1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/madvise.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 2002 Christoph Hellwig 7 */ 8 9 #include <linux/mman.h> 10 #include <linux/pagemap.h> 11 #include <linux/syscalls.h> 12 #include <linux/mempolicy.h> 13 #include <linux/page-isolation.h> 14 #include <linux/page_idle.h> 15 #include <linux/userfaultfd_k.h> 16 #include <linux/hugetlb.h> 17 #include <linux/falloc.h> 18 #include <linux/fadvise.h> 19 #include <linux/sched.h> 20 #include <linux/sched/mm.h> 21 #include <linux/mm_inline.h> 22 #include <linux/mmu_context.h> 23 #include <linux/string.h> 24 #include <linux/uio.h> 25 #include <linux/ksm.h> 26 #include <linux/fs.h> 27 #include <linux/file.h> 28 #include <linux/blkdev.h> 29 #include <linux/backing-dev.h> 30 #include <linux/pagewalk.h> 31 #include <linux/swap.h> 32 #include <linux/swapops.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mmu_notifier.h> 35 36 #include <asm/tlb.h> 37 38 #include "internal.h" 39 #include "swap.h" 40 41 #define __MADV_SET_ANON_VMA_NAME (-1) 42 43 /* 44 * Maximum number of attempts we make to install guard pages before we give up 45 * and return -ERESTARTNOINTR to have userspace try again. 46 */ 47 #define MAX_MADVISE_GUARD_RETRIES 3 48 49 struct madvise_walk_private { 50 struct mmu_gather *tlb; 51 bool pageout; 52 }; 53 54 enum madvise_lock_mode { 55 MADVISE_NO_LOCK, 56 MADVISE_MMAP_READ_LOCK, 57 MADVISE_MMAP_WRITE_LOCK, 58 MADVISE_VMA_READ_LOCK, 59 }; 60 61 struct madvise_behavior_range { 62 unsigned long start; 63 unsigned long end; 64 }; 65 66 struct madvise_behavior { 67 struct mm_struct *mm; 68 int behavior; 69 struct mmu_gather *tlb; 70 enum madvise_lock_mode lock_mode; 71 struct anon_vma_name *anon_name; 72 73 /* 74 * The range over which the behaviour is currently being applied. If 75 * traversing multiple VMAs, this is updated for each. 76 */ 77 struct madvise_behavior_range range; 78 /* The VMA and VMA preceding it (if applicable) currently targeted. */ 79 struct vm_area_struct *prev; 80 struct vm_area_struct *vma; 81 bool lock_dropped; 82 }; 83 84 #ifdef CONFIG_ANON_VMA_NAME 85 static int madvise_walk_vmas(struct madvise_behavior *madv_behavior); 86 87 struct anon_vma_name *anon_vma_name_alloc(const char *name) 88 { 89 struct anon_vma_name *anon_name; 90 size_t count; 91 92 /* Add 1 for NUL terminator at the end of the anon_name->name */ 93 count = strlen(name) + 1; 94 anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL); 95 if (anon_name) { 96 kref_init(&anon_name->kref); 97 memcpy(anon_name->name, name, count); 98 } 99 100 return anon_name; 101 } 102 103 void anon_vma_name_free(struct kref *kref) 104 { 105 struct anon_vma_name *anon_name = 106 container_of(kref, struct anon_vma_name, kref); 107 kfree(anon_name); 108 } 109 110 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) 111 { 112 if (!rwsem_is_locked(&vma->vm_mm->mmap_lock)) 113 vma_assert_locked(vma); 114 115 return vma->anon_name; 116 } 117 118 /* mmap_lock should be write-locked */ 119 static int replace_anon_vma_name(struct vm_area_struct *vma, 120 struct anon_vma_name *anon_name) 121 { 122 struct anon_vma_name *orig_name = anon_vma_name(vma); 123 124 if (!anon_name) { 125 vma->anon_name = NULL; 126 anon_vma_name_put(orig_name); 127 return 0; 128 } 129 130 if (anon_vma_name_eq(orig_name, anon_name)) 131 return 0; 132 133 vma->anon_name = anon_vma_name_reuse(anon_name); 134 anon_vma_name_put(orig_name); 135 136 return 0; 137 } 138 #else /* CONFIG_ANON_VMA_NAME */ 139 static int replace_anon_vma_name(struct vm_area_struct *vma, 140 struct anon_vma_name *anon_name) 141 { 142 if (anon_name) 143 return -EINVAL; 144 145 return 0; 146 } 147 #endif /* CONFIG_ANON_VMA_NAME */ 148 /* 149 * Update the vm_flags or anon_name on region of a vma, splitting it or merging 150 * it as necessary. Must be called with mmap_lock held for writing. 151 */ 152 static int madvise_update_vma(vm_flags_t new_flags, 153 struct madvise_behavior *madv_behavior) 154 { 155 struct vm_area_struct *vma = madv_behavior->vma; 156 struct madvise_behavior_range *range = &madv_behavior->range; 157 struct anon_vma_name *anon_name = madv_behavior->anon_name; 158 bool set_new_anon_name = madv_behavior->behavior == __MADV_SET_ANON_VMA_NAME; 159 VMA_ITERATOR(vmi, madv_behavior->mm, range->start); 160 161 if (new_flags == vma->vm_flags && (!set_new_anon_name || 162 anon_vma_name_eq(anon_vma_name(vma), anon_name))) 163 return 0; 164 165 if (set_new_anon_name) 166 vma = vma_modify_name(&vmi, madv_behavior->prev, vma, 167 range->start, range->end, anon_name); 168 else 169 vma = vma_modify_flags(&vmi, madv_behavior->prev, vma, 170 range->start, range->end, &new_flags); 171 172 if (IS_ERR(vma)) 173 return PTR_ERR(vma); 174 175 madv_behavior->vma = vma; 176 177 /* vm_flags is protected by the mmap_lock held in write mode. */ 178 vma_start_write(vma); 179 vm_flags_reset(vma, new_flags); 180 if (set_new_anon_name) 181 return replace_anon_vma_name(vma, anon_name); 182 183 return 0; 184 } 185 186 #ifdef CONFIG_SWAP 187 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start, 188 unsigned long end, struct mm_walk *walk) 189 { 190 struct vm_area_struct *vma = walk->private; 191 struct swap_iocb *splug = NULL; 192 pte_t *ptep = NULL; 193 spinlock_t *ptl; 194 unsigned long addr; 195 196 for (addr = start; addr < end; addr += PAGE_SIZE) { 197 pte_t pte; 198 swp_entry_t entry; 199 struct folio *folio; 200 201 if (!ptep++) { 202 ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 203 if (!ptep) 204 break; 205 } 206 207 pte = ptep_get(ptep); 208 if (!is_swap_pte(pte)) 209 continue; 210 entry = pte_to_swp_entry(pte); 211 if (unlikely(non_swap_entry(entry))) 212 continue; 213 214 pte_unmap_unlock(ptep, ptl); 215 ptep = NULL; 216 217 folio = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE, 218 vma, addr, &splug); 219 if (folio) 220 folio_put(folio); 221 } 222 223 if (ptep) 224 pte_unmap_unlock(ptep, ptl); 225 swap_read_unplug(splug); 226 cond_resched(); 227 228 return 0; 229 } 230 231 static const struct mm_walk_ops swapin_walk_ops = { 232 .pmd_entry = swapin_walk_pmd_entry, 233 .walk_lock = PGWALK_RDLOCK, 234 }; 235 236 static void shmem_swapin_range(struct vm_area_struct *vma, 237 unsigned long start, unsigned long end, 238 struct address_space *mapping) 239 { 240 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start)); 241 pgoff_t end_index = linear_page_index(vma, end) - 1; 242 struct folio *folio; 243 struct swap_iocb *splug = NULL; 244 245 rcu_read_lock(); 246 xas_for_each(&xas, folio, end_index) { 247 unsigned long addr; 248 swp_entry_t entry; 249 250 if (!xa_is_value(folio)) 251 continue; 252 entry = radix_to_swp_entry(folio); 253 /* There might be swapin error entries in shmem mapping. */ 254 if (non_swap_entry(entry)) 255 continue; 256 257 addr = vma->vm_start + 258 ((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT); 259 xas_pause(&xas); 260 rcu_read_unlock(); 261 262 folio = read_swap_cache_async(entry, mapping_gfp_mask(mapping), 263 vma, addr, &splug); 264 if (folio) 265 folio_put(folio); 266 267 rcu_read_lock(); 268 } 269 rcu_read_unlock(); 270 swap_read_unplug(splug); 271 } 272 #endif /* CONFIG_SWAP */ 273 274 static void mark_mmap_lock_dropped(struct madvise_behavior *madv_behavior) 275 { 276 VM_WARN_ON_ONCE(madv_behavior->lock_mode == MADVISE_VMA_READ_LOCK); 277 madv_behavior->lock_dropped = true; 278 } 279 280 /* 281 * Schedule all required I/O operations. Do not wait for completion. 