xref: /linux/mm/madvise.c (revision 1634b7adcc5bef645b3666fdd564e5952a9e24e0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34 
35 #include <asm/tlb.h>
36 
37 #include "internal.h"
38 #include "swap.h"
39 
40 struct madvise_walk_private {
41 	struct mmu_gather *tlb;
42 	bool pageout;
43 };
44 
45 /*
46  * Any behaviour which results in changes to the vma->vm_flags needs to
47  * take mmap_lock for writing. Others, which simply traverse vmas, need
48  * to only take it for reading.
49  */
50 static int madvise_need_mmap_write(int behavior)
51 {
52 	switch (behavior) {
53 	case MADV_REMOVE:
54 	case MADV_WILLNEED:
55 	case MADV_DONTNEED:
56 	case MADV_DONTNEED_LOCKED:
57 	case MADV_COLD:
58 	case MADV_PAGEOUT:
59 	case MADV_FREE:
60 	case MADV_POPULATE_READ:
61 	case MADV_POPULATE_WRITE:
62 	case MADV_COLLAPSE:
63 		return 0;
64 	default:
65 		/* be safe, default to 1. list exceptions explicitly */
66 		return 1;
67 	}
68 }
69 
70 #ifdef CONFIG_ANON_VMA_NAME
71 struct anon_vma_name *anon_vma_name_alloc(const char *name)
72 {
73 	struct anon_vma_name *anon_name;
74 	size_t count;
75 
76 	/* Add 1 for NUL terminator at the end of the anon_name->name */
77 	count = strlen(name) + 1;
78 	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
79 	if (anon_name) {
80 		kref_init(&anon_name->kref);
81 		memcpy(anon_name->name, name, count);
82 	}
83 
84 	return anon_name;
85 }
86 
87 void anon_vma_name_free(struct kref *kref)
88 {
89 	struct anon_vma_name *anon_name =
90 			container_of(kref, struct anon_vma_name, kref);
91 	kfree(anon_name);
92 }
93 
94 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
95 {
96 	mmap_assert_locked(vma->vm_mm);
97 
98 	return vma->anon_name;
99 }
100 
101 /* mmap_lock should be write-locked */
102 static int replace_anon_vma_name(struct vm_area_struct *vma,
103 				 struct anon_vma_name *anon_name)
104 {
105 	struct anon_vma_name *orig_name = anon_vma_name(vma);
106 
107 	if (!anon_name) {
108 		vma->anon_name = NULL;
109 		anon_vma_name_put(orig_name);
110 		return 0;
111 	}
112 
113 	if (anon_vma_name_eq(orig_name, anon_name))
114 		return 0;
115 
116 	vma->anon_name = anon_vma_name_reuse(anon_name);
117 	anon_vma_name_put(orig_name);
118 
119 	return 0;
120 }
121 #else /* CONFIG_ANON_VMA_NAME */
122 static int replace_anon_vma_name(struct vm_area_struct *vma,
123 				 struct anon_vma_name *anon_name)
124 {
125 	if (anon_name)
126 		return -EINVAL;
127 
128 	return 0;
129 }
130 #endif /* CONFIG_ANON_VMA_NAME */
131 /*
132  * Update the vm_flags on region of a vma, splitting it or merging it as
133  * necessary.  Must be called with mmap_lock held for writing;
134  * Caller should ensure anon_name stability by raising its refcount even when
135  * anon_name belongs to a valid vma because this function might free that vma.
136  */
137 static int madvise_update_vma(struct vm_area_struct *vma,
138 			      struct vm_area_struct **prev, unsigned long start,
139 			      unsigned long end, unsigned long new_flags,
140 			      struct anon_vma_name *anon_name)
141 {
142 	struct mm_struct *mm = vma->vm_mm;
143 	int error;
144 	pgoff_t pgoff;
145 	VMA_ITERATOR(vmi, mm, start);
146 
147 	if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
148 		*prev = vma;
149 		return 0;
150 	}
151 
152 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
153 	*prev = vma_merge(&vmi, mm, *prev, start, end, new_flags,
154 			  vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
155 			  vma->vm_userfaultfd_ctx, anon_name);
156 	if (*prev) {
157 		vma = *prev;
158 		goto success;
159 	}
160 
161 	*prev = vma;
162 
163 	if (start != vma->vm_start) {
164 		error = split_vma(&vmi, vma, start, 1);
165 		if (error)
166 			return error;
167 	}
168 
169 	if (end != vma->vm_end) {
170 		error = split_vma(&vmi, vma, end, 0);
171 		if (error)
172 			return error;
173 	}
174 
175 success:
176 	/*
177 	 * vm_flags is protected by the mmap_lock held in write mode.
178 	 */
179 	vm_flags_reset(vma, new_flags);
180 	if (!vma->vm_file || vma_is_anon_shmem(vma)) {
181 		error = replace_anon_vma_name(vma, anon_name);
182 		if (error)
183 			return error;
184 	}
185 
186 	return 0;
187 }
188 
189 #ifdef CONFIG_SWAP
190 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
191 	unsigned long end, struct mm_walk *walk)
192 {
193 	struct vm_area_struct *vma = walk->private;
194 	unsigned long index;
195 	struct swap_iocb *splug = NULL;
196 
197 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
198 		return 0;
199 
200 	for (index = start; index != end; index += PAGE_SIZE) {
201 		pte_t pte;
202 		swp_entry_t entry;
203 		struct page *page;
204 		spinlock_t *ptl;
205 		pte_t *ptep;
206 
207 		ptep = pte_offset_map_lock(vma->vm_mm, pmd, index, &ptl);
208 		pte = *ptep;
209 		pte_unmap_unlock(ptep, ptl);
210 
211 		if (!is_swap_pte(pte))
212 			continue;
213 		entry = pte_to_swp_entry(pte);
214 		if (unlikely(non_swap_entry(entry)))
215 			continue;
216 
217 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
218 					     vma, index, false, &splug);
219 		if (page)
220 			put_page(page);
221 	}
222 	swap_read_unplug(splug);
223 	cond_resched();
224 
225 	return 0;
226 }
227 
228 static const struct mm_walk_ops swapin_walk_ops = {
229 	.pmd_entry		= swapin_walk_pmd_entry,
230 };
231 
232 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
233 		unsigned long start, unsigned long end,
234 		struct address_space *mapping)
235 {
236 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
237 	pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
238 	struct page *page;
239 	struct swap_iocb *splug = NULL;
240 
241 	rcu_read_lock();
242 	xas_for_each(&xas, page, end_index) {
243 		swp_entry_t swap;
244 
245 		if (!xa_is_value(page))
246 			continue;
247 		swap = radix_to_swp_entry(page);
248 		/* There might be swapin error entries in shmem mapping. */
249 		if (non_swap_entry(swap))
250 			continue;
251 		xas_pause(&xas);
252 		rcu_read_unlock();
253 
254 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
255 					     NULL, 0, false, &splug);
256 		if (page)
257 			put_page(page);
258 
259 		rcu_read_lock();
260 	}
261 	rcu_read_unlock();
262 	swap_read_unplug(splug);
263 
264 	lru_add_drain();	/* Push any new pages onto the LRU now */
265 }
266 #endif		/* CONFIG_SWAP */
267 
268 /*
269  * Schedule all required I/O operations.  Do not wait for completion.
