1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/madvise.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 2002 Christoph Hellwig 7 */ 8 9 #include <linux/mman.h> 10 #include <linux/pagemap.h> 11 #include <linux/syscalls.h> 12 #include <linux/mempolicy.h> 13 #include <linux/page-isolation.h> 14 #include <linux/page_idle.h> 15 #include <linux/userfaultfd_k.h> 16 #include <linux/hugetlb.h> 17 #include <linux/falloc.h> 18 #include <linux/fadvise.h> 19 #include <linux/sched.h> 20 #include <linux/sched/mm.h> 21 #include <linux/mm_inline.h> 22 #include <linux/string.h> 23 #include <linux/uio.h> 24 #include <linux/ksm.h> 25 #include <linux/fs.h> 26 #include <linux/file.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagewalk.h> 30 #include <linux/swap.h> 31 #include <linux/swapops.h> 32 #include <linux/shmem_fs.h> 33 #include <linux/mmu_notifier.h> 34 35 #include <asm/tlb.h> 36 37 #include "internal.h" 38 #include "swap.h" 39 40 struct madvise_walk_private { 41 struct mmu_gather *tlb; 42 bool pageout; 43 }; 44 45 /* 46 * Any behaviour which results in changes to the vma->vm_flags needs to 47 * take mmap_lock for writing. Others, which simply traverse vmas, need 48 * to only take it for reading. 49 */ 50 static int madvise_need_mmap_write(int behavior) 51 { 52 switch (behavior) { 53 case MADV_REMOVE: 54 case MADV_WILLNEED: 55 case MADV_DONTNEED: 56 case MADV_DONTNEED_LOCKED: 57 case MADV_COLD: 58 case MADV_PAGEOUT: 59 case MADV_FREE: 60 case MADV_POPULATE_READ: 61 case MADV_POPULATE_WRITE: 62 case MADV_COLLAPSE: 63 return 0; 64 default: 65 /* be safe, default to 1. list exceptions explicitly */ 66 return 1; 67 } 68 } 69 70 #ifdef CONFIG_ANON_VMA_NAME 71 struct anon_vma_name *anon_vma_name_alloc(const char *name) 72 { 73 struct anon_vma_name *anon_name; 74 size_t count; 75 76 /* Add 1 for NUL terminator at the end of the anon_name->name */ 77 count = strlen(name) + 1; 78 anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL); 79 if (anon_name) { 80 kref_init(&anon_name->kref); 81 memcpy(anon_name->name, name, count); 82 } 83 84 return anon_name; 85 } 86 87 void anon_vma_name_free(struct kref *kref) 88 { 89 struct anon_vma_name *anon_name = 90 container_of(kref, struct anon_vma_name, kref); 91 kfree(anon_name); 92 } 93 94 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) 95 { 96 mmap_assert_locked(vma->vm_mm); 97 98 if (vma->vm_file) 99 return NULL; 100 101 return vma->anon_name; 102 } 103 104 /* mmap_lock should be write-locked */ 105 static int replace_anon_vma_name(struct vm_area_struct *vma, 106 struct anon_vma_name *anon_name) 107 { 108 struct anon_vma_name *orig_name = anon_vma_name(vma); 109 110 if (!anon_name) { 111 vma->anon_name = NULL; 112 anon_vma_name_put(orig_name); 113 return 0; 114 } 115 116 if (anon_vma_name_eq(orig_name, anon_name)) 117 return 0; 118 119 vma->anon_name = anon_vma_name_reuse(anon_name); 120 anon_vma_name_put(orig_name); 121 122 return 0; 123 } 124 #else /* CONFIG_ANON_VMA_NAME */ 125 static int replace_anon_vma_name(struct vm_area_struct *vma, 126 struct anon_vma_name *anon_name) 127 { 128 if (anon_name) 129 return -EINVAL; 130 131 return 0; 132 } 133 #endif /* CONFIG_ANON_VMA_NAME */ 134 /* 135 * Update the vm_flags on region of a vma, splitting it or merging it as 136 * necessary. Must be called with mmap_sem held for writing; 137 * Caller should ensure anon_name stability by raising its refcount even when 138 * anon_name belongs to a valid vma because this function might free that vma. 139 */ 140 static int madvise_update_vma(struct vm_area_struct *vma, 141 struct vm_area_struct **prev, unsigned long start, 142 unsigned long end, unsigned long new_flags, 143 struct anon_vma_name *anon_name) 144 { 145 struct mm_struct *mm = vma->vm_mm; 146 int error; 147 pgoff_t pgoff; 148 149 if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) { 150 *prev = vma; 151 return 0; 152 } 153 154 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 155 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma, 156 vma->vm_file, pgoff, vma_policy(vma), 157 vma->vm_userfaultfd_ctx, anon_name); 158 if (*prev) { 159 vma = *prev; 160 goto success; 161 } 162 163 *prev = vma; 164 165 if (start != vma->vm_start) { 166 if (unlikely(mm->map_count >= sysctl_max_map_count)) 167 return -ENOMEM; 168 error = __split_vma(mm, vma, start, 1); 169 if (error) 170 return error; 171 } 172 173 if (end != vma->vm_end) { 174 if (unlikely(mm->map_count >= sysctl_max_map_count)) 175 return -ENOMEM; 176 error = __split_vma(mm, vma, end, 0); 177 if (error) 178 return error; 179 } 180 181 success: 182 /* 183 * vm_flags is protected by the mmap_lock held in write mode. 184 */ 185 vma->vm_flags = new_flags; 186 if (!vma->vm_file) { 187 error = replace_anon_vma_name(vma, anon_name); 188 if (error) 189 return error; 190 } 191 192 return 0; 193 } 194 195 #ifdef CONFIG_SWAP 196 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start, 197 unsigned long end, struct mm_walk *walk) 198 { 199 struct vm_area_struct *vma = walk->private; 200 unsigned long index; 201 struct swap_iocb *splug = NULL; 202 203 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 204 return 0; 205 206 for (index = start; index != end; index += PAGE_SIZE) { 207 pte_t pte; 208 swp_entry_t entry; 209 struct page *page; 210 spinlock_t *ptl; 211 pte_t *ptep; 212 213 ptep = pte_offset_map_lock(vma->vm_mm, pmd, index, &ptl); 214 pte = *ptep; 215 pte_unmap_unlock(ptep, ptl); 216 217 if (!is_swap_pte(pte)) 218 continue; 219 entry = pte_to_swp_entry(pte); 220 if (unlikely(non_swap_entry(entry))) 221 continue; 222 223 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE, 224 vma, index, false, &splug); 225 if (page) 226 put_page(page); 227 } 228 swap_read_unplug(splug); 229 230 return 0; 231 } 232 233 static const struct mm_walk_ops swapin_walk_ops = { 234 .pmd_entry = swapin_walk_pmd_entry, 235 }; 236 237 static void force_shm_swapin_readahead(struct vm_area_struct *vma, 238 unsigned long start, unsigned long end, 239 struct address_space *mapping) 240 { 241 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start)); 242 pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1); 243 struct page *page; 244 struct swap_iocb *splug = NULL; 245 246 rcu_read_lock(); 247 xas_for_each(&xas, page, end_index) { 248 swp_entry_t swap; 249 250 if (!xa_is_value(page)) 251 continue; 252 swap = radix_to_swp_entry(page); 253 /* There might be swapin error entries in shmem mapping. */ 254 if (non_swap_entry(swap)) 255 continue; 256 xas_pause(&xas); 257 rcu_read_unlock(); 258 259 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE, 260 NULL, 0, false, &splug); 261 if (page) 262 put_page(page); 263 264 rcu_read_lock(); 265 } 266 rcu_read_unlock(); 267 swap_read_unplug(splug); 268 269 lru_add_drain(); /* Push any new pages onto the LRU now */ 270 } 271 #endif /* CONFIG_SWAP */ 272 273 /* 274 * Schedule all required I/O operations. Do not wait for completion. 275 */ 276 static long madvise_willneed(struct vm_area_struct *vma, 277 struct vm_area_struct **prev, 278 unsigned long start, unsigned long end) 279 { 280 struct mm_struct *mm = vma->vm_mm; 281 struct file *file = vma->vm_file; 282 loff_t offset; 283 284 *prev = vma; 285 #ifdef CONFIG_SWAP 286 if (!file) { 287 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma); 288 lru_add_drain(); /* Push any new pages onto the LRU now */ 289 return 0; 290 } 291 292 if (shmem_mapping(file->f_mapping)) { 293 force_shm_swapin_readahead(vma, start, end, 294 file->f_mapping); 295 return 0; 296 } 297 #else 298 if (!file) 299 return -EBADF; 300 #endif 301 302 if (IS_DAX(file_inode(file))) { 303 /* no bad return value, but ignore advice */ 304 return 0; 305 } 306 307 /* 308 * Filesystem's fadvise may need to take various locks. We need to 309 * explicitly grab a reference because the vma (and hence the 310 * vma's reference to the file) can go away as soon as we drop 311 * mmap_lock. 312 */ 313 *prev = NULL; /* tell sys_madvise we drop mmap_lock */ 314 get_file(file); 315 offset = (loff_t)(start - vma->vm_start) 316 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 317 mmap_read_unlock(mm); 318 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED); 319 fput(file); 320 mmap_read_lock(mm); 321 return 0; 322 } 323 324 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd, 325 unsigned long addr, unsigned long end, 326 struct mm_walk *walk) 327 { 328 struct madvise_walk_private *private = walk->private; 329 struct mmu_gather *tlb = private->tlb; 330 bool pageout = private->pageout; 331 struct mm_struct *mm = tlb->mm; 332 struct vm_area_struct *vma = walk->vma; 333 pte_t *orig_pte, *pte, ptent; 334 spinlock_t *ptl; 335 struct page *page = NULL; 336 LIST_HEAD(page_list); 337 338 if (fatal_signal_pending(current)) 339 return -EINTR; 340 341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 342 if (pmd_trans_huge(*pmd)) { 343 pmd_t orig_pmd; 344 unsigned long next = pmd_addr_end(addr, end); 345 346 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 347 ptl = pmd_trans_huge_lock(pmd, vma); 348 if (!ptl) 349 return 0; 350 351 orig_pmd = *pmd; 352 if (is_huge_zero_pmd(orig_pmd)) 353 goto huge_unlock; 354 355 if (unlikely(!pmd_present(orig_pmd))) { 356 VM_BUG_ON(thp_migration_supported() && 357 !is_pmd_migration_entry(orig_pmd)); 358 goto huge_unlock; 359 } 360 361 page = pmd_page(orig_pmd); 362 363 /* Do not interfere with other mappings of this page */ 364 if (page_mapcount(page) != 1) 365 goto huge_unlock; 366 367 if (next - addr != HPAGE_PMD_SIZE) { 368 int err; 369 370 get_page(page); 371 spin_unlock(ptl); 372 lock_page(page); 373 err = split_huge_page(page); 374 unlock_page(page); 375 put_page(page); 376 if (!err) 377 goto regular_page; 378 return 0; 379 } 380 381 if (pmd_young(orig_pmd)) { 382 pmdp_invalidate(vma, addr, pmd); 383 orig_pmd = pmd_mkold(orig_pmd); 384 385 set_pmd_at(mm, addr, pmd, orig_pmd); 386 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 387 } 388 389 ClearPageReferenced(page); 390 test_and_clear_page_young(page); 391 if (pageout) { 392 if (!isolate_lru_page(page)) { 393 if (PageUnevictable(page)) 394 putback_lru_page(page); 395 else 396 list_add(&page->lru, &page_list); 397 } 398 } else 399 deactivate_page(page); 400 huge_unlock: 401 spin_unlock(ptl); 402 if (pageout) 403 reclaim_pages(&page_list); 404 return 0; 405 } 406 407 regular_page: 408 if (pmd_trans_unstable(pmd)) 409 return 0; 410 #endif 411 tlb_change_page_size(tlb, PAGE_SIZE); 412 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 413 flush_tlb_batched_pending(mm); 414 arch_enter_lazy_mmu_mode(); 415 for (; addr < end; pte++, addr += PAGE_SIZE) { 416 ptent = *pte; 417 418 if (pte_none(ptent)) 419 continue; 420 421 if (!pte_present(ptent)) 422 continue; 423 424 page = vm_normal_page(vma, addr, ptent); 425 if (!page || is_zone_device_page(page)) 426 continue; 427 428 /* 429 * Creating a THP page is expensive so split it only if we 430 * are sure it's worth. Split it if we are only owner. 