282 */ 283 static long madvise_willneed(struct madvise_behavior *madv_behavior) 284 { 285 struct vm_area_struct *vma = madv_behavior->vma; 286 struct mm_struct *mm = madv_behavior->mm; 287 struct file *file = vma->vm_file; 288 unsigned long start = madv_behavior->range.start; 289 unsigned long end = madv_behavior->range.end; 290 loff_t offset; 291 292 #ifdef CONFIG_SWAP 293 if (!file) { 294 walk_page_range_vma(vma, start, end, &swapin_walk_ops, vma); 295 lru_add_drain(); /* Push any new pages onto the LRU now */ 296 return 0; 297 } 298 299 if (shmem_mapping(file->f_mapping)) { 300 shmem_swapin_range(vma, start, end, file->f_mapping); 301 lru_add_drain(); /* Push any new pages onto the LRU now */ 302 return 0; 303 } 304 #else 305 if (!file) 306 return -EBADF; 307 #endif 308 309 if (IS_DAX(file_inode(file))) { 310 /* no bad return value, but ignore advice */ 311 return 0; 312 } 313 314 /* 315 * Filesystem's fadvise may need to take various locks. We need to 316 * explicitly grab a reference because the vma (and hence the 317 * vma's reference to the file) can go away as soon as we drop 318 * mmap_lock. 319 */ 320 mark_mmap_lock_dropped(madv_behavior); 321 get_file(file); 322 offset = (loff_t)(start - vma->vm_start) 323 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 324 mmap_read_unlock(mm); 325 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED); 326 fput(file); 327 mmap_read_lock(mm); 328 return 0; 329 } 330 331 static inline bool can_do_file_pageout(struct vm_area_struct *vma) 332 { 333 if (!vma->vm_file) 334 return false; 335 /* 336 * paging out pagecache only for non-anonymous mappings that correspond 337 * to the files the calling process could (if tried) open for writing; 338 * otherwise we'd be including shared non-exclusive mappings, which 339 * opens a side channel. 340 */ 341 return inode_owner_or_capable(&nop_mnt_idmap, 342 file_inode(vma->vm_file)) || 343 file_permission(vma->vm_file, MAY_WRITE) == 0; 344 } 345 346 static inline int madvise_folio_pte_batch(unsigned long addr, unsigned long end, 347 struct folio *folio, pte_t *ptep, 348 pte_t *ptentp) 349 { 350 int max_nr = (end - addr) / PAGE_SIZE; 351 352 return folio_pte_batch_flags(folio, NULL, ptep, ptentp, max_nr, 353 FPB_MERGE_YOUNG_DIRTY); 354 } 355 356 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd, 357 unsigned long addr, unsigned long end, 358 struct mm_walk *walk) 359 { 360 struct madvise_walk_private *private = walk->private; 361 struct mmu_gather *tlb = private->tlb; 362 bool pageout = private->pageout; 363 struct mm_struct *mm = tlb->mm; 364 struct vm_area_struct *vma = walk->vma; 365 pte_t *start_pte, *pte, ptent; 366 spinlock_t *ptl; 367 struct folio *folio = NULL; 368 LIST_HEAD(folio_list); 369 bool pageout_anon_only_filter; 370 unsigned int batch_count = 0; 371 int nr; 372 373 if (fatal_signal_pending(current)) 374 return -EINTR; 375 376 pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) && 377 !can_do_file_pageout(vma); 378 379 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 380 if (pmd_trans_huge(*pmd)) { 381 pmd_t orig_pmd; 382 unsigned long next = pmd_addr_end(addr, end); 383 384 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 385 ptl = pmd_trans_huge_lock(pmd, vma); 386 if (!ptl) 387 return 0; 388 389 orig_pmd = *pmd; 390 if (is_huge_zero_pmd(orig_pmd)) 391 goto huge_unlock; 392 393 if (unlikely(!pmd_present(orig_pmd))) { 394 VM_BUG_ON(thp_migration_supported() && 395 !is_pmd_migration_entry(orig_pmd)); 396 goto huge_unlock; 397 } 398 399 folio = pmd_folio(orig_pmd); 400 401 /* Do not interfere with other mappings of this folio */ 402 if (folio_maybe_mapped_shared(folio)) 403 goto huge_unlock; 404 405 if (pageout_anon_only_filter && !folio_test_anon(folio)) 406 goto huge_unlock; 407 408 if (next - addr != HPAGE_PMD_SIZE) { 409 int err; 410 411 folio_get(folio); 412 spin_unlock(ptl); 413 folio_lock(folio); 414 err = split_folio(folio); 415 folio_unlock(folio); 416 folio_put(folio); 417 if (!err) 418 goto regular_folio; 419 return 0; 420 } 421 422 if (!pageout && pmd_young(orig_pmd)) { 423 pmdp_invalidate(vma, addr, pmd); 424 orig_pmd = pmd_mkold(orig_pmd); 425 426 set_pmd_at(mm, addr, pmd, orig_pmd); 427 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 428 } 429 430 folio_clear_referenced(folio); 431 folio_test_clear_young(folio); 432 if (folio_test_active(folio)) 433 folio_set_workingset(folio); 434 if (pageout) { 435 if (folio_isolate_lru(folio)) { 436 if (folio_test_unevictable(folio)) 437 folio_putback_lru(folio); 438 else 439 list_add(&folio->lru, &folio_list); 440 } 441 } else 442 folio_deactivate(folio); 443 huge_unlock: 444 spin_unlock(ptl); 445 if (pageout) 446 reclaim_pages(&folio_list); 447 return 0; 448 } 449 450 regular_folio: 451 #endif 452 tlb_change_page_size(tlb, PAGE_SIZE); 453 restart: 454 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 455 if (!start_pte) 456 return 0; 457 flush_tlb_batched_pending(mm); 458 arch_enter_lazy_mmu_mode(); 459 for (; addr < end; pte += nr, addr += nr * PAGE_SIZE) { 460 nr = 1; 461 ptent = ptep_get(pte); 462 463 if (++batch_count == SWAP_CLUSTER_MAX) { 464 batch_count = 0; 465 if (need_resched()) { 466 arch_leave_lazy_mmu_mode(); 467 pte_unmap_unlock(start_pte, ptl); 468 cond_resched(); 469 goto restart; 470 } 471 } 472 473 if (pte_none(ptent)) 474 continue; 475 476 if (!pte_present(ptent)) 477 continue; 478 479 folio = vm_normal_folio(vma, addr, ptent); 480 if (!folio || folio_is_zone_device(folio)) 481 continue; 482 483 /* 484 * If we encounter a large folio, only split it if it is not 485 * fully mapped within the range we are operating on. Otherwise 486 * leave it as is so that it can be swapped out whole. If we 487 * fail to split a folio, leave it in place and advance to the 488 * next pte in the range. 489 */ 490 if (folio_test_large(folio)) { 491 nr = madvise_folio_pte_batch(addr, end, folio, pte, &ptent); 492 if (nr < folio_nr_pages(folio)) { 493 int err; 494 495 if (folio_maybe_mapped_shared(folio)) 496 continue; 497 if (pageout_anon_only_filter && !folio_test_anon(folio)) 498 continue; 499 if (!folio_trylock(folio)) 500 continue; 501 folio_get(folio); 502 arch_leave_lazy_mmu_mode(); 503 pte_unmap_unlock(start_pte, ptl); 504 start_pte = NULL; 505 err = split_folio(folio); 506 folio_unlock(folio); 507 folio_put(folio); 508 start_pte = pte = 509 pte_offset_map_lock(mm, pmd, addr, &ptl); 510 if (!start_pte) 511 break; 512 flush_tlb_batched_pending(mm); 513 arch_enter_lazy_mmu_mode(); 514 if (!err) 515 nr = 0; 516 continue; 517 } 518 } 519 520 /* 521 * Do not interfere with other mappings of this folio and 522 * non-LRU folio. If we have a large folio at this point, we 523 * know it is fully mapped so if its mapcount is the same as its 524 * number of pages, it must be exclusive. 525 */ 526 if (!folio_test_lru(folio) || 527 folio_mapcount(folio) != folio_nr_pages(folio)) 528 continue; 529 530 if (pageout_anon_only_filter && !folio_test_anon(folio)) 531 continue; 532 533 if (!pageout && pte_young(ptent)) { 534 clear_young_dirty_ptes(vma, addr, pte, nr, 535 CYDP_CLEAR_YOUNG); 536 tlb_remove_tlb_entries(tlb, pte, nr, addr); 537 } 538 539 /* 540 * We are deactivating a folio for accelerating reclaiming. 541 * VM couldn't reclaim the folio unless we clear PG_young. 542 * As a side effect, it makes confuse idle-page tracking 543 * because they will miss recent referenced history. 544 */ 545 folio_clear_referenced(folio); 546 folio_test_clear_young(folio); 547 if (folio_test_active(folio)) 548 folio_set_workingset(folio); 549 if (pageout) { 550 if (folio_isolate_lru(folio)) { 551 if (folio_test_unevictable(folio)) 552 folio_putback_lru(folio); 553 else 554 list_add(&folio->lru, &folio_list); 555 } 556 } else 557 folio_deactivate(folio); 558 } 559 560 if (start_pte) { 561 arch_leave_lazy_mmu_mode(); 562 pte_unmap_unlock(start_pte, ptl); 563 } 564 if (pageout) 565 reclaim_pages(&folio_list); 566 cond_resched(); 567 568 return 0; 569 } 570 571 static const struct mm_walk_ops cold_walk_ops = { 572 .pmd_entry = madvise_cold_or_pageout_pte_range, 573 .walk_lock = PGWALK_RDLOCK, 574 }; 575 576 static void madvise_cold_page_range(struct mmu_gather *tlb, 577 struct madvise_behavior *madv_behavior) 578 579 { 580 struct vm_area_struct *vma = madv_behavior->vma; 581 struct madvise_behavior_range *range = &madv_behavior->range; 582 struct madvise_walk_private walk_private = { 583 .pageout = false, 584 .tlb = tlb, 585 }; 586 587 tlb_start_vma(tlb, vma); 588 walk_page_range_vma(vma, range->start, range->end, &cold_walk_ops, 589 &walk_private); 590 tlb_end_vma(tlb, vma); 591 } 592 593 static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 594 { 595 return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB)); 596 } 597 598 static long madvise_cold(struct madvise_behavior *madv_behavior) 599 { 600 struct vm_area_struct *vma = madv_behavior->vma; 601 struct mmu_gather tlb; 602 603 if (!can_madv_lru_vma(vma)) 604 return -EINVAL; 605 606 lru_add_drain(); 607 tlb_gather_mmu(&tlb, madv_behavior->mm); 608 madvise_cold_page_range(&tlb, madv_behavior); 609 tlb_finish_mmu(&tlb); 610 611 return 0; 612 } 613 614 static void madvise_pageout_page_range(struct mmu_gather *tlb, 615 struct vm_area_struct *vma, 616 struct madvise_behavior_range *range) 617 { 618 struct madvise_walk_private walk_private = { 619 .pageout = true, 620 .tlb = tlb, 621 }; 622 623 tlb_start_vma(tlb, vma); 624 walk_page_range_vma(vma, range->start, range->end, &cold_walk_ops, 625 &walk_private); 626 tlb_end_vma(tlb, vma); 627 } 628 629 static long madvise_pageout(struct madvise_behavior *madv_behavior) 630 { 631 struct mmu_gather tlb; 632 struct vm_area_struct *vma = madv_behavior->vma; 633 634 if (!can_madv_lru_vma(vma)) 635 return -EINVAL; 636 637 /* 638 * If the VMA belongs to a private file mapping, there can be private 639 * dirty pages which can be paged out if even this process is neither 640 * owner nor write capable of the file. We allow private file mappings 641 * further to pageout dirty anon pages. 