xref: /linux/mm/ksm.c (revision dfc349402de8e95f6a42e8341e9ea193b718eee3)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/mmu_notifier.h>
33 #include <linux/swap.h>
34 #include <linux/ksm.h>
35 
36 #include <asm/tlbflush.h>
37 
38 /*
39  * A few notes about the KSM scanning process,
40  * to make it easier to understand the data structures below:
41  *
42  * In order to reduce excessive scanning, KSM sorts the memory pages by their
43  * contents into a data structure that holds pointers to the pages' locations.
44  *
45  * Since the contents of the pages may change at any moment, KSM cannot just
46  * insert the pages into a normal sorted tree and expect it to find anything.
47  * Therefore KSM uses two data structures - the stable and the unstable tree.
48  *
49  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
50  * by their contents.  Because each such page is write-protected, searching on
51  * this tree is fully assured to be working (except when pages are unmapped),
52  * and therefore this tree is called the stable tree.
53  *
54  * In addition to the stable tree, KSM uses a second data structure called the
55  * unstable tree: this tree holds pointers to pages which have been found to
56  * be "unchanged for a period of time".  The unstable tree sorts these pages
57  * by their contents, but since they are not write-protected, KSM cannot rely
58  * upon the unstable tree to work correctly - the unstable tree is liable to
59  * be corrupted as its contents are modified, and so it is called unstable.
60  *
61  * KSM solves this problem by several techniques:
62  *
63  * 1) The unstable tree is flushed every time KSM completes scanning all
64  *    memory areas, and then the tree is rebuilt again from the beginning.
65  * 2) KSM will only insert into the unstable tree, pages whose hash value
66  *    has not changed since the previous scan of all memory areas.
67  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
68  *    colors of the nodes and not on their contents, assuring that even when
69  *    the tree gets "corrupted" it won't get out of balance, so scanning time
70  *    remains the same (also, searching and inserting nodes in an rbtree uses
71  *    the same algorithm, so we have no overhead when we flush and rebuild).
72  * 4) KSM never flushes the stable tree, which means that even if it were to
73  *    take 10 attempts to find a page in the unstable tree, once it is found,
74  *    it is secured in the stable tree.  (When we scan a new page, we first
75  *    compare it against the stable tree, and then against the unstable tree.)
76  */
77 
78 /**
79  * struct mm_slot - ksm information per mm that is being scanned
80  * @link: link to the mm_slots hash list
81  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
82  * @rmap_list: head for this mm_slot's list of rmap_items
83  * @mm: the mm that this information is valid for
84  */
85 struct mm_slot {
86 	struct hlist_node link;
87 	struct list_head mm_list;
88 	struct list_head rmap_list;
89 	struct mm_struct *mm;
90 };
91 
92 /**
93  * struct ksm_scan - cursor for scanning
94  * @mm_slot: the current mm_slot we are scanning
95  * @address: the next address inside that to be scanned
96  * @rmap_item: the current rmap that we are scanning inside the rmap_list
97  * @seqnr: count of completed full scans (needed when removing unstable node)
98  *
99  * There is only the one ksm_scan instance of this cursor structure.
100  */
101 struct ksm_scan {
102 	struct mm_slot *mm_slot;
103 	unsigned long address;
104 	struct rmap_item *rmap_item;
105 	unsigned long seqnr;
106 };
107 
108 /**
109  * struct rmap_item - reverse mapping item for virtual addresses
110  * @link: link into mm_slot's rmap_list (rmap_list is per mm)
111  * @mm: the memory structure this rmap_item is pointing into
112  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
113  * @oldchecksum: previous checksum of the page at that virtual address
114  * @node: rb_node of this rmap_item in either unstable or stable tree
115  * @next: next rmap_item hanging off the same node of the stable tree
116  * @prev: previous rmap_item hanging off the same node of the stable tree
117  */
118 struct rmap_item {
119 	struct list_head link;
120 	struct mm_struct *mm;
121 	unsigned long address;		/* + low bits used for flags below */
122 	union {
123 		unsigned int oldchecksum;		/* when unstable */
124 		struct rmap_item *next;			/* when stable */
125 	};
126 	union {
127 		struct rb_node node;			/* when tree node */
128 		struct rmap_item *prev;			/* in stable list */
129 	};
130 };
131 
132 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
