xref: /linux/mm/ksm.c (revision e0e53dee69e07e9446eb16ceabd55a1116611696)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 
37 #include <asm/tlbflush.h>
38 #include "internal.h"
39 
40 /*
41  * A few notes about the KSM scanning process,
42  * to make it easier to understand the data structures below:
43  *
44  * In order to reduce excessive scanning, KSM sorts the memory pages by their
45  * contents into a data structure that holds pointers to the pages' locations.
46  *
47  * Since the contents of the pages may change at any moment, KSM cannot just
48  * insert the pages into a normal sorted tree and expect it to find anything.
49  * Therefore KSM uses two data structures - the stable and the unstable tree.
50  *
51  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
52  * by their contents.  Because each such page is write-protected, searching on
53  * this tree is fully assured to be working (except when pages are unmapped),
54  * and therefore this tree is called the stable tree.
55  *
56  * In addition to the stable tree, KSM uses a second data structure called the
57  * unstable tree: this tree holds pointers to pages which have been found to
58  * be "unchanged for a period of time".  The unstable tree sorts these pages
59  * by their contents, but since they are not write-protected, KSM cannot rely
60  * upon the unstable tree to work correctly - the unstable tree is liable to
61  * be corrupted as its contents are modified, and so it is called unstable.
62  *
63  * KSM solves this problem by several techniques:
64  *
65  * 1) The unstable tree is flushed every time KSM completes scanning all
66  *    memory areas, and then the tree is rebuilt again from the beginning.
67  * 2) KSM will only insert into the unstable tree, pages whose hash value
68  *    has not changed since the previous scan of all memory areas.
69  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
70  *    colors of the nodes and not on their contents, assuring that even when
71  *    the tree gets "corrupted" it won't get out of balance, so scanning time
72  *    remains the same (also, searching and inserting nodes in an rbtree uses
73  *    the same algorithm, so we have no overhead when we flush and rebuild).
74  * 4) KSM never flushes the stable tree, which means that even if it were to
75  *    take 10 attempts to find a page in the unstable tree, once it is found,
76  *    it is secured in the stable tree.  (When we scan a new page, we first
77  *    compare it against the stable tree, and then against the unstable tree.)
78  */
79 
80 /**
81  * struct mm_slot - ksm information per mm that is being scanned
82  * @link: link to the mm_slots hash list
83  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
84  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
85  * @mm: the mm that this information is valid for
86  */
87 struct mm_slot {
88 	struct hlist_node link;
89 	struct list_head mm_list;
90 	struct rmap_item *rmap_list;
91 	struct mm_struct *mm;
92 };
93 
94 /**
95  * struct ksm_scan - cursor for scanning
96  * @mm_slot: the current mm_slot we are scanning
97  * @address: the next address inside that to be scanned
98  * @rmap_list: link to the next rmap to be scanned in the rmap_list
99  * @seqnr: count of completed full scans (needed when removing unstable node)
100  *
101  * There is only the one ksm_scan instance of this cursor structure.
102  */
103 struct ksm_scan {
104 	struct mm_slot *mm_slot;
105 	unsigned long address;
106 	struct rmap_item **rmap_list;
107 	unsigned long seqnr;
108 };
109 
110 /**
111  * struct stable_node - node of the stable rbtree
112  * @node: rb node of this ksm page in the stable tree
113  * @hlist: hlist head of rmap_items using this ksm page
114  * @kpfn: page frame number of this ksm page
115  */
116 struct stable_node {
117 	struct rb_node node;
118 	struct hlist_head hlist;
119 	unsigned long kpfn;
120 };
121 
122 /**
123  * struct rmap_item - reverse mapping item for virtual addresses
124  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
125  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
126  * @mm: the memory structure this rmap_item is pointing into
127  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
128  * @oldchecksum: previous checksum of the page at that virtual address
129  * @node: rb node of this rmap_item in the unstable tree
130  * @head: pointer to stable_node heading this list in the stable tree
131  * @hlist: link into hlist of rmap_items hanging off that stable_node
132  */
133 struct rmap_item {
134 	struct rmap_item *rmap_list;
135 	struct anon_vma *anon_vma;	/* when stable */
136 	struct mm_struct *mm;
137 	unsigned long address;		/* + low bits used for flags below */
138 	unsigned int oldchecksum;	/* when unstable */
139 	union {
140 		struct rb_node node;	/* when node of unstable tree */
141 		struct {		/* when listed from stable tree */
142 			struct stable_node *head;
143 			struct hlist_node hlist;
144 		};
145 	};
146 };
147 
148 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
149 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
150 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
151 
152 /* The stable and unstable tree heads */
153 static struct rb_root root_stable_tree = RB_ROOT;
154 static struct rb_root root_unstable_tree = RB_ROOT;
155 
156 #define MM_SLOTS_HASH_HEADS 1024
157 static struct hlist_head *mm_slots_hash;
158 
159 static struct mm_slot ksm_mm_head = {
160 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
161 };
162 static struct ksm_scan ksm_scan = {
163 	.mm_slot = &ksm_mm_head,
164 };
165 
166 static struct kmem_cache *rmap_item_cache;
167 static struct kmem_cache *stable_node_cache;
168 static struct kmem_cache *mm_slot_cache;
169 
170 /* The number of nodes in the stable tree */
171 static unsigned long ksm_pages_shared;
172 
173 /* The number of page slots additionally sharing those nodes */
174 static unsigned long ksm_pages_sharing;
175 
176 /* The number of nodes in the unstable tree */
177 static unsigned long ksm_pages_unshared;
178 
179 /* The number of rmap_items in use: to calculate pages_volatile */
180 static unsigned long ksm_rmap_items;
181 
182 /* Number of pages ksmd should scan in one batch */
183 static unsigned int ksm_thread_pages_to_scan = 100;
184 
185 /* Milliseconds ksmd should sleep between batches */
186 static unsigned int ksm_thread_sleep_millisecs = 20;
187 
188 #define KSM_RUN_STOP	0
189 #define KSM_RUN_MERGE	1
190 #define KSM_RUN_UNMERGE	2
191 static unsigned int ksm_run = KSM_RUN_STOP;
192 
193 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
194 static DEFINE_MUTEX(ksm_thread_mutex);
195 static DEFINE_SPINLOCK(ksm_mmlist_lock);
196 
197 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
198 		sizeof(struct __struct), __alignof__(struct __struct),\
199 		(__flags), NULL)
200 
201 static int __init ksm_slab_init(void)
202 {
203 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
204 	if (!rmap_item_cache)
205 		goto out;
206 
207 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
208 	if (!stable_node_cache)
209 		goto out_free1;
210 
211 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
212 	if (!mm_slot_cache)
213 		goto out_free2;
214 
215 	return 0;
216 
217 out_free2:
218 	kmem_cache_destroy(stable_node_cache);
219 out_free1:
220 	kmem_cache_destroy(rmap_item_cache);
221 out:
222 	return -ENOMEM;
223 }
224 
225 static void __init ksm_slab_free(void)
226 {
227 	kmem_cache_destroy(mm_slot_cache);
228 	kmem_cache_destroy(stable_node_cache);
229 	kmem_cache_destroy(rmap_item_cache);
230 	mm_slot_cache = NULL;
231 }
232 
233 static inline struct rmap_item *alloc_rmap_item(void)
234 {
235 	struct rmap_item *rmap_item;
236 
237 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
238 	if (rmap_item)
239 		ksm_rmap_items++;
240 	return rmap_item;
241 }
242 
243 static inline void free_rmap_item(struct rmap_item *rmap_item)
244 {
245 	ksm_rmap_items--;
246 	rmap_item->mm = NULL;	/* debug safety */
247 	kmem_cache_free(rmap_item_cache, rmap_item);
248 }
249 
250 static inline struct stable_node *alloc_stable_node(void)
251 {
252 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
253 }
254 
255 static inline void free_stable_node(struct stable_node *stable_node)
256 {
257 	kmem_cache_free(stable_node_cache, stable_node);
258 }
259 
260 static inline struct mm_slot *alloc_mm_slot(void)
261 {
262 	if (!mm_slot_cache)	/* initialization failed */
263 		return NULL;
264 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
