1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2013 Red Hat, Inc. and Parallels Inc. All rights reserved. 4 * Authors: David Chinner and Glauber Costa 5 * 6 * Generic LRU infrastructure 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/mm.h> 11 #include <linux/list_lru.h> 12 #include <linux/slab.h> 13 #include <linux/mutex.h> 14 #include <linux/memcontrol.h> 15 #include "slab.h" 16 #include "internal.h" 17 18 #ifdef CONFIG_MEMCG 19 static LIST_HEAD(memcg_list_lrus); 20 static DEFINE_MUTEX(list_lrus_mutex); 21 22 static inline bool list_lru_memcg_aware(struct list_lru *lru) 23 { 24 return lru->memcg_aware; 25 } 26 27 static void list_lru_register(struct list_lru *lru) 28 { 29 if (!list_lru_memcg_aware(lru)) 30 return; 31 32 mutex_lock(&list_lrus_mutex); 33 list_add(&lru->list, &memcg_list_lrus); 34 mutex_unlock(&list_lrus_mutex); 35 } 36 37 static void list_lru_unregister(struct list_lru *lru) 38 { 39 if (!list_lru_memcg_aware(lru)) 40 return; 41 42 mutex_lock(&list_lrus_mutex); 43 list_del(&lru->list); 44 mutex_unlock(&list_lrus_mutex); 45 } 46 47 static int lru_shrinker_id(struct list_lru *lru) 48 { 49 return lru->shrinker_id; 50 } 51 52 static inline struct list_lru_one * 53 list_lru_from_memcg_idx(struct list_lru *lru, int nid, int idx) 54 { 55 if (list_lru_memcg_aware(lru) && idx >= 0) { 56 struct list_lru_memcg *mlru = xa_load(&lru->xa, idx); 57 58 return mlru ? &mlru->node[nid] : NULL; 59 } 60 return &lru->node[nid].lru; 61 } 62 #else 63 static void list_lru_register(struct list_lru *lru) 64 { 65 } 66 67 static void list_lru_unregister(struct list_lru *lru) 68 { 69 } 70 71 static int lru_shrinker_id(struct list_lru *lru) 72 { 73 return -1; 74 } 75 76 static inline bool list_lru_memcg_aware(struct list_lru *lru) 77 { 78 return false; 79 } 80 81 static inline struct list_lru_one * 82 list_lru_from_memcg_idx(struct list_lru *lru, int nid, int idx) 83 { 84 return &lru->node[nid].lru; 85 } 86 #endif /* CONFIG_MEMCG */ 87 88 /* The caller must ensure the memcg lifetime. */ 89 bool list_lru_add(struct list_lru *lru, struct list_head *item, int nid, 90 struct mem_cgroup *memcg) 91 { 92 struct list_lru_node *nlru = &lru->node[nid]; 93 struct list_lru_one *l; 94 95 spin_lock(&nlru->lock); 96 if (list_empty(item)) { 97 l = list_lru_from_memcg_idx(lru, nid, memcg_kmem_id(memcg)); 98 list_add_tail(item, &l->list); 99 /* Set shrinker bit if the first element was added */ 100 if (!l->nr_items++) 101 set_shrinker_bit(memcg, nid, lru_shrinker_id(lru)); 102 nlru->nr_items++; 103 spin_unlock(&nlru->lock); 104 return true; 105 } 106 spin_unlock(&nlru->lock); 107 return false; 108 } 109 EXPORT_SYMBOL_GPL(list_lru_add); 110 111 bool list_lru_add_obj(struct list_lru *lru, struct list_head *item) 112 { 113 bool ret; 114 int nid = page_to_nid(virt_to_page(item)); 115 116 if (list_lru_memcg_aware(lru)) { 117 rcu_read_lock(); 118 ret = list_lru_add(lru, item, nid, mem_cgroup_from_slab_obj(item)); 119 rcu_read_unlock(); 120 } else { 121 ret = list_lru_add(lru, item, nid, NULL); 122 } 123 124 return ret; 125 } 126 EXPORT_SYMBOL_GPL(list_lru_add_obj); 127 128 /* The caller must ensure the memcg lifetime. */ 129 bool