133 #define NODE_FLAG	0x100	/* is a node of unstable or stable tree */
134 #define STABLE_FLAG	0x200	/* is a node or list item of stable tree */
135 
136 /* The stable and unstable tree heads */
137 static struct rb_root root_stable_tree = RB_ROOT;
138 static struct rb_root root_unstable_tree = RB_ROOT;
139 
140 #define MM_SLOTS_HASH_HEADS 1024
141 static struct hlist_head *mm_slots_hash;
142 
143 static struct mm_slot ksm_mm_head = {
144 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
145 };
146 static struct ksm_scan ksm_scan = {
147 	.mm_slot = &ksm_mm_head,
148 };
149 
150 static struct kmem_cache *rmap_item_cache;
151 static struct kmem_cache *mm_slot_cache;
152 
153 /* The number of nodes in the stable tree */
154 static unsigned long ksm_pages_shared;
155 
156 /* The number of page slots additionally sharing those nodes */
157 static unsigned long ksm_pages_sharing;
158 
159 /* The number of nodes in the unstable tree */
160 static unsigned long ksm_pages_unshared;
161 
162 /* The number of rmap_items in use: to calculate pages_volatile */
163 static unsigned long ksm_rmap_items;
164 
165 /* Limit on the number of unswappable pages used */
166 static unsigned long ksm_max_kernel_pages;
167 
168 /* Number of pages ksmd should scan in one batch */
169 static unsigned int ksm_thread_pages_to_scan = 100;
170 
171 /* Milliseconds ksmd should sleep between batches */
172 static unsigned int ksm_thread_sleep_millisecs = 20;
173 
174 #define KSM_RUN_STOP	0
175 #define KSM_RUN_MERGE	1
176 #define KSM_RUN_UNMERGE	2
177 static unsigned int ksm_run = KSM_RUN_STOP;
178 
179 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
180 static DEFINE_MUTEX(ksm_thread_mutex);
181 static DEFINE_SPINLOCK(ksm_mmlist_lock);
182 
183 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
184 		sizeof(struct __struct), __alignof__(struct __struct),\
185 		(__flags), NULL)
186 
187 static int __init ksm_slab_init(void)
188 {
189 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
190 	if (!rmap_item_cache)
191 		goto out;
192 
193 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
194 	if (!mm_slot_cache)
195 		goto out_free;
196 
197 	return 0;
198 
199 out_free:
200 	kmem_cache_destroy(rmap_item_cache);
201 out:
202 	return -ENOMEM;
203 }
204 
205 static void __init ksm_slab_free(void)
206 {
207 	kmem_cache_destroy(mm_slot_cache);
208 	kmem_cache_destroy(rmap_item_cache);
209 	mm_slot_cache = NULL;
210 }
211 
212 static inline struct rmap_item *alloc_rmap_item(void)
213 {
214 	struct rmap_item *rmap_item;
215 
216 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
217 	if (rmap_item)
218 		ksm_rmap_items++;
219 	return rmap_item;
220 }
221 
222 static inline void free_rmap_item(struct rmap_item *rmap_item)
223 {
224 	ksm_rmap_items--;
225 	rmap_item->mm = NULL;	/* debug safety */
226 	kmem_cache_free(rmap_item_cache, rmap_item);
227 }
228 
229 static inline struct mm_slot *alloc_mm_slot(void)
230 {
231 	if (!mm_slot_cache)	/* initialization failed */
232 		return NULL;
233 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
234 }
235 
236 static inline void free_mm_slot(struct mm_slot *mm_slot)
237 {
238 	kmem_cache_free(mm_slot_cache, mm_slot);
239 }
240 
241 static int __init mm_slots_hash_init(void)
242 {
243 	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
244 				GFP_KERNEL);
245 	if (!mm_slots_hash)
246 		return -ENOMEM;
247 	return 0;
248 }
249 
250 static void __init mm_slots_hash_free(void)
251 {
252 	kfree(mm_slots_hash);
253 }
254 
255 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
256 {
257 	struct mm_slot *mm_slot;
258 	struct hlist_head *bucket;
259 	struct hlist_node *node;
260 
261 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
262 				% MM_SLOTS_HASH_HEADS];
263 	hlist_for_each_entry(mm_slot, node, bucket, link) {
264 		if (mm == mm_slot->mm)
265 			return mm_slot;
266 	}
267 	return NULL;
268 }
269 
270 static void insert_to_mm_slots_hash(struct mm_struct *mm,
271 				    struct mm_slot *mm_slot)
272 {
273 	struct hlist_head *bucket;
274 
275 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
276 				% MM_SLOTS_HASH_HEADS];
277 	mm_slot->mm = mm;
278 	INIT_LIST_HEAD(&mm_slot->rmap_list);
279 	hlist_add_head(&mm_slot->link, bucket);
280 }
281 
282 static inline int in_stable_tree(struct rmap_item *rmap_item)
283 {
284 	return rmap_item->address & STABLE_FLAG;
285 }
286 
287 /*
288  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
289  * page tables after it has passed through ksm_exit() - which, if necessary,
290  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
291  * a special flag: they can just back out as soon as mm_users goes to zero.
