xref: /linux/mm/madvise.c (revision 6a143a7cf94730f57544ea14a987dc025364dbb8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/uio.h>
22 #include <linux/ksm.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/pagewalk.h>
28 #include <linux/swap.h>
29 #include <linux/swapops.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/mmu_notifier.h>
32 
33 #include <asm/tlb.h>
34 
35 #include "internal.h"
36 
37 struct madvise_walk_private {
38 	struct mmu_gather *tlb;
39 	bool pageout;
40 };
41 
42 /*
43  * Any behaviour which results in changes to the vma->vm_flags needs to
44  * take mmap_lock for writing. Others, which simply traverse vmas, need
45  * to only take it for reading.
46  */
47 static int madvise_need_mmap_write(int behavior)
48 {
49 	switch (behavior) {
50 	case MADV_REMOVE:
51 	case MADV_WILLNEED:
52 	case MADV_DONTNEED:
53 	case MADV_COLD:
54 	case MADV_PAGEOUT:
55 	case MADV_FREE:
56 		return 0;
57 	default:
58 		/* be safe, default to 1. list exceptions explicitly */
59 		return 1;
60 	}
61 }
62 
63 /*
64  * We can potentially split a vm area into separate
65  * areas, each area with its own behavior.
66  */
67 static long madvise_behavior(struct vm_area_struct *vma,
68 		     struct vm_area_struct **prev,
69 		     unsigned long start, unsigned long end, int behavior)
70 {
71 	struct mm_struct *mm = vma->vm_mm;
72 	int error = 0;
73 	pgoff_t pgoff;
74 	unsigned long new_flags = vma->vm_flags;
75 
76 	switch (behavior) {
77 	case MADV_NORMAL:
78 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
79 		break;
80 	case MADV_SEQUENTIAL:
81 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
82 		break;
83 	case MADV_RANDOM:
84 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
85 		break;
86 	case MADV_DONTFORK:
87 		new_flags |= VM_DONTCOPY;
88 		break;
89 	case MADV_DOFORK:
90 		if (vma->vm_flags & VM_IO) {
91 			error = -EINVAL;
92 			goto out;
93 		}
94 		new_flags &= ~VM_DONTCOPY;
95 		break;
96 	case MADV_WIPEONFORK:
97 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
98 		if (vma->vm_file || vma->vm_flags & VM_SHARED) {
99 			error = -EINVAL;
100 			goto out;
101 		}
102 		new_flags |= VM_WIPEONFORK;
103 		break;
104 	case MADV_KEEPONFORK:
105 		new_flags &= ~VM_WIPEONFORK;
106 		break;
107 	case MADV_DONTDUMP:
108 		new_flags |= VM_DONTDUMP;
109 		break;
110 	case MADV_DODUMP:
111 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
112 			error = -EINVAL;
113 			goto out;
114 		}
115 		new_flags &= ~VM_DONTDUMP;
116 		break;
117 	case MADV_MERGEABLE:
118 	case MADV_UNMERGEABLE:
119 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
120 		if (error)
121 			goto out_convert_errno;
122 		break;
123 	case MADV_HUGEPAGE:
124 	case MADV_NOHUGEPAGE:
125 		error = hugepage_madvise(vma, &new_flags, behavior);
126 		if (error)
127 			goto out_convert_errno;
128 		break;
129 	}
130 
131 	if (new_flags == vma->vm_flags) {
132 		*prev = vma;
133 		goto out;
134 	}
135 
136 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
137 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
138 			  vma->vm_file, pgoff, vma_policy(vma),
139 			  vma->vm_userfaultfd_ctx);
140 	if (*prev) {
141 		vma = *prev;
142 		goto success;
143 	}
144 
145 	*prev = vma;
146 
147 	if (start != vma->vm_start) {
148 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
149 			error = -ENOMEM;
150 			goto out;
151 		}
152 		error = __split_vma(mm, vma, start, 1);
153 		if (error)
154 			goto out_convert_errno;
155 	}
156 
157 	if (end != vma->vm_end) {
158 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
159 			error = -ENOMEM;
160 			goto out;
161 		}
162 		error = __split_vma(mm, vma, end, 0);
163 		if (error)
164 			goto out_convert_errno;
165 	}
166 
167 success:
168 	/*
169 	 * vm_flags is protected by the mmap_lock held in write mode.
170 	 */
171 	vma->vm_flags = new_flags;
172 
173 out_convert_errno:
174 	/*
175 	 * madvise() returns EAGAIN if kernel resources, such as
176 	 * slab, are temporarily unavailable.