list_lru_del(struct list_lru *lru, struct list_head *item, int nid, 130 struct mem_cgroup *memcg) 131 { 132 struct list_lru_node *nlru = &lru->node[nid]; 133 struct list_lru_one *l; 134 135 spin_lock(&nlru->lock); 136 if (!list_empty(item)) { 137 l = list_lru_from_memcg_idx(lru, nid, memcg_kmem_id(memcg)); 138 list_del_init(item); 139 l->nr_items--; 140 nlru->nr_items--; 141 spin_unlock(&nlru->lock); 142 return true; 143 } 144 spin_unlock(&nlru->lock); 145 return false; 146 } 147 EXPORT_SYMBOL_GPL(list_lru_del); 148 149 bool list_lru_del_obj(struct list_lru *lru, struct list_head *item) 150 { 151 bool ret; 152 int nid = page_to_nid(virt_to_page(item)); 153 154 if (list_lru_memcg_aware(lru)) { 155 rcu_read_lock(); 156 ret = list_lru_del(lru, item, nid, mem_cgroup_from_slab_obj(item)); 157 rcu_read_unlock(); 158 } else { 159 ret = list_lru_del(lru, item, nid, NULL); 160 } 161 162 return ret; 163 } 164 EXPORT_SYMBOL_GPL(list_lru_del_obj); 165 166 void list_lru_isolate(struct list_lru_one *list, struct list_head *item) 167 { 168 list_del_init(item); 169 list->nr_items--; 170 } 171 EXPORT_SYMBOL_GPL(list_lru_isolate); 172 173 void list_lru_isolate_move(struct list_lru_one *list, struct list_head *item, 174 struct list_head *head) 175 { 176 list_move(item, head); 177 list->nr_items--; 178 } 179 EXPORT_SYMBOL_GPL(list_lru_isolate_move); 180 181 unsigned long list_lru_count_one(struct list_lru *lru, 182 int nid, struct mem_cgroup *memcg) 183 { 184 struct list_lru_one *l; 185 long count; 186 187 rcu_read_lock(); 188 l = list_lru_from_memcg_idx(lru, nid, memcg_kmem_id(memcg)); 189 count = l ? READ_ONCE(l->nr_items) : 0; 190 rcu_read_unlock(); 191 192 if (unlikely(count < 0)) 193 count = 0; 194 195 return count; 196 } 197 EXPORT_SYMBOL_GPL(list_lru_count_one); 198 199 unsigned long list_lru_count_node(struct list_lru *lru, int nid) 200 { 201 struct list_lru_node *nlru; 202 203 nlru = &lru->node[nid]; 204 return nlru->nr_items; 205 } 206 EXPORT_SYMBOL_GPL(list_lru_count_node); 207 208 static unsigned long 209 __list_lru_walk_one(struct list_lru *lru, int nid, int memcg_idx, 210 list_lru_walk_cb isolate, void *cb_arg, 211 unsigned long *nr_to_walk) 212 { 213 struct list_lru_node *nlru = &lru->node[nid]; 214 struct list_lru_one *l; 215 struct list_head *item, *n; 216 unsigned long isolated = 0; 217 218 restart: 219 l = list_lru_from_memcg_idx(lru, nid, memcg_idx); 220 if (!l) 221 goto out; 222 223 list_for_each_safe(item, n, &l->list) { 224 enum lru_status ret; 225 226 /* 227 * decrement nr_to_walk first so that we don't livelock if we 228 * get stuck on large numbers of LRU_RETRY items 229 */ 230 if (!*nr_to_walk) 231 break; 232 --*nr_to_walk; 233 234 ret = isolate(item, l, &nlru->lock, cb_arg); 235 switch (ret) { 236 case LRU_REMOVED_RETRY: 237 assert_spin_locked(&nlru->lock); 238 fallthrough; 239 case LRU_REMOVED: 240 isolated++; 241 nlru->nr_items--; 242 /* 243 * If the lru lock has been dropped, our list 244 * traversal is now invalid and so we have to 245 * restart from scratch. 