xref: /linux/mm/madvise.c (revision 4745dc8abb0a0a9851c07265eea01d844886d5c8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/userfaultfd_k.h>
15 #include <linux/hugetlb.h>
16 #include <linux/falloc.h>
17 #include <linux/sched.h>
18 #include <linux/ksm.h>
19 #include <linux/fs.h>
20 #include <linux/file.h>
21 #include <linux/blkdev.h>
22 #include <linux/backing-dev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/shmem_fs.h>
26 #include <linux/mmu_notifier.h>
27 
28 #include <asm/tlb.h>
29 
30 #include "internal.h"
31 
32 /*
33  * Any behaviour which results in changes to the vma->vm_flags needs to
34  * take mmap_sem for writing. Others, which simply traverse vmas, need
35  * to only take it for reading.
36  */
37 static int madvise_need_mmap_write(int behavior)
38 {
39 	switch (behavior) {
40 	case MADV_REMOVE:
41 	case MADV_WILLNEED:
42 	case MADV_DONTNEED:
43 	case MADV_FREE:
44 		return 0;
45 	default:
46 		/* be safe, default to 1. list exceptions explicitly */
47 		return 1;
48 	}
49 }
50 
51 /*
52  * We can potentially split a vm area into separate
53  * areas, each area with its own behavior.
54  */
55 static long madvise_behavior(struct vm_area_struct *vma,
56 		     struct vm_area_struct **prev,
57 		     unsigned long start, unsigned long end, int behavior)
58 {
59 	struct mm_struct *mm = vma->vm_mm;
60 	int error = 0;
61 	pgoff_t pgoff;
62 	unsigned long new_flags = vma->vm_flags;
63 
64 	switch (behavior) {
65 	case MADV_NORMAL:
66 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
67 		break;
68 	case MADV_SEQUENTIAL:
69 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
70 		break;
71 	case MADV_RANDOM:
72 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
73 		break;
74 	case MADV_DONTFORK:
75 		new_flags |= VM_DONTCOPY;
76 		break;
77 	case MADV_DOFORK:
78 		if (vma->vm_flags & VM_IO) {
79 			error = -EINVAL;
80 			goto out;
81 		}
82 		new_flags &= ~VM_DONTCOPY;
83 		break;
84 	case MADV_WIPEONFORK:
85 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
86 		if (vma->vm_file || vma->vm_flags & VM_SHARED) {
87 			error = -EINVAL;
88 			goto out;
89 		}
90 		new_flags |= VM_WIPEONFORK;
91 		break;
92 	case MADV_KEEPONFORK:
93 		new_flags &= ~VM_WIPEONFORK;
94 		break;
95 	case MADV_DONTDUMP:
96 		new_flags |= VM_DONTDUMP;
97 		break;
98 	case MADV_DODUMP:
99 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
100 			error = -EINVAL;
101 			goto out;
102 		}
103 		new_flags &= ~VM_DONTDUMP;
104 		break;
105 	case MADV_MERGEABLE:
106 	case MADV_UNMERGEABLE:
107 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
108 		if (error) {
109 			/*
110 			 * madvise() returns EAGAIN if kernel resources, such as
111 			 * slab, are temporarily unavailable.
112 			 */
113 			if (error == -ENOMEM)
114 				error = -EAGAIN;
115 			goto out;
116 		}
117 		break;
118 	case MADV_HUGEPAGE:
119 	case MADV_NOHUGEPAGE:
120 		error = hugepage_madvise(vma, &new_flags, behavior);
121 		if (error) {
122 			/*
123 			 * madvise() returns EAGAIN if kernel resources, such as
124 			 * slab, are temporarily unavailable.