642 */ 643 if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) && 644 (vma->vm_flags & VM_MAYSHARE))) 645 return 0; 646 647 lru_add_drain(); 648 tlb_gather_mmu(&tlb, madv_behavior->mm); 649 madvise_pageout_page_range(&tlb, vma, &madv_behavior->range); 650 tlb_finish_mmu(&tlb); 651 652 return 0; 653 } 654 655 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr, 656 unsigned long end, struct mm_walk *walk) 657 658 { 659 const cydp_t cydp_flags = CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY; 660 struct mmu_gather *tlb = walk->private; 661 struct mm_struct *mm = tlb->mm; 662 struct vm_area_struct *vma = walk->vma; 663 spinlock_t *ptl; 664 pte_t *start_pte, *pte, ptent; 665 struct folio *folio; 666 int nr_swap = 0; 667 unsigned long next; 668 int nr, max_nr; 669 670 next = pmd_addr_end(addr, end); 671 if (pmd_trans_huge(*pmd)) 672 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next)) 673 return 0; 674 675 tlb_change_page_size(tlb, PAGE_SIZE); 676 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 677 if (!start_pte) 678 return 0; 679 flush_tlb_batched_pending(mm); 680 arch_enter_lazy_mmu_mode(); 681 for (; addr != end; pte += nr, addr += PAGE_SIZE * nr) { 682 nr = 1; 683 ptent = ptep_get(pte); 684 685 if (pte_none(ptent)) 686 continue; 687 /* 688 * If the pte has swp_entry, just clear page table to 689 * prevent swap-in which is more expensive rather than 690 * (page allocation + zeroing). 691 */ 692 if (!pte_present(ptent)) { 693 swp_entry_t entry; 694 695 entry = pte_to_swp_entry(ptent); 696 if (!non_swap_entry(entry)) { 697 max_nr = (end - addr) / PAGE_SIZE; 698 nr = swap_pte_batch(pte, max_nr, ptent); 699 nr_swap -= nr; 700 free_swap_and_cache_nr(entry, nr); 701 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm); 702 } else if (is_hwpoison_entry(entry) || 703 is_poisoned_swp_entry(entry)) { 704 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 705 } 706 continue; 707 } 708 709 folio = vm_normal_folio(vma, addr, ptent); 710 if (!folio || folio_is_zone_device(folio)) 711 continue; 712 713 /* 714 * If we encounter a large folio, only split it if it is not 715 * fully mapped within the range we are operating on. Otherwise 716 * leave it as is so that it can be marked as lazyfree. If we 717 * fail to split a folio, leave it in place and advance to the 718 * next pte in the range. 719 */ 720 if (folio_test_large(folio)) { 721 nr = madvise_folio_pte_batch(addr, end, folio, pte, &ptent); 722 if (nr < folio_nr_pages(folio)) { 723 int err; 724 725 if (folio_maybe_mapped_shared(folio)) 726 continue; 727 if (!folio_trylock(folio)) 728 continue; 729 folio_get(folio); 730 arch_leave_lazy_mmu_mode(); 731 pte_unmap_unlock(start_pte, ptl); 732 start_pte = NULL; 733 err = split_folio(folio); 734 folio_unlock(folio); 735 folio_put(folio); 736 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 737 start_pte = pte; 738 if (!start_pte) 739 break; 740 flush_tlb_batched_pending(mm); 741 arch_enter_lazy_mmu_mode(); 742 if (!err) 743 nr = 0; 744 continue; 745 } 746 } 747 748 if (folio_test_swapcache(folio) || folio_test_dirty(folio)) { 749 if (!folio_trylock(folio)) 750 continue; 751 /* 752 * If we have a large folio at this point, we know it is 753 * fully mapped so if its mapcount is the same as its 754 * number of pages, it must be exclusive. 755 */ 756 if (folio_mapcount(folio) != folio_nr_pages(folio)) { 757 folio_unlock(folio); 758 continue; 759 } 760 761 if (folio_test_swapcache(folio) && 762 !folio_free_swap(folio)) { 763 folio_unlock(folio); 764 continue; 765 } 766 767 folio_clear_dirty(folio); 768 folio_unlock(folio); 769 } 770 771 if (pte_young(ptent) || pte_dirty(ptent)) { 772 clear_young_dirty_ptes(vma, addr, pte, nr, cydp_flags); 773 tlb_remove_tlb_entries(tlb, pte, nr, addr); 774 } 775 folio_mark_lazyfree(folio); 776 } 777 778 if (nr_swap) 779 add_mm_counter(mm, MM_SWAPENTS, nr_swap); 780 if (start_pte) { 781 arch_leave_lazy_mmu_mode(); 782 pte_unmap_unlock(start_pte, ptl); 783 } 784 cond_resched(); 785 786 return 0; 787 } 788 789 static inline enum page_walk_lock get_walk_lock(enum madvise_lock_mode mode) 790 { 791 switch (mode) { 792 case MADVISE_VMA_READ_LOCK: 793 return PGWALK_VMA_RDLOCK_VERIFY; 794 case MADVISE_MMAP_READ_LOCK: 795 return PGWALK_RDLOCK; 796 default: 797 /* Other modes don't require fixing up the walk_lock */ 798 WARN_ON_ONCE(1); 799 return PGWALK_RDLOCK; 800 } 801 } 802 803 static int madvise_free_single_vma(struct madvise_behavior *madv_behavior) 804 { 805 struct mm_struct *mm = madv_behavior->mm; 806 struct vm_area_struct *vma = madv_behavior->vma; 807 unsigned long start_addr = madv_behavior->range.start; 808 unsigned long end_addr = madv_behavior->range.end; 809 struct mmu_notifier_range range; 810 struct mmu_gather *tlb = madv_behavior->tlb; 811 struct mm_walk_ops walk_ops = { 812 .pmd_entry = madvise_free_pte_range, 813 }; 814 815 /* MADV_FREE works for only anon vma at the moment */ 816 if (!vma_is_anonymous(vma)) 817 return -EINVAL; 818 819 range.start = max(vma->vm_start, start_addr); 820 if (range.start >= vma->vm_end) 821 return -EINVAL; 822 range.end = min(vma->vm_end, end_addr); 823 if (range.end <= vma->vm_start) 824 return -EINVAL; 825 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 826 range.start, range.end); 827 828 lru_add_drain(); 829 update_hiwater_rss(mm); 830 831 mmu_notifier_invalidate_range_start(&range); 832 tlb_start_vma(tlb, vma); 833 walk_ops.walk_lock = get_walk_lock(madv_behavior->lock_mode); 834 walk_page_range_vma(vma, range.start, range.end, 835 &walk_ops, tlb); 836 tlb_end_vma(tlb, vma); 837 mmu_notifier_invalidate_range_end(&range); 838 return 0; 839 } 840 841 /* 842 * Application no longer needs these pages. If the pages are dirty, 843 * it's OK to just throw them away. The app will be more careful about 844 * data it wants to keep. Be sure to free swap resources too. The 845 * zap_page_range_single call sets things up for shrink_active_list to actually 846 * free these pages later if no one else has touched them in the meantime, 847 * although we could add these pages to a global reuse list for 848 * shrink_active_list to pick up before reclaiming other pages. 849 * 850 * NB: This interface discards data rather than pushes it out to swap, 851 * as some implementations do. This has performance implications for 852 * applications like large transactional databases which want to discard 853 * pages in anonymous maps after committing to backing store the data 854 * that was kept in them. There is no reason to write this data out to 855 * the swap area if the application is discarding it. 856 * 857 * An interface that causes the system to free clean pages and flush 858 * dirty pages is already available as msync(MS_INVALIDATE). 859 */ 860 static long madvise_dontneed_single_vma(struct madvise_behavior *madv_behavior) 861 862 { 863 struct madvise_behavior_range *range = &madv_behavior->range; 864 struct zap_details details = { 865 .reclaim_pt = true, 866 .even_cows = true, 867 }; 868 869 zap_page_range_single_batched( 870 madv_behavior->tlb, madv_behavior->vma, range->start, 871 range->end - range->start, &details); 872 return 0; 873 } 874 875 static 876 bool madvise_dontneed_free_valid_vma(struct madvise_behavior *madv_behavior) 877 { 878 struct vm_area_struct *vma = madv_behavior->vma; 879 int behavior = madv_behavior->behavior; 880 struct madvise_behavior_range *range = &madv_behavior->range; 881 882 if (!is_vm_hugetlb_page(vma)) { 883 unsigned int forbidden = VM_PFNMAP; 884 885 if (behavior != MADV_DONTNEED_LOCKED) 886 forbidden |= VM_LOCKED; 887 888 return !