270  */
271 static long madvise_willneed(struct vm_area_struct *vma,
272 			     struct vm_area_struct **prev,
273 			     unsigned long start, unsigned long end)
274 {
275 	struct mm_struct *mm = vma->vm_mm;
276 	struct file *file = vma->vm_file;
277 	loff_t offset;
278 
279 	*prev = vma;
280 #ifdef CONFIG_SWAP
281 	if (!file) {
282 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
283 		lru_add_drain(); /* Push any new pages onto the LRU now */
284 		return 0;
285 	}
286 
287 	if (shmem_mapping(file->f_mapping)) {
288 		force_shm_swapin_readahead(vma, start, end,
289 					file->f_mapping);
290 		return 0;
291 	}
292 #else
293 	if (!file)
294 		return -EBADF;
295 #endif
296 
297 	if (IS_DAX(file_inode(file))) {
298 		/* no bad return value, but ignore advice */
299 		return 0;
300 	}
301 
302 	/*
303 	 * Filesystem's fadvise may need to take various locks.  We need to
304 	 * explicitly grab a reference because the vma (and hence the
305 	 * vma's reference to the file) can go away as soon as we drop
306 	 * mmap_lock.
307 	 */
308 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
309 	get_file(file);
310 	offset = (loff_t)(start - vma->vm_start)
311 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
312 	mmap_read_unlock(mm);
313 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
314 	fput(file);
315 	mmap_read_lock(mm);
316 	return 0;
317 }
318 
319 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
320 {
321 	if (!vma->vm_file)
322 		return false;
323 	/*
324 	 * paging out pagecache only for non-anonymous mappings that correspond
325 	 * to the files the calling process could (if tried) open for writing;
326 	 * otherwise we'd be including shared non-exclusive mappings, which
327 	 * opens a side channel.
328 	 */
329 	return inode_owner_or_capable(&nop_mnt_idmap,
330 				      file_inode(vma->vm_file)) ||
331 	       file_permission(vma->vm_file, MAY_WRITE) == 0;
332 }
333 
334 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
335 				unsigned long addr, unsigned long end,
336 				struct mm_walk *walk)
337 {
338 	struct madvise_walk_private *private = walk->private;
339 	struct mmu_gather *tlb = private->tlb;
340 	bool pageout = private->pageout;
341 	struct mm_struct *mm = tlb->mm;
342 	struct vm_area_struct *vma = walk->vma;
343 	pte_t *orig_pte, *pte, ptent;
344 	spinlock_t *ptl;
345 	struct folio *folio = NULL;
346 	LIST_HEAD(folio_list);
347 	bool pageout_anon_only_filter;
348 
349 	if (fatal_signal_pending(current))
350 		return -EINTR;
351 
352 	pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
353 					!can_do_file_pageout(vma);
354 
355 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
356 	if (pmd_trans_huge(*pmd)) {
357 		pmd_t orig_pmd;
358 		unsigned long next = pmd_addr_end(addr, end);
359 
360 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
361 		ptl = pmd_trans_huge_lock(pmd, vma);
362 		if (!ptl)
363 			return 0;
364 
365 		orig_pmd = *pmd;
366 		if (is_huge_zero_pmd(orig_pmd))
367 			goto huge_unlock;
368 
369 		if (unlikely(!pmd_present(orig_pmd))) {
370 			VM_BUG_ON(thp_migration_supported() &&
371 					!is_pmd_migration_entry(orig_pmd));
372 			goto huge_unlock;
373 		}
374 
375 		folio = pfn_folio(pmd_pfn(orig_pmd));
376 
377 		/* Do not interfere with other mappings of this folio */
378 		if (folio_mapcount(folio) != 1)
379 			goto huge_unlock;
380 
381 		if (pageout_anon_only_filter && !folio_test_anon(folio))
382 			goto huge_unlock;
383 
384 		if (next - addr != HPAGE_PMD_SIZE) {
385 			int err;
386 
387 			folio_get(folio);
388 			spin_unlock(ptl);
389 			folio_lock(folio);
390 			err = split_folio(folio);
391 			folio_unlock(folio);
392 			folio_put(folio);
393 			if (!err)
394 				goto regular_folio;
395 			return 0;
396 		}
397 
398 		if (pmd_young(orig_pmd)) {
399 			pmdp_invalidate(vma, addr, pmd);
400 			orig_pmd = pmd_mkold(orig_pmd);
401 
402 			set_pmd_at(mm, addr, pmd, orig_pmd);
403 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
404 		}
405 
406 		folio_clear_referenced(folio);
407 		folio_test_clear_young(folio);
408 		if (pageout) {
409 			if (folio_isolate_lru(folio)) {
410 				if (folio_test_unevictable(folio))
411 					folio_putback_lru(folio);
412 				else
413 					list_add(&folio->lru, &folio_list);
414 			}
415 		} else
416 			folio_deactivate(folio);
417 huge_unlock:
418 		spin_unlock(ptl);
419 		if (pageout)
420 			reclaim_pages(&folio_list);
421 		return 0;
422 	}
423 
424 regular_folio:
425 	if (pmd_trans_unstable(pmd))
426 		return 0;
427 #endif
428 	tlb_change_page_size(tlb, PAGE_SIZE);
429 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
430 	flush_tlb_batched_pending(mm);
431 	arch_enter_lazy_mmu_mode();
432 	for (; addr < end; pte++, addr += PAGE_SIZE) {
433 		ptent = *pte;
434 
435 		if (pte_none(ptent))
436 			continue;
437 
438 		if (!pte_present(ptent))
439 			continue;
440 
441 		folio = vm_normal_folio(vma, addr, ptent);
442 		if (!folio || folio_is_zone_device(folio))
443 			continue;
444 
445 		/*
446 		 * Creating a THP page is expensive so split it only if we
447 		 * are sure it's worth. Split it if we are only owner.