177 	 */
178 	if (error == -ENOMEM)
179 		error = -EAGAIN;
180 out:
181 	return error;
182 }
183 
184 #ifdef CONFIG_SWAP
185 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
186 	unsigned long end, struct mm_walk *walk)
187 {
188 	pte_t *orig_pte;
189 	struct vm_area_struct *vma = walk->private;
190 	unsigned long index;
191 
192 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
193 		return 0;
194 
195 	for (index = start; index != end; index += PAGE_SIZE) {
196 		pte_t pte;
197 		swp_entry_t entry;
198 		struct page *page;
199 		spinlock_t *ptl;
200 
201 		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
202 		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
203 		pte_unmap_unlock(orig_pte, ptl);
204 
205 		if (pte_present(pte) || pte_none(pte))
206 			continue;
207 		entry = pte_to_swp_entry(pte);
208 		if (unlikely(non_swap_entry(entry)))
209 			continue;
210 
211 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
212 							vma, index, false);
213 		if (page)
214 			put_page(page);
215 	}
216 
217 	return 0;
218 }
219 
220 static const struct mm_walk_ops swapin_walk_ops = {
221 	.pmd_entry		= swapin_walk_pmd_entry,
222 };
223 
224 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
225 		unsigned long start, unsigned long end,
226 		struct address_space *mapping)
227 {
228 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
229 	pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
230 	struct page *page;
231 
232 	rcu_read_lock();
233 	xas_for_each(&xas, page, end_index) {
234 		swp_entry_t swap;
235 
236 		if (!xa_is_value(page))
237 			continue;
238 		xas_pause(&xas);
239 		rcu_read_unlock();
240 
241 		swap = radix_to_swp_entry(page);
242 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
243 							NULL, 0, false);
244 		if (page)
245 			put_page(page);
246 
247 		rcu_read_lock();
248 	}
249 	rcu_read_unlock();
250 
251 	lru_add_drain();	/* Push any new pages onto the LRU now */
252 }
253 #endif		/* CONFIG_SWAP */
254 
255 /*
256  * Schedule all required I/O operations.  Do not wait for completion.
257  */
258 static long madvise_willneed(struct vm_area_struct *vma,
259 			     struct vm_area_struct **prev,
260 			     unsigned long start, unsigned long end)
261 {
262 	struct mm_struct *mm = vma->vm_mm;
263 	struct file *file = vma->vm_file;
264 	loff_t offset;
265 
266 	*prev = vma;
267 #ifdef CONFIG_SWAP
268 	if (!file) {
269 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
270 		lru_add_drain(); /* Push any new pages onto the LRU now */
271 		return 0;
272 	}
273 
274 	if (shmem_mapping(file->f_mapping)) {
275 		force_shm_swapin_readahead(vma, start, end,
276 					file->f_mapping);
277 		return 0;
278 	}
279 #else
280 	if (!file)
281 		return -EBADF;
282 #endif
283 
284 	if (IS_DAX(file_inode(file))) {
285 		/* no bad return value, but ignore advice */
286 		return 0;
287 	}
288 
289 	/*
290 	 * Filesystem's fadvise may need to take various locks.  We need to
291 	 * explicitly grab a reference because the vma (and hence the
292 	 * vma's reference to the file) can go away as soon as we drop
293 	 * mmap_lock.
294 	 */
295 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
296 	get_file(file);
297 	offset = (loff_t)(start - vma->vm_start)
298 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
299 	mmap_read_unlock(mm);
300 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
301 	fput(file);
302 	mmap_read_lock(mm);
303 	return 0;
304 }
305 
306 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
307 				unsigned long addr, unsigned long end,
308 				struct mm_walk *walk)
309 {
310 	struct madvise_walk_private *private = walk->private;
311 	struct mmu_gather *tlb = private->tlb;
312 	bool pageout = private->pageout;
313 	struct mm_struct *mm = tlb->mm;
314 	struct vm_area_struct *vma = walk->vma;
315 	pte_t *orig_pte, *pte, ptent;
316 	spinlock_t *ptl;
317 	struct page *page = NULL;
318 	LIST_HEAD(page_list);
319 
320 	if (fatal_signal_pending(current))
321 		return -EINTR;
322 
323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
324 	if (pmd_trans_huge(*pmd)) {
325 		pmd_t orig_pmd;
326 		unsigned long next = pmd_addr_end(addr, end);
327 
328 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
329 		ptl = pmd_trans_huge_lock(pmd, vma);
330 		if (!ptl)
331 			return 0;
332 
333 		orig_pmd = *pmd;
334 		if (is_huge_zero_pmd(orig_pmd))
335 			goto huge_unlock;
336 
337 		if (unlikely(!pmd_present(orig_pmd))) {
338 			VM_BUG_ON(thp_migration_supported() &&
339 					!is_pmd_migration_entry(orig_pmd));
340 			goto huge_unlock;
341 		}
342 
343 		page = pmd_page(orig_pmd);
344 
345 		/* Do not interfere with other mappings of this page */
346 		if (page_mapcount(page) != 1)
347 			goto huge_unlock;
348 
349 		if (next - addr != HPAGE_PMD_SIZE) {
350 			int err;
351 
352 			get_page(page);
353 			spin_unlock(ptl);
354 			lock_page(page);
355 			err = split_huge_page(page);
356 			unlock_page(page);
357 			put_page(page);