(vma->vm_flags & forbidden); 889 } 890 891 if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED) 892 return false; 893 if (range->start & ~huge_page_mask(hstate_vma(vma))) 894 return false; 895 896 /* 897 * Madvise callers expect the length to be rounded up to PAGE_SIZE 898 * boundaries, and may be unaware that this VMA uses huge pages. 899 * Avoid unexpected data loss by rounding down the number of 900 * huge pages freed. 901 */ 902 range->end = ALIGN_DOWN(range->end, huge_page_size(hstate_vma(vma))); 903 904 return true; 905 } 906 907 static long madvise_dontneed_free(struct madvise_behavior *madv_behavior) 908 { 909 struct mm_struct *mm = madv_behavior->mm; 910 struct madvise_behavior_range *range = &madv_behavior->range; 911 int behavior = madv_behavior->behavior; 912 913 if (!madvise_dontneed_free_valid_vma(madv_behavior)) 914 return -EINVAL; 915 916 if (range->start == range->end) 917 return 0; 918 919 if (!userfaultfd_remove(madv_behavior->vma, range->start, range->end)) { 920 struct vm_area_struct *vma; 921 922 mark_mmap_lock_dropped(madv_behavior); 923 mmap_read_lock(mm); 924 madv_behavior->vma = vma = vma_lookup(mm, range->start); 925 if (!vma) 926 return -ENOMEM; 927 /* 928 * Potential end adjustment for hugetlb vma is OK as 929 * the check below keeps end within vma. 930 */ 931 if (!madvise_dontneed_free_valid_vma(madv_behavior)) 932 return -EINVAL; 933 if (range->end > vma->vm_end) { 934 /* 935 * Don't fail if end > vma->vm_end. If the old 936 * vma was split while the mmap_lock was 937 * released the effect of the concurrent 938 * operation may not cause madvise() to 939 * have an undefined result. There may be an 940 * adjacent next vma that we'll walk 941 * next. userfaultfd_remove() will generate an 942 * UFFD_EVENT_REMOVE repetition on the 943 * end-vma->vm_end range, but the manager can 944 * handle a repetition fine. 945 */ 946 range->end = vma->vm_end; 947 } 948 /* 949 * If the memory region between start and end was 950 * originally backed by 4kB pages and then remapped to 951 * be backed by hugepages while mmap_lock was dropped, 952 * the adjustment for hugetlb vma above may have rounded 953 * end down to the start address. 954 */ 955 if (range->start == range->end) 956 return 0; 957 VM_WARN_ON(range->start > range->end); 958 } 959 960 if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED) 961 return madvise_dontneed_single_vma(madv_behavior); 962 else if (behavior == MADV_FREE) 963 return madvise_free_single_vma(madv_behavior); 964 else 965 return -EINVAL; 966 } 967 968 static long madvise_populate(struct madvise_behavior *madv_behavior) 969 { 970 struct mm_struct *mm = madv_behavior->mm; 971 const bool write = madv_behavior->behavior == MADV_POPULATE_WRITE; 972 int locked = 1; 973 unsigned long start = madv_behavior->range.start; 974 unsigned long end = madv_behavior->range.end; 975 long pages; 976 977 while (start < end) { 978 /* Populate (prefault) page tables readable/writable. */ 979 pages = faultin_page_range(mm, start, end, write, &locked); 980 if (!locked) { 981 mmap_read_lock(mm); 982 locked = 1; 983 } 984 if (pages < 0) { 985 switch (pages) { 986 case -EINTR: 987 return -EINTR; 988 case -EINVAL: /* Incompatible mappings / permissions. */ 989 return -EINVAL; 990 case -EHWPOISON: 991 return -EHWPOISON; 992 case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */ 993 return -EFAULT; 994 default: 995 pr_warn_once("%s: unhandled return value: %ld\n", 996 __func__, pages); 997 fallthrough; 998 case -ENOMEM: /* No VMA or out of memory. */ 999 return -ENOMEM; 1000 } 1001 } 1002 start += pages * PAGE_SIZE; 1003 } 1004 return 0; 1005 } 1006 1007 /* 1008 * Application wants to free up the pages and associated backing store. 1009 * This is effectively punching a hole into the middle of a file. 1010 */ 1011 static long madvise_remove(struct madvise_behavior *madv_behavior) 1012 { 1013 loff_t offset; 1014 int error; 1015 struct file *f; 1016 struct mm_struct *mm = madv_behavior->mm; 1017 struct vm_area_struct *vma = madv_behavior->vma; 1018 unsigned long start = madv_behavior->range.start; 1019 unsigned long end = madv_behavior->range.end; 1020 1021 mark_mmap_lock_dropped(madv_behavior); 1022 1023 if (vma->vm_flags & VM_LOCKED) 1024 return -EINVAL; 1025 1026 f = vma->vm_file; 1027 1028 if (!f || !f->f_mapping || !f->f_mapping->host) { 1029 return -EINVAL; 1030 } 1031 1032 if (!vma_is_shared_maywrite(vma)) 1033 return -EACCES; 1034 1035 offset = (loff_t)(start - vma->vm_start) 1036 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 1037 1038 /* 1039 * Filesystem's fallocate may need to take i_rwsem. We need to 1040 * explicitly grab a reference because the vma (and hence the 1041 * vma's reference to the file) can go away as soon as we drop 1042 * mmap_lock. 1043 */ 1044 get_file(f); 1045 if (userfaultfd_remove(vma, start, end)) { 1046 /* mmap_lock was not released by userfaultfd_remove() */ 1047 mmap_read_unlock(mm); 1048 } 1049 error = vfs_fallocate(f, 1050 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 1051 offset, end - start); 1052 fput(f); 1053 mmap_read_lock(mm); 1054 return error; 1055 } 1056 1057 static bool is_valid_guard_vma(struct vm_area_struct *vma, bool allow_locked) 1058 { 1059 vm_flags_t disallowed = VM_SPECIAL | VM_HUGETLB; 1060 1061 /* 1062 * A user could lock after setting a guard range but that's fine, as 1063 * they'd not be able to fault in. The issue arises when we try to zap 1064 * existing locked VMAs. We don't want to do that. 1065 */ 1066 if (!allow_locked) 1067 disallowed |= VM_LOCKED; 1068 1069 return !(vma->vm_flags & disallowed); 1070 } 1071 1072 static bool is_guard_pte_marker(pte_t ptent) 1073 { 1074 return is_swap_pte(ptent) && 1075 is_guard_swp_entry(pte_to_swp_entry(ptent)); 1076 } 1077 1078 static int guard_install_pud_entry(pud_t *pud, unsigned long addr, 1079 unsigned long next, struct mm_walk *walk) 1080 { 1081 pud_t pudval = pudp_get(pud); 1082 1083 /* If huge return >0 so we abort the operation + zap. */ 1084 return pud_trans_huge(pudval); 1085 } 1086 1087 static int guard_install_pmd_entry(pmd_t *pmd, unsigned long addr, 1088 unsigned long next, struct mm_walk *walk) 1089 { 1090 pmd_t pmdval = pmdp_get(pmd); 1091 1092 /* If huge return >0 so we abort the operation + zap. */ 1093 return pmd_trans_huge(pmdval); 1094 } 1095 1096 static int guard_install_pte_entry(pte_t *pte, unsigned long addr, 1097 unsigned long next, struct mm_walk *walk) 1098 { 1099 pte_t pteval = ptep_get(pte); 1100 unsigned long *nr_pages = (unsigned long *)walk->private; 1101 1102 /* If there is already a guard page marker, we have nothing to do. */ 1103 if (is_guard_pte_marker(pteval)) { 1104 (*nr_pages)++; 1105 1106 return 0; 1107 } 1108 1109 /* If populated return >0 so we abort the operation + zap. */ 1110 return 1; 1111 } 1112 1113 static int guard_install_set_pte(unsigned long addr, unsigned long next, 1114 pte_t *ptep, struct mm_walk *walk) 1115 { 1116 unsigned long *nr_pages = (unsigned long *)walk->private; 1117 1118 /* Simply install a PTE marker, this causes segfault on access. */ 1119 *ptep = make_pte_marker(PTE_MARKER_GUARD); 1120 (*nr_pages)++; 1121 1122 return 0; 1123 } 1124 1125 static long madvise_guard_install(struct madvise_behavior *madv_behavior) 1126 { 1127 struct vm_area_struct *vma = madv_behavior->vma; 1128 struct madvise_behavior_range *range = &madv_behavior->range; 1129 struct mm_walk_ops walk_ops = { 1130 .pud_entry = guard_install_pud_entry, 1131 .pmd_entry = guard_install_pmd_entry, 1132 .pte_entry = guard_install_pte_entry, 1133 .install_pte = guard_install_set_pte, 1134 .walk_lock = get_walk_lock(madv_behavior->lock_mode), 1135 }; 1136 long err; 1137 int i; 1138 1139 if (!is_valid_guard_vma(vma, /* allow_locked = */false)) 1140 return -EINVAL; 1141 1142 /* 1143 * Set atomically under read lock. All pertinent readers will need to 1144 * acquire an mmap/VMA write lock to read it. All remaining readers may 1145 * or may not see the flag set, but we don't care. 1146 */ 1147 vma_flag_set_atomic(vma, VM_MAYBE_GUARD_BIT); 1148 1149 /* 1150 * If anonymous and we are establishing page tables the VMA ought to 1151 * have an anon_vma associated with it. 1152 * 1153 * We will hold an mmap read lock if this is necessary, this is checked 1154 * as part of the VMA lock logic. 