard_swp_entry(pte_to_swp_entry(ptent));
1053 }
1054 
1055 static int guard_install_pud_entry(pud_t *pud, unsigned long addr,
1056 				   unsigned long next, struct mm_walk *walk)
1057 {
1058 	pud_t pudval = pudp_get(pud);
1059 
1060 	/* If huge return >0 so we abort the operation + zap. */
1061 	return pud_trans_huge(pudval) || pud_devmap(pudval);
1062 }
1063 
1064 static int guard_install_pmd_entry(pmd_t *pmd, unsigned long addr,
1065 				   unsigned long next, struct mm_walk *walk)
1066 {
1067 	pmd_t pmdval = pmdp_get(pmd);
1068 
1069 	/* If huge return >0 so we abort the operation + zap. */
1070 	return pmd_trans_huge(pmdval) || pmd_devmap(pmdval);
1071 }
1072 
1073 static int guard_install_pte_entry(pte_t *pte, unsigned long addr,
1074 				   unsigned long next, struct mm_walk *walk)
1075 {
1076 	pte_t pteval = ptep_get(pte);
1077 	unsigned long *nr_pages = (unsigned long *)walk->private;
1078 
1079 	/* If there is already a guard page marker, we have nothing to do. */
1080 	if (is_guard_pte_marker(pteval)) {
1081 		(*nr_pages)++;
1082 
1083 		return 0;
1084 	}
1085 
1086 	/* If populated return >0 so we abort the operation + zap. */
1087 	return 1;
1088 }
1089 
1090 static int guard_install_set_pte(unsigned long addr, unsigned long next,
1091 				 pte_t *ptep, struct mm_walk *walk)
1092 {
1093 	unsigned long *nr_pages = (unsigned long *)walk->private;
1094 
1095 	/* Simply install a PTE marker, this causes segfault on access. */
1096 	*ptep = make_pte_marker(PTE_MARKER_GUARD);
1097 	(*nr_pages)++;
1098 
1099 	return 0;
1100 }
1101 
1102 static const struct mm_walk_ops guard_install_walk_ops = {
1103 	.pud_entry		= guard_install_pud_entry,
1104 	.pmd_entry		= guard_install_pmd_entry,
1105 	.pte_entry		= guard_install_pte_entry,
1106 	.install_pte		= guard_install_set_pte,
1107 	.walk_lock		= PGWALK_RDLOCK,
1108 };
1109 
1110 static long madvise_guard_install(struct vm_area_struct *vma,
1111 				 struct vm_area_struct **prev,
1112 				 unsigned long start, unsigned long end)
1113 {
1114 	long err;
1115 	int i;
1116 
1117 	*prev = vma;
1118 	if (!is_valid_guard_vma(vma, /* allow_locked = */false))
1119 		return -EINVAL;
1120 
1121 	/*
1122 	 * If we install guard markers, then the range is no longer
1123 	 * empty from a page table perspective and therefore it's
1124 	 * appropriate to have an anon_vma.
1125 	 *
1126 	 * This ensures that on fork, we copy page tables correctly.
1127 	 */
1128 	err = anon_vma_prepare(vma);
1129 	if (err)
1130 		return err;
1131 
1132 	/*
1133 	 * Optimistically try to install the guard marker pages first. If any
1134 	 * non-guard pages are encountered, give up and zap the range before
1135 	 * trying again.
1136 	 *
1137 	 * We try a few times before giving up and releasing back to userland to
1138 	 * loop around, releasing locks in the process to avoid contention. This
1139 	 * would only happen if there was a great many racing page faults.
1140 	 *
1141 	 * In most cases we should simply install the guard markers immediately
1142 	 * with no zap or looping.