448 		 */
449 		if (folio_test_large(folio)) {
450 			if (folio_mapcount(folio) != 1)
451 				break;
452 			if (pageout_anon_only_filter && !folio_test_anon(folio))
453 				break;
454 			folio_get(folio);
455 			if (!folio_trylock(folio)) {
456 				folio_put(folio);
457 				break;
458 			}
459 			pte_unmap_unlock(orig_pte, ptl);
460 			if (split_folio(folio)) {
461 				folio_unlock(folio);
462 				folio_put(folio);
463 				orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
464 				break;
465 			}
466 			folio_unlock(folio);
467 			folio_put(folio);
468 			orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
469 			pte--;
470 			addr -= PAGE_SIZE;
471 			continue;
472 		}
473 
474 		/*
475 		 * Do not interfere with other mappings of this folio and
476 		 * non-LRU folio.
477 		 */
478 		if (!folio_test_lru(folio) || folio_mapcount(folio) != 1)
479 			continue;
480 
481 		if (pageout_anon_only_filter && !folio_test_anon(folio))
482 			continue;
483 
484 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
485 
486 		if (pte_young(ptent)) {
487 			ptent = ptep_get_and_clear_full(mm, addr, pte,
488 							tlb->fullmm);
489 			ptent = pte_mkold(ptent);
490 			set_pte_at(mm, addr, pte, ptent);
491 			tlb_remove_tlb_entry(tlb, pte, addr);
492 		}
493 
494 		/*
495 		 * We are deactivating a folio for accelerating reclaiming.
496 		 * VM couldn't reclaim the folio unless we clear PG_young.
497 		 * As a side effect, it makes confuse idle-page tracking
498 		 * because they will miss recent referenced history.
499 		 */
500 		folio_clear_referenced(folio);
501 		folio_test_clear_young(folio);
502 		if (pageout) {
503 			if (folio_isolate_lru(folio)) {
504 				if (folio_test_unevictable(folio))
505 					folio_putback_lru(folio);
506 				else
507 					list_add(&folio->lru, &folio_list);
508 			}
509 		} else
510 			folio_deactivate(folio);
511 	}
512 
513 	arch_leave_lazy_mmu_mode();
514 	pte_unmap_unlock(orig_pte, ptl);
515 	if (pageout)
516 		reclaim_pages(&folio_list);
517 	cond_resched();
518 
519 	return 0;
520 }
521 
522 static const struct mm_walk_ops cold_walk_ops = {
523 	.pmd_entry = madvise_cold_or_pageout_pte_range,
524 };
525 
526 static void madvise_cold_page_range(struct mmu_gather *tlb,
527 			     struct vm_area_struct *vma,
528 			     unsigned long addr, unsigned long end)
529 {
530 	struct madvise_walk_private walk_private = {
531 		.pageout = false,
532 		.tlb = tlb,
533 	};
534 
535 	tlb_start_vma(tlb, vma);
536 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
537 	tlb_end_vma(tlb, vma);
538 }
539 
540 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
541 {
542 	return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
543 }
544 
545 static long madvise_cold(struct vm_area_struct *vma,
546 			struct vm_area_struct **prev,
547 			unsigned long start_addr, unsigned long end_addr)
548 {
549 	struct mm_struct *mm = vma->vm_mm;
550 	struct mmu_gather tlb;
551 
552 	*prev = vma;
553 	if (!can_madv_lru_vma(vma))
554 		return -EINVAL;
555 
556 	lru_add_drain();
557 	tlb_gather_mmu(&tlb, mm);
558 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
559 	tlb_finish_mmu(&tlb);
560 
561 	return 0;
562 }
563 
564 static void madvise_pageout_page_range(struct mmu_gather *tlb,
565 			     struct vm_area_struct *vma,
566 			     unsigned long addr, unsigned long end)
567 {
568 	struct madvise_walk_private walk_private = {
569 		.pageout = true,
570 		.tlb = tlb,
571 	};
572 
573 	tlb_start_vma(tlb, vma);
574 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
575 	tlb_end_vma(tlb, vma);
576 }
577 
578 static long madvise_pageout(struct vm_area_struct *vma,
579 			struct vm_area_struct **prev,
580 			unsigned long start_addr, unsigned long end_addr)
581 {
582 	struct mm_struct *mm = vma->vm_mm;
583 	struct mmu_gather tlb;
584 
585 	*prev = vma;
586 	if (!can_madv_lru_vma(vma))
587 		return -EINVAL;
588 
589 	/*
590 	 * If the VMA belongs to a private file mapping, there can be private
591 	 * dirty pages which can be paged out if even this process is neither
592 	 * owner nor write capable of the file. We allow private file mappings
593 	 * further to pageout dirty anon pages.