431 */ 432 if (PageTransCompound(page)) { 433 if (page_mapcount(page) != 1) 434 break; 435 get_page(page); 436 if (!trylock_page(page)) { 437 put_page(page); 438 break; 439 } 440 pte_unmap_unlock(orig_pte, ptl); 441 if (split_huge_page(page)) { 442 unlock_page(page); 443 put_page(page); 444 orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 445 break; 446 } 447 unlock_page(page); 448 put_page(page); 449 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 450 pte--; 451 addr -= PAGE_SIZE; 452 continue; 453 } 454 455 /* 456 * Do not interfere with other mappings of this page and 457 * non-LRU page. 458 */ 459 if (!PageLRU(page) || page_mapcount(page) != 1) 460 continue; 461 462 VM_BUG_ON_PAGE(PageTransCompound(page), page); 463 464 if (pte_young(ptent)) { 465 ptent = ptep_get_and_clear_full(mm, addr, pte, 466 tlb->fullmm); 467 ptent = pte_mkold(ptent); 468 set_pte_at(mm, addr, pte, ptent); 469 tlb_remove_tlb_entry(tlb, pte, addr); 470 } 471 472 /* 473 * We are deactivating a page for accelerating reclaiming. 474 * VM couldn't reclaim the page unless we clear PG_young. 475 * As a side effect, it makes confuse idle-page tracking 476 * because they will miss recent referenced history. 477 */ 478 ClearPageReferenced(page); 479 test_and_clear_page_young(page); 480 if (pageout) { 481 if (!isolate_lru_page(page)) { 482 if (PageUnevictable(page)) 483 putback_lru_page(page); 484 else 485 list_add(&page->lru, &page_list); 486 } 487 } else 488 deactivate_page(page); 489 } 490 491 arch_leave_lazy_mmu_mode(); 492 pte_unmap_unlock(orig_pte, ptl); 493 if (pageout) 494 reclaim_pages(&page_list); 495 cond_resched(); 496 497 return 0; 498 } 499 500 static const struct mm_walk_ops cold_walk_ops = { 501 .pmd_entry = madvise_cold_or_pageout_pte_range, 502 }; 503 504 static void madvise_cold_page_range(struct mmu_gather *tlb, 505 struct vm_area_struct *vma, 506 unsigned long addr, unsigned long end) 507 { 508 struct madvise_walk_private walk_private = { 509 .pageout = false, 510 .tlb = tlb, 511 }; 512 513 tlb_start_vma(tlb, vma); 514 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 515 tlb_end_vma(tlb, vma); 516 } 517 518 static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 519 { 520 return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB)); 521 } 522 523 static long madvise_cold(struct vm_area_struct *vma, 524 struct vm_area_struct **prev, 525 unsigned long start_addr, unsigned long end_addr) 526 { 527 struct mm_struct *mm = vma->vm_mm; 528 struct mmu_gather tlb; 529 530 *prev = vma; 531 if (!can_madv_lru_vma(vma)) 532 return -EINVAL; 533 534 lru_add_drain(); 535 tlb_gather_mmu(&tlb, mm); 536 madvise_cold_page_range(&tlb, vma, start_addr, end_addr); 537 tlb_finish_mmu(&tlb); 538 539 return 0; 540 } 541 542 static void madvise_pageout_page_range(struct mmu_gather *tlb, 543 struct vm_area_struct *vma, 544 unsigned long addr, unsigned long end) 545 { 546 struct madvise_walk_private walk_private = { 547 .pageout = true, 548 .tlb = tlb, 549 }; 550 551 tlb_start_vma(tlb, vma); 552 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); 553 tlb_end_vma(tlb, vma); 554 } 555 556 static inline bool can_do_pageout(struct vm_area_struct *vma) 557 { 558 if (vma_is_anonymous(vma)) 559 return true; 560 if (!vma->vm_file) 561 return false; 562 /* 563 * paging out pagecache only for non-anonymous mappings that correspond 564 * to the files the calling process could (if tried) open for writing; 565 * otherwise we'd be including shared non-exclusive mappings, which 566 * opens a side channel. 567 */ 568 return inode_owner_or_capable(&init_user_ns, 569 file_inode(vma->vm_file)) || 570 file_permission(vma->vm_file, MAY_WRITE) == 0; 571 } 572 573 static long madvise_pageout(struct vm_area_struct *vma, 574 struct vm_area_struct **prev, 575 unsigned long start_addr, unsigned long end_addr) 576 { 577 struct mm_struct *mm = vma->vm_mm; 578 struct mmu_gather tlb; 579 580 *prev = vma; 581 if (!can_madv_lru_vma(vma)) 582 return -EINVAL; 583 584 if (!can_do_pageout(vma)) 585 return 0; 586 587 lru_add_drain(); 588 tlb_gather_mmu(&tlb, mm); 589 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr); 590 tlb_finish_mmu(&tlb); 591 592 return 0; 593 } 594 595 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr, 596 unsigned long end, struct mm_walk *walk) 597 598 { 599 struct mmu_gather *tlb = walk->private; 600 struct mm_struct *mm = tlb->mm; 601 struct vm_area_struct *vma = walk->vma; 602 spinlock_t *ptl; 603 pte_t *orig_pte, *pte, ptent; 604 struct folio *folio; 605 struct page *page; 606 int nr_swap = 0; 607 unsigned long next; 608 609 next = pmd_addr_end(addr, end); 610 if (pmd_trans_huge(*pmd)) 611 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next)) 612 goto next; 613 614 if (pmd_trans_unstable(pmd)) 615 return 0; 616 617 tlb_change_page_size(tlb, PAGE_SIZE); 618 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 619 flush_tlb_batched_pending(mm); 620 arch_enter_lazy_mmu_mode(); 621 for (; addr != end; pte++, addr += PAGE_SIZE) { 622 ptent = *pte; 623 624 if (pte_none(ptent)) 625 continue; 626 /* 627 * If the pte has swp_entry, just clear page table to 628 * prevent swap-in which is more expensive rather than 629 * (page allocation + zeroing). 