xref: /linux/mm/ksm.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/rwsem.h>
26 #include <linux/pagemap.h>
27 #include <linux/rmap.h>
28 #include <linux/spinlock.h>
29 #include <linux/xxhash.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/wait.h>
33 #include <linux/slab.h>
34 #include <linux/rbtree.h>
35 #include <linux/memory.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/swap.h>
38 #include <linux/ksm.h>
39 #include <linux/hashtable.h>
40 #include <linux/freezer.h>
41 #include <linux/oom.h>
42 #include <linux/numa.h>
43 #include <linux/pagewalk.h>
44 
45 #include <asm/tlbflush.h>
46 #include "internal.h"
47 #include "mm_slot.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/ksm.h>
51 
52 #ifdef CONFIG_NUMA
53 #define NUMA(x)		(x)
54 #define DO_NUMA(x)	do { (x); } while (0)
55 #else
56 #define NUMA(x)		(0)
57 #define DO_NUMA(x)	do { } while (0)
58 #endif
59 
60 typedef u8 rmap_age_t;
61 
62 /**
63  * DOC: Overview
64  *
65  * A few notes about the KSM scanning process,
66  * to make it easier to understand the data structures below:
67  *
68  * In order to reduce excessive scanning, KSM sorts the memory pages by their
69  * contents into a data structure that holds pointers to the pages' locations.
70  *
71  * Since the contents of the pages may change at any moment, KSM cannot just
72  * insert the pages into a normal sorted tree and expect it to find anything.
73  * Therefore KSM uses two data structures - the stable and the unstable tree.
74  *
75  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
76  * by their contents.  Because each such page is write-protected, searching on
77  * this tree is fully assured to be working (except when pages are unmapped),
78  * and therefore this tree is called the stable tree.
79  *
80  * The stable tree node includes information required for reverse
81  * mapping from a KSM page to virtual addresses that map this page.
82  *
83  * In order to avoid large latencies of the rmap walks on KSM pages,
84  * KSM maintains two types of nodes in the stable tree:
85  *
86  * * the regular nodes that keep the reverse mapping structures in a
87  *   linked list
88  * * the "chains" that link nodes ("dups") that represent the same
89  *   write protected memory content, but each "dup" corresponds to a
90  *   different KSM page copy of that content
91  *
92  * Internally, the regular nodes, "dups" and "chains" are represented
93  * using the same struct ksm_stable_node structure.
94  *
95  * In addition to the stable tree, KSM uses a second data structure called the
96  * unstable tree: this tree holds pointers to pages which have been found to
97  * be "unchanged for a period of time".  The unstable tree sorts these pages
98  * by their contents, but since they are not write-protected, KSM cannot rely
99  * upon the unstable tree to work correctly - the unstable tree is liable to
100  * be corrupted as its contents are modified, and so it is called unstable.
101  *
102  * KSM solves this problem by several techniques:
103  *
104  * 1) The unstable tree is flushed every time KSM completes scanning all
105  *    memory areas, and then the tree is rebuilt again from the beginning.
106  * 2) KSM will only insert into the unstable tree, pages whose hash value
107  *    has not changed since the previous scan of all memory areas.
108  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
109  *    colors of the nodes and not on their contents, assuring that even when
110  *    the tree gets "corrupted" it won't get out of balance, so scanning time
111  *    remains the same (also, searching and inserting nodes in an rbtree uses
112  *    the same algorithm, so we have no overhead when we flush and rebuild).
113  * 4) KSM never flushes the stable tree, which means that even if it were to
114  *    take 10 attempts to find a page in the unstable tree, once it is found,
115  *    it is secured in the stable tree.  (When we scan a new page, we first
116  *    compare it against the stable tree, and then against the unstable tree.)
117  *
118  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
119  * stable trees and multiple unstable trees: one of each for each NUMA node.
120  */
121 
122 /**
123  * struct ksm_mm_slot - ksm information per mm that is being scanned
124  * @slot: hash lookup from mm to mm_slot
125  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
126  */
127 struct ksm_mm_slot {
128 	struct mm_slot slot;
129 	struct ksm_rmap_item *rmap_list;
130 };
131 
132 /**
133  * struct ksm_scan - cursor for scanning
134  * @mm_slot: the current mm_slot we are scanning
135  * @address: the next address inside that to be scanned
136  * @rmap_list: link to the next rmap to be scanned in the rmap_list
137  * @seqnr: count of completed full scans (needed when removing unstable node)
138  *
139  * There is only the one ksm_scan instance of this cursor structure.
140  */
141 struct ksm_scan {
142 	struct ksm_mm_slot *mm_slot;
143 	unsigned long address;
144 	struct ksm_rmap_item **rmap_list;
145 	unsigned long seqnr;
146 };
147 
148 /**
149  * struct ksm_stable_node - node of the stable rbtree
150  * @node: rb node of this ksm page in the stable tree
151  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
152  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
153  * @list: linked into migrate_nodes, pending placement in the proper node tree
154  * @hlist: hlist head of rmap_items using this ksm page
155  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
156  * @chain_prune_time: time of the last full garbage collection
157  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
158  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
159  */
160 struct ksm_stable_node {
161 	union {
162 		struct rb_node node;	/* when node of stable tree */
163 		struct {		/* when listed for migration */
164 			struct list_head *head;
165 			struct {
166 				struct hlist_node hlist_dup;
167 				struct list_head list;
168 			};
169 		};
170 	};
171 	struct hlist_head hlist;
172 	union {
173 		unsigned long kpfn;
174 		unsigned long chain_prune_time;
175 	};
176 	/*
177 	 * STABLE_NODE_CHAIN can be any negative number in
178 	 * rmap_hlist_len negative range, but better not -1 to be able
179 	 * to reliably detect underflows.
180 	 */
181 #define STABLE_NODE_CHAIN -1024
182 	int rmap_hlist_len;
183 #ifdef CONFIG_NUMA
184 	int nid;
185 #endif
186 };
187 
188 /**
189  * struct ksm_rmap_item - reverse mapping item for virtual addresses
190  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
191  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
192  * @nid: NUMA node id of unstable tree in which linked (may not match page)
193  * @mm: the memory structure this rmap_item is pointing into
194  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
195  * @oldchecksum: previous checksum of the page at that virtual address
196  * @node: rb node of this rmap_item in the unstable tree
197  * @head: pointer to stable_node heading this list in the stable tree
198  * @hlist: link into hlist of rmap_items hanging off that stable_node
199  * @age: number of scan iterations since creation
200  * @remaining_skips: how many scans to skip
201  */
202 struct ksm_rmap_item {
203 	struct ksm_rmap_item *rmap_list;
204 	union {
205 		struct anon_vma *anon_vma;	/* when stable */
206 #ifdef CONFIG_NUMA
207 		int nid;		/* when node of unstable tree */
208 #endif
209 	};
210 	struct mm_struct *mm;
211 	unsigned long address;		/* + low bits used for flags below */
212 	unsigned int oldchecksum;	/* when unstable */
213 	rmap_age_t age;
214 	rmap_age_t remaining_skips;
215 	union {
216 		struct rb_node node;	/* when node of unstable tree */
217 		struct {		/* when listed from stable tree */
218 			struct ksm_stable_node *head;
219 			struct hlist_node hlist;
220 		};
221 	};
222 };
223 
224 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
225 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
226 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
227 
228 /* The stable and unstable tree heads */
229 static struct rb_root one_stable_tree[1] = { RB_ROOT };
230 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
231 static struct rb_root *root_stable_tree = one_stable_tree;
232 static struct rb_root *root_unstable_tree = one_unstable_tree;
233 
234 /* Recently migrated nodes of stable tree, pending proper placement */
235 static LIST_HEAD(migrate_nodes);
236 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
237 
238 #define MM_SLOTS_HASH_BITS 10
239 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
240 
241 static struct ksm_mm_slot ksm_mm_head = {
242 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
243 };
244 static struct ksm_scan ksm_scan = {
245 	.mm_slot = &ksm_mm_head,
246 };
247 
248 static struct kmem_cache *rmap_item_cache;
249 static struct kmem_cache *stable_node_cache;
250 static struct kmem_cache *mm_slot_cache;
251 
252 /* Default number of pages to scan per batch */
253 #define DEFAULT_PAGES_TO_SCAN 100
254 
255 /* The number of pages scanned */
256 static unsigned long ksm_pages_scanned;
257 
258 /* The number of nodes in the stable tree */
259 static unsigned long ksm_pages_shared;
260 
261 /* The number of page slots additionally sharing those nodes */
262 static unsigned long ksm_pages_sharing;
263 
264 /* The number of nodes in the unstable tree */
265 static unsigned long ksm_pages_unshared;
266 
267 /* The number of rmap_items in use: to calculate pages_volatile */
268 static unsigned long ksm_rmap_items;
269 
270 /* The number of stable_node chains */
271 static unsigned long ksm_stable_node_chains;
272 
273 /* The number of stable_node dups linked to the stable_node chains */
274 static unsigned long ksm_stable_node_dups;
275 
276 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
277 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
278 
279 /* Maximum number of page slots sharing a stable node */
280 static int ksm_max_page_sharing = 256;
281 
282 /* Number of pages ksmd should scan in one batch */
283 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
284 
285 /* Milliseconds ksmd should sleep between batches */
286 static unsigned int ksm_thread_sleep_millisecs = 20;
287 
288 /* Checksum of an empty (zeroed) page */
289 static unsigned int zero_checksum __read_mostly;
290 
291 /* Whether to merge empty (zeroed) pages with actual zero pages */
292 static bool ksm_use_zero_pages __read_mostly;
293 
294 /* Skip pages that couldn't be de-duplicated previously */
295 /* Default to true at least temporarily, for testing */
296 static bool ksm_smart_scan = true;
297 
298 /* The number of zero pages which is placed by KSM */
299 unsigned long ksm_zero_pages;
300 
301 /* The number of pages that have been skipped due to "smart scanning" */
302 static unsigned long ksm_pages_skipped;
303 
304 /* Don't scan more than max pages per batch. */
305 static unsigned long ksm_advisor_max_pages_to_scan = 30000;
306 
307 /* Min CPU for scanning pages per scan */
308 #define KSM_ADVISOR_MIN_CPU 10
309 
310 /* Max CPU for scanning pages per scan */
311 static unsigned int ksm_advisor_max_cpu =  70;
312 
313 /* Target scan time in seconds to analyze all KSM candidate pages. */
314 static unsigned long ksm_advisor_target_scan_time = 200;
315 
316 /* Exponentially weighted moving average. */
317 #define EWMA_WEIGHT 30
318 
319 /**
320  * struct advisor_ctx - metadata for KSM advisor
321  * @start_scan: start time of the current scan
322  * @scan_time: scan time of previous scan
323  * @change: change in percent to pages_to_scan parameter
324  * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
325  */
326 struct advisor_ctx {
327 	ktime_t start_scan;
328 	unsigned long scan_time;
329 	unsigned long change;
330 	unsigned long long cpu_time;
331 };
332 static struct advisor_ctx advisor_ctx;
333 
334 /* Define different advisor's */
335 enum ksm_advisor_type {
336 	KSM_ADVISOR_NONE,
337 	KSM_ADVISOR_SCAN_TIME,
338 };
339 static enum ksm_advisor_type ksm_advisor;
340 
341 #ifdef CONFIG_SYSFS
342 /*
343  * Only called through the sysfs control interface:
344  */
345 
346 /* At least scan this many pages per batch. */
347 static unsigned long ksm_advisor_min_pages_to_scan = 500;
348 
349 static void set_advisor_defaults(void)
350 {
351 	if (ksm_advisor == KSM_ADVISOR_NONE) {
352 		ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
353 	} else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
354 		advisor_ctx = (const struct advisor_ctx){ 0 };
355 		ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
356 	}
357 }
358 #endif /* CONFIG_SYSFS */
359 
360 static inline void advisor_start_scan(void)
361 {
362 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
363 		advisor_ctx.start_scan = ktime_get();
364 }
365 
366 /*
367  * Use previous scan time if available, otherwise use current scan time as an
368  * approximation for the previous scan time.
369  */
370 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
371 					   unsigned long scan_time)
372 {
373 	return ctx->scan_time ? ctx->scan_time : scan_time;
374 }
375 
376 /* Calculate exponential weighted moving average */
377 static unsigned long ewma(unsigned long prev, unsigned long curr)
378 {
379 	return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
380 }
381 
382 /*
383  * The scan time advisor is based on the current scan rate and the target
384  * scan rate.
385  *
386  *      new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
387  *
388  * To avoid perturbations it calculates a change factor of previous changes.
389  * A new change factor is calculated for each iteration and it uses an
390  * exponentially weighted moving average. The new pages_to_scan value is
391  * multiplied with that change factor:
392  *
393  *      new_pages_to_scan *= change facor
394  *
395  * The new_pages_to_scan value is limited by the cpu min and max values. It
396  * calculates the cpu percent for the last scan and calculates the new
397  * estimated cpu percent cost for the next scan. That value is capped by the
398  * cpu min and max setting.
399  *
400  * In addition the new pages_to_scan value is capped by the max and min
401  * limits.
402  */
403 static void scan_time_advisor(void)
404 {
405 	unsigned int cpu_percent;
406 	unsigned long cpu_time;
407 	unsigned long cpu_time_diff;
408 	unsigned long cpu_time_diff_ms;
409 	unsigned long pages;
410 	unsigned long per_page_cost;
411 	unsigned long factor;
412 	unsigned long change;
413 	unsigned long last_scan_time;
414 	unsigned long scan_time;
415 
416 	/* Convert scan time to seconds */
417 	scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
418 			    MSEC_PER_SEC);
419 	scan_time = scan_time ? scan_time : 1;
420 
421 	/* Calculate CPU consumption of ksmd background thread */
422 	cpu_time = task_sched_runtime(current);
423 	cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
424 	cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
425 
426 	cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
427 	cpu_percent = cpu_percent ? cpu_percent : 1;
428 	last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
429 
430 	/* Calculate scan time as percentage of target scan time */
431 	factor = ksm_advisor_target_scan_time * 100 / scan_time;
432 	factor = factor ? factor : 1;
433 
434 	/*
435 	 * Calculate scan time as percentage of last scan time and use
436 	 * exponentially weighted average to smooth it
437 	 */
438 	change = scan_time * 100 / last_scan_time;
439 	change = change ? change : 1;
440 	change = ewma(advisor_ctx.change, change);
441 
442 	/* Calculate new scan rate based on target scan rate. */
443 	pages = ksm_thread_pages_to_scan * 100 / factor;
444 	/* Update pages_to_scan by weighted change percentage. */
445 	pages = pages * change / 100;
446 
447 	/* Cap new pages_to_scan value */
448 	per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
449 	per_page_cost = per_page_cost ? per_page_cost : 1;
450 
451 	pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
452 	pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
453 	pages = min(pages, ksm_advisor_max_pages_to_scan);
454 
455 	/* Update advisor context */
456 	advisor_ctx.change = change;
457 	advisor_ctx.scan_time = scan_time;
458 	advisor_ctx.cpu_time = cpu_time;
459 
460 	ksm_thread_pages_to_scan = pages;
461 	trace_ksm_advisor(scan_time, pages, cpu_percent);
462 }
463 
464 static void advisor_stop_scan(void)
465 {
466 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
467 		scan_time_advisor();
468 }
469 
470 #ifdef CONFIG_NUMA
471 /* Zeroed when merging across nodes is not allowed */
472 static unsigned int ksm_merge_across_nodes = 1;
473 static int ksm_nr_node_ids = 1;
474 #else
475 #define ksm_merge_across_nodes	1U
476 #define ksm_nr_node_ids		1
477 #endif
478 
479 #define KSM_RUN_STOP	0
480 #define KSM_RUN_MERGE	1
481 #define KSM_RUN_UNMERGE	2
482 #define KSM_RUN_OFFLINE	4
483 static unsigned long ksm_run = KSM_RUN_STOP;
484 static void wait_while_offlining(void);
485 
486 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
487 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
488 static DEFINE_MUTEX(ksm_thread_mutex);
489 static DEFINE_SPINLOCK(ksm_mmlist_lock);
490 
491 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
492 		sizeof(struct __struct), __alignof__(struct __struct),\
493 		(__flags), NULL)
494 
495 static int __init ksm_slab_init(void)
496 {
497 	rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
498 	if (!rmap_item_cache)
499 		goto out;
500 
501 	stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
502 	if (!stable_node_cache)
503 		goto out_free1;
504 
505 	mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
506 	if (!mm_slot_cache)
507 		goto out_free2;
508 
509 	return 0;
510 
511 out_free2:
512 	kmem_cache_destroy(stable_node_cache);
513 out_free1:
514 	kmem_cache_destroy(rmap_item_cache);
515 out:
516 	return -ENOMEM;
517 }
518 
519 static void __init ksm_slab_free(void)
520 {
521 	kmem_cache_destroy(mm_slot_cache);
522 	kmem_cache_destroy(stable_node_cache);
523 	kmem_cache_destroy(rmap_item_cache);
524 	mm_slot_cache = NULL;
525 }
526 
527 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
528 {
529 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
530 }
531 
532 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
533 {
534 	return dup->head == STABLE_NODE_DUP_HEAD;
535 }
536 
537 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
538 					     struct ksm_stable_node *chain)
539 {
540 	VM_BUG_ON(is_stable_node_dup(dup));
541 	dup->head = STABLE_NODE_DUP_HEAD;
542 	VM_BUG_ON(!is_stable_node_chain(chain));
543 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
544 	ksm_stable_node_dups++;
545 }
546 
547 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
548 {
549 	VM_BUG_ON(!is_stable_node_dup(dup));
550 	hlist_del(&dup->hlist_dup);
551 	ksm_stable_node_dups--;
552 }
553 
554 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
555 {
556 	VM_BUG_ON(is_stable_node_chain(dup));
557 	if (is_stable_node_dup(dup))
558 		__stable_node_dup_del(dup);
559 	else
560 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
561 #ifdef CONFIG_DEBUG_VM
562 	dup->head = NULL;
563 #endif
564 }
565 
566 static inline struct ksm_rmap_item *alloc_rmap_item(void)
567 {
568 	struct ksm_rmap_item *rmap_item;
569 
570 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
571 						__GFP_NORETRY | __GFP_NOWARN);
572 	if (rmap_item)
573 		ksm_rmap_items++;
574 	return rmap_item;
575 }
576 
577 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
578 {
579 	ksm_rmap_items--;
580 	rmap_item->mm->ksm_rmap_items--;
581 	rmap_item->mm = NULL;	/* debug safety */
582 	kmem_cache_free(rmap_item_cache, rmap_item);
583 }
584 
585 static inline struct ksm_stable_node *alloc_stable_node(void)
586 {
587 	/*
588 	 * The allocation can take too long with GFP_KERNEL when memory is under
589 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
590 	 * grants access to memory reserves, helping to avoid this problem.