594 	 */
595 	if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
596 				(vma->vm_flags & VM_MAYSHARE)))
597 		return 0;
598 
599 	lru_add_drain();
600 	tlb_gather_mmu(&tlb, mm);
601 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
602 	tlb_finish_mmu(&tlb);
603 
604 	return 0;
605 }
606 
607 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
608 				unsigned long end, struct mm_walk *walk)
609 
610 {
611 	struct mmu_gather *tlb = walk->private;
612 	struct mm_struct *mm = tlb->mm;
613 	struct vm_area_struct *vma = walk->vma;
614 	spinlock_t *ptl;
615 	pte_t *orig_pte, *pte, ptent;
616 	struct folio *folio;
617 	int nr_swap = 0;
618 	unsigned long next;
619 
620 	next = pmd_addr_end(addr, end);
621 	if (pmd_trans_huge(*pmd))
622 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
623 			goto next;
624 
625 	if (pmd_trans_unstable(pmd))
626 		return 0;
627 
628 	tlb_change_page_size(tlb, PAGE_SIZE);
629 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
630 	flush_tlb_batched_pending(mm);
631 	arch_enter_lazy_mmu_mode();
632 	for (; addr != end; pte++, addr += PAGE_SIZE) {
633 		ptent = *pte;
634 
635 		if (pte_none(ptent))
636 			continue;
637 		/*
638 		 * If the pte has swp_entry, just clear page table to
639 		 * prevent swap-in which is more expensive rather than
640 		 * (page allocation + zeroing).
641 		 */
642 		if (!pte_present(ptent)) {
643 			swp_entry_t entry;
644 
645 			entry = pte_to_swp_entry(ptent);
646 			if (!non_swap_entry(entry)) {
647 				nr_swap--;
648 				free_swap_and_cache(entry);
649 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
650 			} else if (is_hwpoison_entry(entry) ||
651 				   is_swapin_error_entry(entry)) {
652 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
653 			}
654 			continue;
655 		}
656 
657 		folio = vm_normal_folio(vma, addr, ptent);
658 		if (!folio || folio_is_zone_device(folio))
659 			continue;
660 
661 		/*
662 		 * If pmd isn't transhuge but the folio is large and
663 		 * is owned by only this process, split it and
664 		 * deactivate all pages.
665 		 */
666 		if (folio_test_large(folio)) {
667 			if (folio_mapcount(folio) != 1)
668 				goto out;
669 			folio_get(folio);
670 			if (!folio_trylock(folio)) {
671 				folio_put(folio);
672 				goto out;
673 			}
674 			pte_unmap_unlock(orig_pte, ptl);
675 			if (split_folio(folio)) {
676 				folio_unlock(folio);
677 				folio_put(folio);
678 				orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
679 				goto out;
680 			}
681 			folio_unlock(folio);
682 			folio_put(folio);
683 			orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
684 			pte--;
685 			addr -= PAGE_SIZE;
686 			continue;
687 		}
688 
689 		if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
690 			if (!folio_trylock(folio))
691 				continue;
692 			/*
693 			 * If folio is shared with others, we mustn't clear
694 			 * the folio's dirty flag.
695 			 */
696 			if (folio_mapcount(folio) != 1) {
697 				folio_unlock(folio);
698 				continue;
699 			}
700 
701 			if (folio_test_swapcache(folio) &&
702 			    !folio_free_swap(folio)) {
703 				folio_unlock(folio);
704 				continue;
705 			}
706 
707 			folio_clear_dirty(folio);
708 			folio_unlock(folio);
709 		}
710 
711 		if (pte_young(ptent) || pte_dirty(ptent)) {
712 			/*
713 			 * Some of architecture(ex, PPC) don't update TLB
714 			 * with set_pte_at and tlb_remove_tlb_entry so for
715 			 * the portability, remap the pte with old|clean
716 			 * after pte clearing.
717 			 */
718 			ptent = ptep_get_and_clear_full(mm, addr, pte,
719 							tlb->fullmm);
720 
721 			ptent = pte_mkold(ptent);
722 			ptent = pte_mkclean(ptent);
723 			set_pte_at(mm, addr, pte, ptent);
724 			tlb_remove_tlb_entry(tlb, pte, addr);
725 		}
726 		folio_mark_lazyfree(folio);
727 	}
728 out:
729 	if (nr_swap) {
730 		if (current->mm == mm)
731 			sync_mm_rss(mm);
732 
733 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
734 	}
735 	arch_leave_lazy_mmu_mode();
736 	pte_unmap_unlock(orig_pte, ptl);
737 	cond_resched();
738 next:
739 	return 0;
740 }
741 
742 static const struct mm_walk_ops madvise_free_walk_ops = {
743 	.pmd_entry		= madvise_free_pte_range,
744 };
745 
746 static int madvise_free_single_vma(struct vm_area_struct *vma,
747 			unsigned long start_addr, unsigned long end_addr)
748 {
749 	struct mm_struct *mm = vma->vm_mm;
750 	struct mmu_notifier_range range;
751 	struct mmu_gather tlb;
752 
753 	/* MADV_FREE works for only anon vma at the moment */
754 	if (!vma_is_anonymous(vma))
755 		return -EINVAL;
756 
757 	range.start = max(vma->vm_start, start_addr);
758 	if (range.start >= vma->vm_end)
759 		return -EINVAL;
760 	range.end = min(vma->vm_end, end_addr);
761 	if (range.end <= vma->vm_start)
762 		return -EINVAL;
763 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
764 				range.start, range.end);
765 
766 	lru_add_drain();
767 	tlb_gather_mmu(&tlb, mm);
768 	update_hiwater_rss(mm);
769 
770 	mmu_notifier_invalidate_range_start(&range);
771 	tlb_start_vma(&tlb, vma);
772 	walk_page_range(vma->vm_mm, range.start, range.end,
773 			&madvise_free_walk_ops, &tlb);
774 	tlb_end_vma(&tlb, vma);
775 	mmu_notifier_invalidate_range_end(&range);
776 	tlb_finish_mmu(&tlb);
777 
778 	return 0;
779 }
780 
781 /*
782  * Application no longer needs these pages.  If the pages are dirty,
783  * it's OK to just throw them away.  The app will be more careful about
784  * data it wants to keep.  Be sure to free swap resources too.  The
785  * zap_page_range_single call sets things up for shrink_active_list to actually
786  * free these pages later if no one else has touched them in the meantime,
787  * although we could add these pages to a global reuse list for
788  * shrink_active_list to pick up before reclaiming other pages.