358 			if (!err)
359 				goto regular_page;
360 			return 0;
361 		}
362 
363 		if (pmd_young(orig_pmd)) {
364 			pmdp_invalidate(vma, addr, pmd);
365 			orig_pmd = pmd_mkold(orig_pmd);
366 
367 			set_pmd_at(mm, addr, pmd, orig_pmd);
368 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
369 		}
370 
371 		ClearPageReferenced(page);
372 		test_and_clear_page_young(page);
373 		if (pageout) {
374 			if (!isolate_lru_page(page)) {
375 				if (PageUnevictable(page))
376 					putback_lru_page(page);
377 				else
378 					list_add(&page->lru, &page_list);
379 			}
380 		} else
381 			deactivate_page(page);
382 huge_unlock:
383 		spin_unlock(ptl);
384 		if (pageout)
385 			reclaim_pages(&page_list);
386 		return 0;
387 	}
388 
389 regular_page:
390 	if (pmd_trans_unstable(pmd))
391 		return 0;
392 #endif
393 	tlb_change_page_size(tlb, PAGE_SIZE);
394 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
395 	flush_tlb_batched_pending(mm);
396 	arch_enter_lazy_mmu_mode();
397 	for (; addr < end; pte++, addr += PAGE_SIZE) {
398 		ptent = *pte;
399 
400 		if (pte_none(ptent))
401 			continue;
402 
403 		if (!pte_present(ptent))
404 			continue;
405 
406 		page = vm_normal_page(vma, addr, ptent);
407 		if (!page)
408 			continue;
409 
410 		/*
411 		 * Creating a THP page is expensive so split it only if we
412 		 * are sure it's worth. Split it if we are only owner.
413 		 */
414 		if (PageTransCompound(page)) {
415 			if (page_mapcount(page) != 1)
416 				break;
417 			get_page(page);
418 			if (!trylock_page(page)) {
419 				put_page(page);
420 				break;
421 			}
422 			pte_unmap_unlock(orig_pte, ptl);
423 			if (split_huge_page(page)) {
424 				unlock_page(page);
425 				put_page(page);
426 				pte_offset_map_lock(mm, pmd, addr, &ptl);
427 				break;
428 			}
429 			unlock_page(page);
430 			put_page(page);
431 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
432 			pte--;
433 			addr -= PAGE_SIZE;
434 			continue;
435 		}
436 
437 		/* Do not interfere with other mappings of this page */
438 		if (page_mapcount(page) != 1)
439 			continue;
440 
441 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
442 
443 		if (pte_young(ptent)) {
444 			ptent = ptep_get_and_clear_full(mm, addr, pte,
445 							tlb->fullmm);
446 			ptent = pte_mkold(ptent);
447 			set_pte_at(mm, addr, pte, ptent);
448 			tlb_remove_tlb_entry(tlb, pte, addr);
449 		}
450 
451 		/*
452 		 * We are deactivating a page for accelerating reclaiming.
453 		 * VM couldn't reclaim the page unless we clear PG_young.
454 		 * As a side effect, it makes confuse idle-page tracking
455 		 * because they will miss recent referenced history.
456 		 */
457 		ClearPageReferenced(page);
458 		test_and_clear_page_young(page);
459 		if (pageout) {
460 			if (!isolate_lru_page(page)) {
461 				if (PageUnevictable(page))
462 					putback_lru_page(page);
463 				else
464 					list_add(&page->lru, &page_list);
465 			}
466 		} else
467 			deactivate_page(page);
468 	}
469 
470 	arch_leave_lazy_mmu_mode();
471 	pte_unmap_unlock(orig_pte, ptl);
472 	if (pageout)
473 		reclaim_pages(&page_list);
474 	cond_resched();
475 
476 	return 0;
477 }
478 
479 static const struct mm_walk_ops cold_walk_ops = {
480 	.pmd_entry = madvise_cold_or_pageout_pte_range,
481 };
482 
483 static void madvise_cold_page_range(struct mmu_gather *tlb,
484 			     struct vm_area_struct *vma,
485 			     unsigned long addr, unsigned long end)
486 {
487 	struct madvise_walk_private walk_private = {
488 		.pageout = false,
489 		.tlb = tlb,
490 	};
491 
492 	tlb_start_vma(tlb, vma);
493 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
494 	tlb_end_vma(tlb, vma);
495 }
496 
497 static long madvise_cold(struct vm_area_struct *vma,
498 			struct vm_area_struct **prev,
499 			unsigned long start_addr, unsigned long end_addr)
500 {
501 	struct mm_struct *mm = vma->vm_mm;
502 	struct mmu_gather tlb;
503 
504 	*prev = vma;
505 	if (!can_madv_lru_vma(vma))
506 		return -EINVAL;
507 
508 	lru_add_drain();
509 	tlb_gather_mmu(&tlb, mm);
510 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
511 	tlb_finish_mmu(&tlb);
512 
513 	return 0;
514 }
515 
516 static void madvise_pageout_page_range(struct mmu_gather *tlb,
517 			     struct vm_area_struct *vma,
518 			     unsigned long addr, unsigned long end)
519 {
520 	struct madvise_walk_private walk_private = {
521 		.pageout = true,
522 		.tlb = tlb,
523 	};
524 
525 	tlb_start_vma(tlb, vma);
526 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
527 	tlb_end_vma(tlb, vma);
528 }
529 
530 static inline bool can_do_pageout(struct vm_area_struct *vma)
531 {
532 	if (vma_is_anonymous(vma))
533 		return true;
534 	if (!vma->vm_file)
535 		return false;
536 	/*
537 	 * paging out pagecache only for non-anonymous mappings that correspond
538 	 * to the files the calling process could (if tried) open for writing;
539 	 * otherwise we'd be including shared non-exclusive mappings, which
540 	 * opens a side channel.