125 			 */
126 			if (error == -ENOMEM)
127 				error = -EAGAIN;
128 			goto out;
129 		}
130 		break;
131 	}
132 
133 	if (new_flags == vma->vm_flags) {
134 		*prev = vma;
135 		goto out;
136 	}
137 
138 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
139 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
140 			  vma->vm_file, pgoff, vma_policy(vma),
141 			  vma->vm_userfaultfd_ctx);
142 	if (*prev) {
143 		vma = *prev;
144 		goto success;
145 	}
146 
147 	*prev = vma;
148 
149 	if (start != vma->vm_start) {
150 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
151 			error = -ENOMEM;
152 			goto out;
153 		}
154 		error = __split_vma(mm, vma, start, 1);
155 		if (error) {
156 			/*
157 			 * madvise() returns EAGAIN if kernel resources, such as
158 			 * slab, are temporarily unavailable.
159 			 */
160 			if (error == -ENOMEM)
161 				error = -EAGAIN;
162 			goto out;
163 		}
164 	}
165 
166 	if (end != vma->vm_end) {
167 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
168 			error = -ENOMEM;
169 			goto out;
170 		}
171 		error = __split_vma(mm, vma, end, 0);
172 		if (error) {
173 			/*
174 			 * madvise() returns EAGAIN if kernel resources, such as
175 			 * slab, are temporarily unavailable.
176 			 */
177 			if (error == -ENOMEM)
178 				error = -EAGAIN;
179 			goto out;
180 		}
181 	}
182 
183 success:
184 	/*
185 	 * vm_flags is protected by the mmap_sem held in write mode.
186 	 */
187 	vma->vm_flags = new_flags;
188 out:
189 	return error;
190 }
191 
192 #ifdef CONFIG_SWAP
193 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
194 	unsigned long end, struct mm_walk *walk)
195 {
196 	pte_t *orig_pte;
197 	struct vm_area_struct *vma = walk->private;
198 	unsigned long index;
199 
200 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
201 		return 0;
202 
203 	for (index = start; index != end; index += PAGE_SIZE) {
204 		pte_t pte;
205 		swp_entry_t entry;
206 		struct page *page;
207 		spinlock_t *ptl;
208 
209 		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
210 		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
211 		pte_unmap_unlock(orig_pte, ptl);
212 
213 		if (pte_present(pte) || pte_none(pte))
214 			continue;
215 		entry = pte_to_swp_entry(pte);
216 		if (unlikely(non_swap_entry(entry)))
217 			continue;
218 
219 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
220 							vma, index, false);
221 		if (page)
222 			put_page(page);
223 	}
224 
225 	return 0;
226 }
227 
228 static void force_swapin_readahead(struct vm_area_struct *vma,
229 		unsigned long start, unsigned long end)
230 {
231 	struct mm_walk walk = {
232 		.mm = vma->vm_mm,
233 		.pmd_entry = swapin_walk_pmd_entry,
234 		.private = vma,
235 	};
236 
237 	walk_page_range(start, end, &walk);
238 
239 	lru_add_drain();	/* Push any new pages onto the LRU now */
240 }
241 
242 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
243 		unsigned long start, unsigned long end,
244 		struct address_space *mapping)
245 {
246 	pgoff_t index;
247 	struct page *page;
248 	swp_entry_t swap;
249 
250 	for (; start < end; start += PAGE_SIZE) {
251 		index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
252 
253 		page = find_get_entry(mapping, index);
254 		if (!xa_is_value(page)) {
255 			if (page)
256 				put_page(page);
257 			continue;
258 		}
259 		swap = radix_to_swp_entry(page);
260 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
261 							NULL, 0, false);
262 		if (page)
263 			put_page(page);
264 	}
265 
266 	lru_add_drain();	/* Push any new pages onto the LRU now */
267 }
268 #endif		/* CONFIG_SWAP */
269 
270 /*
271  * Schedule all required I/O operations.  Do not wait for completion.