246 */ 247 if (ret == LRU_REMOVED_RETRY) 248 goto restart; 249 break; 250 case LRU_ROTATE: 251 list_move_tail(item, &l->list); 252 break; 253 case LRU_SKIP: 254 break; 255 case LRU_RETRY: 256 /* 257 * The lru lock has been dropped, our list traversal is 258 * now invalid and so we have to restart from scratch. 259 */ 260 assert_spin_locked(&nlru->lock); 261 goto restart; 262 case LRU_STOP: 263 assert_spin_locked(&nlru->lock); 264 goto out; 265 default: 266 BUG(); 267 } 268 } 269 out: 270 return isolated; 271 } 272 273 unsigned long 274 list_lru_walk_one(struct list_lru *lru, int nid, struct mem_cgroup *memcg, 275 list_lru_walk_cb isolate, void *cb_arg, 276 unsigned long *nr_to_walk) 277 { 278 struct list_lru_node *nlru = &lru->node[nid]; 279 unsigned long ret; 280 281 spin_lock(&nlru->lock); 282 ret = __list_lru_walk_one(lru, nid, memcg_kmem_id(memcg), isolate, 283 cb_arg, nr_to_walk); 284 spin_unlock(&nlru->lock); 285 return ret; 286 } 287 EXPORT_SYMBOL_GPL(list_lru_walk_one); 288 289 unsigned long 290 list_lru_walk_one_irq(struct list_lru *lru, int nid, struct mem_cgroup *memcg, 291 list_lru_walk_cb isolate, void *cb_arg, 292 unsigned long *nr_to_walk) 293 { 294 struct list_lru_node *nlru = &lru->node[nid]; 295 unsigned long ret; 296 297 spin_lock_irq(&nlru->lock); 298 ret = __list_lru_walk_one(lru, nid, memcg_kmem_id(memcg), isolate, 299 cb_arg, nr_to_walk); 300 spin_unlock_irq(&nlru->lock); 301 return ret; 302 } 303 304 unsigned long list_lru_walk_node(struct list_lru *lru, int nid, 305 list_lru_walk_cb isolate, void *cb_arg, 306 unsigned long *nr_to_walk) 307 { 308 long isolated = 0; 309 310 isolated += list_lru_walk_one(lru, nid, NULL, isolate, cb_arg, 311 nr_to_walk); 312 313 #ifdef CONFIG_MEMCG 314 if (*nr_to_walk > 0 && list_lru_memcg_aware(lru)) { 315 struct list_lru_memcg *mlru; 316 unsigned long index; 317 318 xa_for_each(&lru->xa, index, mlru) { 319 struct list_lru_node *nlru = &lru->node[nid]; 320 321 spin_lock(&nlru->lock); 322 isolated += __list_lru_walk_one(lru, nid, index, 323 isolate, cb_arg, 324 nr_to_walk); 325 spin_unlock(&nlru->lock); 326 327 if (*nr_to_walk <= 0) 328 break; 329 } 330 } 331 #endif 332 333 return isolated; 334 } 335 EXPORT_SYMBOL_GPL(list_lru_walk_node); 336 337 static void init_one_lru(struct list_lru_one *l) 338 { 339 INIT_LIST_HEAD(&l->list); 340 l->nr_items = 0; 341 } 342 343 #ifdef CONFIG_MEMCG 344 static struct list_lru_memcg *memcg_init_list_lru_one(gfp_t gfp) 345 { 346 int nid; 347 struct list_lru_memcg *mlru; 348 349 mlru = kmalloc(struct_size(mlru, node, nr_node_ids), gfp); 350 if (!mlru) 351 return NULL; 352 353 for_each_node(nid) 354 init_one_lru(&mlru->node[nid]); 355 356 return mlru; 357 } 358 359 static void memcg_list_lru_free(struct list_lru *lru, int src_idx) 360 { 361 struct list_lru_memcg *mlru = xa_erase_irq(&lru->xa, src_idx); 362 363 /* 364 * The __list_lru_walk_one() can walk the list of this node. 365 * We need kvfree_rcu() here. And the walking of the list 366 * is under lru->node[nid]->lock, which can serve as a RCU 367 * read-side critical section. 