541 	 */
542 	return inode_owner_or_capable(&init_user_ns,
543 				      file_inode(vma->vm_file)) ||
544 	       file_permission(vma->vm_file, MAY_WRITE) == 0;
545 }
546 
547 static long madvise_pageout(struct vm_area_struct *vma,
548 			struct vm_area_struct **prev,
549 			unsigned long start_addr, unsigned long end_addr)
550 {
551 	struct mm_struct *mm = vma->vm_mm;
552 	struct mmu_gather tlb;
553 
554 	*prev = vma;
555 	if (!can_madv_lru_vma(vma))
556 		return -EINVAL;
557 
558 	if (!can_do_pageout(vma))
559 		return 0;
560 
561 	lru_add_drain();
562 	tlb_gather_mmu(&tlb, mm);
563 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
564 	tlb_finish_mmu(&tlb);
565 
566 	return 0;
567 }
568 
569 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
570 				unsigned long end, struct mm_walk *walk)
571 
572 {
573 	struct mmu_gather *tlb = walk->private;
574 	struct mm_struct *mm = tlb->mm;
575 	struct vm_area_struct *vma = walk->vma;
576 	spinlock_t *ptl;
577 	pte_t *orig_pte, *pte, ptent;
578 	struct page *page;
579 	int nr_swap = 0;
580 	unsigned long next;
581 
582 	next = pmd_addr_end(addr, end);
583 	if (pmd_trans_huge(*pmd))
584 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
585 			goto next;
586 
587 	if (pmd_trans_unstable(pmd))
588 		return 0;
589 
590 	tlb_change_page_size(tlb, PAGE_SIZE);
591 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
592 	flush_tlb_batched_pending(mm);
593 	arch_enter_lazy_mmu_mode();
594 	for (; addr != end; pte++, addr += PAGE_SIZE) {
595 		ptent = *pte;
596 
597 		if (pte_none(ptent))
598 			continue;
599 		/*
600 		 * If the pte has swp_entry, just clear page table to
601 		 * prevent swap-in which is more expensive rather than
602 		 * (page allocation + zeroing).
603 		 */
604 		if (!pte_present(ptent)) {
605 			swp_entry_t entry;
606 
607 			entry = pte_to_swp_entry(ptent);
608 			if (non_swap_entry(entry))
609 				continue;
610 			nr_swap--;
611 			free_swap_and_cache(entry);
612 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
613 			continue;
614 		}
615 
616 		page = vm_normal_page(vma, addr, ptent);
617 		if (!page)
618 			continue;
619 
620 		/*
621 		 * If pmd isn't transhuge but the page is THP and
622 		 * is owned by only this process, split it and
623 		 * deactivate all pages.
624 		 */
625 		if (PageTransCompound(page)) {
626 			if (page_mapcount(page) != 1)
627 				goto out;
628 			get_page(page);
629 			if (!trylock_page(page)) {
630 				put_page(page);
631 				goto out;
632 			}
633 			pte_unmap_unlock(orig_pte, ptl);
634 			if (split_huge_page(page)) {
635 				unlock_page(page);
636 				put_page(page);
637 				pte_offset_map_lock(mm, pmd, addr, &ptl);
638 				goto out;
639 			}
640 			unlock_page(page);
641 			put_page(page);
642 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
643 			pte--;
644 			addr -= PAGE_SIZE;
645 			continue;
646 		}
647 
648 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
649 
650 		if (PageSwapCache(page) || PageDirty(page)) {
651 			if (!trylock_page(page))
652 				continue;
653 			/*
654 			 * If page is shared with others, we couldn't clear
655 			 * PG_dirty of the page.