630 */ 631 if (!pte_present(ptent)) { 632 swp_entry_t entry; 633 634 entry = pte_to_swp_entry(ptent); 635 if (!non_swap_entry(entry)) { 636 nr_swap--; 637 free_swap_and_cache(entry); 638 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 639 } else if (is_hwpoison_entry(entry) || 640 is_swapin_error_entry(entry)) { 641 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 642 } 643 continue; 644 } 645 646 page = vm_normal_page(vma, addr, ptent); 647 if (!page || is_zone_device_page(page)) 648 continue; 649 folio = page_folio(page); 650 651 /* 652 * If pmd isn't transhuge but the folio is large and 653 * is owned by only this process, split it and 654 * deactivate all pages. 655 */ 656 if (folio_test_large(folio)) { 657 if (folio_mapcount(folio) != 1) 658 goto out; 659 folio_get(folio); 660 if (!folio_trylock(folio)) { 661 folio_put(folio); 662 goto out; 663 } 664 pte_unmap_unlock(orig_pte, ptl); 665 if (split_folio(folio)) { 666 folio_unlock(folio); 667 folio_put(folio); 668 orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 669 goto out; 670 } 671 folio_unlock(folio); 672 folio_put(folio); 673 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 674 pte--; 675 addr -= PAGE_SIZE; 676 continue; 677 } 678 679 if (folio_test_swapcache(folio) || folio_test_dirty(folio)) { 680 if (!folio_trylock(folio)) 681 continue; 682 /* 683 * If folio is shared with others, we mustn't clear 684 * the folio's dirty flag. 685 */ 686 if (folio_mapcount(folio) != 1) { 687 folio_unlock(folio); 688 continue; 689 } 690 691 if (folio_test_swapcache(folio) && 692 !folio_free_swap(folio)) { 693 folio_unlock(folio); 694 continue; 695 } 696 697 folio_clear_dirty(folio); 698 folio_unlock(folio); 699 } 700 701 if (pte_young(ptent) || pte_dirty(ptent)) { 702 /* 703 * Some of architecture(ex, PPC) don't update TLB 704 * with set_pte_at and tlb_remove_tlb_entry so for 705 * the portability, remap the pte with old|clean 706 * after pte clearing. 707 */ 708 ptent = ptep_get_and_clear_full(mm, addr, pte, 709 tlb->fullmm); 710 711 ptent = pte_mkold(ptent); 712 ptent = pte_mkclean(ptent); 713 set_pte_at(mm, addr, pte, ptent); 714 tlb_remove_tlb_entry(tlb, pte, addr); 715 } 716 mark_page_lazyfree(&folio->page); 717 } 718 out: 719 if (nr_swap) { 720 if (current->mm == mm) 721 sync_mm_rss(mm); 722 723 add_mm_counter(mm, MM_SWAPENTS, nr_swap); 724 } 725 arch_leave_lazy_mmu_mode(); 726 pte_unmap_unlock(orig_pte, ptl); 727 cond_resched(); 728 next: 729 return 0; 730 } 731 732 static const struct mm_walk_ops madvise_free_walk_ops = { 733 .pmd_entry = madvise_free_pte_range, 734 }; 735 736 static int madvise_free_single_vma(struct vm_area_struct *vma, 737 unsigned long start_addr, unsigned long end_addr) 738 { 739 struct mm_struct *mm = vma->vm_mm; 740 struct mmu_notifier_range range; 741 struct mmu_gather tlb; 742 743 /* MADV_FREE works for only anon vma at the moment */ 744 if (!vma_is_anonymous(vma)) 745 return -EINVAL; 746 747 range.start = max(vma->vm_start, start_addr); 748 if (range.start >= vma->vm_end) 749 return -EINVAL; 750 range.end = min(vma->vm_end, end_addr); 751 if (range.end <= vma->vm_start) 752 return -EINVAL; 753 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 754 range.start, range.end); 755 756 lru_add_drain(); 757 tlb_gather_mmu(&tlb, mm); 758 update_hiwater_rss(mm); 759 760 mmu_notifier_invalidate_range_start(&range); 761 tlb_start_vma(&tlb, vma); 762 walk_page_range(vma->vm_mm, range.start, range.end, 763 &madvise_free_walk_ops, &tlb); 764 tlb_end_vma(&tlb, vma); 765 mmu_notifier_invalidate_range_end(&range); 766 tlb_finish_mmu(&tlb); 767 768 return 0; 769 } 770 771 /* 772 * Application no longer needs these pages. If the pages are dirty, 773 * it's OK to just throw them away. The app will be more careful about 774 * data it wants to keep. Be sure to free swap resources too. The 775 * zap_page_range call sets things up for shrink_active_list to actually free 776 * these pages later if no one else has touched them in the meantime, 777 * although we could add these pages to a global reuse list for 778 * shrink_active_list to pick up before reclaiming other pages. 779 * 780 * NB: This interface discards data rather than pushes it out to swap, 781 * as some implementations do. This has performance implications for 782 * applications like large transactional databases which want to discard 783 * pages in anonymous maps after committing to backing store the data 784 * that was kept in them. There is no reason to write this data out to 785 * the swap area if the application is discarding it. 786 * 787 * An interface that causes the system to free clean pages and flush 788 * dirty pages is already available as msync(MS_INVALIDATE). 