368 */ 369 if (mlru) 370 kvfree_rcu(mlru, rcu); 371 } 372 373 static inline void memcg_init_list_lru(struct list_lru *lru, bool memcg_aware) 374 { 375 if (memcg_aware) 376 xa_init_flags(&lru->xa, XA_FLAGS_LOCK_IRQ); 377 lru->memcg_aware = memcg_aware; 378 } 379 380 static void memcg_destroy_list_lru(struct list_lru *lru) 381 { 382 XA_STATE(xas, &lru->xa, 0); 383 struct list_lru_memcg *mlru; 384 385 if (!list_lru_memcg_aware(lru)) 386 return; 387 388 xas_lock_irq(&xas); 389 xas_for_each(&xas, mlru, ULONG_MAX) { 390 kfree(mlru); 391 xas_store(&xas, NULL); 392 } 393 xas_unlock_irq(&xas); 394 } 395 396 static void memcg_reparent_list_lru_node(struct list_lru *lru, int nid, 397 int src_idx, struct mem_cgroup *dst_memcg) 398 { 399 struct list_lru_node *nlru = &lru->node[nid]; 400 int dst_idx = dst_memcg->kmemcg_id; 401 struct list_lru_one *src, *dst; 402 403 /* 404 * Since list_lru_{add,del} may be called under an IRQ-safe lock, 405 * we have to use IRQ-safe primitives here to avoid deadlock. 406 */ 407 spin_lock_irq(&nlru->lock); 408 409 src = list_lru_from_memcg_idx(lru, nid, src_idx); 410 if (!src) 411 goto out; 412 dst = list_lru_from_memcg_idx(lru, nid, dst_idx); 413 414 list_splice_init(&src->list, &dst->list); 415 416 if (src->nr_items) { 417 dst->nr_items += src->nr_items; 418 set_shrinker_bit(dst_memcg, nid, lru_shrinker_id(lru)); 419 src->nr_items = 0; 420 } 421 out: 422 spin_unlock_irq(&nlru->lock); 423 } 424 425 static void memcg_reparent_list_lru(struct list_lru *lru, 426 int src_idx, struct mem_cgroup *dst_memcg) 427 { 428 int i; 429 430 for_each_node(i) 431 memcg_reparent_list_lru_node(lru, i, src_idx, dst_memcg); 432 433 memcg_list_lru_free(lru, src_idx); 434 } 435 436 void memcg_reparent_list_lrus(struct mem_cgroup *memcg, struct mem_cgroup *parent) 437 { 438 struct cgroup_subsys_state *css; 439 struct list_lru *lru; 440 int src_idx = memcg->kmemcg_id; 441 442 /* 443 * Change kmemcg_id of this cgroup and all its descendants to the 444 * parent's id, and then move all entries from this cgroup's list_lrus 445 * to ones of the parent. 446 * 447 * After we have finished, all list_lrus corresponding to this cgroup 448 * are guaranteed to remain empty. So we can safely free this cgroup's 449 * list lrus in memcg_list_lru_free(). 450 * 451 * Changing ->kmemcg_id to the parent can prevent memcg_list_lru_alloc() 452 * from allocating list lrus for this cgroup after memcg_list_lru_free() 453 * call. 454 */ 455 rcu_read_lock(); 456 css_for_each_descendant_pre(css, &memcg->css) { 457 struct mem_cgroup *child; 458 459 child = mem_cgroup_from_css(css); 460 WRITE_ONCE(child->kmemcg_id, parent->kmemcg_id); 461 } 462 rcu_read_unlock(); 463 464 mutex_lock(&list_lrus_mutex); 465 list_for_each_entry(lru, &memcg_list_lrus, list) 466 memcg_reparent_list_lru(lru, src_idx, parent); 467 mutex_unlock(&list_lrus_mutex); 468 } 469 470 static inline bool memcg_list_lru_allocated(struct mem_cgroup *memcg, 471 struct list_lru *lru) 472 { 473 int idx = memcg->kmemcg_id; 474 475 return idx < 0 || xa_load(&lru->xa, idx); 476 } 477 478 int memcg_list_lru_alloc(struct mem_cgroup *memcg, struct list_lru *lru, 479 gfp_t gfp) 480 { 481 int i; 482 unsigned long flags; 483 struct list_lru_memcg_table { 484 struct list_lru_memcg *mlru; 485 struct mem_cgroup *memcg; 486 } *table; 487 XA_STATE(xas, &lru->xa, 0); 488 489 if (!list_lru_memcg_aware(lru) || memcg_list_lru_allocated(memcg, lru)) 490 return 0; 491 492 gfp &= GFP_RECLAIM_MASK; 493 table = kmalloc_array(memcg->css.cgroup->level, sizeof(*table), gfp); 494 if (!table) 495 return -ENOMEM; 496 497 /* 498 * Because the list_lru can be reparented to the parent cgroup's 499 * list_lru, we should make sure that this cgroup and all its 500 * ancestors have allocated list_lru_memcg. 