292  * ksm_test_exit() is used throughout to make this test for exit: in some
293  * places for correctness, in some places just to avoid unnecessary work.
294  */
295 static inline bool ksm_test_exit(struct mm_struct *mm)
296 {
297 	return atomic_read(&mm->mm_users) == 0;
298 }
299 
300 /*
301  * We use break_ksm to break COW on a ksm page: it's a stripped down
302  *
303  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
304  *		put_page(page);
305  *
306  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
307  * in case the application has unmapped and remapped mm,addr meanwhile.
308  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
309  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
310  */
311 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
312 {
313 	struct page *page;
314 	int ret = 0;
315 
316 	do {
317 		cond_resched();
318 		page = follow_page(vma, addr, FOLL_GET);
319 		if (!page)
320 			break;
321 		if (PageKsm(page))
322 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
323 							FAULT_FLAG_WRITE);
324 		else
325 			ret = VM_FAULT_WRITE;
326 		put_page(page);
327 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
328 	/*
329 	 * We must loop because handle_mm_fault() may back out if there's
330 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
331 	 *
332 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
333 	 * COW has been broken, even if the vma does not permit VM_WRITE;
334 	 * but note that a concurrent fault might break PageKsm for us.
335 	 *
336 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
337 	 * backing file, which also invalidates anonymous pages: that's
338 	 * okay, that truncation will have unmapped the PageKsm for us.
339 	 *
340 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
341 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
342 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
343 	 * to user; and ksmd, having no mm, would never be chosen for that.
344 	 *
345 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
346 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
347 	 * even ksmd can fail in this way - though it's usually breaking ksm
348 	 * just to undo a merge it made a moment before, so unlikely to oom.
349 	 *
350 	 * That's a pity: we might therefore have more kernel pages allocated
351 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
352 	 * will retry to break_cow on each pass, so should recover the page
353 	 * in due course.  The important thing is to not let VM_MERGEABLE
354 	 * be cleared while any such pages might remain in the area.
355 	 */
356 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
357 }
358 
359 static void break_cow(struct mm_struct *mm, unsigned long addr)
360 {
361 	struct vm_area_struct *vma;
362 
363 	down_read(&mm->mmap_sem);
364 	if (ksm_test_exit(mm))
365 		goto out;
366 	vma = find_vma(mm, addr);
367 	if (!vma || vma->vm_start > addr)
368 		goto out;
369 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
370 		goto out;
371 	break_ksm(vma, addr);
372 out:
373 	up_read(&mm->mmap_sem);
374 }
375 
376 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
377 {
378 	struct mm_struct *mm = rmap_item->mm;
379 	unsigned long addr = rmap_item->address;
380 	struct vm_area_struct *vma;
381 	struct page *page;
382 
383 	down_read(&mm->mmap_sem);
384 	if (ksm_test_exit(mm))
385 		goto out;
386 	vma = find_vma(mm, addr);
387 	if (!vma || vma->vm_start > addr)
388 		goto out;
389 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
390 		goto out;
391 
392 	page = follow_page(vma, addr, FOLL_GET);
393 	if (!page)
394 		goto out;
395 	if (PageAnon(page)) {
396 		flush_anon_page(vma, page, addr);
397 		flush_dcache_page(page);
398 	} else {
399 		put_page(page);
400 out:		page = NULL;
401 	}
402 	up_read(&mm->mmap_sem);
403 	return page;
404 }
405 
406 /*
407  * get_ksm_page: checks if the page at the virtual address in rmap_item
408  * is still PageKsm, in which case we can trust the content of the page,
409  * and it returns the gotten page; but NULL if the page has been zapped.
410  */
411 static struct page *get_ksm_page(struct rmap_item *rmap_item)
412 {
413 	struct page *page;
414 
415 	page = get_mergeable_page(rmap_item);
416 	if (page && !PageKsm(page)) {
417 		put_page(page);
418 		page = NULL;
419 	}
420 	return page;
421 }
422 
423 /*
424  * Removing rmap_item from stable or unstable tree.
425  * This function will clean the information from the stable/unstable tree.