591 	 */
592 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
593 }
594 
595 static inline void free_stable_node(struct ksm_stable_node *stable_node)
596 {
597 	VM_BUG_ON(stable_node->rmap_hlist_len &&
598 		  !is_stable_node_chain(stable_node));
599 	kmem_cache_free(stable_node_cache, stable_node);
600 }
601 
602 /*
603  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
604  * page tables after it has passed through ksm_exit() - which, if necessary,
605  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
606  * a special flag: they can just back out as soon as mm_users goes to zero.
607  * ksm_test_exit() is used throughout to make this test for exit: in some
608  * places for correctness, in some places just to avoid unnecessary work.
609  */
610 static inline bool ksm_test_exit(struct mm_struct *mm)
611 {
612 	return atomic_read(&mm->mm_users) == 0;
613 }
614 
615 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
616 			struct mm_walk *walk)
617 {
618 	struct page *page = NULL;
619 	spinlock_t *ptl;
620 	pte_t *pte;
621 	pte_t ptent;
622 	int ret;
623 
624 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
625 	if (!pte)
626 		return 0;
627 	ptent = ptep_get(pte);
628 	if (pte_present(ptent)) {
629 		page = vm_normal_page(walk->vma, addr, ptent);
630 	} else if (!pte_none(ptent)) {
631 		swp_entry_t entry = pte_to_swp_entry(ptent);
632 
633 		/*
634 		 * As KSM pages remain KSM pages until freed, no need to wait
635 		 * here for migration to end.
636 		 */
637 		if (is_migration_entry(entry))
638 			page = pfn_swap_entry_to_page(entry);
639 	}
640 	/* return 1 if the page is an normal ksm page or KSM-placed zero page */
641 	ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent);
642 	pte_unmap_unlock(pte, ptl);
643 	return ret;
644 }
645 
646 static const struct mm_walk_ops break_ksm_ops = {
647 	.pmd_entry = break_ksm_pmd_entry,
648 	.walk_lock = PGWALK_RDLOCK,
649 };
650 
651 static const struct mm_walk_ops break_ksm_lock_vma_ops = {
652 	.pmd_entry = break_ksm_pmd_entry,
653 	.walk_lock = PGWALK_WRLOCK,
654 };
655 
656 /*
657  * We use break_ksm to break COW on a ksm page by triggering unsharing,
658  * such that the ksm page will get replaced by an exclusive anonymous page.
659  *
660  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
661  * in case the application has unmapped and remapped mm,addr meanwhile.
662  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
663  * mmap of /dev/mem, where we would not want to touch it.
664  *
665  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
666  * of the process that owns 'vma'.  We also do not want to enforce
667  * protection keys here anyway.
668  */
669 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
670 {
671 	vm_fault_t ret = 0;
672 	const struct mm_walk_ops *ops = lock_vma ?
673 				&break_ksm_lock_vma_ops : &break_ksm_ops;
674 
675 	do {
676 		int ksm_page;
677 
678 		cond_resched();
679 		ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
680 		if (WARN_ON_ONCE(ksm_page < 0))
681 			return ksm_page;
682 		if (!ksm_page)
683 			return 0;
684 		ret = handle_mm_fault(vma, addr,
685 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
686 				      NULL);
687 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
688 	/*
689 	 * We must loop until we no longer find a KSM page because
690 	 * handle_mm_fault() may back out if there's any difficulty e.g. if
691 	 * pte accessed bit gets updated concurrently.
692 	 *
693 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
694 	 * backing file, which also invalidates anonymous pages: that's
695 	 * okay, that truncation will have unmapped the PageKsm for us.
696 	 *
697 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
698 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
699 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
700 	 * to user; and ksmd, having no mm, would never be chosen for that.
701 	 *
702 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
703 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
704 	 * even ksmd can fail in this way - though it's usually breaking ksm
705 	 * just to undo a merge it made a moment before, so unlikely to oom.
706 	 *
707 	 * That's a pity: we might therefore have more kernel pages allocated
708 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
709 	 * will retry to break_cow on each pass, so should recover the page
710 	 * in due course.  The important thing is to not let VM_MERGEABLE
711 	 * be cleared while any such pages might remain in the area.
712 	 */
713 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
714 }
715 
716 static bool vma_ksm_compatible(struct vm_area_struct *vma)
717 {
718 	if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
719 			     VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
720 			     VM_MIXEDMAP))
721 		return false;		/* just ignore the advice */
722 
723 	if (vma_is_dax(vma))
724 		return false;
725 
726 #ifdef VM_SAO
727 	if (vma->vm_flags & VM_SAO)
728 		return false;
729 #endif
730 #ifdef VM_SPARC_ADI
731 	if (vma->vm_flags & VM_SPARC_ADI)
732 		return false;
733 #endif
734 
735 	return true;
736 }
737 
738 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
739 		unsigned long addr)
740 {
741 	struct vm_area_struct *vma;
742 	if (ksm_test_exit(mm))
743 		return NULL;
744 	vma = vma_lookup(mm, addr);
745 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
746 		return NULL;
747 	return vma;
748 }
749 
750 static void break_cow(struct ksm_rmap_item *rmap_item)
751 {
752 	struct mm_struct *mm = rmap_item->mm;
753 	unsigned long addr = rmap_item->address;
754 	struct vm_area_struct *vma;
755 
756 	/*
757 	 * It is not an accident that whenever we want to break COW
758 	 * to undo, we also need to drop a reference to the anon_vma.
759 	 */
760 	put_anon_vma(rmap_item->anon_vma);
761 
762 	mmap_read_lock(mm);
763 	vma = find_mergeable_vma(mm, addr);
764 	if (vma)
765 		break_ksm(vma, addr, false);
766 	mmap_read_unlock(mm);
767 }
768 
769 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
770 {
771 	struct mm_struct *mm = rmap_item->mm;
772 	unsigned long addr = rmap_item->address;
773 	struct vm_area_struct *vma;
774 	struct page *page;
775 
776 	mmap_read_lock(mm);
777 	vma = find_mergeable_vma(mm, addr);
778 	if (!vma)
779 		goto out;
780 
781 	page = follow_page(vma, addr, FOLL_GET);
782 	if (IS_ERR_OR_NULL(page))
783 		goto out;
784 	if (is_zone_device_page(page))
785 		goto out_putpage;
786 	if (PageAnon(page)) {
787 		flush_anon_page(vma, page, addr);
788 		flush_dcache_page(page);
789 	} else {
790 out_putpage:
791 		put_page(page);
792 out:
793 		page = NULL;
794 	}
795 	mmap_read_unlock(mm);
796 	return page;
797 }
798 
799 /*
800  * This helper is used for getting right index into array of tree roots.
801  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
802  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
803  * every node has its own stable and unstable tree.
804  */
805 static inline int get_kpfn_nid(unsigned long kpfn)
806 {
807 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
808 }
809 
810 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
811 						   struct rb_root *root)
812 {
813 	struct ksm_stable_node *chain = alloc_stable_node();
814 	VM_BUG_ON(is_stable_node_chain(dup));
815 	if (likely(chain)) {
816 		INIT_HLIST_HEAD(&chain->hlist);
817 		chain->chain_prune_time = jiffies;
818 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
819 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
820 		chain->nid = NUMA_NO_NODE; /* debug */
821 #endif
822 		ksm_stable_node_chains++;
823 
824 		/*
825 		 * Put the stable node chain in the first dimension of
826 		 * the stable tree and at the same time remove the old
827 		 * stable node.
828 		 */
829 		rb_replace_node(&dup->node, &chain->node, root);
830 
831 		/*
832 		 * Move the old stable node to the second dimension
833 		 * queued in the hlist_dup. The invariant is that all
834 		 * dup stable_nodes in the chain->hlist point to pages
835 		 * that are write protected and have the exact same
836 		 * content.
837 		 */
838 		stable_node_chain_add_dup(dup, chain);
839 	}
840 	return chain;
841 }
842 
843 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
844 					  struct rb_root *root)
845 {
846 	rb_erase(&chain->node, root);
847 	free_stable_node(chain);
848 	ksm_stable_node_chains--;
849 }
850 
851 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
852 {
853 	struct ksm_rmap_item *rmap_item;
854 
855 	/* check it's not STABLE_NODE_CHAIN or negative */
856 	BUG_ON(stable_node->rmap_hlist_len < 0);
857 
858 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
859 		if (rmap_item->hlist.next) {
860 			ksm_pages_sharing--;
861 			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
862 		} else {
863 			ksm_pages_shared--;
864 		}
865 
866 		rmap_item->mm->ksm_merging_pages--;
867 
868 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
869 		stable_node->rmap_hlist_len--;
870 		put_anon_vma(rmap_item->anon_vma);
871 		rmap_item->address &= PAGE_MASK;
872 		cond_resched();
873 	}
874 
875 	/*
876 	 * We need the second aligned pointer of the migrate_nodes
877 	 * list_head to stay clear from the rb_parent_color union
878 	 * (aligned and different than any node) and also different
879 	 * from &migrate_nodes. This will verify that future list.h changes
880 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
881 	 */
882 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
883 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
884 
885 	trace_ksm_remove_ksm_page(stable_node->kpfn);
886 	if (stable_node->head == &migrate_nodes)
887 		list_del(&stable_node->list);
888 	else
889 		stable_node_dup_del(stable_node);
890 	free_stable_node(stable_node);
891 }
892 
893 enum get_ksm_page_flags {
894 	GET_KSM_PAGE_NOLOCK,
895 	GET_KSM_PAGE_LOCK,
896 	GET_KSM_PAGE_TRYLOCK
897 };
898 
899 /*
900  * get_ksm_page: checks if the page indicated by the stable node
901  * is still its ksm page, despite having held no reference to it.
902  * In which case we can trust the content of the page, and it
903  * returns the gotten page; but if the page has now been zapped,
904  * remove the stale node from the stable tree and return NULL.
905  * But beware, the stable node's page might be being migrated.
906  *
907  * You would expect the stable_node to hold a reference to the ksm page.
908  * But if it increments the page's count, swapping out has to wait for
909  * ksmd to come around again before it can free the page, which may take
910  * seconds or even minutes: much too unresponsive.  So instead we use a
911  * "keyhole reference": access to the ksm page from the stable node peeps
912  * out through its keyhole to see if that page still holds the right key,
913  * pointing back to this stable node.  This relies on freeing a PageAnon
914  * page to reset its page->mapping to NULL, and relies on no other use of
915  * a page to put something that might look like our key in page->mapping.
916  * is on its way to being freed; but it is an anomaly to bear in mind.
917  */
918 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
919 				 enum get_ksm_page_flags flags)
920 {
921 	struct page *page;
922 	void *expected_mapping;
923 	unsigned long kpfn;
924 
925 	expected_mapping = (void *)((unsigned long)stable_node |
926 					PAGE_MAPPING_KSM);
927 again:
928 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
929 	page = pfn_to_page(kpfn);
930 	if (READ_ONCE(page->mapping) != expected_mapping)
931 		goto stale;
932 
933 	/*
934 	 * We cannot do anything with the page while its refcount is 0.
935 	 * Usually 0 means free, or tail of a higher-order page: in which
936 	 * case this node is no longer referenced, and should be freed;
937 	 * however, it might mean that the page is under page_ref_freeze().
938 	 * The __remove_mapping() case is easy, again the node is now stale;
939 	 * the same is in reuse_ksm_page() case; but if page is swapcache
940 	 * in folio_migrate_mapping(), it might still be our page,
941 	 * in which case it's essential to keep the node.
942 	 */
943 	while (!get_page_unless_zero(page)) {
944 		/*
945 		 * Another check for page->mapping != expected_mapping would
946 		 * work here too.  We have chosen the !PageSwapCache test to
947 		 * optimize the common case, when the page is or is about to
948 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
949 		 * in the ref_freeze section of __remove_mapping(); but Anon
950 		 * page->mapping reset to NULL later, in free_pages_prepare().
951 		 */
952 		if (!PageSwapCache(page))
953 			goto stale;
954 		cpu_relax();
955 	}
956 
957 	if (READ_ONCE(page->mapping) != expected_mapping) {
958 		put_page(page);
959 		goto stale;
960 	}
961 
962 	if (flags == GET_KSM_PAGE_TRYLOCK) {
963 		if (!trylock_page(page)) {
964 			put_page(page);
965 			return ERR_PTR(-EBUSY);
966 		}
967 	} else if (flags == GET_KSM_PAGE_LOCK)
968 		lock_page(page);
969 
970 	if (flags != GET_KSM_PAGE_NOLOCK) {
971 		if (READ_ONCE(page->mapping) != expected_mapping) {
972 			unlock_page(page);
973 			put_page(page);
974 			goto stale;
975 		}
976 	}
977 	return page;
978 
979 stale:
980 	/*
981 	 * We come here from above when page->mapping or !PageSwapCache
982 	 * suggests that the node is stale; but it might be under migration.
983 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
984 	 * before checking whether node->kpfn has been changed.
985 	 */
986 	smp_rmb();
987 	if (READ_ONCE(stable_node->kpfn) != kpfn)
988 		goto again;
989 	remove_node_from_stable_tree(stable_node);
990 	return NULL;
991 }
992 
993 /*
994  * Removing rmap_item from stable or unstable tree.
995  * This function will clean the information from the stable/unstable tree.