789 */ 790 static long madvise_dontneed_single_vma(struct vm_area_struct *vma, 791 unsigned long start, unsigned long end) 792 { 793 zap_page_range(vma, start, end - start); 794 return 0; 795 } 796 797 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma, 798 unsigned long start, 799 unsigned long *end, 800 int behavior) 801 { 802 if (!is_vm_hugetlb_page(vma)) { 803 unsigned int forbidden = VM_PFNMAP; 804 805 if (behavior != MADV_DONTNEED_LOCKED) 806 forbidden |= VM_LOCKED; 807 808 return !(vma->vm_flags & forbidden); 809 } 810 811 if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED) 812 return false; 813 if (start & ~huge_page_mask(hstate_vma(vma))) 814 return false; 815 816 *end = ALIGN(*end, huge_page_size(hstate_vma(vma))); 817 return true; 818 } 819 820 static long madvise_dontneed_free(struct vm_area_struct *vma, 821 struct vm_area_struct **prev, 822 unsigned long start, unsigned long end, 823 int behavior) 824 { 825 struct mm_struct *mm = vma->vm_mm; 826 827 *prev = vma; 828 if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior)) 829 return -EINVAL; 830 831 if (!userfaultfd_remove(vma, start, end)) { 832 *prev = NULL; /* mmap_lock has been dropped, prev is stale */ 833 834 mmap_read_lock(mm); 835 vma = find_vma(mm, start); 836 if (!vma) 837 return -ENOMEM; 838 if (start < vma->vm_start) { 839 /* 840 * This "vma" under revalidation is the one 841 * with the lowest vma->vm_start where start 842 * is also < vma->vm_end. If start < 843 * vma->vm_start it means an hole materialized 844 * in the user address space within the 845 * virtual range passed to MADV_DONTNEED 846 * or MADV_FREE. 847 */ 848 return -ENOMEM; 849 } 850 /* 851 * Potential end adjustment for hugetlb vma is OK as 852 * the check below keeps end within vma. 853 */ 854 if (!madvise_dontneed_free_valid_vma(vma, start, &end, 855 behavior)) 856 return -EINVAL; 857 if (end > vma->vm_end) { 858 /* 859 * Don't fail if end > vma->vm_end. If the old 860 * vma was split while the mmap_lock was 861 * released the effect of the concurrent 862 * operation may not cause madvise() to 863 * have an undefined result. There may be an 864 * adjacent next vma that we'll walk 865 * next. userfaultfd_remove() will generate an 866 * UFFD_EVENT_REMOVE repetition on the 867 * end-vma->vm_end range, but the manager can 868 * handle a repetition fine. 869 */ 870 end = vma->vm_end; 871 } 872 VM_WARN_ON(start >= end); 873 } 874 875 if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED) 876 return madvise_dontneed_single_vma(vma, start, end); 877 else if (behavior == MADV_FREE) 878 return madvise_free_single_vma(vma, start, end); 879 else 880 return -EINVAL; 881 } 882 883 static long madvise_populate(struct vm_area_struct *vma, 884 struct vm_area_struct **prev, 885 unsigned long start, unsigned long end, 886 int behavior) 887 { 888 const bool write = behavior == MADV_POPULATE_WRITE; 889 struct mm_struct *mm = vma->vm_mm; 890 unsigned long tmp_end; 891 int locked = 1; 892 long pages; 893 894 *prev = vma; 895 896 while (start < end) { 897 /* 898 * We might have temporarily dropped the lock. For example, 899 * our VMA might have been split. 900 */ 901 if (!vma || start >= vma->vm_end) { 902 vma = vma_lookup(mm, start); 903 if (!vma) 904 return -ENOMEM; 905 } 906 907 tmp_end = min_t(unsigned long, end, vma->vm_end); 908 /* Populate (prefault) page tables readable/writable. */ 909 pages = faultin_vma_page_range(vma, start, tmp_end, write, 910 &locked); 911 if (!locked) { 912 mmap_read_lock(mm); 913 locked = 1; 914 *prev = NULL; 915 vma = NULL; 916 } 917 if (pages < 0) { 918 switch (pages) { 919 case -EINTR: 920 return -EINTR; 921 case -EINVAL: /* Incompatible mappings / permissions. */ 922 return -EINVAL; 923 case -EHWPOISON: 924 return -EHWPOISON; 925 case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */ 926 return -EFAULT; 927 default: 928 pr_warn_once("%s: unhandled return value: %ld\n", 929 __func__, pages); 930 fallthrough; 931 case -ENOMEM: 932 return -ENOMEM; 933 } 934 } 935 start += pages * PAGE_SIZE; 936 } 937 return 0; 938 } 939 940 /* 941 * Application wants to free up the pages and associated backing store. 942 * This is effectively punching a hole into the middle of a file. 943 */ 944 static long madvise_remove(struct vm_area_struct *vma, 945 struct vm_area_struct **prev, 946 unsigned long start, unsigned long end) 947 { 948 loff_t offset; 949 int error; 950 struct file *f; 951 struct mm_struct *mm = vma->vm_mm; 952 953 *prev = NULL; /* tell sys_madvise we drop mmap_lock */ 954 955 if (vma->vm_flags & VM_LOCKED) 956 return -EINVAL; 957 958 f = vma->vm_file; 959 960 if (!f || !f->f_mapping || !f->f_mapping->host) { 961 return -EINVAL; 962 } 963 964 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE)) 965 return -EACCES; 966 967 offset = (loff_t)(start - vma->vm_start) 968 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 969 970 /* 971 * Filesystem's fallocate may need to take i_rwsem. We need to 972 * explicitly grab a reference because the vma (and hence the 973 * vma's reference to the file) can go away as soon as we drop 974 * mmap_lock. 975 */ 976 get_file(f); 977 if (userfaultfd_remove(vma, start, end)) { 978 /* mmap_lock was not released by userfaultfd_remove() */ 979 mmap_read_unlock(mm); 980 } 981 error = vfs_fallocate(f, 982 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 983 offset, end - start); 984 fput(f); 985 mmap_read_lock(mm); 986 return error; 987 } 988 989 /* 990 * Apply an madvise behavior to a region of a vma. madvise_update_vma 991 * will handle splitting a vm area into separate areas, each area with its own 992 * behavior. 