789  *
790  * NB: This interface discards data rather than pushes it out to swap,
791  * as some implementations do.  This has performance implications for
792  * applications like large transactional databases which want to discard
793  * pages in anonymous maps after committing to backing store the data
794  * that was kept in them.  There is no reason to write this data out to
795  * the swap area if the application is discarding it.
796  *
797  * An interface that causes the system to free clean pages and flush
798  * dirty pages is already available as msync(MS_INVALIDATE).
799  */
800 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
801 					unsigned long start, unsigned long end)
802 {
803 	zap_page_range_single(vma, start, end - start, NULL);
804 	return 0;
805 }
806 
807 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
808 					    unsigned long start,
809 					    unsigned long *end,
810 					    int behavior)
811 {
812 	if (!is_vm_hugetlb_page(vma)) {
813 		unsigned int forbidden = VM_PFNMAP;
814 
815 		if (behavior != MADV_DONTNEED_LOCKED)
816 			forbidden |= VM_LOCKED;
817 
818 		return !(vma->vm_flags & forbidden);
819 	}
820 
821 	if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
822 		return false;
823 	if (start & ~huge_page_mask(hstate_vma(vma)))
824 		return false;
825 
826 	/*
827 	 * Madvise callers expect the length to be rounded up to PAGE_SIZE
828 	 * boundaries, and may be unaware that this VMA uses huge pages.
829 	 * Avoid unexpected data loss by rounding down the number of
830 	 * huge pages freed.
831 	 */
832 	*end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
833 
834 	return true;
835 }
836 
837 static long madvise_dontneed_free(struct vm_area_struct *vma,
838 				  struct vm_area_struct **prev,
839 				  unsigned long start, unsigned long end,
840 				  int behavior)
841 {
842 	struct mm_struct *mm = vma->vm_mm;
843 
844 	*prev = vma;
845 	if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
846 		return -EINVAL;
847 
848 	if (start == end)
849 		return 0;
850 
851 	if (!userfaultfd_remove(vma, start, end)) {
852 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
853 
854 		mmap_read_lock(mm);
855 		vma = find_vma(mm, start);
856 		if (!vma)
857 			return -ENOMEM;
858 		if (start < vma->vm_start) {
859 			/*
860 			 * This "vma" under revalidation is the one
861 			 * with the lowest vma->vm_start where start
862 			 * is also < vma->vm_end. If start <
863 			 * vma->vm_start it means an hole materialized
864 			 * in the user address space within the
865 			 * virtual range passed to MADV_DONTNEED
866 			 * or MADV_FREE.
867 			 */
868 			return -ENOMEM;
869 		}
870 		/*
871 		 * Potential end adjustment for hugetlb vma is OK as
872 		 * the check below keeps end within vma.
873 		 */
874 		if (!madvise_dontneed_free_valid_vma(vma, start, &end,
875 						     behavior))
876 			return -EINVAL;
877 		if (end > vma->vm_end) {
878 			/*
879 			 * Don't fail if end > vma->vm_end. If the old
880 			 * vma was split while the mmap_lock was
881 			 * released the effect of the concurrent
882 			 * operation may not cause madvise() to
883 			 * have an undefined result. There may be an
884 			 * adjacent next vma that we'll walk
885 			 * next. userfaultfd_remove() will generate an
886 			 * UFFD_EVENT_REMOVE repetition on the
887 			 * end-vma->vm_end range, but the manager can
888 			 * handle a repetition fine.
889 			 */
890 			end = vma->vm_end;
891 		}
892 		VM_WARN_ON(start >= end);
893 	}
894 
895 	if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
896 		return madvise_dontneed_single_vma(vma, start, end);
897 	else if (behavior == MADV_FREE)
898 		return madvise_free_single_vma(vma, start, end);
899 	else
900 		return -EINVAL;
901 }
902 
903 static long madvise_populate(struct vm_area_struct *vma,
904 			     struct vm_area_struct **prev,
905 			     unsigned long start, unsigned long end,
906 			     int behavior)
907 {
908 	const bool write = behavior == MADV_POPULATE_WRITE;
909 	struct mm_struct *mm = vma->vm_mm;
910 	unsigned long tmp_end;
911 	int locked = 1;
912 	long pages;
913 
914 	*prev = vma;
915 
916 	while (start < end) {
917 		/*
918 		 * We might have temporarily dropped the lock. For example,
919 		 * our VMA might have been split.
920 		 */
921 		if (!vma || start >= vma->vm_end) {
922 			vma = vma_lookup(mm, start);
923 			if (!vma)
924 				return -ENOMEM;
925 		}
926 
927 		tmp_end = min_t(unsigned long, end, vma->vm_end);
928 		/* Populate (prefault) page tables readable/writable. */
929 		pages = faultin_vma_page_range(vma, start, tmp_end, write,
930 					       &locked);
931 		if (!locked) {
932 			mmap_read_lock(mm);
933 			locked = 1;
934 			*prev = NULL;
935 			vma = NULL;
936 		}
937 		if (pages < 0) {
938 			switch (pages) {
939 			case -EINTR:
940 				return -EINTR;
941 			case -EINVAL: /* Incompatible mappings / permissions. */
942 				return -EINVAL;
943 			case -EHWPOISON:
944 				return -EHWPOISON;
945 			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
946 				return -EFAULT;
947 			default:
948 				pr_warn_once("%s: unhandled return value: %ld\n",
949 					     __func__, pages);
950 				fallthrough;
951 			case -ENOMEM:
952 				return -ENOMEM;
953 			}
954 		}
955 		start += pages * PAGE_SIZE;
956 	}
957 	return 0;
958 }
959 
960 /*
961  * Application wants to free up the pages and associated backing store.
962  * This is effectively punching a hole into the middle of a file.
963  */
964 static long madvise_remove(struct vm_area_struct *vma,
965 				struct vm_area_struct **prev,
966 				unsigned long start, unsigned long end)
967 {
968 	loff_t offset;
969 	int error;
970 	struct file *f;
971 	struct mm_struct *mm = vma->vm_mm;
972 
973 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
974 
975 	if (vma->vm_flags & VM_LOCKED)
976 		return -EINVAL;
977 
978 	f = vma->vm_file;
979 
980 	if (!f || !f->f_mapping || !f->f_mapping->host) {
981 			return -EINVAL;
982 	}
983 
984 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
985 		return -EACCES;
986 
987 	offset = (loff_t)(start - vma->vm_start)
988 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
989 
990 	/*
991 	 * Filesystem's fallocate may need to take i_rwsem.  We need to
992 	 * explicitly grab a reference because the vma (and hence the
993 	 * vma's reference to the file) can go away as soon as we drop
994 	 * mmap_lock.