656 			 */
657 			if (page_mapcount(page) != 1) {
658 				unlock_page(page);
659 				continue;
660 			}
661 
662 			if (PageSwapCache(page) && !try_to_free_swap(page)) {
663 				unlock_page(page);
664 				continue;
665 			}
666 
667 			ClearPageDirty(page);
668 			unlock_page(page);
669 		}
670 
671 		if (pte_young(ptent) || pte_dirty(ptent)) {
672 			/*
673 			 * Some of architecture(ex, PPC) don't update TLB
674 			 * with set_pte_at and tlb_remove_tlb_entry so for
675 			 * the portability, remap the pte with old|clean
676 			 * after pte clearing.
677 			 */
678 			ptent = ptep_get_and_clear_full(mm, addr, pte,
679 							tlb->fullmm);
680 
681 			ptent = pte_mkold(ptent);
682 			ptent = pte_mkclean(ptent);
683 			set_pte_at(mm, addr, pte, ptent);
684 			tlb_remove_tlb_entry(tlb, pte, addr);
685 		}
686 		mark_page_lazyfree(page);
687 	}
688 out:
689 	if (nr_swap) {
690 		if (current->mm == mm)
691 			sync_mm_rss(mm);
692 
693 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
694 	}
695 	arch_leave_lazy_mmu_mode();
696 	pte_unmap_unlock(orig_pte, ptl);
697 	cond_resched();
698 next:
699 	return 0;
700 }
701 
702 static const struct mm_walk_ops madvise_free_walk_ops = {
703 	.pmd_entry		= madvise_free_pte_range,
704 };
705 
706 static int madvise_free_single_vma(struct vm_area_struct *vma,
707 			unsigned long start_addr, unsigned long end_addr)
708 {
709 	struct mm_struct *mm = vma->vm_mm;
710 	struct mmu_notifier_range range;
711 	struct mmu_gather tlb;
712 
713 	/* MADV_FREE works for only anon vma at the moment */
714 	if (!vma_is_anonymous(vma))
715 		return -EINVAL;
716 
717 	range.start = max(vma->vm_start, start_addr);
718 	if (range.start >= vma->vm_end)
719 		return -EINVAL;
720 	range.end = min(vma->vm_end, end_addr);
721 	if (range.end <= vma->vm_start)
722 		return -EINVAL;
723 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
724 				range.start, range.end);
725 
726 	lru_add_drain();
727 	tlb_gather_mmu(&tlb, mm);
728 	update_hiwater_rss(mm);
729 
730 	mmu_notifier_invalidate_range_start(&range);
731 	tlb_start_vma(&tlb, vma);
732 	walk_page_range(vma->vm_mm, range.start, range.end,
733 			&madvise_free_walk_ops, &tlb);
734 	tlb_end_vma(&tlb, vma);
735 	mmu_notifier_invalidate_range_end(&range);
736 	tlb_finish_mmu(&tlb);
737 
738 	return 0;
739 }
740 
741 /*
742  * Application no longer needs these pages.  If the pages are dirty,
743  * it's OK to just throw them away.  The app will be more careful about
744  * data it wants to keep.  Be sure to free swap resources too.  The
745  * zap_page_range call sets things up for shrink_active_list to actually free
746  * these pages later if no one else has touched them in the meantime,
747  * although we could add these pages to a global reuse list for
748  * shrink_active_list to pick up before reclaiming other pages.
749  *
750  * NB: This interface discards data rather than pushes it out to swap,
751  * as some implementations do.  This has performance implications for
752  * applications like large transactional databases which want to discard
753  * pages in anonymous maps after committing to backing store the data
754  * that was kept in them.  There is no reason to write this data out to
755  * the swap area if the application is discarding it.
756  *
757  * An interface that causes the system to free clean pages and flush
758  * dirty pages is already available as msync(MS_INVALIDATE).
759  */
760 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
761 					unsigned long start, unsigned long end)
762 {
763 	zap_page_range(vma, start, end - start);
764 	return 0;
765 }
766 
767 static long madvise_dontneed_free(struct vm_area_struct *vma,
768 				  struct vm_area_struct **prev,
769 				  unsigned long start, unsigned long end,
770 				  int behavior)
771 {
772 	struct mm_struct *mm = vma->vm_mm;
773 
774 	*prev = vma;
775 	if (!can_madv_lru_vma(vma))
776 		return -EINVAL;
777 
778 	if (!userfaultfd_remove(vma, start, end)) {
779 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
780 
781 		mmap_read_lock(mm);
782 		vma = find_vma(mm, start);
783 		if (!vma)
784 			return -ENOMEM;
785 		if (start < vma->vm_start) {
786 			/*
787 			 * This "vma" under revalidation is the one
788 			 * with the lowest vma->vm_start where start
789 			 * is also < vma->vm_end. If start <
790 			 * vma->vm_start it means an hole materialized
791 			 * in the user address space within the
792 			 * virtual range passed to MADV_DONTNEED
793 			 * or MADV_FREE.