1155 */ 1156 if (vma_is_anonymous(vma)) { 1157 VM_WARN_ON_ONCE(!vma->anon_vma && 1158 madv_behavior->lock_mode != MADVISE_MMAP_READ_LOCK); 1159 1160 err = anon_vma_prepare(vma); 1161 if (err) 1162 return err; 1163 } 1164 1165 /* 1166 * Optimistically try to install the guard marker pages first. If any 1167 * non-guard pages or THP huge pages are encountered, give up and zap 1168 * the range before trying again. 1169 * 1170 * We try a few times before giving up and releasing back to userland to 1171 * loop around, releasing locks in the process to avoid contention. 1172 * 1173 * This would only happen due to races with e.g. page faults or 1174 * khugepaged. 1175 * 1176 * In most cases we should simply install the guard markers immediately 1177 * with no zap or looping. 1178 */ 1179 for (i = 0; i < MAX_MADVISE_GUARD_RETRIES; i++) { 1180 unsigned long nr_pages = 0; 1181 1182 /* Returns < 0 on error, == 0 if success, > 0 if zap needed. */ 1183 if (madv_behavior->lock_mode == MADVISE_VMA_READ_LOCK) 1184 err = walk_page_range_vma_unsafe(madv_behavior->vma, 1185 range->start, range->end, &walk_ops, 1186 &nr_pages); 1187 else 1188 err = walk_page_range_mm_unsafe(vma->vm_mm, range->start, 1189 range->end, &walk_ops, &nr_pages); 1190 if (err < 0) 1191 return err; 1192 1193 if (err == 0) { 1194 unsigned long nr_expected_pages = 1195 PHYS_PFN(range->end - range->start); 1196 1197 VM_WARN_ON(nr_pages != nr_expected_pages); 1198 return 0; 1199 } 1200 1201 /* 1202 * OK some of the range have non-guard pages mapped, zap 1203 * them. This leaves existing guard pages in place. 1204 */ 1205 zap_page_range_single(vma, range->start, 1206 range->end - range->start, NULL); 1207 } 1208 1209 /* 1210 * We were unable to install the guard pages, return to userspace and 1211 * immediately retry, relieving lock contention. 1212 */ 1213 return restart_syscall(); 1214 } 1215 1216 static int guard_remove_pud_entry(pud_t *pud, unsigned long addr, 1217 unsigned long next, struct mm_walk *walk) 1218 { 1219 pud_t pudval = pudp_get(pud); 1220 1221 /* If huge, cannot have guard pages present, so no-op - skip. */ 1222 if (pud_trans_huge(pudval)) 1223 walk->action = ACTION_CONTINUE; 1224 1225 return 0; 1226 } 1227 1228 static int guard_remove_pmd_entry(pmd_t *pmd, unsigned long addr, 1229 unsigned long next, struct mm_walk *walk) 1230 { 1231 pmd_t pmdval = pmdp_get(pmd); 1232 1233 /* If huge, cannot have guard pages present, so no-op - skip. */ 1234 if (pmd_trans_huge(pmdval)) 1235 walk->action = ACTION_CONTINUE; 1236 1237 return 0; 1238 } 1239 1240 static int guard_remove_pte_entry(pte_t *pte, unsigned long addr, 1241 unsigned long next, struct mm_walk *walk) 1242 { 1243 pte_t ptent = ptep_get(pte); 1244 1245 if (is_guard_pte_marker(ptent)) { 1246 /* Simply clear the PTE marker. */ 1247 pte_clear_not_present_full(walk->mm, addr, pte, false); 1248 update_mmu_cache(walk->vma, addr, pte); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static long madvise_guard_remove(struct madvise_behavior *madv_behavior) 1255 { 1256 struct vm_area_struct *vma = madv_behavior->vma; 1257 struct madvise_behavior_range *range = &madv_behavior->range; 1258 struct mm_walk_ops wallk_ops = { 1259 .pud_entry = guard_remove_pud_entry, 1260 .pmd_entry = guard_remove_pmd_entry, 1261 .pte_entry = guard_remove_pte_entry, 1262 .walk_lock = get_walk_lock(madv_behavior->lock_mode), 1263 }; 1264 1265 /* 1266 * We're ok with removing guards in mlock()'d ranges, as this is a 1267 * non-destructive action. 1268 */ 1269 if (!is_valid_guard_vma(vma, /* allow_locked = */true)) 1270 return -EINVAL; 1271 1272 return walk_page_range_vma(vma, range->start, range->end, 1273 &wallk_ops, NULL); 1274 } 1275 1276 #ifdef CONFIG_64BIT 1277 /* Does the madvise operation result in discarding of mapped data? */ 1278 static bool is_discard(int behavior) 1279 { 1280 switch (behavior) { 1281 case MADV_FREE: 1282 case MADV_DONTNEED: 1283 case MADV_DONTNEED_LOCKED: 1284 case MADV_REMOVE: 1285 case MADV_DONTFORK: 1286 case MADV_WIPEONFORK: 1287 case MADV_GUARD_INSTALL: 1288 return true; 1289 } 1290 1291 return false; 1292 } 1293 1294 /* 1295 * We are restricted from madvise()'ing mseal()'d VMAs only in very particular 1296 * circumstances - discarding of data from read-only anonymous SEALED mappings. 1297 * 1298 * This is because users cannot trivally discard data from these VMAs, and may 1299 * only do so via an appropriate madvise() call. 1300 */ 1301 static bool can_madvise_modify(struct madvise_behavior *madv_behavior) 1302 { 1303 struct vm_area_struct *vma = madv_behavior->vma; 1304 1305 /* If the VMA isn't sealed we're good. */ 1306 if (!vma_is_sealed(vma)) 1307 return true; 1308 1309 /* For a sealed VMA, we only care about discard operations. */ 1310 if (!is_discard(madv_behavior->behavior)) 1311 return true; 1312 1313 /* 1314 * We explicitly permit all file-backed mappings, whether MAP_SHARED or 1315 * MAP_PRIVATE. 1316 * 1317 * The latter causes some complications. Because now, one can mmap() 1318 * read/write a MAP_PRIVATE mapping, write to it, then mprotect() 1319 * read-only, mseal() and a discard will be permitted. 1320 * 1321 * However, in order to avoid issues with potential use of madvise(..., 1322 * MADV_DONTNEED) of mseal()'d .text mappings we, for the time being, 1323 * permit this. 1324 */ 1325 if (!vma_is_anonymous(vma)) 1326 return true; 1327 1328 /* If the user could write to the mapping anyway, then this is fine. */ 1329 if ((vma->vm_flags & VM_WRITE) && 1330 arch_vma_access_permitted(vma, /* write= */ true, 1331 /* execute= */ false, /* foreign= */ false)) 1332 return true; 1333 1334 /* Otherwise, we are not permitted to perform this operation. */ 1335 return false; 1336 } 1337 #else 1338 static bool can_madvise_modify(struct madvise_behavior *madv_behavior) 1339 { 1340 return true; 1341 } 1342 #endif 1343 1344 /* 1345 * Apply an madvise behavior to a region of a vma. madvise_update_vma 1346 * will handle splitting a vm area into separate areas, each area with its own 1347 * behavior. 1348 */ 1349 static int madvise_vma_behavior(struct madvise_behavior *madv_behavior) 1350 { 1351 int behavior = madv_behavior->behavior; 1352 struct vm_area_struct *vma = madv_behavior->vma; 1353 vm_flags_t new_flags = vma->vm_flags; 1354 struct madvise_behavior_range *range = &madv_behavior->range; 1355 int error; 1356 1357 if (unlikely(!can_madvise_modify(madv_behavior))) 1358 return -EPERM; 1359 1360 switch (behavior) { 1361 case MADV_REMOVE: 1362 return madvise_remove(madv_behavior); 1363 case MADV_WILLNEED: 1364 return madvise_willneed(madv_behavior); 1365 case MADV_COLD: 1366 return madvise_cold(madv_behavior); 1367 case MADV_PAGEOUT: 1368 return madvise_pageout(madv_behavior); 1369 case MADV_FREE: 1370 case MADV_DONTNEED: 1371 case MADV_DONTNEED_LOCKED: 1372 return madvise_dontneed_free(madv_behavior); 1373 case MADV_COLLAPSE: 1374 return madvise_collapse(vma, range->start, range->end, 1375 &madv_behavior->lock_dropped); 1376 case MADV_GUARD_INSTALL: 1377 return madvise_guard_install(madv_behavior); 1378 case MADV_GUARD_REMOVE: 1379 return madvise_guard_remove(madv_behavior); 1380 1381 /* The below behaviours update VMAs via madvise_update_vma(). */ 1382 1383 case MADV_NORMAL: 1384 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; 1385 break; 1386 case MADV_SEQUENTIAL: 1387 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; 1388 break; 1389 case MADV_RANDOM: 1390 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; 1391 break; 1392 case MADV_DONTFORK: 1393 new_flags |= VM_DONTCOPY; 1394 break; 1395 case MADV_DOFORK: 1396 if (new_flags & VM_IO) 1397 return -EINVAL; 1398 new_flags &= ~VM_DONTCOPY; 1399 break; 1400 case MADV_WIPEONFORK: 1401 /* MADV_WIPEONFORK is only supported on anonymous memory. */ 1402 if (vma->vm_file || new_flags & VM_SHARED) 1403 return -EINVAL; 1404 new_flags |= VM_WIPEONFORK; 1405 break; 1406 case MADV_KEEPONFORK: 1407 if (new_flags & VM_DROPPABLE) 1408 return -EINVAL; 1409 new_flags &= ~VM_WIPEONFORK; 1410 break; 1411 case MADV_DONTDUMP: 1412 new_flags |= VM_DONTDUMP; 1413 break; 1414 case MADV_DODUMP: 1415 if ((!is_vm_hugetlb_page(vma) && (new_flags & VM_SPECIAL)) || 1416 (new_flags & VM_DROPPABLE)) 1417 return -EINVAL; 1418 new_flags &= ~VM_DONTDUMP; 1419 break; 1420 case MADV_MERGEABLE: 1421 case MADV_UNMERGEABLE: 1422 error = ksm_madvise(vma, range->start, range->end, 1423 behavior, &new_flags); 1424 if (error) 1425 goto out; 1426 break; 1427 case MADV_HUGEPAGE: 1428 case MADV_NOHUGEPAGE: 1429 error = hugepage_madvise(vma, &new_flags, behavior); 1430 if (error) 1431 goto out; 1432 break; 1433 case __MADV_SET_ANON_VMA_NAME: 1434 /* Only anonymous mappings can be named */ 1435 if (vma->vm_file && !vma_is_anon_shmem(vma)) 1436 return -EBADF; 1437 break; 1438 } 1439 1440 /* This is a write operation.