501 */ 502 for (i = 0; memcg; memcg = parent_mem_cgroup(memcg), i++) { 503 if (memcg_list_lru_allocated(memcg, lru)) 504 break; 505 506 table[i].memcg = memcg; 507 table[i].mlru = memcg_init_list_lru_one(gfp); 508 if (!table[i].mlru) { 509 while (i--) 510 kfree(table[i].mlru); 511 kfree(table); 512 return -ENOMEM; 513 } 514 } 515 516 xas_lock_irqsave(&xas, flags); 517 while (i--) { 518 int index = READ_ONCE(table[i].memcg->kmemcg_id); 519 struct list_lru_memcg *mlru = table[i].mlru; 520 521 xas_set(&xas, index); 522 retry: 523 if (unlikely(index < 0 || xas_error(&xas) || xas_load(&xas))) { 524 kfree(mlru); 525 } else { 526 xas_store(&xas, mlru); 527 if (xas_error(&xas) == -ENOMEM) { 528 xas_unlock_irqrestore(&xas, flags); 529 if (xas_nomem(&xas, gfp)) 530 xas_set_err(&xas, 0); 531 xas_lock_irqsave(&xas, flags); 532 /* 533 * The xas lock has been released, this memcg 534 * can be reparented before us. So reload 535 * memcg id. More details see the comments 536 * in memcg_reparent_list_lrus(). 537 */ 538 index = READ_ONCE(table[i].memcg->kmemcg_id); 539 if (index < 0) 540 xas_set_err(&xas, 0); 541 else if (!xas_error(&xas) && index != xas.xa_index) 542 xas_set(&xas, index); 543 goto retry; 544 } 545 } 546 } 547 /* xas_nomem() is used to free memory instead of memory allocation. */ 548 if (xas.xa_alloc) 549 xas_nomem(&xas, gfp); 550 xas_unlock_irqrestore(&xas, flags); 551 kfree(table); 552 553 return xas_error(&xas); 554 } 555 #else 556 static inline void memcg_init_list_lru(struct list_lru *lru, bool memcg_aware) 557 { 558 } 559 560 static void memcg_destroy_list_lru(struct list_lru *lru) 561 { 562 } 563 #endif /* CONFIG_MEMCG */ 564 565 int __list_lru_init(struct list_lru *lru, bool memcg_aware, 566 struct lock_class_key *key, struct shrinker *shrinker) 567 { 568 int i; 569 570 #ifdef CONFIG_MEMCG 571 if (shrinker) 572 lru->shrinker_id = shrinker->id; 573 else 574 lru->shrinker_id = -1; 575 576 if (mem_cgroup_kmem_disabled()) 577 memcg_aware = false; 578 #endif 579 580 lru->node = kcalloc(nr_node_ids, sizeof(*lru->node), GFP_KERNEL); 581 if (!lru->node) 582 return -ENOMEM; 583 584 for_each_node(i) { 585 spin_lock_init(&lru->node[i].lock); 586 if (key) 587 lockdep_set_class(&lru->node[i].lock, key); 588 init_one_lru(&lru->node[i].lru); 589 } 590 591 memcg_init_list_lru(lru, memcg_aware); 592 list_lru_register(lru); 593 594 return 0; 595 } 596 EXPORT_SYMBOL_GPL(__list_lru_init); 597 598 void list_lru_destroy(struct list_lru *lru) 599 { 600 /* Already destroyed or not yet initialized? */ 601 if (!lru->node) 602 return; 603 604 list_lru_unregister(lru); 605 606 memcg_destroy_list_lru(lru); 607 kfree(lru->node); 608 lru->node = NULL; 609 610 #ifdef CONFIG_MEMCG 611 lru->shrinker_id = -1; 612 #endif 613 } 614 EXPORT_SYMBOL_GPL(list_lru_destroy); 615