1143 	 */
1144 	for (i = 0; i < MAX_MADVISE_GUARD_RETRIES; i++) {
1145 		unsigned long nr_pages = 0;
1146 
1147 		/* Returns < 0 on error, == 0 if success, > 0 if zap needed. */
1148 		err = walk_page_range_mm(vma->vm_mm, start, end,
1149 					 &guard_install_walk_ops, &nr_pages);
1150 		if (err < 0)
1151 			return err;
1152 
1153 		if (err == 0) {
1154 			unsigned long nr_expected_pages = PHYS_PFN(end - start);
1155 
1156 			VM_WARN_ON(nr_pages != nr_expected_pages);
1157 			return 0;
1158 		}
1159 
1160 		/*
1161 		 * OK some of the range have non-guard pages mapped, zap
1162 		 * them. This leaves existing guard pages in place.
1163 		 */
1164 		zap_page_range_single(vma, start, end - start, NULL);
1165 	}
1166 
1167 	/*
1168 	 * We were unable to install the guard pages due to being raced by page
1169 	 * faults. This should not happen ordinarily. We return to userspace and
1170 	 * immediately retry, relieving lock contention.
1171 	 */
1172 	return restart_syscall();
1173 }
1174 
1175 static int guard_remove_pud_entry(pud_t *pud, unsigned long addr,
1176 				  unsigned long next, struct mm_walk *walk)
1177 {
1178 	pud_t pudval = pudp_get(pud);
1179 
1180 	/* If huge, cannot have guard pages present, so no-op - skip. */
1181 	if (pud_trans_huge(pudval) || pud_devmap(pudval))
1182 		walk->action = ACTION_CONTINUE;
1183 
1184 	return 0;
1185 }
1186 
1187 static int guard_remove_pmd_entry(pmd_t *pmd, unsigned long addr,
1188 				  unsigned long next, struct mm_walk *walk)
1189 {
1190 	pmd_t pmdval = pmdp_get(pmd);
1191 
1192 	/* If huge, cannot have guard pages present, so no-op - skip. */
1193 	if (pmd_trans_huge(pmdval) || pmd_devmap(pmdval))
1194 		walk->action = ACTION_CONTINUE;
1195 
1196 	return 0;
1197 }
1198 
1199 static int guard_remove_pte_entry(pte_t *pte, unsigned long addr,
1200 				  unsigned long next, struct mm_walk *walk)
1201 {
1202 	pte_t ptent = ptep_get(pte);
1203 
1204 	if (is_guard_pte_marker(ptent)) {
1205 		/* Simply clear the PTE marker. */
1206 		pte_clear_not_present_full(walk->mm, addr, pte, false);
1207 		update_mmu_cache(walk->vma, addr, pte);
1208 	}
1209 
1210 	return 0;
1211 }
1212 
1213 static const struct mm_walk_ops guard_remove_walk_ops = {
1214 	.pud_entry		= guard_remove_pud_entry,
1215 	.pmd_entry		= guard_remove_pmd_entry,
1216 	.pte_entry		= guard_remove_pte_entry,
1217 	.walk_lock		= PGWALK_RDLOCK,
1218 };
1219 
1220 static long madvise_guard_remove(struct vm_area_struct *vma,
1221 				 struct vm_area_struct **prev,
1222 				 unsigned long start, unsigned long end)
1223 {
1224 	*prev = vma;
1225 	/*
1226 	 * We're ok with removing guards in mlock()'d ranges, as this is a
1227 	 * non-destructive action.
1228 	 */
1229 	if (!is_valid_guard_vma(vma, /* allow_locked = */true))
1230 		return -EINVAL;
1231 
1232 	return walk_page_range(vma->vm_mm, start, end,
1233 			       &guard_remove_walk_ops, NULL);
1234 }
1235 
1236 /*
1237  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
1238  * will handle splitting a vm area into separate areas, each area with its own
1239  * behavior.