995 	 */
996 	get_file(f);
997 	if (userfaultfd_remove(vma, start, end)) {
998 		/* mmap_lock was not released by userfaultfd_remove() */
999 		mmap_read_unlock(mm);
1000 	}
1001 	error = vfs_fallocate(f,
1002 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1003 				offset, end - start);
1004 	fput(f);
1005 	mmap_read_lock(mm);
1006 	return error;
1007 }
1008 
1009 /*
1010  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
1011  * will handle splitting a vm area into separate areas, each area with its own
1012  * behavior.
1013  */
1014 static int madvise_vma_behavior(struct vm_area_struct *vma,
1015 				struct vm_area_struct **prev,
1016 				unsigned long start, unsigned long end,
1017 				unsigned long behavior)
1018 {
1019 	int error;
1020 	struct anon_vma_name *anon_name;
1021 	unsigned long new_flags = vma->vm_flags;
1022 
1023 	switch (behavior) {
1024 	case MADV_REMOVE:
1025 		return madvise_remove(vma, prev, start, end);
1026 	case MADV_WILLNEED:
1027 		return madvise_willneed(vma, prev, start, end);
1028 	case MADV_COLD:
1029 		return madvise_cold(vma, prev, start, end);
1030 	case MADV_PAGEOUT:
1031 		return madvise_pageout(vma, prev, start, end);
1032 	case MADV_FREE:
1033 	case MADV_DONTNEED:
1034 	case MADV_DONTNEED_LOCKED:
1035 		return madvise_dontneed_free(vma, prev, start, end, behavior);
1036 	case MADV_POPULATE_READ:
1037 	case MADV_POPULATE_WRITE:
1038 		return madvise_populate(vma, prev, start, end, behavior);
1039 	case MADV_NORMAL:
1040 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1041 		break;
1042 	case MADV_SEQUENTIAL:
1043 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1044 		break;
1045 	case MADV_RANDOM:
1046 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1047 		break;
1048 	case MADV_DONTFORK:
1049 		new_flags |= VM_DONTCOPY;
1050 		break;
1051 	case MADV_DOFORK:
1052 		if (vma->vm_flags & VM_IO)
1053 			return -EINVAL;
1054 		new_flags &= ~VM_DONTCOPY;
1055 		break;
1056 	case MADV_WIPEONFORK:
1057 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
1058 		if (vma->vm_file || vma->vm_flags & VM_SHARED)
1059 			return -EINVAL;
1060 		new_flags |= VM_WIPEONFORK;
1061 		break;
1062 	case MADV_KEEPONFORK:
1063 		new_flags &= ~VM_WIPEONFORK;
1064 		break;
1065 	case MADV_DONTDUMP:
1066 		new_flags |= VM_DONTDUMP;
1067 		break;
1068 	case MADV_DODUMP:
1069 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1070 			return -EINVAL;
1071 		new_flags &= ~VM_DONTDUMP;
1072 		break;
1073 	case MADV_MERGEABLE:
1074 	case MADV_UNMERGEABLE:
1075 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
1076 		if (error)
1077 			goto out;
1078 		break;
1079 	case MADV_HUGEPAGE:
1080 	case MADV_NOHUGEPAGE:
1081 		error = hugepage_madvise(vma, &new_flags, behavior);
1082 		if (error)
1083 			goto out;
1084 		break;
1085 	case MADV_COLLAPSE:
1086 		return madvise_collapse(vma, prev, start, end);
1087 	}
1088 
1089 	anon_name = anon_vma_name(vma);
1090 	anon_vma_name_get(anon_name);
1091 	error = madvise_update_vma(vma, prev, start, end, new_flags,
1092 				   anon_name);
1093 	anon_vma_name_put(anon_name);
1094 
1095 out:
1096 	/*
1097 	 * madvise() returns EAGAIN if kernel resources, such as
1098 	 * slab, are temporarily unavailable.
1099 	 */
1100 	if (error == -ENOMEM)
1101 		error = -EAGAIN;
1102 	return error;
1103 }
1104 
1105 #ifdef CONFIG_MEMORY_FAILURE
1106 /*
1107  * Error injection support for memory error handling.
1108  */
1109 static int madvise_inject_error(int behavior,
1110 		unsigned long start, unsigned long end)
1111 {
1112 	unsigned long size;
1113 
1114 	if (!capable(CAP_SYS_ADMIN))
1115 		return -EPERM;
1116 
1117 
1118 	for (; start < end; start += size) {
1119 		unsigned long pfn;
1120 		struct page *page;
1121 		int ret;
1122 
1123 		ret = get_user_pages_fast(start, 1, 0, &page);
1124 		if (ret != 1)
1125 			return ret;
1126 		pfn = page_to_pfn(page);
1127 
1128 		/*
1129 		 * When soft offlining hugepages, after migrating the page
1130 		 * we dissolve it, therefore in the second loop "page" will
1131 		 * no longer be a compound page.