993 */ 994 static int madvise_vma_behavior(struct vm_area_struct *vma, 995 struct vm_area_struct **prev, 996 unsigned long start, unsigned long end, 997 unsigned long behavior) 998 { 999 int error; 1000 struct anon_vma_name *anon_name; 1001 unsigned long new_flags = vma->vm_flags; 1002 1003 switch (behavior) { 1004 case MADV_REMOVE: 1005 return madvise_remove(vma, prev, start, end); 1006 case MADV_WILLNEED: 1007 return madvise_willneed(vma, prev, start, end); 1008 case MADV_COLD: 1009 return madvise_cold(vma, prev, start, end); 1010 case MADV_PAGEOUT: 1011 return madvise_pageout(vma, prev, start, end); 1012 case MADV_FREE: 1013 case MADV_DONTNEED: 1014 case MADV_DONTNEED_LOCKED: 1015 return madvise_dontneed_free(vma, prev, start, end, behavior); 1016 case MADV_POPULATE_READ: 1017 case MADV_POPULATE_WRITE: 1018 return madvise_populate(vma, prev, start, end, behavior); 1019 case MADV_NORMAL: 1020 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; 1021 break; 1022 case MADV_SEQUENTIAL: 1023 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; 1024 break; 1025 case MADV_RANDOM: 1026 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; 1027 break; 1028 case MADV_DONTFORK: 1029 new_flags |= VM_DONTCOPY; 1030 break; 1031 case MADV_DOFORK: 1032 if (vma->vm_flags & VM_IO) 1033 return -EINVAL; 1034 new_flags &= ~VM_DONTCOPY; 1035 break; 1036 case MADV_WIPEONFORK: 1037 /* MADV_WIPEONFORK is only supported on anonymous memory. */ 1038 if (vma->vm_file || vma->vm_flags & VM_SHARED) 1039 return -EINVAL; 1040 new_flags |= VM_WIPEONFORK; 1041 break; 1042 case MADV_KEEPONFORK: 1043 new_flags &= ~VM_WIPEONFORK; 1044 break; 1045 case MADV_DONTDUMP: 1046 new_flags |= VM_DONTDUMP; 1047 break; 1048 case MADV_DODUMP: 1049 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) 1050 return -EINVAL; 1051 new_flags &= ~VM_DONTDUMP; 1052 break; 1053 case MADV_MERGEABLE: 1054 case MADV_UNMERGEABLE: 1055 error = ksm_madvise(vma, start, end, behavior, &new_flags); 1056 if (error) 1057 goto out; 1058 break; 1059 case MADV_HUGEPAGE: 1060 case MADV_NOHUGEPAGE: 1061 error = hugepage_madvise(vma, &new_flags, behavior); 1062 if (error) 1063 goto out; 1064 break; 1065 case MADV_COLLAPSE: 1066 return madvise_collapse(vma, prev, start, end); 1067 } 1068 1069 anon_name = anon_vma_name(vma); 1070 anon_vma_name_get(anon_name); 1071 error = madvise_update_vma(vma, prev, start, end, new_flags, 1072 anon_name); 1073 anon_vma_name_put(anon_name); 1074 1075 out: 1076 /* 1077 * madvise() returns EAGAIN if kernel resources, such as 1078 * slab, are temporarily unavailable. 1079 */ 1080 if (error == -ENOMEM) 1081 error = -EAGAIN; 1082 return error; 1083 } 1084 1085 #ifdef CONFIG_MEMORY_FAILURE 1086 /* 1087 * Error injection support for memory error handling. 1088 */ 1089 static int madvise_inject_error(int behavior, 1090 unsigned long start, unsigned long end) 1091 { 1092 unsigned long size; 1093 1094 if (!capable(CAP_SYS_ADMIN)) 1095 return -EPERM; 1096 1097 1098 for (; start < end; start += size) { 1099 unsigned long pfn; 1100 struct page *page; 1101 int ret; 1102 1103 ret = get_user_pages_fast(start, 1, 0, &page); 1104 if (ret != 1) 1105 return ret; 1106 pfn = page_to_pfn(page); 1107 1108 /* 1109 * When soft offlining hugepages, after migrating the page 1110 * we dissolve it, therefore in the second loop "page" will 1111 * no longer be a compound page. 1112 */ 1113 size = page_size(compound_head(page)); 1114 1115 if (behavior == MADV_SOFT_OFFLINE) { 1116 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n", 1117 pfn, start); 1118 ret = soft_offline_page(pfn, MF_COUNT_INCREASED); 1119 } else { 1120 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n", 1121 pfn, start); 1122 ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED); 1123 if (ret == -EOPNOTSUPP) 1124 ret = 0; 1125 } 1126 1127 if (ret) 1128 return ret; 1129 } 1130 1131 return 0; 1132 } 1133 #endif 1134 1135 static bool 1136 madvise_behavior_valid(int behavior) 1137 { 1138 switch (behavior) { 1139 case MADV_DOFORK: 1140 case MADV_DONTFORK: 1141 case MADV_NORMAL: 1142 case MADV_SEQUENTIAL: 1143 case MADV_RANDOM: 1144 case MADV_REMOVE: 1145 case MADV_WILLNEED: 1146 case MADV_DONTNEED: 1147 case MADV_DONTNEED_LOCKED: 1148 case MADV_FREE: 1149 case MADV_COLD: 1150 case MADV_PAGEOUT: 1151 case MADV_POPULATE_READ: 1152 case MADV_POPULATE_WRITE: 1153 #ifdef CONFIG_KSM 1154 case MADV_MERGEABLE: 1155 case MADV_UNMERGEABLE: 1156 #endif 1157 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1158 case MADV_HUGEPAGE: 1159 case MADV_NOHUGEPAGE: 1160 case MADV_COLLAPSE: 1161 #endif 1162 case MADV_DONTDUMP: 1163 case MADV_DODUMP: 1164 case MADV_WIPEONFORK: 1165 case MADV_KEEPONFORK: 1166 #ifdef CONFIG_MEMORY_FAILURE 1167 case MADV_SOFT_OFFLINE: 1168 case MADV_HWPOISON: 1169 #endif 1170 return true; 1171 1172 default: 1173 return false; 1174 } 1175 } 1176 1177 static bool process_madvise_behavior_valid(int behavior) 1178 { 1179 switch (behavior) { 1180 case MADV_COLD: 1181 case MADV_PAGEOUT: 1182 case MADV_WILLNEED: 1183 case MADV_COLLAPSE: 1184 return true; 1185 default: 1186 return false; 1187 } 1188 } 1189 1190 /* 1191 * Walk the vmas in range [start,end), and call the visit function on each one. 1192 * The visit function will get start and end parameters that cover the overlap 1193 * between the current vma and the original range. Any unmapped regions in the 1194 * original range will result in this function returning -ENOMEM while still 1195 * calling the visit function on all of the existing vmas in the range. 