996  */
997 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
998 {
999 	if (rmap_item->address & STABLE_FLAG) {
1000 		struct ksm_stable_node *stable_node;
1001 		struct page *page;
1002 
1003 		stable_node = rmap_item->head;
1004 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
1005 		if (!page)
1006 			goto out;
1007 
1008 		hlist_del(&rmap_item->hlist);
1009 		unlock_page(page);
1010 		put_page(page);
1011 
1012 		if (!hlist_empty(&stable_node->hlist))
1013 			ksm_pages_sharing--;
1014 		else
1015 			ksm_pages_shared--;
1016 
1017 		rmap_item->mm->ksm_merging_pages--;
1018 
1019 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1020 		stable_node->rmap_hlist_len--;
1021 
1022 		put_anon_vma(rmap_item->anon_vma);
1023 		rmap_item->head = NULL;
1024 		rmap_item->address &= PAGE_MASK;
1025 
1026 	} else if (rmap_item->address & UNSTABLE_FLAG) {
1027 		unsigned char age;
1028 		/*
1029 		 * Usually ksmd can and must skip the rb_erase, because
1030 		 * root_unstable_tree was already reset to RB_ROOT.
1031 		 * But be careful when an mm is exiting: do the rb_erase
1032 		 * if this rmap_item was inserted by this scan, rather
1033 		 * than left over from before.
1034 		 */
1035 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1036 		BUG_ON(age > 1);
1037 		if (!age)
1038 			rb_erase(&rmap_item->node,
1039 				 root_unstable_tree + NUMA(rmap_item->nid));
1040 		ksm_pages_unshared--;
1041 		rmap_item->address &= PAGE_MASK;
1042 	}
1043 out:
1044 	cond_resched();		/* we're called from many long loops */
1045 }
1046 
1047 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1048 {
1049 	while (*rmap_list) {
1050 		struct ksm_rmap_item *rmap_item = *rmap_list;
1051 		*rmap_list = rmap_item->rmap_list;
1052 		remove_rmap_item_from_tree(rmap_item);
1053 		free_rmap_item(rmap_item);
1054 	}
1055 }
1056 
1057 /*
1058  * Though it's very tempting to unmerge rmap_items from stable tree rather
1059  * than check every pte of a given vma, the locking doesn't quite work for
1060  * that - an rmap_item is assigned to the stable tree after inserting ksm
1061  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
1062  * rmap_items from parent to child at fork time (so as not to waste time
1063  * if exit comes before the next scan reaches it).
1064  *
1065  * Similarly, although we'd like to remove rmap_items (so updating counts
1066  * and freeing memory) when unmerging an area, it's easier to leave that
1067  * to the next pass of ksmd - consider, for example, how ksmd might be
1068  * in cmp_and_merge_page on one of the rmap_items we would be removing.
1069  */
1070 static int unmerge_ksm_pages(struct vm_area_struct *vma,
1071 			     unsigned long start, unsigned long end, bool lock_vma)
1072 {
1073 	unsigned long addr;
1074 	int err = 0;
1075 
1076 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1077 		if (ksm_test_exit(vma->vm_mm))
1078 			break;
1079 		if (signal_pending(current))
1080 			err = -ERESTARTSYS;
1081 		else
1082 			err = break_ksm(vma, addr, lock_vma);
1083 	}
1084 	return err;
1085 }
1086 
1087 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
1088 {
1089 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1090 }
1091 
1092 static inline struct ksm_stable_node *page_stable_node(struct page *page)
1093 {
1094 	return folio_stable_node(page_folio(page));
1095 }
1096 
1097 static inline void set_page_stable_node(struct page *page,
1098 					struct ksm_stable_node *stable_node)
1099 {
1100 	VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
1101 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
1102 }
1103 
1104 #ifdef CONFIG_SYSFS
1105 /*
1106  * Only called through the sysfs control interface:
1107  */
1108 static int remove_stable_node(struct ksm_stable_node *stable_node)
1109 {
1110 	struct page *page;
1111 	int err;
1112 
1113 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
1114 	if (!page) {
1115 		/*
1116 		 * get_ksm_page did remove_node_from_stable_tree itself.
1117 		 */
1118 		return 0;
1119 	}
1120 
1121 	/*
1122 	 * Page could be still mapped if this races with __mmput() running in
1123 	 * between ksm_exit() and exit_mmap(). Just refuse to let
1124 	 * merge_across_nodes/max_page_sharing be switched.
1125 	 */
1126 	err = -EBUSY;
1127 	if (!page_mapped(page)) {
1128 		/*
1129 		 * The stable node did not yet appear stale to get_ksm_page(),
1130 		 * since that allows for an unmapped ksm page to be recognized
1131 		 * right up until it is freed; but the node is safe to remove.
1132 		 * This page might be in an LRU cache waiting to be freed,
1133 		 * or it might be PageSwapCache (perhaps under writeback),
1134 		 * or it might have been removed from swapcache a moment ago.
1135 		 */
1136 		set_page_stable_node(page, NULL);
1137 		remove_node_from_stable_tree(stable_node);
1138 		err = 0;
1139 	}
1140 
1141 	unlock_page(page);
1142 	put_page(page);
1143 	return err;
1144 }
1145 
1146 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1147 				    struct rb_root *root)
1148 {
1149 	struct ksm_stable_node *dup;
1150 	struct hlist_node *hlist_safe;
1151 
1152 	if (!is_stable_node_chain(stable_node)) {
1153 		VM_BUG_ON(is_stable_node_dup(stable_node));
1154 		if (remove_stable_node(stable_node))
1155 			return true;
1156 		else
1157 			return false;
1158 	}
1159 
1160 	hlist_for_each_entry_safe(dup, hlist_safe,
1161 				  &stable_node->hlist, hlist_dup) {
1162 		VM_BUG_ON(!is_stable_node_dup(dup));
1163 		if (remove_stable_node(dup))
1164 			return true;
1165 	}
1166 	BUG_ON(!hlist_empty(&stable_node->hlist));
1167 	free_stable_node_chain(stable_node, root);
1168 	return false;
1169 }
1170 
1171 static int remove_all_stable_nodes(void)
1172 {
1173 	struct ksm_stable_node *stable_node, *next;
1174 	int nid;
1175 	int err = 0;
1176 
1177 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1178 		while (root_stable_tree[nid].rb_node) {
1179 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
1180 						struct ksm_stable_node, node);
1181 			if (remove_stable_node_chain(stable_node,
1182 						     root_stable_tree + nid)) {
1183 				err = -EBUSY;
1184 				break;	/* proceed to next nid */
1185 			}
1186 			cond_resched();
1187 		}
1188 	}
1189 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1190 		if (remove_stable_node(stable_node))
1191 			err = -EBUSY;
1192 		cond_resched();
1193 	}
1194 	return err;
1195 }
1196 
1197 static int unmerge_and_remove_all_rmap_items(void)
1198 {
1199 	struct ksm_mm_slot *mm_slot;
1200 	struct mm_slot *slot;
1201 	struct mm_struct *mm;
1202 	struct vm_area_struct *vma;
1203 	int err = 0;
1204 
1205 	spin_lock(&ksm_mmlist_lock);
1206 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1207 			  struct mm_slot, mm_node);
1208 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1209 	spin_unlock(&ksm_mmlist_lock);
1210 
1211 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1212 	     mm_slot = ksm_scan.mm_slot) {
1213 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1214 
1215 		mm = mm_slot->slot.mm;
1216 		mmap_read_lock(mm);
1217 
1218 		/*
1219 		 * Exit right away if mm is exiting to avoid lockdep issue in
1220 		 * the maple tree
1221 		 */
1222 		if (ksm_test_exit(mm))
1223 			goto mm_exiting;
1224 
1225 		for_each_vma(vmi, vma) {
1226 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1227 				continue;
1228 			err = unmerge_ksm_pages(vma,
1229 						vma->vm_start, vma->vm_end, false);
1230 			if (err)
1231 				goto error;
1232 		}
1233 
1234 mm_exiting:
1235 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1236 		mmap_read_unlock(mm);
1237 
1238 		spin_lock(&ksm_mmlist_lock);
1239 		slot = list_entry(mm_slot->slot.mm_node.next,
1240 				  struct mm_slot, mm_node);
1241 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1242 		if (ksm_test_exit(mm)) {
1243 			hash_del(&mm_slot->slot.hash);
1244 			list_del(&mm_slot->slot.mm_node);
1245 			spin_unlock(&ksm_mmlist_lock);
1246 
1247 			mm_slot_free(mm_slot_cache, mm_slot);
1248 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1249 			clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1250 			mmdrop(mm);
1251 		} else
1252 			spin_unlock(&ksm_mmlist_lock);
1253 	}
1254 
1255 	/* Clean up stable nodes, but don't worry if some are still busy */
1256 	remove_all_stable_nodes();
1257 	ksm_scan.seqnr = 0;
1258 	return 0;
1259 
1260 error:
1261 	mmap_read_unlock(mm);
1262 	spin_lock(&ksm_mmlist_lock);
1263 	ksm_scan.mm_slot = &ksm_mm_head;
1264 	spin_unlock(&ksm_mmlist_lock);
1265 	return err;
1266 }
1267 #endif /* CONFIG_SYSFS */
1268 
1269 static u32 calc_checksum(struct page *page)
1270 {
1271 	u32 checksum;
1272 	void *addr = kmap_local_page(page);
1273 	checksum = xxhash(addr, PAGE_SIZE, 0);
1274 	kunmap_local(addr);
1275 	return checksum;
1276 }
1277 
1278 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1279 			      pte_t *orig_pte)
1280 {
1281 	struct mm_struct *mm = vma->vm_mm;
1282 	DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1283 	int swapped;
1284 	int err = -EFAULT;
1285 	struct mmu_notifier_range range;
1286 	bool anon_exclusive;
1287 	pte_t entry;
1288 
1289 	pvmw.address = page_address_in_vma(page, vma);
1290 	if (pvmw.address == -EFAULT)
1291 		goto out;
1292 
1293 	BUG_ON(PageTransCompound(page));
1294 
1295 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1296 				pvmw.address + PAGE_SIZE);
1297 	mmu_notifier_invalidate_range_start(&range);
1298 
1299 	if (!page_vma_mapped_walk(&pvmw))
1300 		goto out_mn;
1301 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1302 		goto out_unlock;
1303 
1304 	anon_exclusive = PageAnonExclusive(page);
1305 	entry = ptep_get(pvmw.pte);
1306 	if (pte_write(entry) || pte_dirty(entry) ||
1307 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1308 		swapped = PageSwapCache(page);
1309 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1310 		/*
1311 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1312 		 * take any lock, therefore the check that we are going to make
1313 		 * with the pagecount against the mapcount is racy and
1314 		 * O_DIRECT can happen right after the check.
1315 		 * So we clear the pte and flush the tlb before the check
1316 		 * this assure us that no O_DIRECT can happen after the check
1317 		 * or in the middle of the check.
1318 		 *
1319 		 * No need to notify as we are downgrading page table to read
1320 		 * only not changing it to point to a new page.
1321 		 *
1322 		 * See Documentation/mm/mmu_notifier.rst
1323 		 */
1324 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1325 		/*
1326 		 * Check that no O_DIRECT or similar I/O is in progress on the
1327 		 * page
1328 		 */
1329 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1330 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1331 			goto out_unlock;
1332 		}
1333 
1334 		/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1335 		if (anon_exclusive &&
1336 		    folio_try_share_anon_rmap_pte(page_folio(page), page)) {
1337 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1338 			goto out_unlock;
1339 		}
1340 
1341 		if (pte_dirty(entry))
1342 			set_page_dirty(page);
1343 		entry = pte_mkclean(entry);
1344 
1345 		if (pte_write(entry))
1346 			entry = pte_wrprotect(entry);
1347 
1348 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1349 	}
1350 	*orig_pte = entry;
1351 	err = 0;
1352 
1353 out_unlock:
1354 	page_vma_mapped_walk_done(&pvmw);
1355 out_mn:
1356 	mmu_notifier_invalidate_range_end(&range);
1357 out:
1358 	return err;
1359 }
1360 
1361 /**
1362  * replace_page - replace page in vma by new ksm page
1363  * @vma:      vma that holds the pte pointing to page
1364  * @page:     the page we are replacing by kpage
1365  * @kpage:    the ksm page we replace page by
1366  * @orig_pte: the original value of the pte
1367  *
1368  * Returns 0 on success, -EFAULT on failure.
1369  */
1370 static int replace_page(struct vm_area_struct *vma, struct page *page,
1371 			struct page *kpage, pte_t orig_pte)
1372 {
1373 	struct folio *kfolio = page_folio(kpage);
1374 	struct mm_struct *mm = vma->vm_mm;
1375 	struct folio *folio;
1376 	pmd_t *pmd;
1377 	pmd_t pmde;
1378 	pte_t *ptep;
1379 	pte_t newpte;
1380 	spinlock_t *ptl;
1381 	unsigned long addr;
1382 	int err = -EFAULT;
1383 	struct mmu_notifier_range range;
1384 
1385 	addr = page_address_in_vma(page, vma);
1386 	if (addr == -EFAULT)
1387 		goto out;
1388 
1389 	pmd = mm_find_pmd(mm, addr);
1390 	if (!pmd)
1391 		goto out;
1392 	/*
1393 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1394 	 * without holding anon_vma lock for write.  So when looking for a
1395 	 * genuine pmde (in which to find pte), test present and !THP together.
1396 	 */
1397 	pmde = pmdp_get_lockless(pmd);
1398 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1399 		goto out;
1400 
1401 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1402 				addr + PAGE_SIZE);
1403 	mmu_notifier_invalidate_range_start(&range);
1404 
1405 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1406 	if (!ptep)
1407 		goto out_mn;
1408 	if (!pte_same(ptep_get(ptep), orig_pte)) {
1409 		pte_unmap_unlock(ptep, ptl);
1410 		goto out_mn;
1411 	}
1412 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1413 	VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1414 			kfolio);
1415 
1416 	/*
1417 	 * No need to check ksm_use_zero_pages here: we can only have a
1418 	 * zero_page here if ksm_use_zero_pages was enabled already.
1419 	 */
1420 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1421 		folio_get(kfolio);
1422 		folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1423 		newpte = mk_pte(kpage, vma->vm_page_prot);
1424 	} else {
1425 		/*
1426 		 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1427 		 * we can easily track all KSM-placed zero pages by checking if
1428 		 * the dirty bit in zero page's PTE is set.
1429 		 */
1430 		newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1431 		ksm_zero_pages++;
1432 		mm->ksm_zero_pages++;
1433 		/*
1434 		 * We're replacing an anonymous page with a zero page, which is
1435 		 * not anonymous. We need to do proper accounting otherwise we
1436 		 * will get wrong values in /proc, and a BUG message in dmesg
1437 		 * when tearing down the mm.
1438 		 */
1439 		dec_mm_counter(mm, MM_ANONPAGES);
1440 	}
1441 
1442 	flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1443 	/*
1444 	 * No need to notify as we are replacing a read only page with another
1445 	 * read only page with the same content.
1446 	 *
1447 	 * See Documentation/mm/mmu_notifier.rst
1448 	 */
1449 	ptep_clear_flush(vma, addr, ptep);
1450 	set_pte_at_notify(mm, addr, ptep, newpte);
1451 
1452 	folio = page_folio(page);
1453 	folio_remove_rmap_pte(folio, page, vma);
1454 	if (!folio_mapped(folio))
1455 		folio_free_swap(folio);
1456 	folio_put(folio);
1457 
1458 	pte_unmap_unlock(ptep, ptl);
1459 	err = 0;
1460 out_mn:
1461 	mmu_notifier_invalidate_range_end(&range);
1462 out:
1463 	return err;
1464 }
1465 
1466 /*
1467  * try_to_merge_one_page - take two pages and merge them into one
1468  * @vma: the vma that holds the pte pointing to page
1469  * @page: the PageAnon page that we want to replace with kpage
1470  * @kpage: the PageKsm page that we want to map instead of page,
1471  *         or NULL the first time when we want to use page as kpage.
1472  *
1473  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1474  */
1475 static int try_to_merge_one_page(struct vm_area_struct *vma,
1476 				 struct page *page, struct page *kpage)
1477 {
1478 	pte_t orig_pte = __pte(0);
1479 	int err = -EFAULT;
1480 
1481 	if (page == kpage)			/* ksm page forked */
1482 		return 0;
1483 
1484 	if (!PageAnon(page))
1485 		goto out;
1486 
1487 	/*
1488 	 * We need the page lock to read a stable PageSwapCache in
1489 	 * write_protect_page().  We use trylock_page() instead of
1490 	 * lock_page() because we don't want to wait here - we
1491 	 * prefer to continue scanning and merging different pages,
1492 	 * then come back to this page when it is unlocked.