1132 		 */
1133 		size = page_size(compound_head(page));
1134 
1135 		if (behavior == MADV_SOFT_OFFLINE) {
1136 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1137 				 pfn, start);
1138 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1139 		} else {
1140 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1141 				 pfn, start);
1142 			ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED);
1143 			if (ret == -EOPNOTSUPP)
1144 				ret = 0;
1145 		}
1146 
1147 		if (ret)
1148 			return ret;
1149 	}
1150 
1151 	return 0;
1152 }
1153 #endif
1154 
1155 static bool
1156 madvise_behavior_valid(int behavior)
1157 {
1158 	switch (behavior) {
1159 	case MADV_DOFORK:
1160 	case MADV_DONTFORK:
1161 	case MADV_NORMAL:
1162 	case MADV_SEQUENTIAL:
1163 	case MADV_RANDOM:
1164 	case MADV_REMOVE:
1165 	case MADV_WILLNEED:
1166 	case MADV_DONTNEED:
1167 	case MADV_DONTNEED_LOCKED:
1168 	case MADV_FREE:
1169 	case MADV_COLD:
1170 	case MADV_PAGEOUT:
1171 	case MADV_POPULATE_READ:
1172 	case MADV_POPULATE_WRITE:
1173 #ifdef CONFIG_KSM
1174 	case MADV_MERGEABLE:
1175 	case MADV_UNMERGEABLE:
1176 #endif
1177 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1178 	case MADV_HUGEPAGE:
1179 	case MADV_NOHUGEPAGE:
1180 	case MADV_COLLAPSE:
1181 #endif
1182 	case MADV_DONTDUMP:
1183 	case MADV_DODUMP:
1184 	case MADV_WIPEONFORK:
1185 	case MADV_KEEPONFORK:
1186 #ifdef CONFIG_MEMORY_FAILURE
1187 	case MADV_SOFT_OFFLINE:
1188 	case MADV_HWPOISON:
1189 #endif
1190 		return true;
1191 
1192 	default:
1193 		return false;
1194 	}
1195 }
1196 
1197 static bool process_madvise_behavior_valid(int behavior)
1198 {
1199 	switch (behavior) {
1200 	case MADV_COLD:
1201 	case MADV_PAGEOUT:
1202 	case MADV_WILLNEED:
1203 	case MADV_COLLAPSE:
1204 		return true;
1205 	default:
1206 		return false;
1207 	}
1208 }
1209 
1210 /*
1211  * Walk the vmas in range [start,end), and call the visit function on each one.
1212  * The visit function will get start and end parameters that cover the overlap
1213  * between the current vma and the original range.  Any unmapped regions in the
1214  * original range will result in this function returning -ENOMEM while still
1215  * calling the visit function on all of the existing vmas in the range.
1216  * Must be called with the mmap_lock held for reading or writing.
1217  */
1218 static
1219 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1220 		      unsigned long end, unsigned long arg,
1221 		      int (*visit)(struct vm_area_struct *vma,
1222 				   struct vm_area_struct **prev, unsigned long start,
1223 				   unsigned long end, unsigned long arg))
1224 {
1225 	struct vm_area_struct *vma;
1226 	struct vm_area_struct *prev;
1227 	unsigned long tmp;
1228 	int unmapped_error = 0;
1229 
1230 	/*
1231 	 * If the interval [start,end) covers some unmapped address
1232 	 * ranges, just ignore them, but return -ENOMEM at the end.
1233 	 * - different from the way of handling in mlock etc.
1234 	 */
1235 	vma = find_vma_prev(mm, start, &prev);
1236 	if (vma && start > vma->vm_start)
1237 		prev = vma;
1238 
1239 	for (;;) {
1240 		int error;
1241 
1242 		/* Still start < end. */
1243 		if (!vma)
1244 			return -ENOMEM;
1245 
1246 		/* Here start < (end|vma->vm_end). */
1247 		if (start < vma->vm_start) {
1248 			unmapped_error = -ENOMEM;
1249 			start = vma->vm_start;
1250 			if (start >= end)
1251 				break;
1252 		}
1253 
1254 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1255 		tmp = vma->vm_end;
1256 		if (end < tmp)
1257 			tmp = end;
1258 
1259 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1260 		error = visit(vma, &prev, start, tmp, arg);
1261 		if (error)
1262 			return error;
1263 		start = tmp;
1264 		if (prev && start < prev->vm_end)
1265 			start = prev->vm_end;
1266 		if (start >= end)
1267 			break;
1268 		if (prev)
1269 			vma = find_vma(mm, prev->vm_end);
1270 		else	/* madvise_remove dropped mmap_lock */
1271 			vma = find_vma(mm, start);
1272 	}
1273 
1274 	return unmapped_error;
1275 }
1276 
1277 #ifdef CONFIG_ANON_VMA_NAME
1278 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1279 				 struct vm_area_struct **prev,
1280 				 unsigned long start, unsigned long end,
1281 				 unsigned long anon_name)
1282 {
1283 	int error;
1284 
1285 	/* Only anonymous mappings can be named */
1286 	if (vma->vm_file && !vma_is_anon_shmem(vma))
1287 		return -EBADF;
1288 
1289 	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1290 				   (struct anon_vma_name *)anon_name);
1291 
1292 	/*
1293 	 * madvise() returns EAGAIN if kernel resources, such as
1294 	 * slab, are temporarily unavailable.
1295 	 */
1296 	if (error == -ENOMEM)
1297 		error = -EAGAIN;
1298 	return error;
1299 }
1300 
1301 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1302 			  unsigned long len_in, struct anon_vma_name *anon_name)
1303 {
1304 	unsigned long end;
1305 	unsigned long len;
1306 
1307 	if (start & ~PAGE_MASK)
1308 		return -EINVAL;
1309 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1310 
1311 	/* Check to see whether len was rounded up from small -ve to zero */
1312 	if (len_in && !len)
1313 		return -EINVAL;
1314 
1315 	end = start + len;
1316 	if (end < start)
1317 		return -EINVAL;
1318 
1319 	if (end == start)
1320 		return 0;
1321 
1322 	return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1323 				 madvise_vma_anon_name);
1324 }
1325 #endif /* CONFIG_ANON_VMA_NAME */
1326 /*
1327  * The madvise(2) system call.
1328  *
1329  * Applications can use madvise() to advise the kernel how it should
1330  * handle paging I/O in this VM area.  The idea is to help the kernel
1331  * use appropriate read-ahead and caching techniques.  The information
1332  * provided is advisory only, and can be safely disregarded by the
1333  * kernel without affecting the correct operation of the application.
1334  *
1335  * behavior values:
1336  *  MADV_NORMAL - the default behavior is to read clusters.  This
1337  *		results in some read-ahead and read-behind.
1338  *  MADV_RANDOM - the system should read the minimum amount of data
1339  *		on any access, since it is unlikely that the appli-
1340  *		cation will need more than what it asks for.