1196 * Must be called with the mmap_lock held for reading or writing. 1197 */ 1198 static 1199 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start, 1200 unsigned long end, unsigned long arg, 1201 int (*visit)(struct vm_area_struct *vma, 1202 struct vm_area_struct **prev, unsigned long start, 1203 unsigned long end, unsigned long arg)) 1204 { 1205 struct vm_area_struct *vma; 1206 struct vm_area_struct *prev; 1207 unsigned long tmp; 1208 int unmapped_error = 0; 1209 1210 /* 1211 * If the interval [start,end) covers some unmapped address 1212 * ranges, just ignore them, but return -ENOMEM at the end. 1213 * - different from the way of handling in mlock etc. 1214 */ 1215 vma = find_vma_prev(mm, start, &prev); 1216 if (vma && start > vma->vm_start) 1217 prev = vma; 1218 1219 for (;;) { 1220 int error; 1221 1222 /* Still start < end. */ 1223 if (!vma) 1224 return -ENOMEM; 1225 1226 /* Here start < (end|vma->vm_end). */ 1227 if (start < vma->vm_start) { 1228 unmapped_error = -ENOMEM; 1229 start = vma->vm_start; 1230 if (start >= end) 1231 break; 1232 } 1233 1234 /* Here vma->vm_start <= start < (end|vma->vm_end) */ 1235 tmp = vma->vm_end; 1236 if (end < tmp) 1237 tmp = end; 1238 1239 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */ 1240 error = visit(vma, &prev, start, tmp, arg); 1241 if (error) 1242 return error; 1243 start = tmp; 1244 if (prev && start < prev->vm_end) 1245 start = prev->vm_end; 1246 if (start >= end) 1247 break; 1248 if (prev) 1249 vma = find_vma(mm, prev->vm_end); 1250 else /* madvise_remove dropped mmap_lock */ 1251 vma = find_vma(mm, start); 1252 } 1253 1254 return unmapped_error; 1255 } 1256 1257 #ifdef CONFIG_ANON_VMA_NAME 1258 static int madvise_vma_anon_name(struct vm_area_struct *vma, 1259 struct vm_area_struct **prev, 1260 unsigned long start, unsigned long end, 1261 unsigned long anon_name) 1262 { 1263 int error; 1264 1265 /* Only anonymous mappings can be named */ 1266 if (vma->vm_file) 1267 return -EBADF; 1268 1269 error = madvise_update_vma(vma, prev, start, end, vma->vm_flags, 1270 (struct anon_vma_name *)anon_name); 1271 1272 /* 1273 * madvise() returns EAGAIN if kernel resources, such as 1274 * slab, are temporarily unavailable. 1275 */ 1276 if (error == -ENOMEM) 1277 error = -EAGAIN; 1278 return error; 1279 } 1280 1281 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 1282 unsigned long len_in, struct anon_vma_name *anon_name) 1283 { 1284 unsigned long end; 1285 unsigned long len; 1286 1287 if (start & ~PAGE_MASK) 1288 return -EINVAL; 1289 len = (len_in + ~PAGE_MASK) & PAGE_MASK; 1290 1291 /* Check to see whether len was rounded up from small -ve to zero */ 1292 if (len_in && !len) 1293 return -EINVAL; 1294 1295 end = start + len; 1296 if (end < start) 1297 return -EINVAL; 1298 1299 if (end == start) 1300 return 0; 1301 1302 return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name, 1303 madvise_vma_anon_name); 1304 } 1305 #endif /* CONFIG_ANON_VMA_NAME */ 1306 /* 1307 * The madvise(2) system call. 1308 * 1309 * Applications can use madvise() to advise the kernel how it should 1310 * handle paging I/O in this VM area. The idea is to help the kernel 1311 * use appropriate read-ahead and caching techniques. The information 1312 * provided is advisory only, and can be safely disregarded by the 1313 * kernel without affecting the correct operation of the application. 1314 * 1315 * behavior values: 1316 * MADV_NORMAL - the default behavior is to read clusters. This 1317 * results in some read-ahead and read-behind. 1318 * MADV_RANDOM - the system should read the minimum amount of data 1319 * on any access, since it is unlikely that the appli- 1320 * cation will need more than what it asks for. 1321 * MADV_SEQUENTIAL - pages in the given range will probably be accessed 1322 * once, so they can be aggressively read ahead, and 1323 * can be freed soon after they are accessed. 1324 * MADV_WILLNEED - the application is notifying the system to read 1325 * some pages ahead. 1326 * MADV_DONTNEED - the application is finished with the given range, 1327 * so the kernel can free resources associated with it. 1328 * MADV_FREE - the application marks pages in the given range as lazy free, 1329 * where actual purges are postponed until memory pressure happens. 1330 * MADV_REMOVE - the application wants to free up the given range of 1331 * pages and associated backing store. 1332 * MADV_DONTFORK - omit this area from child's address space when forking: 1333 * typically, to avoid COWing pages pinned by get_user_pages(). 1334 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking. 1335 * MADV_WIPEONFORK - present the child process with zero-filled memory in this 1336 * range after a fork. 1337 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK 1338 * MADV_HWPOISON - trigger memory error handler as if the given memory range 1339 * were corrupted by unrecoverable hardware memory failure. 