*/ 1441 VM_WARN_ON_ONCE(madv_behavior->lock_mode != MADVISE_MMAP_WRITE_LOCK); 1442 1443 error = madvise_update_vma(new_flags, madv_behavior); 1444 out: 1445 /* 1446 * madvise() returns EAGAIN if kernel resources, such as 1447 * slab, are temporarily unavailable. 1448 */ 1449 if (error == -ENOMEM) 1450 error = -EAGAIN; 1451 return error; 1452 } 1453 1454 #ifdef CONFIG_MEMORY_FAILURE 1455 /* 1456 * Error injection support for memory error handling. 1457 */ 1458 static int madvise_inject_error(struct madvise_behavior *madv_behavior) 1459 { 1460 unsigned long size; 1461 unsigned long start = madv_behavior->range.start; 1462 unsigned long end = madv_behavior->range.end; 1463 1464 if (!capable(CAP_SYS_ADMIN)) 1465 return -EPERM; 1466 1467 for (; start < end; start += size) { 1468 unsigned long pfn; 1469 struct page *page; 1470 int ret; 1471 1472 ret = get_user_pages_fast(start, 1, 0, &page); 1473 if (ret != 1) 1474 return ret; 1475 pfn = page_to_pfn(page); 1476 1477 /* 1478 * When soft offlining hugepages, after migrating the page 1479 * we dissolve it, therefore in the second loop "page" will 1480 * no longer be a compound page. 1481 */ 1482 size = page_size(compound_head(page)); 1483 1484 if (madv_behavior->behavior == MADV_SOFT_OFFLINE) { 1485 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n", 1486 pfn, start); 1487 ret = soft_offline_page(pfn, MF_COUNT_INCREASED); 1488 } else { 1489 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n", 1490 pfn, start); 1491 ret = memory_failure(pfn, MF_ACTION_REQUIRED | MF_COUNT_INCREASED | MF_SW_SIMULATED); 1492 if (ret == -EOPNOTSUPP) 1493 ret = 0; 1494 } 1495 1496 if (ret) 1497 return ret; 1498 } 1499 1500 return 0; 1501 } 1502 1503 static bool is_memory_failure(struct madvise_behavior *madv_behavior) 1504 { 1505 switch (madv_behavior->behavior) { 1506 case MADV_HWPOISON: 1507 case MADV_SOFT_OFFLINE: 1508 return true; 1509 default: 1510 return false; 1511 } 1512 } 1513 1514 #else 1515 1516 static int madvise_inject_error(struct madvise_behavior *madv_behavior) 1517 { 1518 return 0; 1519 } 1520 1521 static bool is_memory_failure(struct madvise_behavior *madv_behavior) 1522 { 1523 return false; 1524 } 1525 1526 #endif /* CONFIG_MEMORY_FAILURE */ 1527 1528 static bool 1529 madvise_behavior_valid(int behavior) 1530 { 1531 switch (behavior) { 1532 case MADV_DOFORK: 1533 case MADV_DONTFORK: 1534 case MADV_NORMAL: 1535 case MADV_SEQUENTIAL: 1536 case MADV_RANDOM: 1537 case MADV_REMOVE: 1538 case MADV_WILLNEED: 1539 case MADV_DONTNEED: 1540 case MADV_DONTNEED_LOCKED: 1541 case MADV_FREE: 1542 case MADV_COLD: 1543 case MADV_PAGEOUT: 1544 case MADV_POPULATE_READ: 1545 case MADV_POPULATE_WRITE: 1546 #ifdef CONFIG_KSM 1547 case MADV_MERGEABLE: 1548 case MADV_UNMERGEABLE: 1549 #endif 1550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1551 case MADV_HUGEPAGE: 1552 case MADV_NOHUGEPAGE: 1553 case MADV_COLLAPSE: 1554 #endif 1555 case MADV_DONTDUMP: 1556 case MADV_DODUMP: 1557 case MADV_WIPEONFORK: 1558 case MADV_KEEPONFORK: 1559 case MADV_GUARD_INSTALL: 1560 case MADV_GUARD_REMOVE: 1561 #ifdef CONFIG_MEMORY_FAILURE 1562 case MADV_SOFT_OFFLINE: 1563 case MADV_HWPOISON: 1564 #endif 1565 return true; 1566 1567 default: 1568 return false; 1569 } 1570 } 1571 1572 /* Can we invoke process_madvise() on a remote mm for the specified behavior? */ 1573 static bool process_madvise_remote_valid(int behavior) 1574 { 1575 switch (behavior) { 1576 case MADV_COLD: 1577 case MADV_PAGEOUT: 1578 case MADV_WILLNEED: 1579 case MADV_COLLAPSE: 1580 return true; 1581 default: 1582 return false; 1583 } 1584 } 1585 1586 /* Does this operation invoke anon_vma_prepare()? */ 1587 static bool prepares_anon_vma(int behavior) 1588 { 1589 switch (behavior) { 1590 case MADV_GUARD_INSTALL: 1591 return true; 1592 default: 1593 return false; 1594 } 1595 } 1596 1597 /* 1598 * We have acquired a VMA read lock, is the VMA valid to be madvise'd under VMA 1599 * read lock only now we have a VMA to examine? 1600 */ 1601 static bool is_vma_lock_sufficient(struct vm_area_struct *vma, 1602 struct madvise_behavior *madv_behavior) 1603 { 1604 /* Must span only a single VMA.*/ 1605 if (madv_behavior->range.end > vma->vm_end) 1606 return false; 1607 /* Remote processes unsupported. */ 1608 if (current->mm != vma->vm_mm) 1609 return false; 1610 /* Userfaultfd unsupported. */ 1611 if (userfaultfd_armed(vma)) 1612 return false; 1613 /* 1614 * anon_vma_prepare() explicitly requires an mmap lock for 1615 * serialisation, so we cannot use a VMA lock in this case. 1616 * 1617 * Note we might race with anon_vma being set, however this makes this 1618 * check overly paranoid which is safe. 1619 */ 1620 if (vma_is_anonymous(vma) && 1621 prepares_anon_vma(madv_behavior->behavior) && !vma->anon_vma) 1622 return false; 1623 1624 return true; 1625 } 1626 1627 /* 1628 * Try to acquire a VMA read lock if possible. 1629 * 1630 * We only support this lock over a single VMA, which the input range must 1631 * span either partially or fully. 1632 * 1633 * This function always returns with an appropriate lock held. If a VMA read 1634 * lock could be acquired, we return true and set madv_behavior state 1635 * accordingly. 1636 * 1637 * If a VMA read lock could not be acquired, we return false and expect caller to 1638 * fallback to mmap lock behaviour. 1639 */ 1640 static bool try_vma_read_lock(struct madvise_behavior *madv_behavior) 1641 { 1642 struct mm_struct *mm = madv_behavior->mm; 1643 struct vm_area_struct *vma; 1644 1645 vma = lock_vma_under_rcu(mm, madv_behavior->range.start); 1646 if (!vma) 1647 goto take_mmap_read_lock; 1648 1649 if (!is_vma_lock_sufficient(vma, madv_behavior)) { 1650 vma_end_read(vma); 1651 goto take_mmap_read_lock; 1652 } 1653 1654 madv_behavior->vma = vma; 1655 return true; 1656 1657 take_mmap_read_lock: 1658 mmap_read_lock(mm); 1659 madv_behavior->lock_mode = MADVISE_MMAP_READ_LOCK; 1660 return false; 1661 } 1662 1663 /* 1664 * Walk the vmas in range [start,end), and call the madvise_vma_behavior 1665 * function on each one. The function will get start and end parameters that 1666 * cover the overlap between the current vma and the original range. Any 1667 * unmapped regions in the original range will result in this function returning 1668 * -ENOMEM while still calling the madvise_vma_behavior function on all of the 1669 * existing vmas in the range. Must be called with the mmap_lock held for 1670 * reading or writing. 1671 */ 1672 static 1673 int madvise_walk_vmas(struct madvise_behavior *madv_behavior) 1674 { 1675 struct mm_struct *mm = madv_behavior->mm; 1676 struct madvise_behavior_range *range = &madv_behavior->range; 1677 /* range is updated to span each VMA, so store end of entire range. */ 1678 unsigned long last_end = range->end; 1679 int unmapped_error = 0; 1680 int error; 1681 struct vm_area_struct *prev, *vma; 1682 1683 /* 1684 * If VMA read lock is supported, apply madvise to a single VMA 1685 * tentatively, avoiding walking VMAs. 1686 */ 1687 if (madv_behavior->lock_mode == MADVISE_VMA_READ_LOCK && 1688 try_vma_read_lock(madv_behavior)) { 1689 error = madvise_vma_behavior(madv_behavior); 1690 vma_end_read(madv_behavior->vma); 1691 return error; 1692 } 1693 1694 vma = find_vma_prev(mm, range->start, &prev); 1695 if (vma && range->start > vma->vm_start) 1696 prev = vma; 1697 1698 for (;;) { 1699 /* Still start < end. */ 1700 if (!vma) 1701 return -ENOMEM; 1702 1703 /* Here start < (last_end|vma->vm_end). */ 1704 if (range->start < vma->vm_start) { 1705 /* 1706 * This indicates a gap between VMAs in the input 1707 * range. This does not cause the operation to abort, 1708 * rather we simply return -ENOMEM to indicate that this 1709 * has happened, but carry on. 1710 */ 1711 unmapped_error = -ENOMEM; 1712 range->start = vma->vm_start; 1713 if (range->start >= last_end) 1714 break; 1715 } 1716 1717 /* Here vma->vm_start <= range->start < (last_end|vma->vm_end) */ 1718 range->end = min(vma->vm_end, last_end); 1719 1720 /* Here vma->vm_start <= range->start < range->end <= (last_end|vma->vm_end). */ 1721 madv_behavior->prev = prev; 1722 madv_behavior->vma = vma; 1723 error = madvise_vma_behavior(madv_behavior); 1724 if (error) 1725 return error; 1726 if (madv_behavior->lock_dropped) { 1727 /* We dropped the mmap lock, we can't ref the VMA. */ 1728 prev = NULL; 1729 vma = NULL; 1730 madv_behavior->lock_dropped = false; 1731 } else { 1732 vma = madv_behavior->vma; 1733 prev = vma; 1734 } 1735 1736 if (vma && range->end < vma->vm_end) 1737 range->end = vma->vm_end; 1738 if (range->end >= last_end) 1739 break; 1740 1741 vma = find_vma(mm, vma ? vma->vm_end : range->end); 1742 range->start = range->end; 1743 } 1744 1745 return unmapped_error; 1746 } 1747 1748 /* 1749 * Any behaviour which results in changes to the vma->vm_flags needs to 1750 * take mmap_lock for writing. Others, which simply traverse vmas, need 1751 * to only take it for reading. 