1493 	 */
1494 	if (!trylock_page(page))
1495 		goto out;
1496 
1497 	if (PageTransCompound(page)) {
1498 		if (split_huge_page(page))
1499 			goto out_unlock;
1500 	}
1501 
1502 	/*
1503 	 * If this anonymous page is mapped only here, its pte may need
1504 	 * to be write-protected.  If it's mapped elsewhere, all of its
1505 	 * ptes are necessarily already write-protected.  But in either
1506 	 * case, we need to lock and check page_count is not raised.
1507 	 */
1508 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1509 		if (!kpage) {
1510 			/*
1511 			 * While we hold page lock, upgrade page from
1512 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1513 			 * stable_tree_insert() will update stable_node.
1514 			 */
1515 			set_page_stable_node(page, NULL);
1516 			mark_page_accessed(page);
1517 			/*
1518 			 * Page reclaim just frees a clean page with no dirty
1519 			 * ptes: make sure that the ksm page would be swapped.
1520 			 */
1521 			if (!PageDirty(page))
1522 				SetPageDirty(page);
1523 			err = 0;
1524 		} else if (pages_identical(page, kpage))
1525 			err = replace_page(vma, page, kpage, orig_pte);
1526 	}
1527 
1528 out_unlock:
1529 	unlock_page(page);
1530 out:
1531 	return err;
1532 }
1533 
1534 /*
1535  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1536  * but no new kernel page is allocated: kpage must already be a ksm page.
1537  *
1538  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1539  */
1540 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1541 				      struct page *page, struct page *kpage)
1542 {
1543 	struct mm_struct *mm = rmap_item->mm;
1544 	struct vm_area_struct *vma;
1545 	int err = -EFAULT;
1546 
1547 	mmap_read_lock(mm);
1548 	vma = find_mergeable_vma(mm, rmap_item->address);
1549 	if (!vma)
1550 		goto out;
1551 
1552 	err = try_to_merge_one_page(vma, page, kpage);
1553 	if (err)
1554 		goto out;
1555 
1556 	/* Unstable nid is in union with stable anon_vma: remove first */
1557 	remove_rmap_item_from_tree(rmap_item);
1558 
1559 	/* Must get reference to anon_vma while still holding mmap_lock */
1560 	rmap_item->anon_vma = vma->anon_vma;
1561 	get_anon_vma(vma->anon_vma);
1562 out:
1563 	mmap_read_unlock(mm);
1564 	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1565 				rmap_item, mm, err);
1566 	return err;
1567 }
1568 
1569 /*
1570  * try_to_merge_two_pages - take two identical pages and prepare them
1571  * to be merged into one page.
1572  *
1573  * This function returns the kpage if we successfully merged two identical
1574  * pages into one ksm page, NULL otherwise.
1575  *
1576  * Note that this function upgrades page to ksm page: if one of the pages
1577  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1578  */
1579 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1580 					   struct page *page,
1581 					   struct ksm_rmap_item *tree_rmap_item,
1582 					   struct page *tree_page)
1583 {
1584 	int err;
1585 
1586 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1587 	if (!err) {
1588 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1589 							tree_page, page);
1590 		/*
1591 		 * If that fails, we have a ksm page with only one pte
1592 		 * pointing to it: so break it.
1593 		 */
1594 		if (err)
1595 			break_cow(rmap_item);
1596 	}
1597 	return err ? NULL : page;
1598 }
1599 
1600 static __always_inline
1601 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1602 {
1603 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1604 	/*
1605 	 * Check that at least one mapping still exists, otherwise
1606 	 * there's no much point to merge and share with this
1607 	 * stable_node, as the underlying tree_page of the other
1608 	 * sharer is going to be freed soon.
1609 	 */
1610 	return stable_node->rmap_hlist_len &&
1611 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1612 }
1613 
1614 static __always_inline
1615 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1616 {
1617 	return __is_page_sharing_candidate(stable_node, 0);
1618 }
1619 
1620 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1621 				    struct ksm_stable_node **_stable_node,
1622 				    struct rb_root *root,
1623 				    bool prune_stale_stable_nodes)
1624 {
1625 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1626 	struct hlist_node *hlist_safe;
1627 	struct page *_tree_page, *tree_page = NULL;
1628 	int nr = 0;
1629 	int found_rmap_hlist_len;
1630 
1631 	if (!prune_stale_stable_nodes ||
1632 	    time_before(jiffies, stable_node->chain_prune_time +
1633 			msecs_to_jiffies(
1634 				ksm_stable_node_chains_prune_millisecs)))
1635 		prune_stale_stable_nodes = false;
1636 	else
1637 		stable_node->chain_prune_time = jiffies;
1638 
1639 	hlist_for_each_entry_safe(dup, hlist_safe,
1640 				  &stable_node->hlist, hlist_dup) {
1641 		cond_resched();
1642 		/*
1643 		 * We must walk all stable_node_dup to prune the stale
1644 		 * stable nodes during lookup.
1645 		 *
1646 		 * get_ksm_page can drop the nodes from the
1647 		 * stable_node->hlist if they point to freed pages
1648 		 * (that's why we do a _safe walk). The "dup"
1649 		 * stable_node parameter itself will be freed from
1650 		 * under us if it returns NULL.
1651 		 */
1652 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1653 		if (!_tree_page)
1654 			continue;
1655 		nr += 1;
1656 		if (is_page_sharing_candidate(dup)) {
1657 			if (!found ||
1658 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1659 				if (found)
1660 					put_page(tree_page);
1661 				found = dup;
1662 				found_rmap_hlist_len = found->rmap_hlist_len;
1663 				tree_page = _tree_page;
1664 
1665 				/* skip put_page for found dup */
1666 				if (!prune_stale_stable_nodes)
1667 					break;
1668 				continue;
1669 			}
1670 		}
1671 		put_page(_tree_page);
1672 	}
1673 
1674 	if (found) {
1675 		/*
1676 		 * nr is counting all dups in the chain only if
1677 		 * prune_stale_stable_nodes is true, otherwise we may
1678 		 * break the loop at nr == 1 even if there are
1679 		 * multiple entries.
1680 		 */
1681 		if (prune_stale_stable_nodes && nr == 1) {
1682 			/*
1683 			 * If there's not just one entry it would
1684 			 * corrupt memory, better BUG_ON. In KSM
1685 			 * context with no lock held it's not even
1686 			 * fatal.
1687 			 */
1688 			BUG_ON(stable_node->hlist.first->next);
1689 
1690 			/*
1691 			 * There's just one entry and it is below the
1692 			 * deduplication limit so drop the chain.
1693 			 */
1694 			rb_replace_node(&stable_node->node, &found->node,
1695 					root);
1696 			free_stable_node(stable_node);
1697 			ksm_stable_node_chains--;
1698 			ksm_stable_node_dups--;
1699 			/*
1700 			 * NOTE: the caller depends on the stable_node
1701 			 * to be equal to stable_node_dup if the chain
1702 			 * was collapsed.
1703 			 */
1704 			*_stable_node = found;
1705 			/*
1706 			 * Just for robustness, as stable_node is
1707 			 * otherwise left as a stable pointer, the
1708 			 * compiler shall optimize it away at build
1709 			 * time.
1710 			 */
1711 			stable_node = NULL;
1712 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1713 			   __is_page_sharing_candidate(found, 1)) {
1714 			/*
1715 			 * If the found stable_node dup can accept one
1716 			 * more future merge (in addition to the one
1717 			 * that is underway) and is not at the head of
1718 			 * the chain, put it there so next search will
1719 			 * be quicker in the !prune_stale_stable_nodes
1720 			 * case.
1721 			 *
1722 			 * NOTE: it would be inaccurate to use nr > 1
1723 			 * instead of checking the hlist.first pointer
1724 			 * directly, because in the
1725 			 * prune_stale_stable_nodes case "nr" isn't
1726 			 * the position of the found dup in the chain,
1727 			 * but the total number of dups in the chain.
1728 			 */
1729 			hlist_del(&found->hlist_dup);
1730 			hlist_add_head(&found->hlist_dup,
1731 				       &stable_node->hlist);
1732 		}
1733 	}
1734 
1735 	*_stable_node_dup = found;
1736 	return tree_page;
1737 }
1738 
1739 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1740 					       struct rb_root *root)
1741 {
1742 	if (!is_stable_node_chain(stable_node))
1743 		return stable_node;
1744 	if (hlist_empty(&stable_node->hlist)) {
1745 		free_stable_node_chain(stable_node, root);
1746 		return NULL;
1747 	}
1748 	return hlist_entry(stable_node->hlist.first,
1749 			   typeof(*stable_node), hlist_dup);
1750 }
1751 
1752 /*
1753  * Like for get_ksm_page, this function can free the *_stable_node and
1754  * *_stable_node_dup if the returned tree_page is NULL.
1755  *
1756  * It can also free and overwrite *_stable_node with the found
1757  * stable_node_dup if the chain is collapsed (in which case
1758  * *_stable_node will be equal to *_stable_node_dup like if the chain
1759  * never existed). It's up to the caller to verify tree_page is not
1760  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1761  *
1762  * *_stable_node_dup is really a second output parameter of this
1763  * function and will be overwritten in all cases, the caller doesn't
1764  * need to initialize it.
1765  */
1766 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1767 					struct ksm_stable_node **_stable_node,
1768 					struct rb_root *root,
1769 					bool prune_stale_stable_nodes)
1770 {
1771 	struct ksm_stable_node *stable_node = *_stable_node;
1772 	if (!is_stable_node_chain(stable_node)) {
1773 		if (is_page_sharing_candidate(stable_node)) {
1774 			*_stable_node_dup = stable_node;
1775 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1776 		}
1777 		/*
1778 		 * _stable_node_dup set to NULL means the stable_node
1779 		 * reached the ksm_max_page_sharing limit.
1780 		 */
1781 		*_stable_node_dup = NULL;
1782 		return NULL;
1783 	}
1784 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1785 			       prune_stale_stable_nodes);
1786 }
1787 
1788 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1789 						struct ksm_stable_node **s_n,
1790 						struct rb_root *root)
1791 {
1792 	return __stable_node_chain(s_n_d, s_n, root, true);
1793 }
1794 
1795 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1796 					  struct ksm_stable_node *s_n,
1797 					  struct rb_root *root)
1798 {
1799 	struct ksm_stable_node *old_stable_node = s_n;
1800 	struct page *tree_page;
1801 
1802 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1803 	/* not pruning dups so s_n cannot have changed */
1804 	VM_BUG_ON(s_n != old_stable_node);
1805 	return tree_page;
1806 }
1807 
1808 /*
1809  * stable_tree_search - search for page inside the stable tree
1810  *
1811  * This function checks if there is a page inside the stable tree
1812  * with identical content to the page that we are scanning right now.
1813  *
1814  * This function returns the stable tree node of identical content if found,
1815  * NULL otherwise.
1816  */
1817 static struct page *stable_tree_search(struct page *page)
1818 {
1819 	int nid;
1820 	struct rb_root *root;
1821 	struct rb_node **new;
1822 	struct rb_node *parent;
1823 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1824 	struct ksm_stable_node *page_node;
1825 
1826 	page_node = page_stable_node(page);
1827 	if (page_node && page_node->head != &migrate_nodes) {
1828 		/* ksm page forked */
1829 		get_page(page);
1830 		return page;
1831 	}
1832 
1833 	nid = get_kpfn_nid(page_to_pfn(page));
1834 	root = root_stable_tree + nid;
1835 again:
1836 	new = &root->rb_node;
1837 	parent = NULL;
1838 
1839 	while (*new) {
1840 		struct page *tree_page;
1841 		int ret;
1842 
1843 		cond_resched();
1844 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1845 		stable_node_any = NULL;
1846 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1847 		/*
1848 		 * NOTE: stable_node may have been freed by
1849 		 * chain_prune() if the returned stable_node_dup is
1850 		 * not NULL. stable_node_dup may have been inserted in
1851 		 * the rbtree instead as a regular stable_node (in
1852 		 * order to collapse the stable_node chain if a single
1853 		 * stable_node dup was found in it). In such case the
1854 		 * stable_node is overwritten by the callee to point
1855 		 * to the stable_node_dup that was collapsed in the
1856 		 * stable rbtree and stable_node will be equal to
1857 		 * stable_node_dup like if the chain never existed.
1858 		 */
1859 		if (!stable_node_dup) {
1860 			/*
1861 			 * Either all stable_node dups were full in
1862 			 * this stable_node chain, or this chain was
1863 			 * empty and should be rb_erased.
1864 			 */
1865 			stable_node_any = stable_node_dup_any(stable_node,
1866 							      root);
1867 			if (!stable_node_any) {
1868 				/* rb_erase just run */
1869 				goto again;
1870 			}
1871 			/*
1872 			 * Take any of the stable_node dups page of
1873 			 * this stable_node chain to let the tree walk
1874 			 * continue. All KSM pages belonging to the
1875 			 * stable_node dups in a stable_node chain
1876 			 * have the same content and they're
1877 			 * write protected at all times. Any will work
1878 			 * fine to continue the walk.
1879 			 */
1880 			tree_page = get_ksm_page(stable_node_any,
1881 						 GET_KSM_PAGE_NOLOCK);
1882 		}
1883 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1884 		if (!tree_page) {
1885 			/*
1886 			 * If we walked over a stale stable_node,
1887 			 * get_ksm_page() will call rb_erase() and it
1888 			 * may rebalance the tree from under us. So
1889 			 * restart the search from scratch. Returning
1890 			 * NULL would be safe too, but we'd generate
1891 			 * false negative insertions just because some
1892 			 * stable_node was stale.
1893 			 */
1894 			goto again;
1895 		}
1896 
1897 		ret = memcmp_pages(page, tree_page);
1898 		put_page(tree_page);
1899 
1900 		parent = *new;
1901 		if (ret < 0)
1902 			new = &parent->rb_left;
1903 		else if (ret > 0)
1904 			new = &parent->rb_right;
1905 		else {
1906 			if (page_node) {
1907 				VM_BUG_ON(page_node->head != &migrate_nodes);
1908 				/*
1909 				 * Test if the migrated page should be merged
1910 				 * into a stable node dup. If the mapcount is
1911 				 * 1 we can migrate it with another KSM page
1912 				 * without adding it to the chain.
1913 				 */
1914 				if (page_mapcount(page) > 1)
1915 					goto chain_append;
1916 			}
1917 
1918 			if (!stable_node_dup) {
1919 				/*
1920 				 * If the stable_node is a chain and
1921 				 * we got a payload match in memcmp
1922 				 * but we cannot merge the scanned
1923 				 * page in any of the existing
1924 				 * stable_node dups because they're
1925 				 * all full, we need to wait the
1926 				 * scanned page to find itself a match
1927 				 * in the unstable tree to create a
1928 				 * brand new KSM page to add later to
1929 				 * the dups of this stable_node.
1930 				 */
1931 				return NULL;
1932 			}
1933 
1934 			/*
1935 			 * Lock and unlock the stable_node's page (which
1936 			 * might already have been migrated) so that page
1937 			 * migration is sure to notice its raised count.
1938 			 * It would be more elegant to return stable_node
1939 			 * than kpage, but that involves more changes.
1940 			 */
1941 			tree_page = get_ksm_page(stable_node_dup,
1942 						 GET_KSM_PAGE_TRYLOCK);
1943 
1944 			if (PTR_ERR(tree_page) == -EBUSY)
1945 				return ERR_PTR(-EBUSY);
1946 
1947 			if (unlikely(!tree_page))
1948 				/*
1949 				 * The tree may have been rebalanced,
1950 				 * so re-evaluate parent and new.
1951 				 */
1952 				goto again;
1953 			unlock_page(tree_page);
1954 
1955 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1956 			    NUMA(stable_node_dup->nid)) {
1957 				put_page(tree_page);
1958 				goto replace;
1959 			}
1960 			return tree_page;
1961 		}
1962 	}
1963 
1964 	if (!page_node)
1965 		return NULL;
1966 
1967 	list_del(&page_node->list);
1968 	DO_NUMA(page_node->nid = nid);
1969 	rb_link_node(&page_node->node, parent, new);
1970 	rb_insert_color(&page_node->node, root);
1971 out:
1972 	if (is_page_sharing_candidate(page_node)) {
1973 		get_page(page);
1974 		return page;
1975 	} else
1976 		return NULL;
1977 
1978 replace:
1979 	/*
1980 	 * If stable_node was a chain and chain_prune collapsed it,
1981 	 * stable_node has been updated to be the new regular
1982 	 * stable_node. A collapse of the chain is indistinguishable
1983 	 * from the case there was no chain in the stable
1984 	 * rbtree. Otherwise stable_node is the chain and
1985 	 * stable_node_dup is the dup to replace.