272  */
273 static long madvise_willneed(struct vm_area_struct *vma,
274 			     struct vm_area_struct **prev,
275 			     unsigned long start, unsigned long end)
276 {
277 	struct file *file = vma->vm_file;
278 
279 	*prev = vma;
280 #ifdef CONFIG_SWAP
281 	if (!file) {
282 		force_swapin_readahead(vma, start, end);
283 		return 0;
284 	}
285 
286 	if (shmem_mapping(file->f_mapping)) {
287 		force_shm_swapin_readahead(vma, start, end,
288 					file->f_mapping);
289 		return 0;
290 	}
291 #else
292 	if (!file)
293 		return -EBADF;
294 #endif
295 
296 	if (IS_DAX(file_inode(file))) {
297 		/* no bad return value, but ignore advice */
298 		return 0;
299 	}
300 
301 	start = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
302 	if (end > vma->vm_end)
303 		end = vma->vm_end;
304 	end = ((end - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
305 
306 	force_page_cache_readahead(file->f_mapping, file, start, end - start);
307 	return 0;
308 }
309 
310 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
311 				unsigned long end, struct mm_walk *walk)
312 
313 {
314 	struct mmu_gather *tlb = walk->private;
315 	struct mm_struct *mm = tlb->mm;
316 	struct vm_area_struct *vma = walk->vma;
317 	spinlock_t *ptl;
318 	pte_t *orig_pte, *pte, ptent;
319 	struct page *page;
320 	int nr_swap = 0;
321 	unsigned long next;
322 
323 	next = pmd_addr_end(addr, end);
324 	if (pmd_trans_huge(*pmd))
325 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
326 			goto next;
327 
328 	if (pmd_trans_unstable(pmd))
329 		return 0;
330 
331 	tlb_change_page_size(tlb, PAGE_SIZE);
332 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
333 	flush_tlb_batched_pending(mm);
334 	arch_enter_lazy_mmu_mode();
335 	for (; addr != end; pte++, addr += PAGE_SIZE) {
336 		ptent = *pte;
337 
338 		if (pte_none(ptent))
339 			continue;
340 		/*
341 		 * If the pte has swp_entry, just clear page table to
342 		 * prevent swap-in which is more expensive rather than
343 		 * (page allocation + zeroing).
344 		 */
345 		if (!pte_present(ptent)) {
346 			swp_entry_t entry;
347 
348 			entry = pte_to_swp_entry(ptent);
349 			if (non_swap_entry(entry))
350 				continue;
351 			nr_swap--;
352 			free_swap_and_cache(entry);
353 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
354 			continue;
355 		}
356 
357 		page = vm_normal_page(vma, addr, ptent);
358 		if (!page)
359 			continue;
360 
361 		/*
362 		 * If pmd isn't transhuge but the page is THP and
363 		 * is owned by only this process, split it and
364 		 * deactivate all pages.
365 		 */
366 		if (PageTransCompound(page)) {
367 			if (page_mapcount(page) != 1)
368 				goto out;
369 			get_page(page);
370 			if (!trylock_page(page)) {
371 				put_page(page);
372 				goto out;
373 			}
374 			pte_unmap_unlock(orig_pte, ptl);
375 			if (split_huge_page(page)) {
376 				unlock_page(page);
377 				put_page(page);
378 				pte_offset_map_lock(mm, pmd, addr, &ptl);
379 				goto out;
380 			}
381 			unlock_page(page);
382 			put_page(page);
383 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
384 			pte--;
385 			addr -= PAGE_SIZE;
386 			continue;
387 		}
388 
389 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
390 
391 		if (PageSwapCache(page) || PageDirty(page)) {
392 			if (!trylock_page(page))
393 				continue;
394 			/*
395 			 * If page is shared with others, we couldn't clear
396 			 * PG_dirty of the page.
397 			 */
398 			if (page_mapcount(page) != 1) {
399 				unlock_page(page);
400 				continue;
401 			}
402 
403 			if (PageSwapCache(page) && !try_to_free_swap(page)) {
404 				unlock_page(page);
405 				continue;
406 			}
407 
408 			ClearPageDirty(page);
409 			unlock_page(page);
410 		}
411 
412 		if (pte_young(ptent) || pte_dirty(ptent)) {
413 			/*
414 			 * Some of architecture(ex, PPC) don't update TLB
415 			 * with set_pte_at and tlb_remove_tlb_entry so for
416 			 * the portability, remap the pte with old|clean
417 			 * after pte clearing.