1341  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1342  *		once, so they can be aggressively read ahead, and
1343  *		can be freed soon after they are accessed.
1344  *  MADV_WILLNEED - the application is notifying the system to read
1345  *		some pages ahead.
1346  *  MADV_DONTNEED - the application is finished with the given range,
1347  *		so the kernel can free resources associated with it.
1348  *  MADV_FREE - the application marks pages in the given range as lazy free,
1349  *		where actual purges are postponed until memory pressure happens.
1350  *  MADV_REMOVE - the application wants to free up the given range of
1351  *		pages and associated backing store.
1352  *  MADV_DONTFORK - omit this area from child's address space when forking:
1353  *		typically, to avoid COWing pages pinned by get_user_pages().
1354  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1355  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1356  *              range after a fork.
1357  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1358  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1359  *		were corrupted by unrecoverable hardware memory failure.
1360  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1361  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1362  *		this area with pages of identical content from other such areas.
1363  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1364  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1365  *		huge pages in the future. Existing pages might be coalesced and
1366  *		new pages might be allocated as THP.
1367  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1368  *		transparent huge pages so the existing pages will not be
1369  *		coalesced into THP and new pages will not be allocated as THP.
1370  *  MADV_COLLAPSE - synchronously coalesce pages into new THP.
1371  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1372  *		from being included in its core dump.
1373  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1374  *  MADV_COLD - the application is not expected to use this memory soon,
1375  *		deactivate pages in this range so that they can be reclaimed
1376  *		easily if memory pressure happens.
1377  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1378  *		page out the pages in this range immediately.
1379  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1380  *		triggering read faults if required
1381  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1382  *		triggering write faults if required
1383  *
1384  * return values:
1385  *  zero    - success
1386  *  -EINVAL - start + len < 0, start is not page-aligned,
1387  *		"behavior" is not a valid value, or application
1388  *		is attempting to release locked or shared pages,
1389  *		or the specified address range includes file, Huge TLB,
1390  *		MAP_SHARED or VMPFNMAP range.
1391  *  -ENOMEM - addresses in the specified range are not currently
1392  *		mapped, or are outside the AS of the process.
1393  *  -EIO    - an I/O error occurred while paging in data.
1394  *  -EBADF  - map exists, but area maps something that isn't a file.
1395  *  -EAGAIN - a kernel resource was temporarily unavailable.
1396  */
1397 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1398 {
1399 	unsigned long end;
1400 	int error;
1401 	int write;
1402 	size_t len;
1403 	struct blk_plug plug;
1404 
1405 	start = untagged_addr(start);
1406 
1407 	if (!madvise_behavior_valid(behavior))
1408 		return -EINVAL;
1409 
1410 	if (!PAGE_ALIGNED(start))
1411 		return -EINVAL;
1412 	len = PAGE_ALIGN(len_in);
1413 
1414 	/* Check to see whether len was rounded up from small -ve to zero */
1415 	if (len_in && !len)
1416 		return -EINVAL;
1417 
1418 	end = start + len;
1419 	if (end < start)
1420 		return -EINVAL;
1421 
1422 	if (end == start)
1423 		return 0;
1424 
1425 #ifdef CONFIG_MEMORY_FAILURE
1426 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1427 		return madvise_inject_error(behavior, start, start + len_in);
1428 #endif
1429 
1430 	write = madvise_need_mmap_write(behavior);
1431 	if (write) {
1432 		if (mmap_write_lock_killable(mm))
1433 			return -EINTR;
1434 	} else {
1435 		mmap_read_lock(mm);
1436 	}
1437 
1438 	blk_start_plug(&plug);
1439 	error = madvise_walk_vmas(mm, start, end, behavior,
1440 			madvise_vma_behavior);
1441 	blk_finish_plug(&plug);
1442 	if (write)
1443 		mmap_write_unlock(mm);
1444 	else
1445 		mmap_read_unlock(mm);
1446 
1447 	return error;
1448 }
1449 
1450 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1451 {
1452 	return do_madvise(current->mm, start, len_in, behavior);
1453 }
1454 
1455 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1456 		size_t, vlen, int, behavior, unsigned int, flags)
1457 {
1458 	ssize_t ret;
1459 	struct iovec iovstack[UIO_FASTIOV], iovec;
1460 	struct iovec *iov = iovstack;
1461 	struct iov_iter iter;
1462 	struct task_struct *task;
1463 	struct mm_struct *mm;
1464 	size_t total_len;
1465 	unsigned int f_flags;
1466 
1467 	if (flags != 0) {
1468 		ret = -EINVAL;
1469 		goto out;
1470 	}
1471 
1472 	ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1473 	if (ret < 0)
1474 		goto out;
1475 
1476 	task = pidfd_get_task(pidfd, &f_flags);
1477 	if (IS_ERR(task)) {
1478 		ret = PTR_ERR(task);
1479 		goto free_iov;
1480 	}
1481 
1482 	if (!process_madvise_behavior_valid(behavior)) {
1483 		ret = -EINVAL;
1484 		goto release_task;
1485 	}
1486 
1487 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1488 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1489 	if (IS_ERR_OR_NULL(mm)) {
1490 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1491 		goto release_task;
1492 	}
1493 
1494 	/*
1495 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1496 	 * only non-destructive hints are currently supported.
1497 	 */
1498 	if (!capable(CAP_SYS_NICE)) {
1499 		ret = -EPERM;
1500 		goto release_mm;
1501 	}
1502 
1503 	total_len = iov_iter_count(&iter);
1504 
1505 	while (iov_iter_count(&iter)) {
1506 		iovec = iov_iter_iovec(&iter);
1507 		ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1508 					iovec.iov_len, behavior);
1509 		if (ret < 0)
1510 			break;
1511 		iov_iter_advance(&iter, iovec.iov_len);
1512 	}
1513 
1514 	ret = (total_len - iov_iter_count(&iter)) ? : ret;
1515 
1516 release_mm:
1517 	mmput(mm);
1518 release_task:
1519 	put_task_struct(task);
1520 free_iov:
1521 	kfree(iov);
1522 out:
1523 	return ret;
1524 }
1525