1752 */ 1753 static enum madvise_lock_mode get_lock_mode(struct madvise_behavior *madv_behavior) 1754 { 1755 if (is_memory_failure(madv_behavior)) 1756 return MADVISE_NO_LOCK; 1757 1758 switch (madv_behavior->behavior) { 1759 case MADV_REMOVE: 1760 case MADV_WILLNEED: 1761 case MADV_COLD: 1762 case MADV_PAGEOUT: 1763 case MADV_POPULATE_READ: 1764 case MADV_POPULATE_WRITE: 1765 case MADV_COLLAPSE: 1766 return MADVISE_MMAP_READ_LOCK; 1767 case MADV_GUARD_INSTALL: 1768 case MADV_GUARD_REMOVE: 1769 case MADV_DONTNEED: 1770 case MADV_DONTNEED_LOCKED: 1771 case MADV_FREE: 1772 return MADVISE_VMA_READ_LOCK; 1773 default: 1774 return MADVISE_MMAP_WRITE_LOCK; 1775 } 1776 } 1777 1778 static int madvise_lock(struct madvise_behavior *madv_behavior) 1779 { 1780 struct mm_struct *mm = madv_behavior->mm; 1781 enum madvise_lock_mode lock_mode = get_lock_mode(madv_behavior); 1782 1783 switch (lock_mode) { 1784 case MADVISE_NO_LOCK: 1785 break; 1786 case MADVISE_MMAP_WRITE_LOCK: 1787 if (mmap_write_lock_killable(mm)) 1788 return -EINTR; 1789 break; 1790 case MADVISE_MMAP_READ_LOCK: 1791 mmap_read_lock(mm); 1792 break; 1793 case MADVISE_VMA_READ_LOCK: 1794 /* We will acquire the lock per-VMA in madvise_walk_vmas(). */ 1795 break; 1796 } 1797 1798 madv_behavior->lock_mode = lock_mode; 1799 return 0; 1800 } 1801 1802 static void madvise_unlock(struct madvise_behavior *madv_behavior) 1803 { 1804 struct mm_struct *mm = madv_behavior->mm; 1805 1806 switch (madv_behavior->lock_mode) { 1807 case MADVISE_NO_LOCK: 1808 return; 1809 case MADVISE_MMAP_WRITE_LOCK: 1810 mmap_write_unlock(mm); 1811 break; 1812 case MADVISE_MMAP_READ_LOCK: 1813 mmap_read_unlock(mm); 1814 break; 1815 case MADVISE_VMA_READ_LOCK: 1816 /* We will drop the lock per-VMA in madvise_walk_vmas(). */ 1817 break; 1818 } 1819 1820 madv_behavior->lock_mode = MADVISE_NO_LOCK; 1821 } 1822 1823 static bool madvise_batch_tlb_flush(int behavior) 1824 { 1825 switch (behavior) { 1826 case MADV_DONTNEED: 1827 case MADV_DONTNEED_LOCKED: 1828 case MADV_FREE: 1829 return true; 1830 default: 1831 return false; 1832 } 1833 } 1834 1835 static void madvise_init_tlb(struct madvise_behavior *madv_behavior) 1836 { 1837 if (madvise_batch_tlb_flush(madv_behavior->behavior)) 1838 tlb_gather_mmu(madv_behavior->tlb, madv_behavior->mm); 1839 } 1840 1841 static void madvise_finish_tlb(struct madvise_behavior *madv_behavior) 1842 { 1843 if (madvise_batch_tlb_flush(madv_behavior->behavior)) 1844 tlb_finish_mmu(madv_behavior->tlb); 1845 } 1846 1847 static bool is_valid_madvise(unsigned long start, size_t len_in, int behavior) 1848 { 1849 size_t len; 1850 1851 if (!madvise_behavior_valid(behavior)) 1852 return false; 1853 1854 if (!PAGE_ALIGNED(start)) 1855 return false; 1856 len = PAGE_ALIGN(len_in); 1857 1858 /* Check to see whether len was rounded up from small -ve to zero */ 1859 if (len_in && !len) 1860 return false; 1861 1862 if (start + len < start) 1863 return false; 1864 1865 return true; 1866 } 1867 1868 /* 1869 * madvise_should_skip() - Return if the request is invalid or nothing. 1870 * @start: Start address of madvise-requested address range. 1871 * @len_in: Length of madvise-requested address range. 1872 * @behavior: Requested madvise behavor. 1873 * @err: Pointer to store an error code from the check. 1874 * 1875 * If the specified behaviour is invalid or nothing would occur, we skip the 1876 * operation. This function returns true in the cases, otherwise false. In 1877 * the former case we store an error on @err. 1878 */ 1879 static bool madvise_should_skip(unsigned long start, size_t len_in, 1880 int behavior, int *err) 1881 { 1882 if (!is_valid_madvise(start, len_in, behavior)) { 1883 *err = -EINVAL; 1884 return true; 1885 } 1886 if (start + PAGE_ALIGN(len_in) == start) { 1887 *err = 0; 1888 return true; 1889 } 1890 return false; 1891 } 1892 1893 static bool is_madvise_populate(struct madvise_behavior *madv_behavior) 1894 { 1895 switch (madv_behavior->behavior) { 1896 case MADV_POPULATE_READ: 1897 case MADV_POPULATE_WRITE: 1898 return true; 1899 default: 1900 return false; 1901 } 1902 } 1903 1904 /* 1905 * untagged_addr_remote() assumes mmap_lock is already held. On 1906 * architectures like x86 and RISC-V, tagging is tricky because each 1907 * mm may have a different tagging mask. However, we might only hold 1908 * the per-VMA lock (currently only local processes are supported), 1909 * so untagged_addr is used to avoid the mmap_lock assertion for 1910 * local processes. 1911 */ 1912 static inline unsigned long get_untagged_addr(struct mm_struct *mm, 1913 unsigned long start) 1914 { 1915 return current->mm == mm ? untagged_addr(start) : 1916 untagged_addr_remote(mm, start); 1917 } 1918 1919 static int madvise_do_behavior(unsigned long start, size_t len_in, 1920 struct madvise_behavior *madv_behavior) 1921 { 1922 struct blk_plug plug; 1923 int error; 1924 struct madvise_behavior_range *range = &madv_behavior->range; 1925 1926 if (is_memory_failure(madv_behavior)) { 1927 range->start = start; 1928 range->end = start + len_in; 1929 return madvise_inject_error(madv_behavior); 1930 } 1931 1932 range->start = get_untagged_addr(madv_behavior->mm, start); 1933 range->end = range->start + PAGE_ALIGN(len_in); 1934 1935 blk_start_plug(&plug); 1936 if (is_madvise_populate(madv_behavior)) 1937 error = madvise_populate(madv_behavior); 1938 else 1939 error = madvise_walk_vmas(madv_behavior); 1940 blk_finish_plug(&plug); 1941 return error; 1942 } 1943 1944 /* 1945 * The madvise(2) system call. 1946 * 1947 * Applications can use madvise() to advise the kernel how it should 1948 * handle paging I/O in this VM area. The idea is to help the kernel 1949 * use appropriate read-ahead and caching techniques. The information 1950 * provided is advisory only, and can be safely disregarded by the 1951 * kernel without affecting the correct operation of the application. 1952 * 1953 * behavior values: 1954 * MADV_NORMAL - the default behavior is to read clusters. This 1955 * results in some read-ahead and read-behind. 1956 * MADV_RANDOM - the system should read the minimum amount of data 1957 * on any access, since it is unlikely that the appli- 1958 * cation will need more than what it asks for. 1959 * MADV_SEQUENTIAL - pages in the given range will probably be accessed 1960 * once, so they can be aggressively read ahead, and 1961 * can be freed soon after they are accessed. 1962 * MADV_WILLNEED - the application is notifying the system to read 1963 * some pages ahead. 1964 * MADV_DONTNEED - the application is finished with the given range, 1965 * so the kernel can free resources associated with it. 1966 * MADV_FREE - the application marks pages in the given range as lazy free, 1967 * where actual purges are postponed until memory pressure happens. 1968 * MADV_REMOVE - the application wants to free up the given range of 1969 * pages and associated backing store. 1970 * MADV_DONTFORK - omit this area from child's address space when forking: 1971 * typically, to avoid COWing pages pinned by get_user_pages(). 1972 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking. 1973 * MADV_WIPEONFORK - present the child process with zero-filled memory in this 1974 * range after a fork. 1975 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK 1976 * MADV_HWPOISON - trigger memory error handler as if the given memory range 1977 * were corrupted by unrecoverable hardware memory failure. 1978 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory. 1979 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in 1980 * this area with pages of identical content from other such areas. 