418 			 */
419 			ptent = ptep_get_and_clear_full(mm, addr, pte,
420 							tlb->fullmm);
421 
422 			ptent = pte_mkold(ptent);
423 			ptent = pte_mkclean(ptent);
424 			set_pte_at(mm, addr, pte, ptent);
425 			tlb_remove_tlb_entry(tlb, pte, addr);
426 		}
427 		mark_page_lazyfree(page);
428 	}
429 out:
430 	if (nr_swap) {
431 		if (current->mm == mm)
432 			sync_mm_rss(mm);
433 
434 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
435 	}
436 	arch_leave_lazy_mmu_mode();
437 	pte_unmap_unlock(orig_pte, ptl);
438 	cond_resched();
439 next:
440 	return 0;
441 }
442 
443 static void madvise_free_page_range(struct mmu_gather *tlb,
444 			     struct vm_area_struct *vma,
445 			     unsigned long addr, unsigned long end)
446 {
447 	struct mm_walk free_walk = {
448 		.pmd_entry = madvise_free_pte_range,
449 		.mm = vma->vm_mm,
450 		.private = tlb,
451 	};
452 
453 	tlb_start_vma(tlb, vma);
454 	walk_page_range(addr, end, &free_walk);
455 	tlb_end_vma(tlb, vma);
456 }
457 
458 static int madvise_free_single_vma(struct vm_area_struct *vma,
459 			unsigned long start_addr, unsigned long end_addr)
460 {
461 	struct mm_struct *mm = vma->vm_mm;
462 	struct mmu_notifier_range range;
463 	struct mmu_gather tlb;
464 
465 	/* MADV_FREE works for only anon vma at the moment */
466 	if (!vma_is_anonymous(vma))
467 		return -EINVAL;
468 
469 	range.start = max(vma->vm_start, start_addr);
470 	if (range.start >= vma->vm_end)
471 		return -EINVAL;
472 	range.end = min(vma->vm_end, end_addr);
473 	if (range.end <= vma->vm_start)
474 		return -EINVAL;
475 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
476 				range.start, range.end);
477 
478 	lru_add_drain();
479 	tlb_gather_mmu(&tlb, mm, range.start, range.end);
480 	update_hiwater_rss(mm);
481 
482 	mmu_notifier_invalidate_range_start(&range);
483 	madvise_free_page_range(&tlb, vma, range.start, range.end);
484 	mmu_notifier_invalidate_range_end(&range);
485 	tlb_finish_mmu(&tlb, range.start, range.end);
486 
487 	return 0;
488 }
489 
490 /*
491  * Application no longer needs these pages.  If the pages are dirty,
492  * it's OK to just throw them away.  The app will be more careful about
493  * data it wants to keep.  Be sure to free swap resources too.  The
494  * zap_page_range call sets things up for shrink_active_list to actually free
495  * these pages later if no one else has touched them in the meantime,
496  * although we could add these pages to a global reuse list for
497  * shrink_active_list to pick up before reclaiming other pages.
498  *
499  * NB: This interface discards data rather than pushes it out to swap,
500  * as some implementations do.  This has performance implications for
501  * applications like large transactional databases which want to discard
502  * pages in anonymous maps after committing to backing store the data
503  * that was kept in them.  There is no reason to write this data out to
504  * the swap area if the application is discarding it.
505  *
506  * An interface that causes the system to free clean pages and flush
507  * dirty pages is already available as msync(MS_INVALIDATE).
508  */
509 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
510 					unsigned long start, unsigned long end)
511 {
512 	zap_page_range(vma, start, end - start);
513 	return 0;
514 }
515 
516 static long madvise_dontneed_free(struct vm_area_struct *vma,
517 				  struct vm_area_struct **prev,
518 				  unsigned long start, unsigned long end,
519 				  int behavior)
520 {
521 	*prev = vma;
522 	if (!can_madv_dontneed_vma(vma))
523 		return -EINVAL;
524 
525 	if (!userfaultfd_remove(vma, start, end)) {
526 		*prev = NULL; /* mmap_sem has been dropped, prev is stale */
527 
528 		down_read(&current->mm->mmap_sem);
529 		vma = find_vma(current->mm, start);
530 		if (!vma)
531 			return -ENOMEM;
532 		if (start < vma->vm_start) {
533 			/*
534 			 * This "vma" under revalidation is the one
535 			 * with the lowest vma->vm_start where start
536 			 * is also < vma->vm_end. If start <
537 			 * vma->vm_start it means an hole materialized
538 			 * in the user address space within the
539 			 * virtual range passed to MADV_DONTNEED
540 			 * or MADV_FREE.