265 }
266 
267 static inline void free_mm_slot(struct mm_slot *mm_slot)
268 {
269 	kmem_cache_free(mm_slot_cache, mm_slot);
270 }
271 
272 static int __init mm_slots_hash_init(void)
273 {
274 	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
275 				GFP_KERNEL);
276 	if (!mm_slots_hash)
277 		return -ENOMEM;
278 	return 0;
279 }
280 
281 static void __init mm_slots_hash_free(void)
282 {
283 	kfree(mm_slots_hash);
284 }
285 
286 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
287 {
288 	struct mm_slot *mm_slot;
289 	struct hlist_head *bucket;
290 	struct hlist_node *node;
291 
292 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
293 				% MM_SLOTS_HASH_HEADS];
294 	hlist_for_each_entry(mm_slot, node, bucket, link) {
295 		if (mm == mm_slot->mm)
296 			return mm_slot;
297 	}
298 	return NULL;
299 }
300 
301 static void insert_to_mm_slots_hash(struct mm_struct *mm,
302 				    struct mm_slot *mm_slot)
303 {
304 	struct hlist_head *bucket;
305 
306 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
307 				% MM_SLOTS_HASH_HEADS];
308 	mm_slot->mm = mm;
309 	hlist_add_head(&mm_slot->link, bucket);
310 }
311 
312 static inline int in_stable_tree(struct rmap_item *rmap_item)
313 {
314 	return rmap_item->address & STABLE_FLAG;
315 }
316 
317 static void hold_anon_vma(struct rmap_item *rmap_item,
318 			  struct anon_vma *anon_vma)
319 {
320 	rmap_item->anon_vma = anon_vma;
321 	atomic_inc(&anon_vma->ksm_refcount);
322 }
323 
324 static void drop_anon_vma(struct rmap_item *rmap_item)
325 {
326 	struct anon_vma *anon_vma = rmap_item->anon_vma;
327 
328 	if (atomic_dec_and_lock(&anon_vma->ksm_refcount, &anon_vma->lock)) {
329 		int empty = list_empty(&anon_vma->head);
330 		spin_unlock(&anon_vma->lock);
331 		if (empty)
332 			anon_vma_free(anon_vma);
333 	}
334 }
335 
336 /*
337  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
338  * page tables after it has passed through ksm_exit() - which, if necessary,
339  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
340  * a special flag: they can just back out as soon as mm_users goes to zero.
341  * ksm_test_exit() is used throughout to make this test for exit: in some
342  * places for correctness, in some places just to avoid unnecessary work.
343  */
344 static inline bool ksm_test_exit(struct mm_struct *mm)
345 {
346 	return atomic_read(&mm->mm_users) == 0;
347 }
348 
349 /*
350  * We use break_ksm to break COW on a ksm page: it's a stripped down
351  *
352  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
353  *		put_page(page);
354  *
355  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
356  * in case the application has unmapped and remapped mm,addr meanwhile.
357  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
358  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
359  */
360 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
361 {
362 	struct page *page;
363 	int ret = 0;
364 
365 	do {
366 		cond_resched();
367 		page = follow_page(vma, addr, FOLL_GET);
368 		if (!page)
369 			break;
370 		if (PageKsm(page))
371 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
372 							FAULT_FLAG_WRITE);
373 		else
374 			ret = VM_FAULT_WRITE;
375 		put_page(page);
376 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
377 	/*
378 	 * We must loop because handle_mm_fault() may back out if there's
379 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
380 	 *
381 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
382 	 * COW has been broken, even if the vma does not permit VM_WRITE;
383 	 * but note that a concurrent fault might break PageKsm for us.
384 	 *
385 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
386 	 * backing file, which also invalidates anonymous pages: that's
387 	 * okay, that truncation will have unmapped the PageKsm for us.
388 	 *
389 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
390 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
391 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
392 	 * to user; and ksmd, having no mm, would never be chosen for that.
393 	 *
394 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
395 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
396 	 * even ksmd can fail in this way - though it's usually breaking ksm
397 	 * just to undo a merge it made a moment before, so unlikely to oom.
398 	 *
399 	 * That's a pity: we might therefore have more kernel pages allocated
400 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
401 	 * will retry to break_cow on each pass, so should recover the page
402 	 * in due course.  The important thing is to not let VM_MERGEABLE
403 	 * be cleared while any such pages might remain in the area.
404 	 */
405 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
406 }
407 
408 static void break_cow(struct rmap_item *rmap_item)
409 {
410 	struct mm_struct *mm = rmap_item->mm;
411 	unsigned long addr = rmap_item->address;
412 	struct vm_area_struct *vma;
413 
414 	/*
415 	 * It is not an accident that whenever we want to break COW
416 	 * to undo, we also need to drop a reference to the anon_vma.
417 	 */
418 	drop_anon_vma(rmap_item);
419 
420 	down_read(&mm->mmap_sem);
421 	if (ksm_test_exit(mm))
422 		goto out;
423 	vma = find_vma(mm, addr);
424 	if (!vma || vma->vm_start > addr)
425 		goto out;
426 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
427 		goto out;
428 	break_ksm(vma, addr);
429 out:
430 	up_read(&mm->mmap_sem);
431 }
432 
433 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
434 {
435 	struct mm_struct *mm = rmap_item->mm;
436 	unsigned long addr = rmap_item->address;
437 	struct vm_area_struct *vma;
438 	struct page *page;
439 
440 	down_read(&mm->mmap_sem);
441 	if (ksm_test_exit(mm))
442 		goto out;
443 	vma = find_vma(mm, addr);
444 	if (!vma || vma->vm_start > addr)
445 		goto out;
446 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
447 		goto out;
448 
449 	page = follow_page(vma, addr, FOLL_GET);
450 	if (!page)
451 		goto out;
452 	if (PageAnon(page)) {
453 		flush_anon_page(vma, page, addr);
454 		flush_dcache_page(page);
455 	} else {
456 		put_page(page);
457 out:		page = NULL;
458 	}
459 	up_read(&mm->mmap_sem);
460 	return page;
461 }
462 
463 static void remove_node_from_stable_tree(struct stable_node *stable_node)
464 {
465 	struct rmap_item *rmap_item;
466 	struct hlist_node *hlist;
467 
468 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
469 		if (rmap_item->hlist.next)
470 			ksm_pages_sharing--;
471 		else
472 			ksm_pages_shared--;
473 		drop_anon_vma(rmap_item);
474 		rmap_item->address &= PAGE_MASK;
475 		cond_resched();
476 	}
477 
478 	rb_erase(&stable_node->node, &root_stable_tree);
479 	free_stable_node(stable_node);
480 }
481 
482 /*
483  * get_ksm_page: checks if the page indicated by the stable node
484  * is still its ksm page, despite having held no reference to it.
485  * In which case we can trust the content of the page, and it
486  * returns the gotten page; but if the page has now been zapped,
487  * remove the stale node from the stable tree and return NULL.
488  *
489  * You would expect the stable_node to hold a reference to the ksm page.
490  * But if it increments the page's count, swapping out has to wait for
491  * ksmd to come around again before it can free the page, which may take
492  * seconds or even minutes: much too unresponsive.  So instead we use a
493  * "keyhole reference": access to the ksm page from the stable node peeps
494  * out through its keyhole to see if that page still holds the right key,
495  * pointing back to this stable node.  This relies on freeing a PageAnon
496  * page to reset its page->mapping to NULL, and relies on no other use of
497  * a page to put something that might look like our key in page->mapping.
498  *
499  * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
500  * but this is different - made simpler by ksm_thread_mutex being held, but
501  * interesting for assuming that no other use of the struct page could ever
502  * put our expected_mapping into page->mapping (or a field of the union which
503  * coincides with page->mapping).  The RCU calls are not for KSM at all, but
504  * to keep the page_count protocol described with page_cache_get_speculative.
505  *
506  * Note: it is possible that get_ksm_page() will return NULL one moment,
507  * then page the next, if the page is in between page_freeze_refs() and
508  * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
509  * is on its way to being freed; but it is an anomaly to bear in mind.