1240  */
1241 static int madvise_vma_behavior(struct vm_area_struct *vma,
1242 				struct vm_area_struct **prev,
1243 				unsigned long start, unsigned long end,
1244 				unsigned long behavior)
1245 {
1246 	int error;
1247 	struct anon_vma_name *anon_name;
1248 	unsigned long new_flags = vma->vm_flags;
1249 
1250 	if (unlikely(!can_modify_vma_madv(vma, behavior)))
1251 		return -EPERM;
1252 
1253 	switch (behavior) {
1254 	case MADV_REMOVE:
1255 		return madvise_remove(vma, prev, start, end);
1256 	case MADV_WILLNEED:
1257 		return madvise_willneed(vma, prev, start, end);
1258 	case MADV_COLD:
1259 		return madvise_cold(vma, prev, start, end);
1260 	case MADV_PAGEOUT:
1261 		return madvise_pageout(vma, prev, start, end);
1262 	case MADV_FREE:
1263 	case MADV_DONTNEED:
1264 	case MADV_DONTNEED_LOCKED:
1265 		return madvise_dontneed_free(vma, prev, start, end, behavior);
1266 	case MADV_NORMAL:
1267 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1268 		break;
1269 	case MADV_SEQUENTIAL:
1270 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1271 		break;
1272 	case MADV_RANDOM:
1273 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1274 		break;
1275 	case MADV_DONTFORK:
1276 		new_flags |= VM_DONTCOPY;
1277 		break;
1278 	case MADV_DOFORK:
1279 		if (vma->vm_flags & VM_IO)
1280 			return -EINVAL;
1281 		new_flags &= ~VM_DONTCOPY;
1282 		break;
1283 	case MADV_WIPEONFORK:
1284 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
1285 		if (vma->vm_file || vma->vm_flags & VM_SHARED)
1286 			return -EINVAL;
1287 		new_flags |= VM_WIPEONFORK;
1288 		break;
1289 	case MADV_KEEPONFORK:
1290 		if (vma->vm_flags & VM_DROPPABLE)
1291 			return -EINVAL;
1292 		new_flags &= ~VM_WIPEONFORK;
1293 		break;
1294 	case MADV_DONTDUMP:
1295 		new_flags |= VM_DONTDUMP;
1296 		break;
1297 	case MADV_DODUMP:
1298 		if ((!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) ||
1299 		    (vma->vm_flags & VM_DROPPABLE))
1300 			return -EINVAL;
1301 		new_flags &= ~VM_DONTDUMP;
1302 		break;
1303 	case MADV_MERGEABLE:
1304 	case MADV_UNMERGEABLE:
1305 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
1306 		if (error)
1307 			goto out;
1308 		break;
1309 	case MADV_HUGEPAGE:
1310 	case MADV_NOHUGEPAGE:
1311 		error = hugepage_madvise(vma, &new_flags, behavior);
1312 		if (error)
1313 			goto out;
1314 		break;
1315 	case MADV_COLLAPSE:
1316 		return madvise_collapse(vma, prev, start, end);
1317 	case MADV_GUARD_INSTALL:
1318 		return madvise_guard_install(vma, prev, start, end);
1319 	case MADV_GUARD_REMOVE:
1320 		return madvise_guard_remove(vma, prev, start, end);
1321 	}
1322 
1323 	anon_name = anon_vma_name(vma);
1324 	anon_vma_name_get(anon_name);
1325 	error = madvise_update_vma(vma, prev, start, end, new_flags,
1326 				   anon_name);
1327 	anon_vma_name_put(anon_name);
1328 
1329 out:
1330 	/*
1331 	 * madvise() returns EAGAIN if kernel resources, such as
1332 	 * slab, are temporarily unavailable.
1333 	 */
1334 	if (error == -ENOMEM)
1335 		error = -EAGAIN;
1336 	return error;
1337 }
1338 
1339 #ifdef CONFIG_MEMORY_FAILURE
1340 /*
1341  * Error injection support for memory error handling.