794 			 */
795 			return -ENOMEM;
796 		}
797 		if (!can_madv_lru_vma(vma))
798 			return -EINVAL;
799 		if (end > vma->vm_end) {
800 			/*
801 			 * Don't fail if end > vma->vm_end. If the old
802 			 * vma was splitted while the mmap_lock was
803 			 * released the effect of the concurrent
804 			 * operation may not cause madvise() to
805 			 * have an undefined result. There may be an
806 			 * adjacent next vma that we'll walk
807 			 * next. userfaultfd_remove() will generate an
808 			 * UFFD_EVENT_REMOVE repetition on the
809 			 * end-vma->vm_end range, but the manager can
810 			 * handle a repetition fine.
811 			 */
812 			end = vma->vm_end;
813 		}
814 		VM_WARN_ON(start >= end);
815 	}
816 
817 	if (behavior == MADV_DONTNEED)
818 		return madvise_dontneed_single_vma(vma, start, end);
819 	else if (behavior == MADV_FREE)
820 		return madvise_free_single_vma(vma, start, end);
821 	else
822 		return -EINVAL;
823 }
824 
825 /*
826  * Application wants to free up the pages and associated backing store.
827  * This is effectively punching a hole into the middle of a file.
828  */
829 static long madvise_remove(struct vm_area_struct *vma,
830 				struct vm_area_struct **prev,
831 				unsigned long start, unsigned long end)
832 {
833 	loff_t offset;
834 	int error;
835 	struct file *f;
836 	struct mm_struct *mm = vma->vm_mm;
837 
838 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
839 
840 	if (vma->vm_flags & VM_LOCKED)
841 		return -EINVAL;
842 
843 	f = vma->vm_file;
844 
845 	if (!f || !f->f_mapping || !f->f_mapping->host) {
846 			return -EINVAL;
847 	}
848 
849 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
850 		return -EACCES;
851 
852 	offset = (loff_t)(start - vma->vm_start)
853 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
854 
855 	/*
856 	 * Filesystem's fallocate may need to take i_mutex.  We need to
857 	 * explicitly grab a reference because the vma (and hence the
858 	 * vma's reference to the file) can go away as soon as we drop
859 	 * mmap_lock.
860 	 */
861 	get_file(f);
862 	if (userfaultfd_remove(vma, start, end)) {
863 		/* mmap_lock was not released by userfaultfd_remove() */
864 		mmap_read_unlock(mm);
865 	}
866 	error = vfs_fallocate(f,
867 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
868 				offset, end - start);
869 	fput(f);
870 	mmap_read_lock(mm);
871 	return error;
872 }
873 
874 #ifdef CONFIG_MEMORY_FAILURE
875 /*
876  * Error injection support for memory error handling.
877  */
878 static int madvise_inject_error(int behavior,
879 		unsigned long start, unsigned long end)
880 {
881 	unsigned long size;
882 
883 	if (!capable(CAP_SYS_ADMIN))
884 		return -EPERM;
885 
886 
887 	for (; start < end; start += size) {
888 		unsigned long pfn;
889 		struct page *page;
890 		int ret;
891 
892 		ret = get_user_pages_fast(start, 1, 0, &page);
893 		if (ret != 1)
894 			return ret;
895 		pfn = page_to_pfn(page);
896 
897 		/*
898 		 * When soft offlining hugepages, after migrating the page
899 		 * we dissolve it, therefore in the second loop "page" will
900 		 * no longer be a compound page.