510  */
511 static struct page *get_ksm_page(struct stable_node *stable_node)
512 {
513 	struct page *page;
514 	void *expected_mapping;
515 
516 	page = pfn_to_page(stable_node->kpfn);
517 	expected_mapping = (void *)stable_node +
518 				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
519 	rcu_read_lock();
520 	if (page->mapping != expected_mapping)
521 		goto stale;
522 	if (!get_page_unless_zero(page))
523 		goto stale;
524 	if (page->mapping != expected_mapping) {
525 		put_page(page);
526 		goto stale;
527 	}
528 	rcu_read_unlock();
529 	return page;
530 stale:
531 	rcu_read_unlock();
532 	remove_node_from_stable_tree(stable_node);
533 	return NULL;
534 }
535 
536 /*
537  * Removing rmap_item from stable or unstable tree.
538  * This function will clean the information from the stable/unstable tree.
539  */
540 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
541 {
542 	if (rmap_item->address & STABLE_FLAG) {
543 		struct stable_node *stable_node;
544 		struct page *page;
545 
546 		stable_node = rmap_item->head;
547 		page = get_ksm_page(stable_node);
548 		if (!page)
549 			goto out;
550 
551 		lock_page(page);
552 		hlist_del(&rmap_item->hlist);
553 		unlock_page(page);
554 		put_page(page);
555 
556 		if (stable_node->hlist.first)
557 			ksm_pages_sharing--;
558 		else
559 			ksm_pages_shared--;
560 
561 		drop_anon_vma(rmap_item);
562 		rmap_item->address &= PAGE_MASK;
563 
564 	} else if (rmap_item->address & UNSTABLE_FLAG) {
565 		unsigned char age;
566 		/*
567 		 * Usually ksmd can and must skip the rb_erase, because
568 		 * root_unstable_tree was already reset to RB_ROOT.
569 		 * But be careful when an mm is exiting: do the rb_erase
570 		 * if this rmap_item was inserted by this scan, rather
571 		 * than left over from before.
572 		 */
573 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
574 		BUG_ON(age > 1);
575 		if (!age)
576 			rb_erase(&rmap_item->node, &root_unstable_tree);
577 
578 		ksm_pages_unshared--;
579 		rmap_item->address &= PAGE_MASK;
580 	}
581 out:
582 	cond_resched();		/* we're called from many long loops */
583 }
584 
585 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
586 				       struct rmap_item **rmap_list)
587 {
588 	while (*rmap_list) {
589 		struct rmap_item *rmap_item = *rmap_list;
590 		*rmap_list = rmap_item->rmap_list;
591 		remove_rmap_item_from_tree(rmap_item);
592 		free_rmap_item(rmap_item);
593 	}
594 }
595 
596 /*
597  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
598  * than check every pte of a given vma, the locking doesn't quite work for
599  * that - an rmap_item is assigned to the stable tree after inserting ksm
600  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
601  * rmap_items from parent to child at fork time (so as not to waste time
602  * if exit comes before the next scan reaches it).
603  *
604  * Similarly, although we'd like to remove rmap_items (so updating counts
605  * and freeing memory) when unmerging an area, it's easier to leave that
606  * to the next pass of ksmd - consider, for example, how ksmd might be
607  * in cmp_and_merge_page on one of the rmap_items we would be removing.
608  */
609 static int unmerge_ksm_pages(struct vm_area_struct *vma,
610 			     unsigned long start, unsigned long end)
611 {
612 	unsigned long addr;
613 	int err = 0;
614 
615 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
616 		if (ksm_test_exit(vma->vm_mm))
617 			break;
618 		if (signal_pending(current))
619 			err = -ERESTARTSYS;
620 		else
621 			err = break_ksm(vma, addr);
622 	}
623 	return err;
624 }
625 
626 #ifdef CONFIG_SYSFS
627 /*
628  * Only called through the sysfs control interface:
629  */
630 static int unmerge_and_remove_all_rmap_items(void)
631 {
632 	struct mm_slot *mm_slot;
633 	struct mm_struct *mm;
634 	struct vm_area_struct *vma;
635 	int err = 0;
636 
637 	spin_lock(&ksm_mmlist_lock);
638 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
639 						struct mm_slot, mm_list);
640 	spin_unlock(&ksm_mmlist_lock);
641 
642 	for (mm_slot = ksm_scan.mm_slot;
643 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
644 		mm = mm_slot->mm;
645 		down_read(&mm->mmap_sem);
646 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
647 			if (ksm_test_exit(mm))
648 				break;
649 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
650 				continue;
651 			err = unmerge_ksm_pages(vma,
652 						vma->vm_start, vma->vm_end);
653 			if (err)
654 				goto error;
655 		}
656 
657 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
658 
659 		spin_lock(&ksm_mmlist_lock);
660 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
661 						struct mm_slot, mm_list);
662 		if (ksm_test_exit(mm)) {
663 			hlist_del(&mm_slot->link);
664 			list_del(&mm_slot->mm_list);
665 			spin_unlock(&ksm_mmlist_lock);
666 
667 			free_mm_slot(mm_slot);
668 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
669 			up_read(&mm->mmap_sem);
670 			mmdrop(mm);
671 		} else {
672 			spin_unlock(&ksm_mmlist_lock);
673 			up_read(&mm->mmap_sem);
674 		}
675 	}
676 
677 	ksm_scan.seqnr = 0;
678 	return 0;
679 
680 error:
681 	up_read(&mm->mmap_sem);
682 	spin_lock(&ksm_mmlist_lock);
683 	ksm_scan.mm_slot = &ksm_mm_head;
684 	spin_unlock(&ksm_mmlist_lock);
685 	return err;
686 }
687 #endif /* CONFIG_SYSFS */
688 
689 static u32 calc_checksum(struct page *page)
690 {
691 	u32 checksum;
692 	void *addr = kmap_atomic(page, KM_USER0);
693 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
694 	kunmap_atomic(addr, KM_USER0);
695 	return checksum;
696 }
697 
698 static int memcmp_pages(struct page *page1, struct page *page2)
699 {
700 	char *addr1, *addr2;
701 	int ret;
702 
703 	addr1 = kmap_atomic(page1, KM_USER0);
704 	addr2 = kmap_atomic(page2, KM_USER1);
705 	ret = memcmp(addr1, addr2, PAGE_SIZE);
706 	kunmap_atomic(addr2, KM_USER1);
707 	kunmap_atomic(addr1, KM_USER0);
708 	return ret;
709 }
710 
711 static inline int pages_identical(struct page *page1, struct page *page2)
712 {
713 	return !memcmp_pages(page1, page2);
714 }
715 
716 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
717 			      pte_t *orig_pte)
718 {
719 	struct mm_struct *mm = vma->vm_mm;
720 	unsigned long addr;
721 	pte_t *ptep;
722 	spinlock_t *ptl;
723 	int swapped;
724 	int err = -EFAULT;
725 
726 	addr = page_address_in_vma(page, vma);
727 	if (addr == -EFAULT)
728 		goto out;
729 
730 	ptep = page_check_address(page, mm, addr, &ptl, 0);
731 	if (!ptep)
732 		goto out;
733 
734 	if (pte_write(*ptep)) {
735 		pte_t entry;
736 
737 		swapped = PageSwapCache(page);
738 		flush_cache_page(vma, addr, page_to_pfn(page));
739 		/*
740 		 * Ok this is tricky, when get_user_pages_fast() run it doesnt
741 		 * take any lock, therefore the check that we are going to make
742 		 * with the pagecount against the mapcount is racey and
743 		 * O_DIRECT can happen right after the check.
744 		 * So we clear the pte and flush the tlb before the check
745 		 * this assure us that no O_DIRECT can happen after the check
746 		 * or in the middle of the check.