1342  */
1343 static int madvise_inject_error(int behavior,
1344 		unsigned long start, unsigned long end)
1345 {
1346 	unsigned long size;
1347 
1348 	if (!capable(CAP_SYS_ADMIN))
1349 		return -EPERM;
1350 
1351 
1352 	for (; start < end; start += size) {
1353 		unsigned long pfn;
1354 		struct page *page;
1355 		int ret;
1356 
1357 		ret = get_user_pages_fast(start, 1, 0, &page);
1358 		if (ret != 1)
1359 			return ret;
1360 		pfn = page_to_pfn(page);
1361 
1362 		/*
1363 		 * When soft offlining hugepages, after migrating the page
1364 		 * we dissolve it, therefore in the second loop "page" will
1365 		 * no longer be a compound page.
1366 		 */
1367 		size = page_size(compound_head(page));
1368 
1369 		if (behavior == MADV_SOFT_OFFLINE) {
1370 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1371 				 pfn, start);
1372 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1373 		} else {
1374 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1375 				 pfn, start);
1376 			ret = memory_failure(pfn, MF_ACTION_REQUIRED | MF_COUNT_INCREASED | MF_SW_SIMULATED);
1377 			if (ret == -EOPNOTSUPP)
1378 				ret = 0;
1379 		}
1380 
1381 		if (ret)
1382 			return ret;
1383 	}
1384 
1385 	return 0;
1386 }
1387 #endif
1388 
1389 static bool
1390 madvise_behavior_valid(int behavior)
1391 {
1392 	switch (behavior) {
1393 	case MADV_DOFORK:
1394 	case MADV_DONTFORK:
1395 	case MADV_NORMAL:
1396 	case MADV_SEQUENTIAL:
1397 	case MADV_RANDOM:
1398 	case MADV_REMOVE:
1399 	case MADV_WILLNEED:
1400 	case MADV_DONTNEED:
1401 	case MADV_DONTNEED_LOCKED:
1402 	case MADV_FREE:
1403 	case MADV_COLD:
1404 	case MADV_PAGEOUT:
1405 	case MADV_POPULATE_READ:
1406 	case MADV_POPULATE_WRITE:
1407 #ifdef CONFIG_KSM
1408 	case MADV_MERGEABLE:
1409 	case MADV_UNMERGEABLE:
1410 #endif
1411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412 	case MADV_HUGEPAGE:
1413 	case MADV_NOHUGEPAGE:
1414 	case MADV_COLLAPSE:
1415 #endif
1416 	case MADV_DONTDUMP:
1417 	case MADV_DODUMP:
1418 	case MADV_WIPEONFORK:
1419 	case MADV_KEEPONFORK:
1420 	case MADV_GUARD_INSTALL:
1421 	case MADV_GUARD_REMOVE:
1422 #ifdef CONFIG_MEMORY_FAILURE
1423 	case MADV_SOFT_OFFLINE:
1424 	case MADV_HWPOISON:
1425 #endif
1426 		return true;
1427 
1428 	default:
1429 		return false;
1430 	}
1431 }
1432 
1433 /* Can we invoke process_madvise() on a remote mm for the specified behavior? */
1434 static bool process_madvise_remote_valid(int behavior)
1435 {
1436 	switch (behavior) {
1437 	case MADV_COLD:
1438 	case MADV_PAGEOUT:
1439 	case MADV_WILLNEED:
1440 	case MADV_COLLAPSE:
1441 		return true;
1442 	default:
1443 		return false;
1444 	}
1445 }
1446 
1447 /*
1448  * Walk the vmas in range [start,end), and call the visit function on each one.
1449  * The visit function will get start and end parameters that cover the overlap
1450  * between the current vma and the original range.  Any unmapped regions in the
1451  * original range will result in this function returning -ENOMEM while still
1452  * calling the visit function on all of the existing vmas in the range.
1453  * Must be called with the mmap_lock held for reading or writing.