1340 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory. 1341 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in 1342 * this area with pages of identical content from other such areas. 1343 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others. 1344 * MADV_HUGEPAGE - the application wants to back the given range by transparent 1345 * huge pages in the future. Existing pages might be coalesced and 1346 * new pages might be allocated as THP. 1347 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by 1348 * transparent huge pages so the existing pages will not be 1349 * coalesced into THP and new pages will not be allocated as THP. 1350 * MADV_COLLAPSE - synchronously coalesce pages into new THP. 1351 * MADV_DONTDUMP - the application wants to prevent pages in the given range 1352 * from being included in its core dump. 1353 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump. 1354 * MADV_COLD - the application is not expected to use this memory soon, 1355 * deactivate pages in this range so that they can be reclaimed 1356 * easily if memory pressure happens. 1357 * MADV_PAGEOUT - the application is not expected to use this memory soon, 1358 * page out the pages in this range immediately. 1359 * MADV_POPULATE_READ - populate (prefault) page tables readable by 1360 * triggering read faults if required 1361 * MADV_POPULATE_WRITE - populate (prefault) page tables writable by 1362 * triggering write faults if required 1363 * 1364 * return values: 1365 * zero - success 1366 * -EINVAL - start + len < 0, start is not page-aligned, 1367 * "behavior" is not a valid value, or application 1368 * is attempting to release locked or shared pages, 1369 * or the specified address range includes file, Huge TLB, 1370 * MAP_SHARED or VMPFNMAP range. 1371 * -ENOMEM - addresses in the specified range are not currently 1372 * mapped, or are outside the AS of the process. 1373 * -EIO - an I/O error occurred while paging in data. 1374 * -EBADF - map exists, but area maps something that isn't a file. 1375 * -EAGAIN - a kernel resource was temporarily unavailable. 1376 */ 1377 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior) 1378 { 1379 unsigned long end; 1380 int error; 1381 int write; 1382 size_t len; 1383 struct blk_plug plug; 1384 1385 start = untagged_addr(start); 1386 1387 if (!madvise_behavior_valid(behavior)) 1388 return -EINVAL; 1389 1390 if (!PAGE_ALIGNED(start)) 1391 return -EINVAL; 1392 len = PAGE_ALIGN(len_in); 1393 1394 /* Check to see whether len was rounded up from small -ve to zero */ 1395 if (len_in && !len) 1396 return -EINVAL; 1397 1398 end = start + len; 1399 if (end < start) 1400 return -EINVAL; 1401 1402 if (end == start) 1403 return 0; 1404 1405 #ifdef CONFIG_MEMORY_FAILURE 1406 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE) 1407 return madvise_inject_error(behavior, start, start + len_in); 1408 #endif 1409 1410 write = madvise_need_mmap_write(behavior); 1411 if (write) { 1412 if (mmap_write_lock_killable(mm)) 1413 return -EINTR; 1414 } else { 1415 mmap_read_lock(mm); 1416 } 1417 1418 blk_start_plug(&plug); 1419 error = madvise_walk_vmas(mm, start, end, behavior, 1420 madvise_vma_behavior); 1421 blk_finish_plug(&plug); 1422 if (write) 1423 mmap_write_unlock(mm); 1424 else 1425 mmap_read_unlock(mm); 1426 1427 return error; 1428 } 1429 1430 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior) 1431 { 1432 return do_madvise(current->mm, start, len_in, behavior); 1433 } 1434 1435 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec, 1436 size_t, vlen, int, behavior, unsigned int, flags) 1437 { 1438 ssize_t ret; 1439 struct iovec iovstack[UIO_FASTIOV], iovec; 1440 struct iovec *iov = iovstack; 1441 struct iov_iter iter; 1442 struct task_struct *task; 1443 struct mm_struct *mm; 1444 size_t total_len; 1445 unsigned int f_flags; 1446 1447 if (flags != 0) { 1448 ret = -EINVAL; 1449 goto out; 1450 } 1451 1452 ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter); 1453 if (ret < 0) 1454 goto out; 1455 1456 task = pidfd_get_task(pidfd, &f_flags); 1457 if (IS_ERR(task)) { 1458 ret = PTR_ERR(task); 1459 goto free_iov; 1460 } 1461 1462 if (!process_madvise_behavior_valid(behavior)) { 1463 ret = -EINVAL; 1464 goto release_task; 1465 } 1466 1467 /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */ 1468 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 1469 if (IS_ERR_OR_NULL(mm)) { 1470 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH; 1471 goto release_task; 1472 } 1473 1474 /* 1475 * Require CAP_SYS_NICE for influencing process performance. Note that 1476 * only non-destructive hints are currently supported. 1477 */ 1478 if (!capable(CAP_SYS_NICE)) { 1479 ret = -EPERM; 1480 goto release_mm; 1481 } 1482 1483 total_len = iov_iter_count(&iter); 1484 1485 while (iov_iter_count(&iter)) { 1486 iovec = iov_iter_iovec(&iter); 1487 ret = do_madvise(mm, (unsigned long)iovec.iov_base, 1488 iovec.iov_len, behavior); 1489 if (ret < 0) 1490 break; 1491 iov_iter_advance(&iter, iovec.iov_len); 1492 } 1493 1494 ret = (total_len - iov_iter_count(&iter)) ? : ret; 1495 1496 release_mm: 1497 mmput(mm); 1498 release_task: 1499 put_task_struct(task); 1500 free_iov: 1501 kfree(iov); 1502 out: 1503 return ret; 1504 } 1505