747 		 */
748 		entry = ptep_clear_flush(vma, addr, ptep);
749 		/*
750 		 * Check that no O_DIRECT or similar I/O is in progress on the
751 		 * page
752 		 */
753 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
754 			set_pte_at_notify(mm, addr, ptep, entry);
755 			goto out_unlock;
756 		}
757 		entry = pte_wrprotect(entry);
758 		set_pte_at_notify(mm, addr, ptep, entry);
759 	}
760 	*orig_pte = *ptep;
761 	err = 0;
762 
763 out_unlock:
764 	pte_unmap_unlock(ptep, ptl);
765 out:
766 	return err;
767 }
768 
769 /**
770  * replace_page - replace page in vma by new ksm page
771  * @vma:      vma that holds the pte pointing to page
772  * @page:     the page we are replacing by kpage
773  * @kpage:    the ksm page we replace page by
774  * @orig_pte: the original value of the pte
775  *
776  * Returns 0 on success, -EFAULT on failure.
777  */
778 static int replace_page(struct vm_area_struct *vma, struct page *page,
779 			struct page *kpage, pte_t orig_pte)
780 {
781 	struct mm_struct *mm = vma->vm_mm;
782 	pgd_t *pgd;
783 	pud_t *pud;
784 	pmd_t *pmd;
785 	pte_t *ptep;
786 	spinlock_t *ptl;
787 	unsigned long addr;
788 	int err = -EFAULT;
789 
790 	addr = page_address_in_vma(page, vma);
791 	if (addr == -EFAULT)
792 		goto out;
793 
794 	pgd = pgd_offset(mm, addr);
795 	if (!pgd_present(*pgd))
796 		goto out;
797 
798 	pud = pud_offset(pgd, addr);
799 	if (!pud_present(*pud))
800 		goto out;
801 
802 	pmd = pmd_offset(pud, addr);
803 	if (!pmd_present(*pmd))
804 		goto out;
805 
806 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
807 	if (!pte_same(*ptep, orig_pte)) {
808 		pte_unmap_unlock(ptep, ptl);
809 		goto out;
810 	}
811 
812 	get_page(kpage);
813 	page_add_anon_rmap(kpage, vma, addr);
814 
815 	flush_cache_page(vma, addr, pte_pfn(*ptep));
816 	ptep_clear_flush(vma, addr, ptep);
817 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
818 
819 	page_remove_rmap(page);
820 	put_page(page);
821 
822 	pte_unmap_unlock(ptep, ptl);
823 	err = 0;
824 out:
825 	return err;
826 }
827 
828 /*
829  * try_to_merge_one_page - take two pages and merge them into one
830  * @vma: the vma that holds the pte pointing to page
831  * @page: the PageAnon page that we want to replace with kpage
832  * @kpage: the PageKsm page that we want to map instead of page,
833  *         or NULL the first time when we want to use page as kpage.
834  *
835  * This function returns 0 if the pages were merged, -EFAULT otherwise.
836  */
837 static int try_to_merge_one_page(struct vm_area_struct *vma,
838 				 struct page *page, struct page *kpage)
839 {
840 	pte_t orig_pte = __pte(0);
841 	int err = -EFAULT;
842 
843 	if (page == kpage)			/* ksm page forked */
844 		return 0;
845 
846 	if (!(vma->vm_flags & VM_MERGEABLE))
847 		goto out;
848 	if (!PageAnon(page))
849 		goto out;
850 
851 	/*
852 	 * We need the page lock to read a stable PageSwapCache in
853 	 * write_protect_page().  We use trylock_page() instead of
854 	 * lock_page() because we don't want to wait here - we
855 	 * prefer to continue scanning and merging different pages,
856 	 * then come back to this page when it is unlocked.
857 	 */
858 	if (!trylock_page(page))
859 		goto out;
860 	/*
861 	 * If this anonymous page is mapped only here, its pte may need
862 	 * to be write-protected.  If it's mapped elsewhere, all of its
863 	 * ptes are necessarily already write-protected.  But in either
864 	 * case, we need to lock and check page_count is not raised.
865 	 */
866 	if (write_protect_page(vma, page, &orig_pte) == 0) {
867 		if (!kpage) {
868 			/*
869 			 * While we hold page lock, upgrade page from
870 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
871 			 * stable_tree_insert() will update stable_node.
872 			 */
873 			set_page_stable_node(page, NULL);
874 			mark_page_accessed(page);
875 			err = 0;
876 		} else if (pages_identical(page, kpage))
877 			err = replace_page(vma, page, kpage, orig_pte);
878 	}
879 
880 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
881 		munlock_vma_page(page);
882 		if (!PageMlocked(kpage)) {
883 			unlock_page(page);
884 			lock_page(kpage);
885 			mlock_vma_page(kpage);
886 			page = kpage;		/* for final unlock */
887 		}
888 	}
889 
890 	unlock_page(page);
891 out:
892 	return err;
893 }
894 
895 /*
896  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
897  * but no new kernel page is allocated: kpage must already be a ksm page.
898  *
899  * This function returns 0 if the pages were merged, -EFAULT otherwise.
900  */
901 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
902 				      struct page *page, struct page *kpage)
903 {
904 	struct mm_struct *mm = rmap_item->mm;
905 	struct vm_area_struct *vma;
906 	int err = -EFAULT;
907 
908 	down_read(&mm->mmap_sem);
909 	if (ksm_test_exit(mm))
910 		goto out;
911 	vma = find_vma(mm, rmap_item->address);
912 	if (!vma || vma->vm_start > rmap_item->address)
913 		goto out;
914 
915 	err = try_to_merge_one_page(vma, page, kpage);
916 	if (err)
917 		goto out;
918 
919 	/* Must get reference to anon_vma while still holding mmap_sem */
920 	hold_anon_vma(rmap_item, vma->anon_vma);
921 out:
922 	up_read(&mm->mmap_sem);
923 	return err;
924 }
925 
926 /*
927  * try_to_merge_two_pages - take two identical pages and prepare them
928  * to be merged into one page.
929  *
930  * This function returns the kpage if we successfully merged two identical
931  * pages into one ksm page, NULL otherwise.
932  *
933  * Note that this function upgrades page to ksm page: if one of the pages
934  * is already a ksm page, try_to_merge_with_ksm_page should be used.
935  */
936 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
937 					   struct page *page,
938 					   struct rmap_item *tree_rmap_item,
939 					   struct page *tree_page)
940 {
941 	int err;
942 
943 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
944 	if (!err) {
945 		err = try_to_merge_with_ksm_page(tree_rmap_item,
946 							tree_page, page);
947 		/*
948 		 * If that fails, we have a ksm page with only one pte
949 		 * pointing to it: so break it.
950 		 */
951 		if (err)
952 			break_cow(rmap_item);
953 	}
954 	return err ? NULL : page;
955 }
956 
957 /*
958  * stable_tree_search - search for page inside the stable tree
959  *
960  * This function checks if there is a page inside the stable tree
961  * with identical content to the page that we are scanning right now.
962  *
963  * This function returns the stable tree node of identical content if found,
964  * NULL otherwise.
965  */
966 static struct page *stable_tree_search(struct page *page)
967 {
968 	struct rb_node *node = root_stable_tree.rb_node;
969 	struct stable_node *stable_node;
970 
971 	stable_node = page_stable_node(page);
972 	if (stable_node) {			/* ksm page forked */
973 		get_page(page);
974 		return page;
975 	}
976 
977 	while (node) {
978 		struct page *tree_page;
979 		int ret;
980 
981 		cond_resched();
982 		stable_node = rb_entry(node, struct stable_node, node);
983 		tree_page = get_ksm_page(stable_node);
984 		if (!tree_page)
985 			return NULL;
986 
987 		ret = memcmp_pages(page, tree_page);
988 
989 		if (ret < 0) {
990 			put_page(tree_page);
991 			node = node->rb_left;
992 		} else if (ret > 0) {
993 			put_page(tree_page);
994 			node = node->rb_right;
995 		} else
996 			return tree_page;
997 	}
998 
999 	return NULL;
1000 }
1001 
1002 /*
1003  * stable_tree_insert - insert rmap_item pointing to new ksm page
1004  * into the stable tree.
1005  *
1006  * This function returns the stable tree node just allocated on success,
1007  * NULL otherwise.