1981 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others. 1982 * MADV_HUGEPAGE - the application wants to back the given range by transparent 1983 * huge pages in the future. Existing pages might be coalesced and 1984 * new pages might be allocated as THP. 1985 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by 1986 * transparent huge pages so the existing pages will not be 1987 * coalesced into THP and new pages will not be allocated as THP. 1988 * MADV_COLLAPSE - synchronously coalesce pages into new THP. 1989 * MADV_DONTDUMP - the application wants to prevent pages in the given range 1990 * from being included in its core dump. 1991 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump. 1992 * MADV_COLD - the application is not expected to use this memory soon, 1993 * deactivate pages in this range so that they can be reclaimed 1994 * easily if memory pressure happens. 1995 * MADV_PAGEOUT - the application is not expected to use this memory soon, 1996 * page out the pages in this range immediately. 1997 * MADV_POPULATE_READ - populate (prefault) page tables readable by 1998 * triggering read faults if required 1999 * MADV_POPULATE_WRITE - populate (prefault) page tables writable by 2000 * triggering write faults if required 2001 * 2002 * return values: 2003 * zero - success 2004 * -EINVAL - start + len < 0, start is not page-aligned, 2005 * "behavior" is not a valid value, or application 2006 * is attempting to release locked or shared pages, 2007 * or the specified address range includes file, Huge TLB, 2008 * MAP_SHARED or VMPFNMAP range. 2009 * -ENOMEM - addresses in the specified range are not currently 2010 * mapped, or are outside the AS of the process. 2011 * -EIO - an I/O error occurred while paging in data. 2012 * -EBADF - map exists, but area maps something that isn't a file. 2013 * -EAGAIN - a kernel resource was temporarily unavailable. 2014 * -EPERM - memory is sealed. 2015 */ 2016 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior) 2017 { 2018 int error; 2019 struct mmu_gather tlb; 2020 struct madvise_behavior madv_behavior = { 2021 .mm = mm, 2022 .behavior = behavior, 2023 .tlb = &tlb, 2024 }; 2025 2026 if (madvise_should_skip(start, len_in, behavior, &error)) 2027 return error; 2028 error = madvise_lock(&madv_behavior); 2029 if (error) 2030 return error; 2031 madvise_init_tlb(&madv_behavior); 2032 error = madvise_do_behavior(start, len_in, &madv_behavior); 2033 madvise_finish_tlb(&madv_behavior); 2034 madvise_unlock(&madv_behavior); 2035 2036 return error; 2037 } 2038 2039 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior) 2040 { 2041 return do_madvise(current->mm, start, len_in, behavior); 2042 } 2043 2044 /* Perform an madvise operation over a vector of addresses and lengths. */ 2045 static ssize_t vector_madvise(struct mm_struct *mm, struct iov_iter *iter, 2046 int behavior) 2047 { 2048 ssize_t ret = 0; 2049 size_t total_len; 2050 struct mmu_gather tlb; 2051 struct madvise_behavior madv_behavior = { 2052 .mm = mm, 2053 .behavior = behavior, 2054 .tlb = &tlb, 2055 }; 2056 2057 total_len = iov_iter_count(iter); 2058 2059 ret = madvise_lock(&madv_behavior); 2060 if (ret) 2061 return ret; 2062 madvise_init_tlb(&madv_behavior); 2063 2064 while (iov_iter_count(iter)) { 2065 unsigned long start = (unsigned long)iter_iov_addr(iter); 2066 size_t len_in = iter_iov_len(iter); 2067 int error; 2068 2069 if (madvise_should_skip(start, len_in, behavior, &error)) 2070 ret = error; 2071 else 2072 ret = madvise_do_behavior(start, len_in, &madv_behavior); 2073 /* 2074 * An madvise operation is attempting to restart the syscall, 2075 * but we cannot proceed as it would not be correct to repeat 2076 * the operation in aggregate, and would be surprising to the 2077 * user. 2078 * 2079 * We drop and reacquire locks so it is safe to just loop and 2080 * try again. We check for fatal signals in case we need exit 2081 * early anyway. 2082 */ 2083 if (ret == -ERESTARTNOINTR) { 2084 if (fatal_signal_pending(current)) { 2085 ret = -EINTR; 2086 break; 2087 } 2088 2089 /* Drop and reacquire lock to unwind race. */ 2090 madvise_finish_tlb(&madv_behavior); 2091 madvise_unlock(&madv_behavior); 2092 ret = madvise_lock(&madv_behavior); 2093 if (ret) 2094 goto out; 2095 madvise_init_tlb(&madv_behavior); 2096 continue; 2097 } 2098 if (ret < 0) 2099 break; 2100 iov_iter_advance(iter, iter_iov_len(iter)); 2101 } 2102 madvise_finish_tlb(&madv_behavior); 2103 madvise_unlock(&madv_behavior); 2104 2105 out: 2106 ret = (total_len - iov_iter_count(iter)) ? : ret; 2107 2108 return ret; 2109 } 2110 2111 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec, 2112 size_t, vlen, int, behavior, unsigned int, flags) 2113 { 2114 ssize_t ret; 2115 struct iovec iovstack[UIO_FASTIOV]; 2116 struct iovec *iov = iovstack; 2117 struct iov_iter iter; 2118 struct task_struct *task; 2119 struct mm_struct *mm; 2120 unsigned int f_flags; 2121 2122 if (flags != 0) { 2123 ret = -EINVAL; 2124 goto out; 2125 } 2126 2127 ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter); 2128 if (ret < 0) 2129 goto out; 2130 2131 task = pidfd_get_task(pidfd, &f_flags); 2132 if (IS_ERR(task)) { 2133 ret = PTR_ERR(task); 2134 goto free_iov; 2135 } 2136 2137 /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */ 2138 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2139 if (IS_ERR(mm)) { 2140 ret = PTR_ERR(mm); 2141 goto release_task; 2142 } 2143 2144 /* 2145 * We need only perform this check if we are attempting to manipulate a 2146 * remote process's address space. 2147 */ 2148 if (mm != current->mm && !process_madvise_remote_valid(behavior)) { 2149 ret = -EINVAL; 2150 goto release_mm; 2151 } 2152 2153 /* 2154 * Require CAP_SYS_NICE for influencing process performance. Note that 2155 * only non-destructive hints are currently supported for remote 2156 * processes. 2157 */ 2158 if (mm != current->mm && !capable(CAP_SYS_NICE)) { 2159 ret = -EPERM; 2160 goto release_mm; 2161 } 2162 2163 ret = vector_madvise(mm, &iter, behavior); 2164 2165 release_mm: 2166 mmput(mm); 2167 release_task: 2168 put_task_struct(task); 2169 free_iov: 2170 kfree(iov); 2171 out: 2172 return ret; 2173 } 2174 2175 #ifdef CONFIG_ANON_VMA_NAME 2176 2177 #define ANON_VMA_NAME_MAX_LEN 80 2178 #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]" 2179 2180 static inline bool is_valid_name_char(char ch) 2181 { 2182 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */ 2183 return ch > 0x1f && ch < 0x7f && 2184 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch); 2185 } 2186 2187 static int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 2188 unsigned long len_in, struct anon_vma_name *anon_name) 2189 { 2190 unsigned long end; 2191 unsigned long len; 2192 int error; 2193 struct madvise_behavior madv_behavior = { 2194 .mm = mm, 2195 .behavior = __MADV_SET_ANON_VMA_NAME, 2196 .anon_name = anon_name, 2197 }; 2198 2199 if (start & ~PAGE_MASK) 2200 return -EINVAL; 2201 len = (len_in + ~PAGE_MASK) & PAGE_MASK; 2202 2203 /* Check to see whether len was rounded up from small -ve to zero */ 2204 if (len_in && !len) 2205 return -EINVAL; 2206 2207 end = start + len; 2208 if (end < start) 2209 return -EINVAL; 2210 2211 if (end == start) 2212 return 0; 2213 2214 madv_behavior.range.start = start; 2215 madv_behavior.range.end = end; 2216 2217 error = madvise_lock(&madv_behavior); 2218 if (error) 2219 return error; 2220 error = madvise_walk_vmas(&madv_behavior); 2221 madvise_unlock(&madv_behavior); 2222 2223 return error; 2224 } 2225 2226 int set_anon_vma_name(unsigned long addr, unsigned long size, 2227 const char __user *uname) 2228 { 2229 struct anon_vma_name *anon_name = NULL; 2230 struct mm_struct *mm = current->mm; 2231 int error; 2232 2233 if (uname) { 2234 char *name, *pch; 2235 2236 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN); 2237 if (IS_ERR(name)) 2238 return PTR_ERR(name); 2239 2240 for (pch = name; *pch != '\0'; pch++) { 2241 if (!is_valid_name_char(*pch)) { 2242 kfree(name); 2243 return -EINVAL; 2244 } 2245 } 2246 /* anon_vma has its own copy */ 2247 anon_name = anon_vma_name_alloc(name); 2248 kfree(name); 2249 if (!anon_name) 2250 return -ENOMEM; 2251 } 2252 2253 error = madvise_set_anon_name(mm, addr, size, anon_name); 2254 anon_vma_name_put(anon_name); 2255 2256 return error; 2257 } 2258 #endif 2259