901 		 */
902 		size = page_size(compound_head(page));
903 
904 		if (behavior == MADV_SOFT_OFFLINE) {
905 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
906 				 pfn, start);
907 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
908 		} else {
909 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
910 				 pfn, start);
911 			ret = memory_failure(pfn, MF_COUNT_INCREASED);
912 		}
913 
914 		if (ret)
915 			return ret;
916 	}
917 
918 	return 0;
919 }
920 #endif
921 
922 static long
923 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
924 		unsigned long start, unsigned long end, int behavior)
925 {
926 	switch (behavior) {
927 	case MADV_REMOVE:
928 		return madvise_remove(vma, prev, start, end);
929 	case MADV_WILLNEED:
930 		return madvise_willneed(vma, prev, start, end);
931 	case MADV_COLD:
932 		return madvise_cold(vma, prev, start, end);
933 	case MADV_PAGEOUT:
934 		return madvise_pageout(vma, prev, start, end);
935 	case MADV_FREE:
936 	case MADV_DONTNEED:
937 		return madvise_dontneed_free(vma, prev, start, end, behavior);
938 	default:
939 		return madvise_behavior(vma, prev, start, end, behavior);
940 	}
941 }
942 
943 static bool
944 madvise_behavior_valid(int behavior)
945 {
946 	switch (behavior) {
947 	case MADV_DOFORK:
948 	case MADV_DONTFORK:
949 	case MADV_NORMAL:
950 	case MADV_SEQUENTIAL:
951 	case MADV_RANDOM:
952 	case MADV_REMOVE:
953 	case MADV_WILLNEED:
954 	case MADV_DONTNEED:
955 	case MADV_FREE:
956 	case MADV_COLD:
957 	case MADV_PAGEOUT:
958 #ifdef CONFIG_KSM
959 	case MADV_MERGEABLE:
960 	case MADV_UNMERGEABLE:
961 #endif
962 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
963 	case MADV_HUGEPAGE:
964 	case MADV_NOHUGEPAGE:
965 #endif
966 	case MADV_DONTDUMP:
967 	case MADV_DODUMP:
968 	case MADV_WIPEONFORK:
969 	case MADV_KEEPONFORK:
970 #ifdef CONFIG_MEMORY_FAILURE
971 	case MADV_SOFT_OFFLINE:
972 	case MADV_HWPOISON:
973 #endif
974 		return true;
975 
976 	default:
977 		return false;
978 	}
979 }
980 
981 static bool
982 process_madvise_behavior_valid(int behavior)
983 {
984 	switch (behavior) {
985 	case MADV_COLD:
986 	case MADV_PAGEOUT:
987 		return true;
988 	default:
989 		return false;
990 	}
991 }
992 
993 /*
994  * The madvise(2) system call.
995  *
996  * Applications can use madvise() to advise the kernel how it should
997  * handle paging I/O in this VM area.  The idea is to help the kernel
998  * use appropriate read-ahead and caching techniques.  The information
999  * provided is advisory only, and can be safely disregarded by the
1000  * kernel without affecting the correct operation of the application.
1001  *
1002  * behavior values:
1003  *  MADV_NORMAL - the default behavior is to read clusters.  This
1004  *		results in some read-ahead and read-behind.
1005  *  MADV_RANDOM - the system should read the minimum amount of data
1006  *		on any access, since it is unlikely that the appli-
1007  *		cation will need more than what it asks for.
1008  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1009  *		once, so they can be aggressively read ahead, and
1010  *		can be freed soon after they are accessed.
1011  *  MADV_WILLNEED - the application is notifying the system to read
1012  *		some pages ahead.
1013  *  MADV_DONTNEED - the application is finished with the given range,
1014  *		so the kernel can free resources associated with it.
1015  *  MADV_FREE - the application marks pages in the given range as lazy free,
1016  *		where actual purges are postponed until memory pressure happens.
1017  *  MADV_REMOVE - the application wants to free up the given range of
1018  *		pages and associated backing store.
1019  *  MADV_DONTFORK - omit this area from child's address space when forking:
1020  *		typically, to avoid COWing pages pinned by get_user_pages().
1021  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1022  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1023  *              range after a fork.
1024  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1025  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1026  *		were corrupted by unrecoverable hardware memory failure.
1027  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1028  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1029  *		this area with pages of identical content from other such areas.
1030  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1031  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1032  *		huge pages in the future. Existing pages might be coalesced and
1033  *		new pages might be allocated as THP.
1034  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1035  *		transparent huge pages so the existing pages will not be
1036  *		coalesced into THP and new pages will not be allocated as THP.
1037  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1038  *		from being included in its core dump.
1039  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1040  *  MADV_COLD - the application is not expected to use this memory soon,
1041  *		deactivate pages in this range so that they can be reclaimed
1042  *		easily if memory pressure hanppens.
1043  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1044  *		page out the pages in this range immediately.
1045  *
1046  * return values:
1047  *  zero    - success
1048  *  -EINVAL - start + len < 0, start is not page-aligned,
1049  *		"behavior" is not a valid value, or application
1050  *		is attempting to release locked or shared pages,
1051  *		or the specified address range includes file, Huge TLB,
1052  *		MAP_SHARED or VMPFNMAP range.
1053  *  -ENOMEM - addresses in the specified range are not currently
1054  *		mapped, or are outside the AS of the process.
1055  *  -EIO    - an I/O error occurred while paging in data.
1056  *  -EBADF  - map exists, but area maps something that isn't a file.
1057  *  -EAGAIN - a kernel resource was temporarily unavailable.