1008  */
1009 static struct stable_node *stable_tree_insert(struct page *kpage)
1010 {
1011 	struct rb_node **new = &root_stable_tree.rb_node;
1012 	struct rb_node *parent = NULL;
1013 	struct stable_node *stable_node;
1014 
1015 	while (*new) {
1016 		struct page *tree_page;
1017 		int ret;
1018 
1019 		cond_resched();
1020 		stable_node = rb_entry(*new, struct stable_node, node);
1021 		tree_page = get_ksm_page(stable_node);
1022 		if (!tree_page)
1023 			return NULL;
1024 
1025 		ret = memcmp_pages(kpage, tree_page);
1026 		put_page(tree_page);
1027 
1028 		parent = *new;
1029 		if (ret < 0)
1030 			new = &parent->rb_left;
1031 		else if (ret > 0)
1032 			new = &parent->rb_right;
1033 		else {
1034 			/*
1035 			 * It is not a bug that stable_tree_search() didn't
1036 			 * find this node: because at that time our page was
1037 			 * not yet write-protected, so may have changed since.
1038 			 */
1039 			return NULL;
1040 		}
1041 	}
1042 
1043 	stable_node = alloc_stable_node();
1044 	if (!stable_node)
1045 		return NULL;
1046 
1047 	rb_link_node(&stable_node->node, parent, new);
1048 	rb_insert_color(&stable_node->node, &root_stable_tree);
1049 
1050 	INIT_HLIST_HEAD(&stable_node->hlist);
1051 
1052 	stable_node->kpfn = page_to_pfn(kpage);
1053 	set_page_stable_node(kpage, stable_node);
1054 
1055 	return stable_node;
1056 }
1057 
1058 /*
1059  * unstable_tree_search_insert - search for identical page,
1060  * else insert rmap_item into the unstable tree.
1061  *
1062  * This function searches for a page in the unstable tree identical to the
1063  * page currently being scanned; and if no identical page is found in the
1064  * tree, we insert rmap_item as a new object into the unstable tree.
1065  *
1066  * This function returns pointer to rmap_item found to be identical
1067  * to the currently scanned page, NULL otherwise.
1068  *
1069  * This function does both searching and inserting, because they share
1070  * the same walking algorithm in an rbtree.
1071  */
1072 static
1073 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1074 					      struct page *page,
1075 					      struct page **tree_pagep)
1076 
1077 {
1078 	struct rb_node **new = &root_unstable_tree.rb_node;
1079 	struct rb_node *parent = NULL;
1080 
1081 	while (*new) {
1082 		struct rmap_item *tree_rmap_item;
1083 		struct page *tree_page;
1084 		int ret;
1085 
1086 		cond_resched();
1087 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1088 		tree_page = get_mergeable_page(tree_rmap_item);
1089 		if (!tree_page)
1090 			return NULL;
1091 
1092 		/*
1093 		 * Don't substitute a ksm page for a forked page.
1094 		 */
1095 		if (page == tree_page) {
1096 			put_page(tree_page);
1097 			return NULL;
1098 		}
1099 
1100 		ret = memcmp_pages(page, tree_page);
1101 
1102 		parent = *new;
1103 		if (ret < 0) {
1104 			put_page(tree_page);
1105 			new = &parent->rb_left;
1106 		} else if (ret > 0) {
1107 			put_page(tree_page);
1108 			new = &parent->rb_right;
1109 		} else {
1110 			*tree_pagep = tree_page;
1111 			return tree_rmap_item;
1112 		}
1113 	}
1114 
1115 	rmap_item->address |= UNSTABLE_FLAG;
1116 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1117 	rb_link_node(&rmap_item->node, parent, new);
1118 	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1119 
1120 	ksm_pages_unshared++;
1121 	return NULL;
1122 }
1123 
1124 /*
1125  * stable_tree_append - add another rmap_item to the linked list of
1126  * rmap_items hanging off a given node of the stable tree, all sharing
1127  * the same ksm page.
1128  */
1129 static void stable_tree_append(struct rmap_item *rmap_item,
1130 			       struct stable_node *stable_node)
1131 {
1132 	rmap_item->head = stable_node;
1133 	rmap_item->address |= STABLE_FLAG;
1134 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1135 
1136 	if (rmap_item->hlist.next)
1137 		ksm_pages_sharing++;
1138 	else
1139 		ksm_pages_shared++;
1140 }
1141 
1142 /*
1143  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1144  * if not, compare checksum to previous and if it's the same, see if page can
1145  * be inserted into the unstable tree, or merged with a page already there and
1146  * both transferred to the stable tree.
1147  *
1148  * @page: the page that we are searching identical page to.
1149  * @rmap_item: the reverse mapping into the virtual address of this page
1150  */
1151 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1152 {
1153 	struct rmap_item *tree_rmap_item;
1154 	struct page *tree_page = NULL;
1155 	struct stable_node *stable_node;
1156 	struct page *kpage;
1157 	unsigned int checksum;
1158 	int err;
1159 
1160 	remove_rmap_item_from_tree(rmap_item);
1161 
1162 	/* We first start with searching the page inside the stable tree */
1163 	kpage = stable_tree_search(page);
1164 	if (kpage) {
1165 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1166 		if (!err) {
1167 			/*
1168 			 * The page was successfully merged:
1169 			 * add its rmap_item to the stable tree.
1170 			 */
1171 			lock_page(kpage);
1172 			stable_tree_append(rmap_item, page_stable_node(kpage));
1173 			unlock_page(kpage);
1174 		}
1175 		put_page(kpage);
1176 		return;
1177 	}
1178 
1179 	/*
1180 	 * If the hash value of the page has changed from the last time
1181 	 * we calculated it, this page is changing frequently: therefore we
1182 	 * don't want to insert it in the unstable tree, and we don't want
1183 	 * to waste our time searching for something identical to it there.
1184 	 */
1185 	checksum = calc_checksum(page);
1186 	if (rmap_item->oldchecksum != checksum) {
1187 		rmap_item->oldchecksum = checksum;
1188 		return;
1189 	}
1190 
1191 	tree_rmap_item =
1192 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1193 	if (tree_rmap_item) {
1194 		kpage = try_to_merge_two_pages(rmap_item, page,
1195 						tree_rmap_item, tree_page);
1196 		put_page(tree_page);
1197 		/*
1198 		 * As soon as we merge this page, we want to remove the
1199 		 * rmap_item of the page we have merged with from the unstable
1200 		 * tree, and insert it instead as new node in the stable tree.
1201 		 */
1202 		if (kpage) {
1203 			remove_rmap_item_from_tree(tree_rmap_item);
1204 
1205 			lock_page(kpage);
1206 			stable_node = stable_tree_insert(kpage);
1207 			if (stable_node) {
1208 				stable_tree_append(tree_rmap_item, stable_node);
1209 				stable_tree_append(rmap_item, stable_node);
1210 			}
1211 			unlock_page(kpage);
1212 
1213 			/*
1214 			 * If we fail to insert the page into the stable tree,
1215 			 * we will have 2 virtual addresses that are pointing
1216 			 * to a ksm page left outside the stable tree,
1217 			 * in which case we need to break_cow on both.