541 			 */
542 			return -ENOMEM;
543 		}
544 		if (!can_madv_dontneed_vma(vma))
545 			return -EINVAL;
546 		if (end > vma->vm_end) {
547 			/*
548 			 * Don't fail if end > vma->vm_end. If the old
549 			 * vma was splitted while the mmap_sem was
550 			 * released the effect of the concurrent
551 			 * operation may not cause madvise() to
552 			 * have an undefined result. There may be an
553 			 * adjacent next vma that we'll walk
554 			 * next. userfaultfd_remove() will generate an
555 			 * UFFD_EVENT_REMOVE repetition on the
556 			 * end-vma->vm_end range, but the manager can
557 			 * handle a repetition fine.
558 			 */
559 			end = vma->vm_end;
560 		}
561 		VM_WARN_ON(start >= end);
562 	}
563 
564 	if (behavior == MADV_DONTNEED)
565 		return madvise_dontneed_single_vma(vma, start, end);
566 	else if (behavior == MADV_FREE)
567 		return madvise_free_single_vma(vma, start, end);
568 	else
569 		return -EINVAL;
570 }
571 
572 /*
573  * Application wants to free up the pages and associated backing store.
574  * This is effectively punching a hole into the middle of a file.
575  */
576 static long madvise_remove(struct vm_area_struct *vma,
577 				struct vm_area_struct **prev,
578 				unsigned long start, unsigned long end)
579 {
580 	loff_t offset;
581 	int error;
582 	struct file *f;
583 
584 	*prev = NULL;	/* tell sys_madvise we drop mmap_sem */
585 
586 	if (vma->vm_flags & VM_LOCKED)
587 		return -EINVAL;
588 
589 	f = vma->vm_file;
590 
591 	if (!f || !f->f_mapping || !f->f_mapping->host) {
592 			return -EINVAL;
593 	}
594 
595 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
596 		return -EACCES;
597 
598 	offset = (loff_t)(start - vma->vm_start)
599 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
600 
601 	/*
602 	 * Filesystem's fallocate may need to take i_mutex.  We need to
603 	 * explicitly grab a reference because the vma (and hence the
604 	 * vma's reference to the file) can go away as soon as we drop
605 	 * mmap_sem.
606 	 */
607 	get_file(f);
608 	if (userfaultfd_remove(vma, start, end)) {
609 		/* mmap_sem was not released by userfaultfd_remove() */
610 		up_read(&current->mm->mmap_sem);
611 	}
612 	error = vfs_fallocate(f,
613 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
614 				offset, end - start);
615 	fput(f);
616 	down_read(&current->mm->mmap_sem);
617 	return error;
618 }
619 
620 #ifdef CONFIG_MEMORY_FAILURE
621 /*
622  * Error injection support for memory error handling.
623  */
624 static int madvise_inject_error(int behavior,
625 		unsigned long start, unsigned long end)
626 {
627 	struct page *page;
628 	struct zone *zone;
629 	unsigned int order;
630 
631 	if (!capable(CAP_SYS_ADMIN))
632 		return -EPERM;
633 
634 
635 	for (; start < end; start += PAGE_SIZE << order) {
636 		unsigned long pfn;
637 		int ret;
638 
639 		ret = get_user_pages_fast(start, 1, 0, &page);
640 		if (ret != 1)
641 			return ret;
642 		pfn = page_to_pfn(page);
643 
644 		/*
645 		 * When soft offlining hugepages, after migrating the page
646 		 * we dissolve it, therefore in the second loop "page" will
647 		 * no longer be a compound page, and order will be 0.