1986 	 */
1987 	if (stable_node_dup == stable_node) {
1988 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1989 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1990 		/* there is no chain */
1991 		if (page_node) {
1992 			VM_BUG_ON(page_node->head != &migrate_nodes);
1993 			list_del(&page_node->list);
1994 			DO_NUMA(page_node->nid = nid);
1995 			rb_replace_node(&stable_node_dup->node,
1996 					&page_node->node,
1997 					root);
1998 			if (is_page_sharing_candidate(page_node))
1999 				get_page(page);
2000 			else
2001 				page = NULL;
2002 		} else {
2003 			rb_erase(&stable_node_dup->node, root);
2004 			page = NULL;
2005 		}
2006 	} else {
2007 		VM_BUG_ON(!is_stable_node_chain(stable_node));
2008 		__stable_node_dup_del(stable_node_dup);
2009 		if (page_node) {
2010 			VM_BUG_ON(page_node->head != &migrate_nodes);
2011 			list_del(&page_node->list);
2012 			DO_NUMA(page_node->nid = nid);
2013 			stable_node_chain_add_dup(page_node, stable_node);
2014 			if (is_page_sharing_candidate(page_node))
2015 				get_page(page);
2016 			else
2017 				page = NULL;
2018 		} else {
2019 			page = NULL;
2020 		}
2021 	}
2022 	stable_node_dup->head = &migrate_nodes;
2023 	list_add(&stable_node_dup->list, stable_node_dup->head);
2024 	return page;
2025 
2026 chain_append:
2027 	/* stable_node_dup could be null if it reached the limit */
2028 	if (!stable_node_dup)
2029 		stable_node_dup = stable_node_any;
2030 	/*
2031 	 * If stable_node was a chain and chain_prune collapsed it,
2032 	 * stable_node has been updated to be the new regular
2033 	 * stable_node. A collapse of the chain is indistinguishable
2034 	 * from the case there was no chain in the stable
2035 	 * rbtree. Otherwise stable_node is the chain and
2036 	 * stable_node_dup is the dup to replace.
2037 	 */
2038 	if (stable_node_dup == stable_node) {
2039 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2040 		/* chain is missing so create it */
2041 		stable_node = alloc_stable_node_chain(stable_node_dup,
2042 						      root);
2043 		if (!stable_node)
2044 			return NULL;
2045 	}
2046 	/*
2047 	 * Add this stable_node dup that was
2048 	 * migrated to the stable_node chain
2049 	 * of the current nid for this page
2050 	 * content.
2051 	 */
2052 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2053 	VM_BUG_ON(page_node->head != &migrate_nodes);
2054 	list_del(&page_node->list);
2055 	DO_NUMA(page_node->nid = nid);
2056 	stable_node_chain_add_dup(page_node, stable_node);
2057 	goto out;
2058 }
2059 
2060 /*
2061  * stable_tree_insert - insert stable tree node pointing to new ksm page
2062  * into the stable tree.
2063  *
2064  * This function returns the stable tree node just allocated on success,
2065  * NULL otherwise.
2066  */
2067 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
2068 {
2069 	int nid;
2070 	unsigned long kpfn;
2071 	struct rb_root *root;
2072 	struct rb_node **new;
2073 	struct rb_node *parent;
2074 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
2075 	bool need_chain = false;
2076 
2077 	kpfn = page_to_pfn(kpage);
2078 	nid = get_kpfn_nid(kpfn);
2079 	root = root_stable_tree + nid;
2080 again:
2081 	parent = NULL;
2082 	new = &root->rb_node;
2083 
2084 	while (*new) {
2085 		struct page *tree_page;
2086 		int ret;
2087 
2088 		cond_resched();
2089 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
2090 		stable_node_any = NULL;
2091 		tree_page = chain(&stable_node_dup, stable_node, root);
2092 		if (!stable_node_dup) {
2093 			/*
2094 			 * Either all stable_node dups were full in
2095 			 * this stable_node chain, or this chain was
2096 			 * empty and should be rb_erased.
2097 			 */
2098 			stable_node_any = stable_node_dup_any(stable_node,
2099 							      root);
2100 			if (!stable_node_any) {
2101 				/* rb_erase just run */
2102 				goto again;
2103 			}
2104 			/*
2105 			 * Take any of the stable_node dups page of
2106 			 * this stable_node chain to let the tree walk
2107 			 * continue. All KSM pages belonging to the
2108 			 * stable_node dups in a stable_node chain
2109 			 * have the same content and they're
2110 			 * write protected at all times. Any will work
2111 			 * fine to continue the walk.
2112 			 */
2113 			tree_page = get_ksm_page(stable_node_any,
2114 						 GET_KSM_PAGE_NOLOCK);
2115 		}
2116 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
2117 		if (!tree_page) {
2118 			/*
2119 			 * If we walked over a stale stable_node,
2120 			 * get_ksm_page() will call rb_erase() and it
2121 			 * may rebalance the tree from under us. So
2122 			 * restart the search from scratch. Returning
2123 			 * NULL would be safe too, but we'd generate
2124 			 * false negative insertions just because some
2125 			 * stable_node was stale.
2126 			 */
2127 			goto again;
2128 		}
2129 
2130 		ret = memcmp_pages(kpage, tree_page);
2131 		put_page(tree_page);
2132 
2133 		parent = *new;
2134 		if (ret < 0)
2135 			new = &parent->rb_left;
2136 		else if (ret > 0)
2137 			new = &parent->rb_right;
2138 		else {
2139 			need_chain = true;
2140 			break;
2141 		}
2142 	}
2143 
2144 	stable_node_dup = alloc_stable_node();
2145 	if (!stable_node_dup)
2146 		return NULL;
2147 
2148 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
2149 	stable_node_dup->kpfn = kpfn;
2150 	set_page_stable_node(kpage, stable_node_dup);
2151 	stable_node_dup->rmap_hlist_len = 0;
2152 	DO_NUMA(stable_node_dup->nid = nid);
2153 	if (!need_chain) {
2154 		rb_link_node(&stable_node_dup->node, parent, new);
2155 		rb_insert_color(&stable_node_dup->node, root);
2156 	} else {
2157 		if (!is_stable_node_chain(stable_node)) {
2158 			struct ksm_stable_node *orig = stable_node;
2159 			/* chain is missing so create it */
2160 			stable_node = alloc_stable_node_chain(orig, root);
2161 			if (!stable_node) {
2162 				free_stable_node(stable_node_dup);
2163 				return NULL;
2164 			}
2165 		}
2166 		stable_node_chain_add_dup(stable_node_dup, stable_node);
2167 	}
2168 
2169 	return stable_node_dup;
2170 }
2171 
2172 /*
2173  * unstable_tree_search_insert - search for identical page,
2174  * else insert rmap_item into the unstable tree.
2175  *
2176  * This function searches for a page in the unstable tree identical to the
2177  * page currently being scanned; and if no identical page is found in the
2178  * tree, we insert rmap_item as a new object into the unstable tree.
2179  *
2180  * This function returns pointer to rmap_item found to be identical
2181  * to the currently scanned page, NULL otherwise.
2182  *
2183  * This function does both searching and inserting, because they share
2184  * the same walking algorithm in an rbtree.
2185  */
2186 static
2187 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2188 					      struct page *page,
2189 					      struct page **tree_pagep)
2190 {
2191 	struct rb_node **new;
2192 	struct rb_root *root;
2193 	struct rb_node *parent = NULL;
2194 	int nid;
2195 
2196 	nid = get_kpfn_nid(page_to_pfn(page));
2197 	root = root_unstable_tree + nid;
2198 	new = &root->rb_node;
2199 
2200 	while (*new) {
2201 		struct ksm_rmap_item *tree_rmap_item;
2202 		struct page *tree_page;
2203 		int ret;
2204 
2205 		cond_resched();
2206 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2207 		tree_page = get_mergeable_page(tree_rmap_item);
2208 		if (!tree_page)
2209 			return NULL;
2210 
2211 		/*
2212 		 * Don't substitute a ksm page for a forked page.
2213 		 */
2214 		if (page == tree_page) {
2215 			put_page(tree_page);
2216 			return NULL;
2217 		}
2218 
2219 		ret = memcmp_pages(page, tree_page);
2220 
2221 		parent = *new;
2222 		if (ret < 0) {
2223 			put_page(tree_page);
2224 			new = &parent->rb_left;
2225 		} else if (ret > 0) {
2226 			put_page(tree_page);
2227 			new = &parent->rb_right;
2228 		} else if (!ksm_merge_across_nodes &&
2229 			   page_to_nid(tree_page) != nid) {
2230 			/*
2231 			 * If tree_page has been migrated to another NUMA node,
2232 			 * it will be flushed out and put in the right unstable
2233 			 * tree next time: only merge with it when across_nodes.
2234 			 */
2235 			put_page(tree_page);
2236 			return NULL;
2237 		} else {
2238 			*tree_pagep = tree_page;
2239 			return tree_rmap_item;
2240 		}
2241 	}
2242 
2243 	rmap_item->address |= UNSTABLE_FLAG;
2244 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2245 	DO_NUMA(rmap_item->nid = nid);
2246 	rb_link_node(&rmap_item->node, parent, new);
2247 	rb_insert_color(&rmap_item->node, root);
2248 
2249 	ksm_pages_unshared++;
2250 	return NULL;
2251 }
2252 
2253 /*
2254  * stable_tree_append - add another rmap_item to the linked list of
2255  * rmap_items hanging off a given node of the stable tree, all sharing
2256  * the same ksm page.
2257  */
2258 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2259 			       struct ksm_stable_node *stable_node,
2260 			       bool max_page_sharing_bypass)
2261 {
2262 	/*
2263 	 * rmap won't find this mapping if we don't insert the
2264 	 * rmap_item in the right stable_node
2265 	 * duplicate. page_migration could break later if rmap breaks,
2266 	 * so we can as well crash here. We really need to check for
2267 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2268 	 * for other negative values as an underflow if detected here
2269 	 * for the first time (and not when decreasing rmap_hlist_len)
2270 	 * would be sign of memory corruption in the stable_node.
2271 	 */
2272 	BUG_ON(stable_node->rmap_hlist_len < 0);
2273 
2274 	stable_node->rmap_hlist_len++;
2275 	if (!max_page_sharing_bypass)
2276 		/* possibly non fatal but unexpected overflow, only warn */
2277 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2278 			     ksm_max_page_sharing);
2279 
2280 	rmap_item->head = stable_node;
2281 	rmap_item->address |= STABLE_FLAG;
2282 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2283 
2284 	if (rmap_item->hlist.next)
2285 		ksm_pages_sharing++;
2286 	else
2287 		ksm_pages_shared++;
2288 
2289 	rmap_item->mm->ksm_merging_pages++;
2290 }
2291 
2292 /*
2293  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2294  * if not, compare checksum to previous and if it's the same, see if page can
2295  * be inserted into the unstable tree, or merged with a page already there and
2296  * both transferred to the stable tree.
2297  *
2298  * @page: the page that we are searching identical page to.
2299  * @rmap_item: the reverse mapping into the virtual address of this page
2300  */
2301 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2302 {
2303 	struct mm_struct *mm = rmap_item->mm;
2304 	struct ksm_rmap_item *tree_rmap_item;
2305 	struct page *tree_page = NULL;
2306 	struct ksm_stable_node *stable_node;
2307 	struct page *kpage;
2308 	unsigned int checksum;
2309 	int err;
2310 	bool max_page_sharing_bypass = false;
2311 
2312 	stable_node = page_stable_node(page);
2313 	if (stable_node) {
2314 		if (stable_node->head != &migrate_nodes &&
2315 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2316 		    NUMA(stable_node->nid)) {
2317 			stable_node_dup_del(stable_node);
2318 			stable_node->head = &migrate_nodes;
2319 			list_add(&stable_node->list, stable_node->head);
2320 		}
2321 		if (stable_node->head != &migrate_nodes &&
2322 		    rmap_item->head == stable_node)
2323 			return;
2324 		/*
2325 		 * If it's a KSM fork, allow it to go over the sharing limit
2326 		 * without warnings.
2327 		 */
2328 		if (!is_page_sharing_candidate(stable_node))
2329 			max_page_sharing_bypass = true;
2330 	}
2331 
2332 	/* We first start with searching the page inside the stable tree */
2333 	kpage = stable_tree_search(page);
2334 	if (kpage == page && rmap_item->head == stable_node) {
2335 		put_page(kpage);
2336 		return;
2337 	}
2338 
2339 	remove_rmap_item_from_tree(rmap_item);
2340 
2341 	if (kpage) {
2342 		if (PTR_ERR(kpage) == -EBUSY)
2343 			return;
2344 
2345 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2346 		if (!err) {
2347 			/*
2348 			 * The page was successfully merged:
2349 			 * add its rmap_item to the stable tree.
2350 			 */
2351 			lock_page(kpage);
2352 			stable_tree_append(rmap_item, page_stable_node(kpage),
2353 					   max_page_sharing_bypass);
2354 			unlock_page(kpage);
2355 		}
2356 		put_page(kpage);
2357 		return;
2358 	}
2359 
2360 	/*
2361 	 * If the hash value of the page has changed from the last time
2362 	 * we calculated it, this page is changing frequently: therefore we
2363 	 * don't want to insert it in the unstable tree, and we don't want
2364 	 * to waste our time searching for something identical to it there.
2365 	 */
2366 	checksum = calc_checksum(page);
2367 	if (rmap_item->oldchecksum != checksum) {
2368 		rmap_item->oldchecksum = checksum;
2369 		return;
2370 	}
2371 
2372 	/*
2373 	 * Same checksum as an empty page. We attempt to merge it with the
2374 	 * appropriate zero page if the user enabled this via sysfs.
2375 	 */
2376 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2377 		struct vm_area_struct *vma;
2378 
2379 		mmap_read_lock(mm);
2380 		vma = find_mergeable_vma(mm, rmap_item->address);
2381 		if (vma) {
2382 			err = try_to_merge_one_page(vma, page,
2383 					ZERO_PAGE(rmap_item->address));
2384 			trace_ksm_merge_one_page(
2385 				page_to_pfn(ZERO_PAGE(rmap_item->address)),
2386 				rmap_item, mm, err);
2387 		} else {
2388 			/*
2389 			 * If the vma is out of date, we do not need to
2390 			 * continue.
2391 			 */
2392 			err = 0;
2393 		}
2394 		mmap_read_unlock(mm);
2395 		/*
2396 		 * In case of failure, the page was not really empty, so we
2397 		 * need to continue. Otherwise we're done.
2398 		 */
2399 		if (!err)
2400 			return;
2401 	}
2402 	tree_rmap_item =
2403 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2404 	if (tree_rmap_item) {
2405 		bool split;
2406 
2407 		kpage = try_to_merge_two_pages(rmap_item, page,
2408 						tree_rmap_item, tree_page);
2409 		/*
2410 		 * If both pages we tried to merge belong to the same compound
2411 		 * page, then we actually ended up increasing the reference
2412 		 * count of the same compound page twice, and split_huge_page
2413 		 * failed.
2414 		 * Here we set a flag if that happened, and we use it later to
2415 		 * try split_huge_page again. Since we call put_page right
2416 		 * afterwards, the reference count will be correct and
2417 		 * split_huge_page should succeed.
2418 		 */
2419 		split = PageTransCompound(page)
2420 			&& compound_head(page) == compound_head(tree_page);
2421 		put_page(tree_page);
2422 		if (kpage) {
2423 			/*
2424 			 * The pages were successfully merged: insert new
2425 			 * node in the stable tree and add both rmap_items.
2426 			 */
2427 			lock_page(kpage);
2428 			stable_node = stable_tree_insert(kpage);
2429 			if (stable_node) {
2430 				stable_tree_append(tree_rmap_item, stable_node,
2431 						   false);
2432 				stable_tree_append(rmap_item, stable_node,
2433 						   false);
2434 			}
2435 			unlock_page(kpage);
2436 
2437 			/*
2438 			 * If we fail to insert the page into the stable tree,
2439 			 * we will have 2 virtual addresses that are pointing
2440 			 * to a ksm page left outside the stable tree,
2441 			 * in which case we need to break_cow on both.