1218 			 */
1219 			if (!stable_node) {
1220 				break_cow(tree_rmap_item);
1221 				break_cow(rmap_item);
1222 			}
1223 		}
1224 	}
1225 }
1226 
1227 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1228 					    struct rmap_item **rmap_list,
1229 					    unsigned long addr)
1230 {
1231 	struct rmap_item *rmap_item;
1232 
1233 	while (*rmap_list) {
1234 		rmap_item = *rmap_list;
1235 		if ((rmap_item->address & PAGE_MASK) == addr)
1236 			return rmap_item;
1237 		if (rmap_item->address > addr)
1238 			break;
1239 		*rmap_list = rmap_item->rmap_list;
1240 		remove_rmap_item_from_tree(rmap_item);
1241 		free_rmap_item(rmap_item);
1242 	}
1243 
1244 	rmap_item = alloc_rmap_item();
1245 	if (rmap_item) {
1246 		/* It has already been zeroed */
1247 		rmap_item->mm = mm_slot->mm;
1248 		rmap_item->address = addr;
1249 		rmap_item->rmap_list = *rmap_list;
1250 		*rmap_list = rmap_item;
1251 	}
1252 	return rmap_item;
1253 }
1254 
1255 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1256 {
1257 	struct mm_struct *mm;
1258 	struct mm_slot *slot;
1259 	struct vm_area_struct *vma;
1260 	struct rmap_item *rmap_item;
1261 
1262 	if (list_empty(&ksm_mm_head.mm_list))
1263 		return NULL;
1264 
1265 	slot = ksm_scan.mm_slot;
1266 	if (slot == &ksm_mm_head) {
1267 		root_unstable_tree = RB_ROOT;
1268 
1269 		spin_lock(&ksm_mmlist_lock);
1270 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1271 		ksm_scan.mm_slot = slot;
1272 		spin_unlock(&ksm_mmlist_lock);
1273 next_mm:
1274 		ksm_scan.address = 0;
1275 		ksm_scan.rmap_list = &slot->rmap_list;
1276 	}
1277 
1278 	mm = slot->mm;
1279 	down_read(&mm->mmap_sem);
1280 	if (ksm_test_exit(mm))
1281 		vma = NULL;
1282 	else
1283 		vma = find_vma(mm, ksm_scan.address);
1284 
1285 	for (; vma; vma = vma->vm_next) {
1286 		if (!(vma->vm_flags & VM_MERGEABLE))
1287 			continue;
1288 		if (ksm_scan.address < vma->vm_start)
1289 			ksm_scan.address = vma->vm_start;
1290 		if (!vma->anon_vma)
1291 			ksm_scan.address = vma->vm_end;
1292 
1293 		while (ksm_scan.address < vma->vm_end) {
1294 			if (ksm_test_exit(mm))
1295 				break;
1296 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1297 			if (*page && PageAnon(*page)) {
1298 				flush_anon_page(vma, *page, ksm_scan.address);
1299 				flush_dcache_page(*page);
1300 				rmap_item = get_next_rmap_item(slot,
1301 					ksm_scan.rmap_list, ksm_scan.address);
1302 				if (rmap_item) {
1303 					ksm_scan.rmap_list =
1304 							&rmap_item->rmap_list;
1305 					ksm_scan.address += PAGE_SIZE;
1306 				} else
1307 					put_page(*page);
1308 				up_read(&mm->mmap_sem);
1309 				return rmap_item;
1310 			}
1311 			if (*page)
1312 				put_page(*page);
1313 			ksm_scan.address += PAGE_SIZE;
1314 			cond_resched();
1315 		}
1316 	}
1317 
1318 	if (ksm_test_exit(mm)) {
1319 		ksm_scan.address = 0;
1320 		ksm_scan.rmap_list = &slot->rmap_list;
1321 	}
1322 	/*
1323 	 * Nuke all the rmap_items that are above this current rmap:
1324 	 * because there were no VM_MERGEABLE vmas with such addresses.
1325 	 */
1326 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1327 
1328 	spin_lock(&ksm_mmlist_lock);
1329 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1330 						struct mm_slot, mm_list);
1331 	if (ksm_scan.address == 0) {
1332 		/*
1333 		 * We've completed a full scan of all vmas, holding mmap_sem
1334 		 * throughout, and found no VM_MERGEABLE: so do the same as
1335 		 * __ksm_exit does to remove this mm from all our lists now.
1336 		 * This applies either when cleaning up after __ksm_exit
1337 		 * (but beware: we can reach here even before __ksm_exit),
1338 		 * or when all VM_MERGEABLE areas have been unmapped (and
1339 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1340 		 */
1341 		hlist_del(&slot->link);
1342 		list_del(&slot->mm_list);
1343 		spin_unlock(&ksm_mmlist_lock);
1344 
1345 		free_mm_slot(slot);
1346 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1347 		up_read(&mm->mmap_sem);
1348 		mmdrop(mm);
1349 	} else {
1350 		spin_unlock(&ksm_mmlist_lock);
1351 		up_read(&mm->mmap_sem);
1352 	}
1353 
1354 	/* Repeat until we've completed scanning the whole list */
1355 	slot = ksm_scan.mm_slot;
1356 	if (slot != &ksm_mm_head)
1357 		goto next_mm;
1358 
1359 	ksm_scan.seqnr++;
1360 	return NULL;
1361 }
1362 
1363 /**
1364  * ksm_do_scan  - the ksm scanner main worker function.
1365  * @scan_npages - number of pages we want to scan before we return.
1366  */
1367 static void ksm_do_scan(unsigned int scan_npages)
1368 {
1369 	struct rmap_item *rmap_item;
1370 	struct page *page;
1371 
1372 	while (scan_npages--) {
1373 		cond_resched();
1374 		rmap_item = scan_get_next_rmap_item(&page);
1375 		if (!rmap_item)
1376 			return;
1377 		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1378 			cmp_and_merge_page(page, rmap_item);
1379 		put_page(page);
1380 	}
1381 }
1382 
1383 static int ksmd_should_run(void)
1384 {
1385 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1386 }
1387 
1388 static int ksm_scan_thread(void *nothing)
1389 {
1390 	set_user_nice(current, 5);
1391 
1392 	while (!kthread_should_stop()) {
1393 		mutex_lock(&ksm_thread_mutex);
1394 		if (ksmd_should_run())
1395 			ksm_do_scan(ksm_thread_pages_to_scan);
1396 		mutex_unlock(&ksm_thread_mutex);
1397 
1398 		if (ksmd_should_run()) {
1399 			schedule_timeout_interruptible(
1400 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1401 		} else {
1402 			wait_event_interruptible(ksm_thread_wait,
1403 				ksmd_should_run() || kthread_should_stop());
1404 		}
1405 	}
1406 	return 0;
1407 }
1408 
1409 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1410 		unsigned long end, int advice, unsigned long *vm_flags)
1411 {
1412 	struct mm_struct *mm = vma->vm_mm;
1413 	int err;
1414 
1415 	switch (advice) {
1416 	case MADV_MERGEABLE:
1417 		/*
1418 		 * Be somewhat over-protective for now!
1419 		 */
1420 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1421 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1422 				 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1423 				 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
1424 			return 0;		/* just ignore the advice */
1425 
1426 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1427 			err = __ksm_enter(mm);
1428 			if (err)
1429 				return err;
1430 		}
1431 
1432 		*vm_flags |= VM_MERGEABLE;
1433 		break;
1434 
1435 	case MADV_UNMERGEABLE:
1436 		if (!(*vm_flags & VM_MERGEABLE))
1437 			return 0;		/* just ignore the advice */
1438 
1439 		if (vma->anon_vma) {
1440 			err = unmerge_ksm_pages(vma, start, end);
1441 			if (err)
1442 				return err;
1443 		}
1444 
1445 		*vm_flags &= ~VM_MERGEABLE;
1446 		break;
1447 	}
1448 
1449 	return 0;
1450 }
1451 
1452 int __ksm_enter(struct mm_struct *mm)
1453 {
1454 	struct mm_slot *mm_slot;
1455 	int needs_wakeup;
1456 
1457 	mm_slot = alloc_mm_slot();
1458 	if (!mm_slot)
1459 		return -ENOMEM;
1460 
1461 	/* Check ksm_run too?  Would need tighter locking */
1462 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1463 
1464 	spin_lock(&ksm_mmlist_lock);
1465 	insert_to_mm_slots_hash(mm, mm_slot);
1466 	/*
1467 	 * Insert just behind the scanning cursor, to let the area settle
1468 	 * down a little; when fork is followed by immediate exec, we don't
1469 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1470 	 */
1471 	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1472 	spin_unlock(&ksm_mmlist_lock);
1473 
1474 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1475 	atomic_inc(&mm->mm_count);
1476 
1477 	if (needs_wakeup)
1478 		wake_up_interruptible(&ksm_thread_wait);
1479 
1480 	return 0;
1481 }
1482 
1483 void __ksm_exit(struct mm_struct *mm)
1484 {
1485 	struct mm_slot *mm_slot;
1486 	int easy_to_free = 0;
1487 
1488 	/*
1489 	 * This process is exiting: if it's straightforward (as is the
1490 	 * case when ksmd was never running), free mm_slot immediately.