1454  */
1455 static
1456 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1457 		      unsigned long end, unsigned long arg,
1458 		      int (*visit)(struct vm_area_struct *vma,
1459 				   struct vm_area_struct **prev, unsigned long start,
1460 				   unsigned long end, unsigned long arg))
1461 {
1462 	struct vm_area_struct *vma;
1463 	struct vm_area_struct *prev;
1464 	unsigned long tmp;
1465 	int unmapped_error = 0;
1466 
1467 	/*
1468 	 * If the interval [start,end) covers some unmapped address
1469 	 * ranges, just ignore them, but return -ENOMEM at the end.
1470 	 * - different from the way of handling in mlock etc.
1471 	 */
1472 	vma = find_vma_prev(mm, start, &prev);
1473 	if (vma && start > vma->vm_start)
1474 		prev = vma;
1475 
1476 	for (;;) {
1477 		int error;
1478 
1479 		/* Still start < end. */
1480 		if (!vma)
1481 			return -ENOMEM;
1482 
1483 		/* Here start < (end|vma->vm_end). */
1484 		if (start < vma->vm_start) {
1485 			unmapped_error = -ENOMEM;
1486 			start = vma->vm_start;
1487 			if (start >= end)
1488 				break;
1489 		}
1490 
1491 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1492 		tmp = vma->vm_end;
1493 		if (end < tmp)
1494 			tmp = end;
1495 
1496 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1497 		error = visit(vma, &prev, start, tmp, arg);
1498 		if (error)
1499 			return error;
1500 		start = tmp;
1501 		if (prev && start < prev->vm_end)
1502 			start = prev->vm_end;
1503 		if (start >= end)
1504 			break;
1505 		if (prev)
1506 			vma = find_vma(mm, prev->vm_end);
1507 		else	/* madvise_remove dropped mmap_lock */
1508 			vma = find_vma(mm, start);
1509 	}
1510 
1511 	return unmapped_error;
1512 }
1513 
1514 #ifdef CONFIG_ANON_VMA_NAME
1515 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1516 				 struct vm_area_struct **prev,
1517 				 unsigned long start, unsigned long end,
1518 				 unsigned long anon_name)
1519 {
1520 	int error;
1521 
1522 	/* Only anonymous mappings can be named */
1523 	if (vma->vm_file && !vma_is_anon_shmem(vma))
1524 		return -EBADF;
1525 
1526 	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1527 				   (struct anon_vma_name *)anon_name);
1528 
1529 	/*
1530 	 * madvise() returns EAGAIN if kernel resources, such as
1531 	 * slab, are temporarily unavailable.
1532 	 */
1533 	if (error == -ENOMEM)
1534 		error = -EAGAIN;
1535 	return error;
1536 }
1537 
1538 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1539 			  unsigned long len_in, struct anon_vma_name *anon_name)
1540 {
1541 	unsigned long end;
1542 	unsigned long len;
1543 
1544 	if (start & ~PAGE_MASK)
1545 		return -EINVAL;
1546 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1547 
1548 	/* Check to see whether len was rounded up from small -ve to zero */
1549 	if (len_in && !len)
1550 		return -EINVAL;
1551 
1552 	end = start + len;
1553 	if (end < start)
1554 		return -EINVAL;
1555 
1556 	if (end == start)
1557 		return 0;
1558 
1559 	return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1560 				 madvise_vma_anon_name);
1561 }
1562 #endif /* CONFIG_ANON_VMA_NAME */
1563 /*
1564  * The madvise(2) system call.
1565  *
1566  * Applications can use madvise() to advise the kernel how it should
1567  * handle paging I/O in this VM area.  The idea is to help the kernel
1568  * use appropriate read-ahead and caching techniques.  The information
1569  * provided is advisory only, and can be safely disregarded by the
1570  * kernel without affecting the correct operation of the application.
1571  *
1572  * behavior values:
1573  *  MADV_NORMAL - the default behavior is to read clusters.  This
1574  *		results in some read-ahead and read-behind.
1575  *  MADV_RANDOM - the system should read the minimum amount of data
1576  *		on any access, since it is unlikely that the appli-
1577  *		cation will need more than what it asks for.