2442 			 */
2443 			if (!stable_node) {
2444 				break_cow(tree_rmap_item);
2445 				break_cow(rmap_item);
2446 			}
2447 		} else if (split) {
2448 			/*
2449 			 * We are here if we tried to merge two pages and
2450 			 * failed because they both belonged to the same
2451 			 * compound page. We will split the page now, but no
2452 			 * merging will take place.
2453 			 * We do not want to add the cost of a full lock; if
2454 			 * the page is locked, it is better to skip it and
2455 			 * perhaps try again later.
2456 			 */
2457 			if (!trylock_page(page))
2458 				return;
2459 			split_huge_page(page);
2460 			unlock_page(page);
2461 		}
2462 	}
2463 }
2464 
2465 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2466 					    struct ksm_rmap_item **rmap_list,
2467 					    unsigned long addr)
2468 {
2469 	struct ksm_rmap_item *rmap_item;
2470 
2471 	while (*rmap_list) {
2472 		rmap_item = *rmap_list;
2473 		if ((rmap_item->address & PAGE_MASK) == addr)
2474 			return rmap_item;
2475 		if (rmap_item->address > addr)
2476 			break;
2477 		*rmap_list = rmap_item->rmap_list;
2478 		remove_rmap_item_from_tree(rmap_item);
2479 		free_rmap_item(rmap_item);
2480 	}
2481 
2482 	rmap_item = alloc_rmap_item();
2483 	if (rmap_item) {
2484 		/* It has already been zeroed */
2485 		rmap_item->mm = mm_slot->slot.mm;
2486 		rmap_item->mm->ksm_rmap_items++;
2487 		rmap_item->address = addr;
2488 		rmap_item->rmap_list = *rmap_list;
2489 		*rmap_list = rmap_item;
2490 	}
2491 	return rmap_item;
2492 }
2493 
2494 /*
2495  * Calculate skip age for the ksm page age. The age determines how often
2496  * de-duplicating has already been tried unsuccessfully. If the age is
2497  * smaller, the scanning of this page is skipped for less scans.
2498  *
2499  * @age: rmap_item age of page
2500  */
2501 static unsigned int skip_age(rmap_age_t age)
2502 {
2503 	if (age <= 3)
2504 		return 1;
2505 	if (age <= 5)
2506 		return 2;
2507 	if (age <= 8)
2508 		return 4;
2509 
2510 	return 8;
2511 }
2512 
2513 /*
2514  * Determines if a page should be skipped for the current scan.
2515  *
2516  * @page: page to check
2517  * @rmap_item: associated rmap_item of page
2518  */
2519 static bool should_skip_rmap_item(struct page *page,
2520 				  struct ksm_rmap_item *rmap_item)
2521 {
2522 	rmap_age_t age;
2523 
2524 	if (!ksm_smart_scan)
2525 		return false;
2526 
2527 	/*
2528 	 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2529 	 * will essentially ignore them, but we still have to process them
2530 	 * properly.
2531 	 */
2532 	if (PageKsm(page))
2533 		return false;
2534 
2535 	age = rmap_item->age;
2536 	if (age != U8_MAX)
2537 		rmap_item->age++;
2538 
2539 	/*
2540 	 * Smaller ages are not skipped, they need to get a chance to go
2541 	 * through the different phases of the KSM merging.
2542 	 */
2543 	if (age < 3)
2544 		return false;
2545 
2546 	/*
2547 	 * Are we still allowed to skip? If not, then don't skip it
2548 	 * and determine how much more often we are allowed to skip next.
2549 	 */
2550 	if (!rmap_item->remaining_skips) {
2551 		rmap_item->remaining_skips = skip_age(age);
2552 		return false;
2553 	}
2554 
2555 	/* Skip this page */
2556 	ksm_pages_skipped++;
2557 	rmap_item->remaining_skips--;
2558 	remove_rmap_item_from_tree(rmap_item);
2559 	return true;
2560 }
2561 
2562 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2563 {
2564 	struct mm_struct *mm;
2565 	struct ksm_mm_slot *mm_slot;
2566 	struct mm_slot *slot;
2567 	struct vm_area_struct *vma;
2568 	struct ksm_rmap_item *rmap_item;
2569 	struct vma_iterator vmi;
2570 	int nid;
2571 
2572 	if (list_empty(&ksm_mm_head.slot.mm_node))
2573 		return NULL;
2574 
2575 	mm_slot = ksm_scan.mm_slot;
2576 	if (mm_slot == &ksm_mm_head) {
2577 		advisor_start_scan();
2578 		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2579 
2580 		/*
2581 		 * A number of pages can hang around indefinitely in per-cpu
2582 		 * LRU cache, raised page count preventing write_protect_page
2583 		 * from merging them.  Though it doesn't really matter much,
2584 		 * it is puzzling to see some stuck in pages_volatile until
2585 		 * other activity jostles them out, and they also prevented
2586 		 * LTP's KSM test from succeeding deterministically; so drain
2587 		 * them here (here rather than on entry to ksm_do_scan(),
2588 		 * so we don't IPI too often when pages_to_scan is set low).
2589 		 */
2590 		lru_add_drain_all();
2591 
2592 		/*
2593 		 * Whereas stale stable_nodes on the stable_tree itself
2594 		 * get pruned in the regular course of stable_tree_search(),
2595 		 * those moved out to the migrate_nodes list can accumulate:
2596 		 * so prune them once before each full scan.
2597 		 */
2598 		if (!ksm_merge_across_nodes) {
2599 			struct ksm_stable_node *stable_node, *next;
2600 			struct page *page;
2601 
2602 			list_for_each_entry_safe(stable_node, next,
2603 						 &migrate_nodes, list) {
2604 				page = get_ksm_page(stable_node,
2605 						    GET_KSM_PAGE_NOLOCK);
2606 				if (page)
2607 					put_page(page);
2608 				cond_resched();
2609 			}
2610 		}
2611 
2612 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2613 			root_unstable_tree[nid] = RB_ROOT;
2614 
2615 		spin_lock(&ksm_mmlist_lock);
2616 		slot = list_entry(mm_slot->slot.mm_node.next,
2617 				  struct mm_slot, mm_node);
2618 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2619 		ksm_scan.mm_slot = mm_slot;
2620 		spin_unlock(&ksm_mmlist_lock);
2621 		/*
2622 		 * Although we tested list_empty() above, a racing __ksm_exit
2623 		 * of the last mm on the list may have removed it since then.
2624 		 */
2625 		if (mm_slot == &ksm_mm_head)
2626 			return NULL;
2627 next_mm:
2628 		ksm_scan.address = 0;
2629 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2630 	}
2631 
2632 	slot = &mm_slot->slot;
2633 	mm = slot->mm;
2634 	vma_iter_init(&vmi, mm, ksm_scan.address);
2635 
2636 	mmap_read_lock(mm);
2637 	if (ksm_test_exit(mm))
2638 		goto no_vmas;
2639 
2640 	for_each_vma(vmi, vma) {
2641 		if (!(vma->vm_flags & VM_MERGEABLE))
2642 			continue;
2643 		if (ksm_scan.address < vma->vm_start)
2644 			ksm_scan.address = vma->vm_start;
2645 		if (!vma->anon_vma)
2646 			ksm_scan.address = vma->vm_end;
2647 
2648 		while (ksm_scan.address < vma->vm_end) {
2649 			if (ksm_test_exit(mm))
2650 				break;
2651 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2652 			if (IS_ERR_OR_NULL(*page)) {
2653 				ksm_scan.address += PAGE_SIZE;
2654 				cond_resched();
2655 				continue;
2656 			}
2657 			if (is_zone_device_page(*page))
2658 				goto next_page;
2659 			if (PageAnon(*page)) {
2660 				flush_anon_page(vma, *page, ksm_scan.address);
2661 				flush_dcache_page(*page);
2662 				rmap_item = get_next_rmap_item(mm_slot,
2663 					ksm_scan.rmap_list, ksm_scan.address);
2664 				if (rmap_item) {
2665 					ksm_scan.rmap_list =
2666 							&rmap_item->rmap_list;
2667 
2668 					if (should_skip_rmap_item(*page, rmap_item))
2669 						goto next_page;
2670 
2671 					ksm_scan.address += PAGE_SIZE;
2672 				} else
2673 					put_page(*page);
2674 				mmap_read_unlock(mm);
2675 				return rmap_item;
2676 			}
2677 next_page:
2678 			put_page(*page);
2679 			ksm_scan.address += PAGE_SIZE;
2680 			cond_resched();
2681 		}
2682 	}
2683 
2684 	if (ksm_test_exit(mm)) {
2685 no_vmas:
2686 		ksm_scan.address = 0;
2687 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2688 	}
2689 	/*
2690 	 * Nuke all the rmap_items that are above this current rmap:
2691 	 * because there were no VM_MERGEABLE vmas with such addresses.
2692 	 */
2693 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2694 
2695 	spin_lock(&ksm_mmlist_lock);
2696 	slot = list_entry(mm_slot->slot.mm_node.next,
2697 			  struct mm_slot, mm_node);
2698 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2699 	if (ksm_scan.address == 0) {
2700 		/*
2701 		 * We've completed a full scan of all vmas, holding mmap_lock
2702 		 * throughout, and found no VM_MERGEABLE: so do the same as
2703 		 * __ksm_exit does to remove this mm from all our lists now.
2704 		 * This applies either when cleaning up after __ksm_exit
2705 		 * (but beware: we can reach here even before __ksm_exit),
2706 		 * or when all VM_MERGEABLE areas have been unmapped (and
2707 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2708 		 */
2709 		hash_del(&mm_slot->slot.hash);
2710 		list_del(&mm_slot->slot.mm_node);
2711 		spin_unlock(&ksm_mmlist_lock);
2712 
2713 		mm_slot_free(mm_slot_cache, mm_slot);
2714 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2715 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2716 		mmap_read_unlock(mm);
2717 		mmdrop(mm);
2718 	} else {
2719 		mmap_read_unlock(mm);
2720 		/*
2721 		 * mmap_read_unlock(mm) first because after
2722 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2723 		 * already have been freed under us by __ksm_exit()
2724 		 * because the "mm_slot" is still hashed and
2725 		 * ksm_scan.mm_slot doesn't point to it anymore.
2726 		 */
2727 		spin_unlock(&ksm_mmlist_lock);
2728 	}
2729 
2730 	/* Repeat until we've completed scanning the whole list */
2731 	mm_slot = ksm_scan.mm_slot;
2732 	if (mm_slot != &ksm_mm_head)
2733 		goto next_mm;
2734 
2735 	advisor_stop_scan();
2736 
2737 	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2738 	ksm_scan.seqnr++;
2739 	return NULL;
2740 }
2741 
2742 /**
2743  * ksm_do_scan  - the ksm scanner main worker function.
2744  * @scan_npages:  number of pages we want to scan before we return.
2745  */
2746 static void ksm_do_scan(unsigned int scan_npages)
2747 {
2748 	struct ksm_rmap_item *rmap_item;
2749 	struct page *page;
2750 	unsigned int npages = scan_npages;
2751 
2752 	while (npages-- && likely(!freezing(current))) {
2753 		cond_resched();
2754 		rmap_item = scan_get_next_rmap_item(&page);
2755 		if (!rmap_item)
2756 			return;
2757 		cmp_and_merge_page(page, rmap_item);
2758 		put_page(page);
2759 	}
2760 
2761 	ksm_pages_scanned += scan_npages - npages;
2762 }
2763 
2764 static int ksmd_should_run(void)
2765 {
2766 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2767 }
2768 
2769 static int ksm_scan_thread(void *nothing)
2770 {
2771 	unsigned int sleep_ms;
2772 
2773 	set_freezable();
2774 	set_user_nice(current, 5);
2775 
2776 	while (!kthread_should_stop()) {
2777 		mutex_lock(&ksm_thread_mutex);
2778 		wait_while_offlining();
2779 		if (ksmd_should_run())
2780 			ksm_do_scan(ksm_thread_pages_to_scan);
2781 		mutex_unlock(&ksm_thread_mutex);
2782 
2783 		if (ksmd_should_run()) {
2784 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2785 			wait_event_freezable_timeout(ksm_iter_wait,
2786 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2787 				msecs_to_jiffies(sleep_ms));
2788 		} else {
2789 			wait_event_freezable(ksm_thread_wait,
2790 				ksmd_should_run() || kthread_should_stop());
2791 		}
2792 	}
2793 	return 0;
2794 }
2795 
2796 static void __ksm_add_vma(struct vm_area_struct *vma)
2797 {
2798 	unsigned long vm_flags = vma->vm_flags;
2799 
2800 	if (vm_flags & VM_MERGEABLE)
2801 		return;
2802 
2803 	if (vma_ksm_compatible(vma))
2804 		vm_flags_set(vma, VM_MERGEABLE);
2805 }
2806 
2807 static int __ksm_del_vma(struct vm_area_struct *vma)
2808 {
2809 	int err;
2810 
2811 	if (!(vma->vm_flags & VM_MERGEABLE))
2812 		return 0;
2813 
2814 	if (vma->anon_vma) {
2815 		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2816 		if (err)
2817 			return err;
2818 	}
2819 
2820 	vm_flags_clear(vma, VM_MERGEABLE);
2821 	return 0;
2822 }
2823 /**
2824  * ksm_add_vma - Mark vma as mergeable if compatible
2825  *
2826  * @vma:  Pointer to vma
2827  */
2828 void ksm_add_vma(struct vm_area_struct *vma)
2829 {
2830 	struct mm_struct *mm = vma->vm_mm;
2831 
2832 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2833 		__ksm_add_vma(vma);
2834 }
2835 
2836 static void ksm_add_vmas(struct mm_struct *mm)
2837 {
2838 	struct vm_area_struct *vma;
2839 
2840 	VMA_ITERATOR(vmi, mm, 0);
2841 	for_each_vma(vmi, vma)
2842 		__ksm_add_vma(vma);
2843 }
2844 
2845 static int ksm_del_vmas(struct mm_struct *mm)
2846 {
2847 	struct vm_area_struct *vma;
2848 	int err;
2849 
2850 	VMA_ITERATOR(vmi, mm, 0);
2851 	for_each_vma(vmi, vma) {
2852 		err = __ksm_del_vma(vma);
2853 		if (err)
2854 			return err;
2855 	}
2856 	return 0;
2857 }
2858 
2859 /**
2860  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2861  *                        compatible VMA's
2862  *
2863  * @mm:  Pointer to mm
2864  *
2865  * Returns 0 on success, otherwise error code
2866  */
2867 int ksm_enable_merge_any(struct mm_struct *mm)
2868 {
2869 	int err;
2870 
2871 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2872 		return 0;
2873 
2874 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2875 		err = __ksm_enter(mm);
2876 		if (err)
2877 			return err;
2878 	}
2879 
2880 	set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2881 	ksm_add_vmas(mm);
2882 
2883 	return 0;
2884 }
2885 
2886 /**
2887  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2888  *			   previously enabled via ksm_enable_merge_any().
2889  *
2890  * Disabling merging implies unmerging any merged pages, like setting
2891  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2892  * merging on all compatible VMA's remains enabled.