1491 	 * But if it's at the cursor or has rmap_items linked to it, use
1492 	 * mmap_sem to synchronize with any break_cows before pagetables
1493 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1494 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1495 	 */
1496 
1497 	spin_lock(&ksm_mmlist_lock);
1498 	mm_slot = get_mm_slot(mm);
1499 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1500 		if (!mm_slot->rmap_list) {
1501 			hlist_del(&mm_slot->link);
1502 			list_del(&mm_slot->mm_list);
1503 			easy_to_free = 1;
1504 		} else {
1505 			list_move(&mm_slot->mm_list,
1506 				  &ksm_scan.mm_slot->mm_list);
1507 		}
1508 	}
1509 	spin_unlock(&ksm_mmlist_lock);
1510 
1511 	if (easy_to_free) {
1512 		free_mm_slot(mm_slot);
1513 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1514 		mmdrop(mm);
1515 	} else if (mm_slot) {
1516 		down_write(&mm->mmap_sem);
1517 		up_write(&mm->mmap_sem);
1518 	}
1519 }
1520 
1521 struct page *ksm_does_need_to_copy(struct page *page,
1522 			struct vm_area_struct *vma, unsigned long address)
1523 {
1524 	struct page *new_page;
1525 
1526 	unlock_page(page);	/* any racers will COW it, not modify it */
1527 
1528 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1529 	if (new_page) {
1530 		copy_user_highpage(new_page, page, address, vma);
1531 
1532 		SetPageDirty(new_page);
1533 		__SetPageUptodate(new_page);
1534 		SetPageSwapBacked(new_page);
1535 		__set_page_locked(new_page);
1536 
1537 		if (page_evictable(new_page, vma))
1538 			lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1539 		else
1540 			add_page_to_unevictable_list(new_page);
1541 	}
1542 
1543 	page_cache_release(page);
1544 	return new_page;
1545 }
1546 
1547 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1548 			unsigned long *vm_flags)
1549 {
1550 	struct stable_node *stable_node;
1551 	struct rmap_item *rmap_item;
1552 	struct hlist_node *hlist;
1553 	unsigned int mapcount = page_mapcount(page);
1554 	int referenced = 0;
1555 	int search_new_forks = 0;
1556 
1557 	VM_BUG_ON(!PageKsm(page));
1558 	VM_BUG_ON(!PageLocked(page));
1559 
1560 	stable_node = page_stable_node(page);
1561 	if (!stable_node)
1562 		return 0;
1563 again:
1564 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1565 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1566 		struct vm_area_struct *vma;
1567 
1568 		spin_lock(&anon_vma->lock);
1569 		list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1570 			if (rmap_item->address < vma->vm_start ||
1571 			    rmap_item->address >= vma->vm_end)
1572 				continue;
1573 			/*
1574 			 * Initially we examine only the vma which covers this
1575 			 * rmap_item; but later, if there is still work to do,
1576 			 * we examine covering vmas in other mms: in case they
1577 			 * were forked from the original since ksmd passed.
1578 			 */
1579 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1580 				continue;
1581 
1582 			if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1583 				continue;
1584 
1585 			referenced += page_referenced_one(page, vma,
1586 				rmap_item->address, &mapcount, vm_flags);
1587 			if (!search_new_forks || !mapcount)
1588 				break;
1589 		}
1590 		spin_unlock(&anon_vma->lock);
1591 		if (!mapcount)
1592 			goto out;
1593 	}
1594 	if (!search_new_forks++)
1595 		goto again;
1596 out:
1597 	return referenced;
1598 }
1599 
1600 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1601 {
1602 	struct stable_node *stable_node;
1603 	struct hlist_node *hlist;
1604 	struct rmap_item *rmap_item;
1605 	int ret = SWAP_AGAIN;
1606 	int search_new_forks = 0;
1607 
1608 	VM_BUG_ON(!PageKsm(page));
1609 	VM_BUG_ON(!PageLocked(page));
1610 
1611 	stable_node = page_stable_node(page);
1612 	if (!stable_node)
1613 		return SWAP_FAIL;
1614 again:
1615 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1616 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1617 		struct vm_area_struct *vma;
1618 
1619 		spin_lock(&anon_vma->lock);
1620 		list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1621 			if (rmap_item->address < vma->vm_start ||
1622 			    rmap_item->address >= vma->vm_end)
1623 				continue;
1624 			/*
1625 			 * Initially we examine only the vma which covers this
1626 			 * rmap_item; but later, if there is still work to do,
1627 			 * we examine covering vmas in other mms: in case they
1628 			 * were forked from the original since ksmd passed.
1629 			 */
1630 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1631 				continue;
1632 
1633 			ret = try_to_unmap_one(page, vma,
1634 					rmap_item->address, flags);
1635 			if (ret != SWAP_AGAIN || !page_mapped(page)) {
1636 				spin_unlock(&anon_vma->lock);
1637 				goto out;
1638 			}
1639 		}
1640 		spin_unlock(&anon_vma->lock);
1641 	}
1642 	if (!search_new_forks++)
1643 		goto again;
1644 out:
1645 	return ret;
1646 }
1647 
1648 #ifdef CONFIG_MIGRATION
1649 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1650 		  struct vm_area_struct *, unsigned long, void *), void *arg)
1651 {
1652 	struct stable_node *stable_node;
1653 	struct hlist_node *hlist;
1654 	struct rmap_item *rmap_item;
1655 	int ret = SWAP_AGAIN;
1656 	int search_new_forks = 0;
1657 
1658 	VM_BUG_ON(!PageKsm(page));
1659 	VM_BUG_ON(!PageLocked(page));
1660 
1661 	stable_node = page_stable_node(page);
1662 	if (!stable_node)
1663 		return ret;
1664 again:
1665 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1666 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1667 		struct vm_area_struct *vma;
1668 
1669 		spin_lock(&anon_vma->lock);
1670 		list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1671 			if (rmap_item->address < vma->vm_start ||
1672 			    rmap_item->address >= vma->vm_end)
1673 				continue;
1674 			/*
1675 			 * Initially we examine only the vma which covers this
1676 			 * rmap_item; but later, if there is still work to do,
1677 			 * we examine covering vmas in other mms: in case they
1678 			 * were forked from the original since ksmd passed.
1679 			 */
1680 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1681 				continue;
1682 
1683 			ret = rmap_one(page, vma, rmap_item->address, arg);
1684 			if (ret != SWAP_AGAIN) {
1685 				spin_unlock(&anon_vma->lock);
1686 				goto out;
1687 			}
1688 		}
1689 		spin_unlock(&anon_vma->lock);
1690 	}
1691 	if (!search_new_forks++)
1692 		goto again;
1693 out:
1694 	return ret;
1695 }
1696 
1697 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1698 {
1699 	struct stable_node *stable_node;
1700 
1701 	VM_BUG_ON(!PageLocked(oldpage));
1702 	VM_BUG_ON(!PageLocked(newpage));
1703 	VM_BUG_ON(newpage->mapping != oldpage->mapping);
1704 
1705 	stable_node = page_stable_node(newpage);
1706 	if (stable_node) {
1707 		VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1708 		stable_node->kpfn = page_to_pfn(newpage);
1709 	}
1710 }
1711 #endif /* CONFIG_MIGRATION */
1712 
1713 #ifdef CONFIG_MEMORY_HOTREMOVE
1714 static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1715 						 unsigned long end_pfn)
1716 {
1717 	struct rb_node *node;
1718 
1719 	for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1720 		struct stable_node *stable_node;
1721 
1722 		stable_node = rb_entry(node, struct stable_node, node);
1723 		if (stable_node->kpfn >= start_pfn &&
1724 		    stable_node->kpfn < end_pfn)
1725 			return stable_node;
1726 	}
1727 	return NULL;
1728 }
1729 
1730 static int ksm_memory_callback(struct notifier_block *self,
1731 			       unsigned long action, void *arg)
1732 {
1733 	struct memory_notify *mn = arg;
1734 	struct stable_node *stable_node;
1735 
1736 	switch (action) {
1737 	case MEM_GOING_OFFLINE:
1738 		/*
1739 		 * Keep it very simple for now: just lock out ksmd and
1740 		 * MADV_UNMERGEABLE while any memory is going offline.