1058  */
1059 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1060 {
1061 	unsigned long end, tmp;
1062 	struct vm_area_struct *vma, *prev;
1063 	int unmapped_error = 0;
1064 	int error = -EINVAL;
1065 	int write;
1066 	size_t len;
1067 	struct blk_plug plug;
1068 
1069 	start = untagged_addr(start);
1070 
1071 	if (!madvise_behavior_valid(behavior))
1072 		return error;
1073 
1074 	if (!PAGE_ALIGNED(start))
1075 		return error;
1076 	len = PAGE_ALIGN(len_in);
1077 
1078 	/* Check to see whether len was rounded up from small -ve to zero */
1079 	if (len_in && !len)
1080 		return error;
1081 
1082 	end = start + len;
1083 	if (end < start)
1084 		return error;
1085 
1086 	error = 0;
1087 	if (end == start)
1088 		return error;
1089 
1090 #ifdef CONFIG_MEMORY_FAILURE
1091 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1092 		return madvise_inject_error(behavior, start, start + len_in);
1093 #endif
1094 
1095 	write = madvise_need_mmap_write(behavior);
1096 	if (write) {
1097 		if (mmap_write_lock_killable(mm))
1098 			return -EINTR;
1099 	} else {
1100 		mmap_read_lock(mm);
1101 	}
1102 
1103 	/*
1104 	 * If the interval [start,end) covers some unmapped address
1105 	 * ranges, just ignore them, but return -ENOMEM at the end.
1106 	 * - different from the way of handling in mlock etc.
1107 	 */
1108 	vma = find_vma_prev(mm, start, &prev);
1109 	if (vma && start > vma->vm_start)
1110 		prev = vma;
1111 
1112 	blk_start_plug(&plug);
1113 	for (;;) {
1114 		/* Still start < end. */
1115 		error = -ENOMEM;
1116 		if (!vma)
1117 			goto out;
1118 
1119 		/* Here start < (end|vma->vm_end). */
1120 		if (start < vma->vm_start) {
1121 			unmapped_error = -ENOMEM;
1122 			start = vma->vm_start;
1123 			if (start >= end)
1124 				goto out;
1125 		}
1126 
1127 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1128 		tmp = vma->vm_end;
1129 		if (end < tmp)
1130 			tmp = end;
1131 
1132 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1133 		error = madvise_vma(vma, &prev, start, tmp, behavior);
1134 		if (error)
1135 			goto out;
1136 		start = tmp;
1137 		if (prev && start < prev->vm_end)
1138 			start = prev->vm_end;
1139 		error = unmapped_error;
1140 		if (start >= end)
1141 			goto out;
1142 		if (prev)
1143 			vma = prev->vm_next;
1144 		else	/* madvise_remove dropped mmap_lock */
1145 			vma = find_vma(mm, start);
1146 	}
1147 out:
1148 	blk_finish_plug(&plug);
1149 	if (write)
1150 		mmap_write_unlock(mm);
1151 	else
1152 		mmap_read_unlock(mm);
1153 
1154 	return error;
1155 }
1156 
1157 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1158 {
1159 	return do_madvise(current->mm, start, len_in, behavior);
1160 }
1161 
1162 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1163 		size_t, vlen, int, behavior, unsigned int, flags)
1164 {
1165 	ssize_t ret;
1166 	struct iovec iovstack[UIO_FASTIOV], iovec;
1167 	struct iovec *iov = iovstack;
1168 	struct iov_iter iter;
1169 	struct pid *pid;
1170 	struct task_struct *task;
1171 	struct mm_struct *mm;
1172 	size_t total_len;
1173 	unsigned int f_flags;
1174 
1175 	if (flags != 0) {
1176 		ret = -EINVAL;
1177 		goto out;
1178 	}
1179 
1180 	ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1181 	if (ret < 0)
1182 		goto out;
1183 
1184 	pid = pidfd_get_pid(pidfd, &f_flags);
1185 	if (IS_ERR(pid)) {
1186 		ret = PTR_ERR(pid);
1187 		goto free_iov;
1188 	}
1189 
1190 	task = get_pid_task(pid, PIDTYPE_PID);
1191 	if (!task) {
1192 		ret = -ESRCH;
1193 		goto put_pid;
1194 	}
1195 
1196 	if (!process_madvise_behavior_valid(behavior)) {
1197 		ret = -EINVAL;
1198 		goto release_task;
1199 	}
1200 
1201 	mm = mm_access(task, PTRACE_MODE_ATTACH_FSCREDS);
1202 	if (IS_ERR_OR_NULL(mm)) {
1203 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1204 		goto release_task;
1205 	}
1206 
1207 	total_len = iov_iter_count(&iter);
1208 
1209 	while (iov_iter_count(&iter)) {
1210 		iovec = iov_iter_iovec(&iter);
1211 		ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1212 					iovec.iov_len, behavior);
1213 		if (ret < 0)
1214 			break;
1215 		iov_iter_advance(&iter, iovec.iov_len);
1216 	}
1217 
1218 	if (ret == 0)
1219 		ret = total_len - iov_iter_count(&iter);
1220 
1221 	mmput(mm);
1222 release_task:
1223 	put_task_struct(task);
1224 put_pid:
1225 	put_pid(pid);
1226 free_iov:
1227 	kfree(iov);
1228 out:
1229 	return ret;
1230 }
1231