2893  *
2894  * @mm: Pointer to mm
2895  *
2896  * Returns 0 on success, otherwise error code
2897  */
2898 int ksm_disable_merge_any(struct mm_struct *mm)
2899 {
2900 	int err;
2901 
2902 	if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2903 		return 0;
2904 
2905 	err = ksm_del_vmas(mm);
2906 	if (err) {
2907 		ksm_add_vmas(mm);
2908 		return err;
2909 	}
2910 
2911 	clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2912 	return 0;
2913 }
2914 
2915 int ksm_disable(struct mm_struct *mm)
2916 {
2917 	mmap_assert_write_locked(mm);
2918 
2919 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2920 		return 0;
2921 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2922 		return ksm_disable_merge_any(mm);
2923 	return ksm_del_vmas(mm);
2924 }
2925 
2926 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2927 		unsigned long end, int advice, unsigned long *vm_flags)
2928 {
2929 	struct mm_struct *mm = vma->vm_mm;
2930 	int err;
2931 
2932 	switch (advice) {
2933 	case MADV_MERGEABLE:
2934 		if (vma->vm_flags & VM_MERGEABLE)
2935 			return 0;
2936 		if (!vma_ksm_compatible(vma))
2937 			return 0;
2938 
2939 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2940 			err = __ksm_enter(mm);
2941 			if (err)
2942 				return err;
2943 		}
2944 
2945 		*vm_flags |= VM_MERGEABLE;
2946 		break;
2947 
2948 	case MADV_UNMERGEABLE:
2949 		if (!(*vm_flags & VM_MERGEABLE))
2950 			return 0;		/* just ignore the advice */
2951 
2952 		if (vma->anon_vma) {
2953 			err = unmerge_ksm_pages(vma, start, end, true);
2954 			if (err)
2955 				return err;
2956 		}
2957 
2958 		*vm_flags &= ~VM_MERGEABLE;
2959 		break;
2960 	}
2961 
2962 	return 0;
2963 }
2964 EXPORT_SYMBOL_GPL(ksm_madvise);
2965 
2966 int __ksm_enter(struct mm_struct *mm)
2967 {
2968 	struct ksm_mm_slot *mm_slot;
2969 	struct mm_slot *slot;
2970 	int needs_wakeup;
2971 
2972 	mm_slot = mm_slot_alloc(mm_slot_cache);
2973 	if (!mm_slot)
2974 		return -ENOMEM;
2975 
2976 	slot = &mm_slot->slot;
2977 
2978 	/* Check ksm_run too?  Would need tighter locking */
2979 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2980 
2981 	spin_lock(&ksm_mmlist_lock);
2982 	mm_slot_insert(mm_slots_hash, mm, slot);
2983 	/*
2984 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2985 	 * insert just behind the scanning cursor, to let the area settle
2986 	 * down a little; when fork is followed by immediate exec, we don't
2987 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2988 	 *
2989 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2990 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2991 	 * missed: then we might as well insert at the end of the list.
2992 	 */
2993 	if (ksm_run & KSM_RUN_UNMERGE)
2994 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2995 	else
2996 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2997 	spin_unlock(&ksm_mmlist_lock);
2998 
2999 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
3000 	mmgrab(mm);
3001 
3002 	if (needs_wakeup)
3003 		wake_up_interruptible(&ksm_thread_wait);
3004 
3005 	trace_ksm_enter(mm);
3006 	return 0;
3007 }
3008 
3009 void __ksm_exit(struct mm_struct *mm)
3010 {
3011 	struct ksm_mm_slot *mm_slot;
3012 	struct mm_slot *slot;
3013 	int easy_to_free = 0;
3014 
3015 	/*
3016 	 * This process is exiting: if it's straightforward (as is the
3017 	 * case when ksmd was never running), free mm_slot immediately.
3018 	 * But if it's at the cursor or has rmap_items linked to it, use
3019 	 * mmap_lock to synchronize with any break_cows before pagetables
3020 	 * are freed, and leave the mm_slot on the list for ksmd to free.
3021 	 * Beware: ksm may already have noticed it exiting and freed the slot.
3022 	 */
3023 
3024 	spin_lock(&ksm_mmlist_lock);
3025 	slot = mm_slot_lookup(mm_slots_hash, mm);
3026 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
3027 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
3028 		if (!mm_slot->rmap_list) {
3029 			hash_del(&slot->hash);
3030 			list_del(&slot->mm_node);
3031 			easy_to_free = 1;
3032 		} else {
3033 			list_move(&slot->mm_node,
3034 				  &ksm_scan.mm_slot->slot.mm_node);
3035 		}
3036 	}
3037 	spin_unlock(&ksm_mmlist_lock);
3038 
3039 	if (easy_to_free) {
3040 		mm_slot_free(mm_slot_cache, mm_slot);
3041 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
3042 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
3043 		mmdrop(mm);
3044 	} else if (mm_slot) {
3045 		mmap_write_lock(mm);
3046 		mmap_write_unlock(mm);
3047 	}
3048 
3049 	trace_ksm_exit(mm);
3050 }
3051 
3052 struct folio *ksm_might_need_to_copy(struct folio *folio,
3053 			struct vm_area_struct *vma, unsigned long addr)
3054 {
3055 	struct page *page = folio_page(folio, 0);
3056 	struct anon_vma *anon_vma = folio_anon_vma(folio);
3057 	struct folio *new_folio;
3058 
3059 	if (folio_test_large(folio))
3060 		return folio;
3061 
3062 	if (folio_test_ksm(folio)) {
3063 		if (folio_stable_node(folio) &&
3064 		    !(ksm_run & KSM_RUN_UNMERGE))
3065 			return folio;	/* no need to copy it */
3066 	} else if (!anon_vma) {
3067 		return folio;		/* no need to copy it */
3068 	} else if (folio->index == linear_page_index(vma, addr) &&
3069 			anon_vma->root == vma->anon_vma->root) {
3070 		return folio;		/* still no need to copy it */
3071 	}
3072 	if (PageHWPoison(page))
3073 		return ERR_PTR(-EHWPOISON);
3074 	if (!folio_test_uptodate(folio))
3075 		return folio;		/* let do_swap_page report the error */
3076 
3077 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
3078 	if (new_folio &&
3079 	    mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
3080 		folio_put(new_folio);
3081 		new_folio = NULL;
3082 	}
3083 	if (new_folio) {
3084 		if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3085 								addr, vma)) {
3086 			folio_put(new_folio);
3087 			memory_failure_queue(folio_pfn(folio), 0);
3088 			return ERR_PTR(-EHWPOISON);
3089 		}
3090 		folio_set_dirty(new_folio);
3091 		__folio_mark_uptodate(new_folio);
3092 		__folio_set_locked(new_folio);
3093 #ifdef CONFIG_SWAP
3094 		count_vm_event(KSM_SWPIN_COPY);
3095 #endif
3096 	}
3097 
3098 	return new_folio;
3099 }
3100 
3101 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
3102 {
3103 	struct ksm_stable_node *stable_node;
3104 	struct ksm_rmap_item *rmap_item;
3105 	int search_new_forks = 0;
3106 
3107 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3108 
3109 	/*
3110 	 * Rely on the page lock to protect against concurrent modifications
3111 	 * to that page's node of the stable tree.
3112 	 */
3113 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3114 
3115 	stable_node = folio_stable_node(folio);
3116 	if (!stable_node)
3117 		return;
3118 again:
3119 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3120 		struct anon_vma *anon_vma = rmap_item->anon_vma;
3121 		struct anon_vma_chain *vmac;
3122 		struct vm_area_struct *vma;
3123 
3124 		cond_resched();
3125 		if (!anon_vma_trylock_read(anon_vma)) {
3126 			if (rwc->try_lock) {
3127 				rwc->contended = true;
3128 				return;
3129 			}
3130 			anon_vma_lock_read(anon_vma);
3131 		}
3132 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3133 					       0, ULONG_MAX) {
3134 			unsigned long addr;
3135 
3136 			cond_resched();
3137 			vma = vmac->vma;
3138 
3139 			/* Ignore the stable/unstable/sqnr flags */
3140 			addr = rmap_item->address & PAGE_MASK;
3141 
3142 			if (addr < vma->vm_start || addr >= vma->vm_end)
3143 				continue;
3144 			/*
3145 			 * Initially we examine only the vma which covers this
3146 			 * rmap_item; but later, if there is still work to do,
3147 			 * we examine covering vmas in other mms: in case they
3148 			 * were forked from the original since ksmd passed.
3149 			 */
3150 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3151 				continue;
3152 
3153 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3154 				continue;
3155 
3156 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3157 				anon_vma_unlock_read(anon_vma);
3158 				return;
3159 			}
3160 			if (rwc->done && rwc->done(folio)) {
3161 				anon_vma_unlock_read(anon_vma);
3162 				return;
3163 			}
3164 		}
3165 		anon_vma_unlock_read(anon_vma);
3166 	}
3167 	if (!search_new_forks++)
3168 		goto again;
3169 }
3170 
3171 #ifdef CONFIG_MEMORY_FAILURE
3172 /*
3173  * Collect processes when the error hit an ksm page.
3174  */
3175 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
3176 		       int force_early)
3177 {
3178 	struct ksm_stable_node *stable_node;
3179 	struct ksm_rmap_item *rmap_item;
3180 	struct folio *folio = page_folio(page);
3181 	struct vm_area_struct *vma;
3182 	struct task_struct *tsk;
3183 
3184 	stable_node = folio_stable_node(folio);
3185 	if (!stable_node)
3186 		return;
3187 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3188 		struct anon_vma *av = rmap_item->anon_vma;
3189 
3190 		anon_vma_lock_read(av);
3191 		rcu_read_lock();
3192 		for_each_process(tsk) {
3193 			struct anon_vma_chain *vmac;
3194 			unsigned long addr;
3195 			struct task_struct *t =
3196 				task_early_kill(tsk, force_early);
3197 			if (!t)
3198 				continue;
3199 			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3200 						       ULONG_MAX)
3201 			{
3202 				vma = vmac->vma;
3203 				if (vma->vm_mm == t->mm) {
3204 					addr = rmap_item->address & PAGE_MASK;
3205 					add_to_kill_ksm(t, page, vma, to_kill,
3206 							addr);
3207 				}
3208 			}
3209 		}
3210 		rcu_read_unlock();
3211 		anon_vma_unlock_read(av);
3212 	}
3213 }
3214 #endif
3215 
3216 #ifdef CONFIG_MIGRATION
3217 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3218 {
3219 	struct ksm_stable_node *stable_node;
3220 
3221 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3222 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3223 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3224 
3225 	stable_node = folio_stable_node(folio);
3226 	if (stable_node) {
3227 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3228 		stable_node->kpfn = folio_pfn(newfolio);
3229 		/*
3230 		 * newfolio->mapping was set in advance; now we need smp_wmb()
3231 		 * to make sure that the new stable_node->kpfn is visible
3232 		 * to get_ksm_page() before it can see that folio->mapping
3233 		 * has gone stale (or that folio_test_swapcache has been cleared).
3234 		 */
3235 		smp_wmb();
3236 		set_page_stable_node(&folio->page, NULL);
3237 	}
3238 }
3239 #endif /* CONFIG_MIGRATION */
3240 
3241 #ifdef CONFIG_MEMORY_HOTREMOVE
3242 static void wait_while_offlining(void)
3243 {
3244 	while (ksm_run & KSM_RUN_OFFLINE) {
3245 		mutex_unlock(&ksm_thread_mutex);
3246 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3247 			    TASK_UNINTERRUPTIBLE);
3248 		mutex_lock(&ksm_thread_mutex);
3249 	}
3250 }
3251 
3252 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3253 					 unsigned long start_pfn,
3254 					 unsigned long end_pfn)
3255 {
3256 	if (stable_node->kpfn >= start_pfn &&
3257 	    stable_node->kpfn < end_pfn) {
3258 		/*
3259 		 * Don't get_ksm_page, page has already gone:
3260 		 * which is why we keep kpfn instead of page*
3261 		 */
3262 		remove_node_from_stable_tree(stable_node);
3263 		return true;
3264 	}
3265 	return false;
3266 }
3267 
3268 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3269 					   unsigned long start_pfn,
3270 					   unsigned long end_pfn,
3271 					   struct rb_root *root)
3272 {
3273 	struct ksm_stable_node *dup;
3274 	struct hlist_node *hlist_safe;
3275 
3276 	if (!is_stable_node_chain(stable_node)) {
3277 		VM_BUG_ON(is_stable_node_dup(stable_node));
3278 		return stable_node_dup_remove_range(stable_node, start_pfn,
3279 						    end_pfn);
3280 	}
3281 
3282 	hlist_for_each_entry_safe(dup, hlist_safe,
3283 				  &stable_node->hlist, hlist_dup) {
3284 		VM_BUG_ON(!is_stable_node_dup(dup));
3285 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3286 	}
3287 	if (hlist_empty(&stable_node->hlist)) {
3288 		free_stable_node_chain(stable_node, root);
3289 		return true; /* notify caller that tree was rebalanced */
3290 	} else
3291 		return false;
3292 }
3293 
3294 static void ksm_check_stable_tree(unsigned long start_pfn,
3295 				  unsigned long end_pfn)
3296 {
3297 	struct ksm_stable_node *stable_node, *next;
3298 	struct rb_node *node;
3299 	int nid;
3300 
3301 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3302 		node = rb_first(root_stable_tree + nid);
3303 		while (node) {
3304 			stable_node = rb_entry(node, struct ksm_stable_node, node);
3305 			if (stable_node_chain_remove_range(stable_node,
3306 							   start_pfn, end_pfn,
3307 							   root_stable_tree +
3308 							   nid))
3309 				node = rb_first(root_stable_tree + nid);
3310 			else
3311 				node = rb_next(node);
3312 			cond_resched();
3313 		}
3314 	}
3315 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3316 		if (stable_node->kpfn >= start_pfn &&
3317 		    stable_node->kpfn < end_pfn)
3318 			remove_node_from_stable_tree(stable_node);
3319 		cond_resched();
3320 	}
3321 }
3322 
3323 static int ksm_memory_callback(struct notifier_block *self,
3324 			       unsigned long action, void *arg)
3325 {
3326 	struct memory_notify *mn = arg;
3327 
3328 	switch (action) {
3329 	case MEM_GOING_OFFLINE:
3330 		/*
3331 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3332 		 * and remove_all_stable_nodes() while memory is going offline:
3333 		 * it is unsafe for them to touch the stable tree at this time.
3334 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
3335 		 * which do not need the ksm_thread_mutex are all safe.
3336 		 */
3337 		mutex_lock(&ksm_thread_mutex);
3338 		ksm_run |= KSM_RUN_OFFLINE;
3339 		mutex_unlock(&ksm_thread_mutex);
3340 		break;
3341 
3342 	case MEM_OFFLINE:
3343 		/*
3344 		 * Most of the work is done by page migration; but there might
3345 		 * be a few stable_nodes left over, still pointing to struct
3346 		 * pages which have been offlined: prune those from the tree,
3347 		 * otherwise get_ksm_page() might later try to access a
3348 		 * non-existent struct page.
3349 		 */
3350 		ksm_check_stable_tree(mn->start_pfn,
3351 				      mn->start_pfn + mn->nr_pages);
3352 		fallthrough;
3353 	case MEM_CANCEL_OFFLINE:
3354 		mutex_lock(&ksm_thread_mutex);
3355 		ksm_run &= ~KSM_RUN_OFFLINE;
3356 		mutex_unlock(&ksm_thread_mutex);
3357 
3358 		smp_mb();	/* wake_up_bit advises this */
3359 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3360 		break;
3361 	}
3362 	return NOTIFY_OK;
3363 }
3364 #else
3365 static void wait_while_offlining(void)
3366 {
3367 }
3368 #endif /* CONFIG_MEMORY_HOTREMOVE */
3369 
3370 #ifdef CONFIG_PROC_FS
3371 long ksm_process_profit(struct mm_struct *mm)
3372 {
3373 	return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE -
3374 		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3375 }
3376 #endif /* CONFIG_PROC_FS */
3377 
3378 #ifdef CONFIG_SYSFS
3379 /*
3380  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3381  */
3382 
3383 #define KSM_ATTR_RO(_name) \
3384 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3385 #define KSM_ATTR(_name) \
3386 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3387 
3388 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3389 				    struct kobj_attribute *attr, char *buf)
3390 {
3391 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3392 }
3393 
3394 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3395 				     struct kobj_attribute *attr,
3396 				     const char *buf, size_t count)
3397 {
3398 	unsigned int msecs;
3399 	int err;
3400 
3401 	err = kstrtouint(buf, 10, &msecs);
3402 	if (err)
3403 		return -EINVAL;
3404 
3405 	ksm_thread_sleep_millisecs = msecs;
3406 	wake_up_interruptible(&ksm_iter_wait);
3407 
3408 	return count;
3409 }
3410 KSM_ATTR(sleep_millisecs);
3411 
3412 static ssize_t pages_to_scan_show(struct kobject *kobj,
3413 				  struct kobj_attribute *attr, char *buf)
3414 {
3415 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3416 }
3417 
3418 static ssize_t pages_to_scan_store(struct kobject *kobj,
3419 				   struct kobj_attribute *attr,
3420 				   const char *buf, size_t count)
3421 {
3422 	unsigned int nr_pages;
3423 	int err;
3424 
3425 	if (ksm_advisor != KSM_ADVISOR_NONE)
3426 		return -EINVAL;
3427 
3428 	err = kstrtouint(buf, 10, &nr_pages);
3429 	if (err)
3430 		return -EINVAL;
3431 
3432 	ksm_thread_pages_to_scan = nr_pages;
3433 
3434 	return count;
3435 }
3436 KSM_ATTR(pages_to_scan);
3437 
3438 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3439 			char *buf)
3440 {
3441 	return sysfs_emit(buf, "%lu\n", ksm_run);
3442 }
3443 
3444 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3445 			 const char *buf, size_t count)
3446 {
3447 	unsigned int flags;
3448 	int err;
3449 
3450 	err = kstrtouint(buf, 10, &flags);
3451 	if (err)
3452 		return -EINVAL;
3453 	if (flags > KSM_RUN_UNMERGE)
3454 		return -EINVAL;
3455 
3456 	/*
3457 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3458 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3459 	 * breaking COW to free the pages_shared (but leaves mm_slots
3460 	 * on the list for when ksmd may be set running again).