1578  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1579  *		once, so they can be aggressively read ahead, and
1580  *		can be freed soon after they are accessed.
1581  *  MADV_WILLNEED - the application is notifying the system to read
1582  *		some pages ahead.
1583  *  MADV_DONTNEED - the application is finished with the given range,
1584  *		so the kernel can free resources associated with it.
1585  *  MADV_FREE - the application marks pages in the given range as lazy free,
1586  *		where actual purges are postponed until memory pressure happens.
1587  *  MADV_REMOVE - the application wants to free up the given range of
1588  *		pages and associated backing store.
1589  *  MADV_DONTFORK - omit this area from child's address space when forking:
1590  *		typically, to avoid COWing pages pinned by get_user_pages().
1591  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1592  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1593  *              range after a fork.
1594  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1595  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1596  *		were corrupted by unrecoverable hardware memory failure.
1597  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1598  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1599  *		this area with pages of identical content from other such areas.
1600  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1601  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1602  *		huge pages in the future. Existing pages might be coalesced and
1603  *		new pages might be allocated as THP.
1604  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1605  *		transparent huge pages so the existing pages will not be
1606  *		coalesced into THP and new pages will not be allocated as THP.
1607  *  MADV_COLLAPSE - synchronously coalesce pages into new THP.
1608  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1609  *		from being included in its core dump.
1610  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1611  *  MADV_COLD - the application is not expected to use this memory soon,
1612  *		deactivate pages in this range so that they can be reclaimed
1613  *		easily if memory pressure happens.
1614  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1615  *		page out the pages in this range immediately.
1616  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1617  *		triggering read faults if required
1618  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1619  *		triggering write faults if required
1620  *
1621  * return values:
1622  *  zero    - success
1623  *  -EINVAL - start + len < 0, start is not page-aligned,
1624  *		"behavior" is not a valid value, or application
1625  *		is attempting to release locked or shared pages,
1626  *		or the specified address range includes file, Huge TLB,
1627  *		MAP_SHARED or VMPFNMAP range.
1628  *  -ENOMEM - addresses in the specified range are not currently
1629  *		mapped, or are outside the AS of the process.
1630  *  -EIO    - an I/O error occurred while paging in data.
1631  *  -EBADF  - map exists, but area maps something that isn't a file.
1632  *  -EAGAIN - a kernel resource was temporarily unavailable.
1633  *  -EPERM  - memory is sealed.
1634  */
1635 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1636 {
1637 	unsigned long end;
1638 	int error;
1639 	int write;
1640 	size_t len;
1641 	struct blk_plug plug;
1642 
1643 	if (!madvise_behavior_valid(behavior))
1644 		return -EINVAL;
1645 
1646 	if (!PAGE_ALIGNED(start))
1647 		return -EINVAL;
1648 	len = PAGE_ALIGN(len_in);
1649 
1650 	/* Check to see whether len was rounded up from small -ve to zero */
1651 	if (len_in && !len)
1652 		return -EINVAL;
1653 
1654 	end = start + len;
1655 	if (end < start)
1656 		return -EINVAL;
1657 
1658 	if (end == start)
1659 		return 0;
1660 
1661 #ifdef CONFIG_MEMORY_FAILURE