648 		 */
649 		order = compound_order(compound_head(page));
650 
651 		if (PageHWPoison(page)) {
652 			put_page(page);
653 			continue;
654 		}
655 
656 		if (behavior == MADV_SOFT_OFFLINE) {
657 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
658 					pfn, start);
659 
660 			ret = soft_offline_page(page, MF_COUNT_INCREASED);
661 			if (ret)
662 				return ret;
663 			continue;
664 		}
665 
666 		pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
667 				pfn, start);
668 
669 		/*
670 		 * Drop the page reference taken by get_user_pages_fast(). In
671 		 * the absence of MF_COUNT_INCREASED the memory_failure()
672 		 * routine is responsible for pinning the page to prevent it
673 		 * from being released back to the page allocator.
674 		 */
675 		put_page(page);
676 		ret = memory_failure(pfn, 0);
677 		if (ret)
678 			return ret;
679 	}
680 
681 	/* Ensure that all poisoned pages are removed from per-cpu lists */
682 	for_each_populated_zone(zone)
683 		drain_all_pages(zone);
684 
685 	return 0;
686 }
687 #endif
688 
689 static long
690 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
691 		unsigned long start, unsigned long end, int behavior)
692 {
693 	switch (behavior) {
694 	case MADV_REMOVE:
695 		return madvise_remove(vma, prev, start, end);
696 	case MADV_WILLNEED:
697 		return madvise_willneed(vma, prev, start, end);
698 	case MADV_FREE:
699 	case MADV_DONTNEED:
700 		return madvise_dontneed_free(vma, prev, start, end, behavior);
701 	default:
702 		return madvise_behavior(vma, prev, start, end, behavior);
703 	}
704 }
705 
706 static bool
707 madvise_behavior_valid(int behavior)
708 {
709 	switch (behavior) {
710 	case MADV_DOFORK:
711 	case MADV_DONTFORK:
712 	case MADV_NORMAL:
713 	case MADV_SEQUENTIAL:
714 	case MADV_RANDOM:
715 	case MADV_REMOVE:
716 	case MADV_WILLNEED:
717 	case MADV_DONTNEED:
718 	case MADV_FREE:
719 #ifdef CONFIG_KSM
720 	case MADV_MERGEABLE:
721 	case MADV_UNMERGEABLE:
722 #endif
723 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
724 	case MADV_HUGEPAGE:
725 	case MADV_NOHUGEPAGE:
726 #endif
727 	case MADV_DONTDUMP:
728 	case MADV_DODUMP:
729 	case MADV_WIPEONFORK:
730 	case MADV_KEEPONFORK:
731 #ifdef CONFIG_MEMORY_FAILURE
732 	case MADV_SOFT_OFFLINE:
733 	case MADV_HWPOISON:
734 #endif
735 		return true;
736 
737 	default:
738 		return false;
739 	}
740 }
741 
742 /*
743  * The madvise(2) system call.
744  *
745  * Applications can use madvise() to advise the kernel how it should
746  * handle paging I/O in this VM area.  The idea is to help the kernel
747  * use appropriate read-ahead and caching techniques.  The information
748  * provided is advisory only, and can be safely disregarded by the
749  * kernel without affecting the correct operation of the application.
750  *
751  * behavior values:
752  *  MADV_NORMAL - the default behavior is to read clusters.  This
753  *		results in some read-ahead and read-behind.
754  *  MADV_RANDOM - the system should read the minimum amount of data
755  *		on any access, since it is unlikely that the appli-
756  *		cation will need more than what it asks for.
757  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
758  *		once, so they can be aggressively read ahead, and
759  *		can be freed soon after they are accessed.
760  *  MADV_WILLNEED - the application is notifying the system to read
761  *		some pages ahead.
762  *  MADV_DONTNEED - the application is finished with the given range,
763  *		so the kernel can free resources associated with it.
764  *  MADV_FREE - the application marks pages in the given range as lazy free,
765  *		where actual purges are postponed until memory pressure happens.
766  *  MADV_REMOVE - the application wants to free up the given range of
767  *		pages and associated backing store.