3461 	 */
3462 
3463 	mutex_lock(&ksm_thread_mutex);
3464 	wait_while_offlining();
3465 	if (ksm_run != flags) {
3466 		ksm_run = flags;
3467 		if (flags & KSM_RUN_UNMERGE) {
3468 			set_current_oom_origin();
3469 			err = unmerge_and_remove_all_rmap_items();
3470 			clear_current_oom_origin();
3471 			if (err) {
3472 				ksm_run = KSM_RUN_STOP;
3473 				count = err;
3474 			}
3475 		}
3476 	}
3477 	mutex_unlock(&ksm_thread_mutex);
3478 
3479 	if (flags & KSM_RUN_MERGE)
3480 		wake_up_interruptible(&ksm_thread_wait);
3481 
3482 	return count;
3483 }
3484 KSM_ATTR(run);
3485 
3486 #ifdef CONFIG_NUMA
3487 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3488 				       struct kobj_attribute *attr, char *buf)
3489 {
3490 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3491 }
3492 
3493 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3494 				   struct kobj_attribute *attr,
3495 				   const char *buf, size_t count)
3496 {
3497 	int err;
3498 	unsigned long knob;
3499 
3500 	err = kstrtoul(buf, 10, &knob);
3501 	if (err)
3502 		return err;
3503 	if (knob > 1)
3504 		return -EINVAL;
3505 
3506 	mutex_lock(&ksm_thread_mutex);
3507 	wait_while_offlining();
3508 	if (ksm_merge_across_nodes != knob) {
3509 		if (ksm_pages_shared || remove_all_stable_nodes())
3510 			err = -EBUSY;
3511 		else if (root_stable_tree == one_stable_tree) {
3512 			struct rb_root *buf;
3513 			/*
3514 			 * This is the first time that we switch away from the
3515 			 * default of merging across nodes: must now allocate
3516 			 * a buffer to hold as many roots as may be needed.
3517 			 * Allocate stable and unstable together:
3518 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3519 			 */
3520 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3521 				      GFP_KERNEL);
3522 			/* Let us assume that RB_ROOT is NULL is zero */
3523 			if (!buf)
3524 				err = -ENOMEM;
3525 			else {
3526 				root_stable_tree = buf;
3527 				root_unstable_tree = buf + nr_node_ids;
3528 				/* Stable tree is empty but not the unstable */
3529 				root_unstable_tree[0] = one_unstable_tree[0];
3530 			}
3531 		}
3532 		if (!err) {
3533 			ksm_merge_across_nodes = knob;
3534 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3535 		}
3536 	}
3537 	mutex_unlock(&ksm_thread_mutex);
3538 
3539 	return err ? err : count;
3540 }
3541 KSM_ATTR(merge_across_nodes);
3542 #endif
3543 
3544 static ssize_t use_zero_pages_show(struct kobject *kobj,
3545 				   struct kobj_attribute *attr, char *buf)
3546 {
3547 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3548 }
3549 static ssize_t use_zero_pages_store(struct kobject *kobj,
3550 				   struct kobj_attribute *attr,
3551 				   const char *buf, size_t count)
3552 {
3553 	int err;
3554 	bool value;
3555 
3556 	err = kstrtobool(buf, &value);
3557 	if (err)
3558 		return -EINVAL;
3559 
3560 	ksm_use_zero_pages = value;
3561 
3562 	return count;
3563 }
3564 KSM_ATTR(use_zero_pages);
3565 
3566 static ssize_t max_page_sharing_show(struct kobject *kobj,
3567 				     struct kobj_attribute *attr, char *buf)
3568 {
3569 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3570 }
3571 
3572 static ssize_t max_page_sharing_store(struct kobject *kobj,
3573 				      struct kobj_attribute *attr,
3574 				      const char *buf, size_t count)
3575 {
3576 	int err;
3577 	int knob;
3578 
3579 	err = kstrtoint(buf, 10, &knob);
3580 	if (err)
3581 		return err;
3582 	/*
3583 	 * When a KSM page is created it is shared by 2 mappings. This
3584 	 * being a signed comparison, it implicitly verifies it's not
3585 	 * negative.
3586 	 */
3587 	if (knob < 2)
3588 		return -EINVAL;
3589 
3590 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3591 		return count;
3592 
3593 	mutex_lock(&ksm_thread_mutex);
3594 	wait_while_offlining();
3595 	if (ksm_max_page_sharing != knob) {
3596 		if (ksm_pages_shared || remove_all_stable_nodes())
3597 			err = -EBUSY;
3598 		else
3599 			ksm_max_page_sharing = knob;
3600 	}
3601 	mutex_unlock(&ksm_thread_mutex);
3602 
3603 	return err ? err : count;
3604 }
3605 KSM_ATTR(max_page_sharing);
3606 
3607 static ssize_t pages_scanned_show(struct kobject *kobj,
3608 				  struct kobj_attribute *attr, char *buf)
3609 {
3610 	return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3611 }
3612 KSM_ATTR_RO(pages_scanned);
3613 
3614 static ssize_t pages_shared_show(struct kobject *kobj,
3615 				 struct kobj_attribute *attr, char *buf)
3616 {
3617 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3618 }
3619 KSM_ATTR_RO(pages_shared);
3620 
3621 static ssize_t pages_sharing_show(struct kobject *kobj,
3622 				  struct kobj_attribute *attr, char *buf)
3623 {
3624 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3625 }
3626 KSM_ATTR_RO(pages_sharing);
3627 
3628 static ssize_t pages_unshared_show(struct kobject *kobj,
3629 				   struct kobj_attribute *attr, char *buf)
3630 {
3631 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3632 }
3633 KSM_ATTR_RO(pages_unshared);
3634 
3635 static ssize_t pages_volatile_show(struct kobject *kobj,
3636 				   struct kobj_attribute *attr, char *buf)
3637 {
3638 	long ksm_pages_volatile;
3639 
3640 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3641 				- ksm_pages_sharing - ksm_pages_unshared;
3642 	/*
3643 	 * It was not worth any locking to calculate that statistic,
3644 	 * but it might therefore sometimes be negative: conceal that.
3645 	 */
3646 	if (ksm_pages_volatile < 0)
3647 		ksm_pages_volatile = 0;
3648 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3649 }
3650 KSM_ATTR_RO(pages_volatile);
3651 
3652 static ssize_t pages_skipped_show(struct kobject *kobj,
3653 				  struct kobj_attribute *attr, char *buf)
3654 {
3655 	return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3656 }
3657 KSM_ATTR_RO(pages_skipped);
3658 
3659 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3660 				struct kobj_attribute *attr, char *buf)
3661 {
3662 	return sysfs_emit(buf, "%ld\n", ksm_zero_pages);
3663 }
3664 KSM_ATTR_RO(ksm_zero_pages);
3665 
3666 static ssize_t general_profit_show(struct kobject *kobj,
3667 				   struct kobj_attribute *attr, char *buf)
3668 {
3669 	long general_profit;
3670 
3671 	general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE -
3672 				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3673 
3674 	return sysfs_emit(buf, "%ld\n", general_profit);
3675 }
3676 KSM_ATTR_RO(general_profit);
3677 
3678 static ssize_t stable_node_dups_show(struct kobject *kobj,
3679 				     struct kobj_attribute *attr, char *buf)
3680 {
3681 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3682 }
3683 KSM_ATTR_RO(stable_node_dups);
3684 
3685 static ssize_t stable_node_chains_show(struct kobject *kobj,
3686 				       struct kobj_attribute *attr, char *buf)
3687 {
3688 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3689 }
3690 KSM_ATTR_RO(stable_node_chains);
3691 
3692 static ssize_t
3693 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3694 					struct kobj_attribute *attr,
3695 					char *buf)
3696 {
3697 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3698 }
3699 
3700 static ssize_t
3701 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3702 					 struct kobj_attribute *attr,
3703 					 const char *buf, size_t count)
3704 {
3705 	unsigned int msecs;
3706 	int err;
3707 
3708 	err = kstrtouint(buf, 10, &msecs);
3709 	if (err)
3710 		return -EINVAL;
3711 
3712 	ksm_stable_node_chains_prune_millisecs = msecs;
3713 
3714 	return count;
3715 }
3716 KSM_ATTR(stable_node_chains_prune_millisecs);
3717 
3718 static ssize_t full_scans_show(struct kobject *kobj,
3719 			       struct kobj_attribute *attr, char *buf)
3720 {
3721 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3722 }
3723 KSM_ATTR_RO(full_scans);
3724 
3725 static ssize_t smart_scan_show(struct kobject *kobj,
3726 			       struct kobj_attribute *attr, char *buf)
3727 {
3728 	return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3729 }
3730 
3731 static ssize_t smart_scan_store(struct kobject *kobj,
3732 				struct kobj_attribute *attr,
3733 				const char *buf, size_t count)
3734 {
3735 	int err;
3736 	bool value;
3737 
3738 	err = kstrtobool(buf, &value);
3739 	if (err)
3740 		return -EINVAL;
3741 
3742 	ksm_smart_scan = value;
3743 	return count;
3744 }
3745 KSM_ATTR(smart_scan);
3746 
3747 static ssize_t advisor_mode_show(struct kobject *kobj,
3748 				 struct kobj_attribute *attr, char *buf)
3749 {
3750 	const char *output;
3751 
3752 	if (ksm_advisor == KSM_ADVISOR_NONE)
3753 		output = "[none] scan-time";
3754 	else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3755 		output = "none [scan-time]";
3756 
3757 	return sysfs_emit(buf, "%s\n", output);
3758 }
3759 
3760 static ssize_t advisor_mode_store(struct kobject *kobj,
3761 				  struct kobj_attribute *attr, const char *buf,
3762 				  size_t count)
3763 {
3764 	enum ksm_advisor_type curr_advisor = ksm_advisor;
3765 
3766 	if (sysfs_streq("scan-time", buf))
3767 		ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3768 	else if (sysfs_streq("none", buf))
3769 		ksm_advisor = KSM_ADVISOR_NONE;
3770 	else
3771 		return -EINVAL;
3772 
3773 	/* Set advisor default values */
3774 	if (curr_advisor != ksm_advisor)
3775 		set_advisor_defaults();
3776 
3777 	return count;
3778 }
3779 KSM_ATTR(advisor_mode);
3780 
3781 static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3782 				    struct kobj_attribute *attr, char *buf)
3783 {
3784 	return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3785 }
3786 
3787 static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3788 				     struct kobj_attribute *attr,
3789 				     const char *buf, size_t count)
3790 {
3791 	int err;
3792 	unsigned long value;
3793 
3794 	err = kstrtoul(buf, 10, &value);
3795 	if (err)
3796 		return -EINVAL;
3797 
3798 	ksm_advisor_max_cpu = value;
3799 	return count;
3800 }
3801 KSM_ATTR(advisor_max_cpu);
3802 
3803 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3804 					struct kobj_attribute *attr, char *buf)
3805 {
3806 	return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3807 }
3808 
3809 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3810 					struct kobj_attribute *attr,
3811 					const char *buf, size_t count)
3812 {
3813 	int err;
3814 	unsigned long value;
3815 
3816 	err = kstrtoul(buf, 10, &value);
3817 	if (err)
3818 		return -EINVAL;
3819 
3820 	ksm_advisor_min_pages_to_scan = value;
3821 	return count;
3822 }
3823 KSM_ATTR(advisor_min_pages_to_scan);
3824 
3825 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3826 					struct kobj_attribute *attr, char *buf)
3827 {
3828 	return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3829 }
3830 
3831 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3832 					struct kobj_attribute *attr,
3833 					const char *buf, size_t count)
3834 {
3835 	int err;
3836 	unsigned long value;
3837 
3838 	err = kstrtoul(buf, 10, &value);
3839 	if (err)
3840 		return -EINVAL;
3841 
3842 	ksm_advisor_max_pages_to_scan = value;
3843 	return count;
3844 }
3845 KSM_ATTR(advisor_max_pages_to_scan);
3846 
3847 static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3848 					     struct kobj_attribute *attr, char *buf)
3849 {
3850 	return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3851 }
3852 
3853 static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3854 					      struct kobj_attribute *attr,
3855 					      const char *buf, size_t count)
3856 {
3857 	int err;
3858 	unsigned long value;
3859 
3860 	err = kstrtoul(buf, 10, &value);
3861 	if (err)
3862 		return -EINVAL;
3863 	if (value < 1)
3864 		return -EINVAL;
3865 
3866 	ksm_advisor_target_scan_time = value;
3867 	return count;
3868 }
3869 KSM_ATTR(advisor_target_scan_time);
3870 
3871 static struct attribute *ksm_attrs[] = {
3872 	&sleep_millisecs_attr.attr,
3873 	&pages_to_scan_attr.attr,
3874 	&run_attr.attr,
3875 	&pages_scanned_attr.attr,
3876 	&pages_shared_attr.attr,
3877 	&pages_sharing_attr.attr,
3878 	&pages_unshared_attr.attr,
3879 	&pages_volatile_attr.attr,
3880 	&pages_skipped_attr.attr,
3881 	&ksm_zero_pages_attr.attr,
3882 	&full_scans_attr.attr,
3883 #ifdef CONFIG_NUMA
3884 	&merge_across_nodes_attr.attr,
3885 #endif
3886 	&max_page_sharing_attr.attr,
3887 	&stable_node_chains_attr.attr,
3888 	&stable_node_dups_attr.attr,
3889 	&stable_node_chains_prune_millisecs_attr.attr,
3890 	&use_zero_pages_attr.attr,
3891 	&general_profit_attr.attr,
3892 	&smart_scan_attr.attr,
3893 	&advisor_mode_attr.attr,
3894 	&advisor_max_cpu_attr.attr,
3895 	&advisor_min_pages_to_scan_attr.attr,
3896 	&advisor_max_pages_to_scan_attr.attr,
3897 	&advisor_target_scan_time_attr.attr,
3898 	NULL,
3899 };
3900 
3901 static const struct attribute_group ksm_attr_group = {
3902 	.attrs = ksm_attrs,
3903 	.name = "ksm",
3904 };
3905 #endif /* CONFIG_SYSFS */
3906 
3907 static int __init ksm_init(void)
3908 {
3909 	struct task_struct *ksm_thread;
3910 	int err;
3911 
3912 	/* The correct value depends on page size and endianness */
3913 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3914 	/* Default to false for backwards compatibility */
3915 	ksm_use_zero_pages = false;
3916 
3917 	err = ksm_slab_init();
3918 	if (err)
3919 		goto out;
3920 
3921 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3922 	if (IS_ERR(ksm_thread)) {
3923 		pr_err("ksm: creating kthread failed\n");
3924 		err = PTR_ERR(ksm_thread);
3925 		goto out_free;
3926 	}
3927 
3928 #ifdef CONFIG_SYSFS
3929 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3930 	if (err) {
3931 		pr_err("ksm: register sysfs failed\n");
3932 		kthread_stop(ksm_thread);
3933 		goto out_free;
3934 	}
3935 #else
3936 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3937 
3938 #endif /* CONFIG_SYSFS */
3939 
3940 #ifdef CONFIG_MEMORY_HOTREMOVE
3941 	/* There is no significance to this priority 100 */
3942 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3943 #endif
3944 	return 0;
3945 
3946 out_free:
3947 	ksm_slab_free();
3948 out:
3949 	return err;
3950 }
3951 subsys_initcall(ksm_init);
3952