1662 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1663 		return madvise_inject_error(behavior, start, start + len_in);
1664 #endif
1665 
1666 	write = madvise_need_mmap_write(behavior);
1667 	if (write) {
1668 		if (mmap_write_lock_killable(mm))
1669 			return -EINTR;
1670 	} else {
1671 		mmap_read_lock(mm);
1672 	}
1673 
1674 	start = untagged_addr_remote(mm, start);
1675 	end = start + len;
1676 
1677 	blk_start_plug(&plug);
1678 	switch (behavior) {
1679 	case MADV_POPULATE_READ:
1680 	case MADV_POPULATE_WRITE:
1681 		error = madvise_populate(mm, start, end, behavior);
1682 		break;
1683 	default:
1684 		error = madvise_walk_vmas(mm, start, end, behavior,
1685 					  madvise_vma_behavior);
1686 		break;
1687 	}
1688 	blk_finish_plug(&plug);
1689 
1690 	if (write)
1691 		mmap_write_unlock(mm);
1692 	else
1693 		mmap_read_unlock(mm);
1694 
1695 	return error;
1696 }
1697 
1698 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1699 {
1700 	return do_madvise(current->mm, start, len_in, behavior);
1701 }
1702 
1703 /* Perform an madvise operation over a vector of addresses and lengths. */
1704 static ssize_t vector_madvise(struct mm_struct *mm, struct iov_iter *iter,
1705 			      int behavior)
1706 {
1707 	ssize_t ret = 0;
1708 	size_t total_len;
1709 
1710 	total_len = iov_iter_count(iter);
1711 
1712 	while (iov_iter_count(iter)) {
1713 		ret = do_madvise(mm, (unsigned long)iter_iov_addr(iter),
1714 				 iter_iov_len(iter), behavior);
1715 		/*
1716 		 * An madvise operation is attempting to restart the syscall,
1717 		 * but we cannot proceed as it would not be correct to repeat
1718 		 * the operation in aggregate, and would be surprising to the
1719 		 * user.
1720 		 *
1721 		 * As we have already dropped locks, it is safe to just loop and
1722 		 * try again. We check for fatal signals in case we need exit
1723 		 * early anyway.
1724 		 */
1725 		if (ret == -ERESTARTNOINTR) {
1726 			if (fatal_signal_pending(current)) {
1727 				ret = -EINTR;
1728 				break;
1729 			}
1730 			continue;
1731 		}
1732 		if (ret < 0)
1733 			break;
1734 		iov_iter_advance(iter, iter_iov_len(iter));
1735 	}
1736 
1737 	ret = (total_len - iov_iter_count(iter)) ? : ret;
1738 
1739 	return ret;
1740 }
1741 
1742 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1743 		size_t, vlen, int, behavior, unsigned int, flags)
1744 {
1745 	ssize_t ret;
1746 	struct iovec iovstack[UIO_FASTIOV];
1747 	struct iovec *iov = iovstack;
1748 	struct iov_iter iter;
1749 	struct task_struct *task;
1750 	struct mm_struct *mm;
1751 	unsigned int f_flags;
1752 
1753 	if (flags != 0) {
1754 		ret = -EINVAL;
1755 		goto out;
1756 	}
1757 
1758 	ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1759 	if (ret < 0)
1760 		goto out;
1761 
1762 	task = pidfd_get_task(pidfd, &f_flags);
1763 	if (IS_ERR(task)) {
1764 		ret = PTR_ERR(task);
1765 		goto free_iov;
1766 	}
1767 
1768 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1769 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1770 	if (IS_ERR(mm)) {
1771 		ret = PTR_ERR(mm);
1772 		goto release_task;
1773 	}
1774 
1775 	/*
1776 	 * We need only perform this check if we are attempting to manipulate a
1777 	 * remote process's address space.
1778 	 */
1779 	if (mm != current->mm && !process_madvise_remote_valid(behavior)) {
1780 		ret = -EINVAL;
1781 		goto release_mm;
1782 	}
1783 
1784 	/*
1785 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1786 	 * only non-destructive hints are currently supported for remote
1787 	 * processes.
1788 	 */
1789 	if (mm != current->mm && !capable(CAP_SYS_NICE)) {
1790 		ret = -EPERM;
1791 		goto release_mm;
1792 	}
1793 
1794 	ret = vector_madvise(mm, &iter, behavior);
1795 
1796 release_mm:
1797 	mmput(mm);
1798 release_task:
1799 	put_task_struct(task);
1800 free_iov:
1801 	kfree(iov);
1802 out:
1803 	return ret;
1804 }
1805