768  *  MADV_DONTFORK - omit this area from child's address space when forking:
769  *		typically, to avoid COWing pages pinned by get_user_pages().
770  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
771  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
772  *              range after a fork.
773  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
774  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
775  *		were corrupted by unrecoverable hardware memory failure.
776  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
777  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
778  *		this area with pages of identical content from other such areas.
779  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
780  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
781  *		huge pages in the future. Existing pages might be coalesced and
782  *		new pages might be allocated as THP.
783  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
784  *		transparent huge pages so the existing pages will not be
785  *		coalesced into THP and new pages will not be allocated as THP.
786  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
787  *		from being included in its core dump.
788  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
789  *
790  * return values:
791  *  zero    - success
792  *  -EINVAL - start + len < 0, start is not page-aligned,
793  *		"behavior" is not a valid value, or application
794  *		is attempting to release locked or shared pages,
795  *		or the specified address range includes file, Huge TLB,
796  *		MAP_SHARED or VMPFNMAP range.
797  *  -ENOMEM - addresses in the specified range are not currently
798  *		mapped, or are outside the AS of the process.
799  *  -EIO    - an I/O error occurred while paging in data.
800  *  -EBADF  - map exists, but area maps something that isn't a file.
801  *  -EAGAIN - a kernel resource was temporarily unavailable.
802  */
803 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
804 {
805 	unsigned long end, tmp;
806 	struct vm_area_struct *vma, *prev;
807 	int unmapped_error = 0;
808 	int error = -EINVAL;
809 	int write;
810 	size_t len;
811 	struct blk_plug plug;
812 
813 	if (!madvise_behavior_valid(behavior))
814 		return error;
815 
816 	if (start & ~PAGE_MASK)
817 		return error;
818 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
819 
820 	/* Check to see whether len was rounded up from small -ve to zero */
821 	if (len_in && !len)
822 		return error;
823 
824 	end = start + len;
825 	if (end < start)
826 		return error;
827 
828 	error = 0;
829 	if (end == start)
830 		return error;
831 
832 #ifdef CONFIG_MEMORY_FAILURE
833 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
834 		return madvise_inject_error(behavior, start, start + len_in);
835 #endif
836 
837 	write = madvise_need_mmap_write(behavior);
838 	if (write) {
839 		if (down_write_killable(&current->mm->mmap_sem))
840 			return -EINTR;
841 	} else {
842 		down_read(&current->mm->mmap_sem);
843 	}
844 
845 	/*
846 	 * If the interval [start,end) covers some unmapped address
847 	 * ranges, just ignore them, but return -ENOMEM at the end.
848 	 * - different from the way of handling in mlock etc.
849 	 */
850 	vma = find_vma_prev(current->mm, start, &prev);
851 	if (vma && start > vma->vm_start)
852 		prev = vma;
853 
854 	blk_start_plug(&plug);
855 	for (;;) {
856 		/* Still start < end. */
857 		error = -ENOMEM;
858 		if (!vma)
859 			goto out;
860 
861 		/* Here start < (end|vma->vm_end). */
862 		if (start < vma->vm_start) {
863 			unmapped_error = -ENOMEM;
864 			start = vma->vm_start;
865 			if (start >= end)
866 				goto out;
867 		}
868 
869 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
870 		tmp = vma->vm_end;
871 		if (end < tmp)
872 			tmp = end;
873 
874 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
875 		error = madvise_vma(vma, &prev, start, tmp, behavior);
876 		if (error)
877 			goto out;
878 		start = tmp;
879 		if (prev && start < prev->vm_end)
880 			start = prev->vm_end;
881 		error = unmapped_error;
882 		if (start >= end)
883 			goto out;
884 		if (prev)
885 			vma = prev->vm_next;
886 		else	/* madvise_remove dropped mmap_sem */
887 			vma = find_vma(current->mm, start);
888 	}
889 out:
890 	blk_finish_plug(&plug);
891 	if (write)
892 		up_write(&current->mm->mmap_sem);
893 	else
894 		up_read(&current->mm->mmap_sem);
895 
896 	return error;
897 }
898