1741 		 */
1742 		mutex_lock(&ksm_thread_mutex);
1743 		break;
1744 
1745 	case MEM_OFFLINE:
1746 		/*
1747 		 * Most of the work is done by page migration; but there might
1748 		 * be a few stable_nodes left over, still pointing to struct
1749 		 * pages which have been offlined: prune those from the tree.
1750 		 */
1751 		while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1752 					mn->start_pfn + mn->nr_pages)) != NULL)
1753 			remove_node_from_stable_tree(stable_node);
1754 		/* fallthrough */
1755 
1756 	case MEM_CANCEL_OFFLINE:
1757 		mutex_unlock(&ksm_thread_mutex);
1758 		break;
1759 	}
1760 	return NOTIFY_OK;
1761 }
1762 #endif /* CONFIG_MEMORY_HOTREMOVE */
1763 
1764 #ifdef CONFIG_SYSFS
1765 /*
1766  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1767  */
1768 
1769 #define KSM_ATTR_RO(_name) \
1770 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1771 #define KSM_ATTR(_name) \
1772 	static struct kobj_attribute _name##_attr = \
1773 		__ATTR(_name, 0644, _name##_show, _name##_store)
1774 
1775 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1776 				    struct kobj_attribute *attr, char *buf)
1777 {
1778 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1779 }
1780 
1781 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1782 				     struct kobj_attribute *attr,
1783 				     const char *buf, size_t count)
1784 {
1785 	unsigned long msecs;
1786 	int err;
1787 
1788 	err = strict_strtoul(buf, 10, &msecs);
1789 	if (err || msecs > UINT_MAX)
1790 		return -EINVAL;
1791 
1792 	ksm_thread_sleep_millisecs = msecs;
1793 
1794 	return count;
1795 }
1796 KSM_ATTR(sleep_millisecs);
1797 
1798 static ssize_t pages_to_scan_show(struct kobject *kobj,
1799 				  struct kobj_attribute *attr, char *buf)
1800 {
1801 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1802 }
1803 
1804 static ssize_t pages_to_scan_store(struct kobject *kobj,
1805 				   struct kobj_attribute *attr,
1806 				   const char *buf, size_t count)
1807 {
1808 	int err;
1809 	unsigned long nr_pages;
1810 
1811 	err = strict_strtoul(buf, 10, &nr_pages);
1812 	if (err || nr_pages > UINT_MAX)
1813 		return -EINVAL;
1814 
1815 	ksm_thread_pages_to_scan = nr_pages;
1816 
1817 	return count;
1818 }
1819 KSM_ATTR(pages_to_scan);
1820 
1821 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1822 			char *buf)
1823 {
1824 	return sprintf(buf, "%u\n", ksm_run);
1825 }
1826 
1827 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1828 			 const char *buf, size_t count)
1829 {
1830 	int err;
1831 	unsigned long flags;
1832 
1833 	err = strict_strtoul(buf, 10, &flags);
1834 	if (err || flags > UINT_MAX)
1835 		return -EINVAL;
1836 	if (flags > KSM_RUN_UNMERGE)
1837 		return -EINVAL;
1838 
1839 	/*
1840 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1841 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1842 	 * breaking COW to free the pages_shared (but leaves mm_slots
1843 	 * on the list for when ksmd may be set running again).
1844 	 */
1845 
1846 	mutex_lock(&ksm_thread_mutex);
1847 	if (ksm_run != flags) {
1848 		ksm_run = flags;
1849 		if (flags & KSM_RUN_UNMERGE) {
1850 			current->flags |= PF_OOM_ORIGIN;
1851 			err = unmerge_and_remove_all_rmap_items();
1852 			current->flags &= ~PF_OOM_ORIGIN;
1853 			if (err) {
1854 				ksm_run = KSM_RUN_STOP;
1855 				count = err;
1856 			}
1857 		}
1858 	}
1859 	mutex_unlock(&ksm_thread_mutex);
1860 
1861 	if (flags & KSM_RUN_MERGE)
1862 		wake_up_interruptible(&ksm_thread_wait);
1863 
1864 	return count;
1865 }
1866 KSM_ATTR(run);
1867 
1868 static ssize_t pages_shared_show(struct kobject *kobj,
1869 				 struct kobj_attribute *attr, char *buf)
1870 {
1871 	return sprintf(buf, "%lu\n", ksm_pages_shared);
1872 }
1873 KSM_ATTR_RO(pages_shared);
1874 
1875 static ssize_t pages_sharing_show(struct kobject *kobj,
1876 				  struct kobj_attribute *attr, char *buf)
1877 {
1878 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1879 }
1880 KSM_ATTR_RO(pages_sharing);
1881 
1882 static ssize_t pages_unshared_show(struct kobject *kobj,
1883 				   struct kobj_attribute *attr, char *buf)
1884 {
1885 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1886 }
1887 KSM_ATTR_RO(pages_unshared);
1888 
1889 static ssize_t pages_volatile_show(struct kobject *kobj,
1890 				   struct kobj_attribute *attr, char *buf)
1891 {
1892 	long ksm_pages_volatile;
1893 
1894 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1895 				- ksm_pages_sharing - ksm_pages_unshared;
1896 	/*
1897 	 * It was not worth any locking to calculate that statistic,
1898 	 * but it might therefore sometimes be negative: conceal that.
1899 	 */
1900 	if (ksm_pages_volatile < 0)
1901 		ksm_pages_volatile = 0;
1902 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1903 }
1904 KSM_ATTR_RO(pages_volatile);
1905 
1906 static ssize_t full_scans_show(struct kobject *kobj,
1907 			       struct kobj_attribute *attr, char *buf)
1908 {
1909 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1910 }
1911 KSM_ATTR_RO(full_scans);
1912 
1913 static struct attribute *ksm_attrs[] = {
1914 	&sleep_millisecs_attr.attr,
1915 	&pages_to_scan_attr.attr,
1916 	&run_attr.attr,
1917 	&pages_shared_attr.attr,
1918 	&pages_sharing_attr.attr,
1919 	&pages_unshared_attr.attr,
1920 	&pages_volatile_attr.attr,
1921 	&full_scans_attr.attr,
1922 	NULL,
1923 };
1924 
1925 static struct attribute_group ksm_attr_group = {
1926 	.attrs = ksm_attrs,
1927 	.name = "ksm",
1928 };
1929 #endif /* CONFIG_SYSFS */
1930 
1931 static int __init ksm_init(void)
1932 {
1933 	struct task_struct *ksm_thread;
1934 	int err;
1935 
1936 	err = ksm_slab_init();
1937 	if (err)
1938 		goto out;
1939 
1940 	err = mm_slots_hash_init();
1941 	if (err)
1942 		goto out_free1;
1943 
1944 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1945 	if (IS_ERR(ksm_thread)) {
1946 		printk(KERN_ERR "ksm: creating kthread failed\n");
1947 		err = PTR_ERR(ksm_thread);
1948 		goto out_free2;
1949 	}
1950 
1951 #ifdef CONFIG_SYSFS
1952 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1953 	if (err) {
1954 		printk(KERN_ERR "ksm: register sysfs failed\n");
1955 		kthread_stop(ksm_thread);
1956 		goto out_free2;
1957 	}
1958 #else
1959 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
1960 
1961 #endif /* CONFIG_SYSFS */
1962 
1963 #ifdef CONFIG_MEMORY_HOTREMOVE
1964 	/*
1965 	 * Choose a high priority since the callback takes ksm_thread_mutex:
1966 	 * later callbacks could only be taking locks which nest within that.
1967 	 */
1968 	hotplug_memory_notifier(ksm_memory_callback, 100);
1969 #endif
1970 	return 0;
1971 
1972 out_free2:
1973 	mm_slots_hash_free();
1974 out_free1:
1975 	ksm_slab_free();
1976 out:
1977 	return err;
1978 }
1979 module_init(ksm_init)
1980