426  */
427 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
428 {
429 	if (in_stable_tree(rmap_item)) {
430 		struct rmap_item *next_item = rmap_item->next;
431 
432 		if (rmap_item->address & NODE_FLAG) {
433 			if (next_item) {
434 				rb_replace_node(&rmap_item->node,
435 						&next_item->node,
436 						&root_stable_tree);
437 				next_item->address |= NODE_FLAG;
438 				ksm_pages_sharing--;
439 			} else {
440 				rb_erase(&rmap_item->node, &root_stable_tree);
441 				ksm_pages_shared--;
442 			}
443 		} else {
444 			struct rmap_item *prev_item = rmap_item->prev;
445 
446 			BUG_ON(prev_item->next != rmap_item);
447 			prev_item->next = next_item;
448 			if (next_item) {
449 				BUG_ON(next_item->prev != rmap_item);
450 				next_item->prev = rmap_item->prev;
451 			}
452 			ksm_pages_sharing--;
453 		}
454 
455 		rmap_item->next = NULL;
456 
457 	} else if (rmap_item->address & NODE_FLAG) {
458 		unsigned char age;
459 		/*
460 		 * Usually ksmd can and must skip the rb_erase, because
461 		 * root_unstable_tree was already reset to RB_ROOT.
462 		 * But be careful when an mm is exiting: do the rb_erase
463 		 * if this rmap_item was inserted by this scan, rather
464 		 * than left over from before.
465 		 */
466 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
467 		BUG_ON(age > 1);
468 		if (!age)
469 			rb_erase(&rmap_item->node, &root_unstable_tree);
470 		ksm_pages_unshared--;
471 	}
472 
473 	rmap_item->address &= PAGE_MASK;
474 
475 	cond_resched();		/* we're called from many long loops */
476 }
477 
478 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
479 				       struct list_head *cur)
480 {
481 	struct rmap_item *rmap_item;
482 
483 	while (cur != &mm_slot->rmap_list) {
484 		rmap_item = list_entry(cur, struct rmap_item, link);
485 		cur = cur->next;
486 		remove_rmap_item_from_tree(rmap_item);
487 		list_del(&rmap_item->link);
488 		free_rmap_item(rmap_item);
489 	}
490 }
491 
492 /*
493  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
494  * than check every pte of a given vma, the locking doesn't quite work for
495  * that - an rmap_item is assigned to the stable tree after inserting ksm
496  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
497  * rmap_items from parent to child at fork time (so as not to waste time
498  * if exit comes before the next scan reaches it).
499  *
500  * Similarly, although we'd like to remove rmap_items (so updating counts
501  * and freeing memory) when unmerging an area, it's easier to leave that
502  * to the next pass of ksmd - consider, for example, how ksmd might be
503  * in cmp_and_merge_page on one of the rmap_items we would be removing.
504  */
505 static int unmerge_ksm_pages(struct vm_area_struct *vma,
506 			     unsigned long start, unsigned long end)
507 {
508 	unsigned long addr;
509 	int err = 0;
510 
511 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
512 		if (ksm_test_exit(vma->vm_mm))
513 			break;
514 		if (signal_pending(current))
515 			err = -ERESTARTSYS;
516 		else
517 			err = break_ksm(vma, addr);
518 	}
519 	return err;
520 }
521 
522 #ifdef CONFIG_SYSFS
523 /*
524  * Only called through the sysfs control interface:
525  */
526 static int unmerge_and_remove_all_rmap_items(void)
527 {
528 	struct mm_slot *mm_slot;
529 	struct mm_struct *mm;
530 	struct vm_area_struct *vma;
531 	int err = 0;
532 
533 	spin_lock(&ksm_mmlist_lock);
534 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
535 						struct mm_slot, mm_list);
536 	spin_unlock(&ksm_mmlist_lock);
537 
538 	for (mm_slot = ksm_scan.mm_slot;
539 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
540 		mm = mm_slot->mm;
541 		down_read(&mm->mmap_sem);
542 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
543 			if (ksm_test_exit(mm))
544 				break;
545 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
546 				continue;
547 			err = unmerge_ksm_pages(vma,
548 						vma->vm_start, vma->vm_end);
549 			if (err)
550 				goto error;
551 		}
552 
553 		remove_trailing_rmap_items(mm_slot, mm_slot->rmap_list.next);
554 
555 		spin_lock(&ksm_mmlist_lock);
556 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
557 						struct mm_slot, mm_list);
558 		if (ksm_test_exit(mm)) {
559 			hlist_del(&mm_slot->link);
560 			list_del(&mm_slot->mm_list);
561 			spin_unlock(&ksm_mmlist_lock);
562 
563 			free_mm_slot(mm_slot);
564 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
565 			up_read(&mm->mmap_sem);
566 			mmdrop(mm);
567 		} else {
568 			spin_unlock(&ksm_mmlist_lock);
569 			up_read(&mm->mmap_sem);
570 		}
571 	}
572 
573 	ksm_scan.seqnr = 0;
574 	return 0;
575 
576 error:
577 	up_read(&mm->mmap_sem);
578 	spin_lock(&ksm_mmlist_lock);
579 	ksm_scan.mm_slot = &ksm_mm_head;
580 	spin_unlock(&ksm_mmlist_lock);
581 	return err;
582 }
583 #endif /* CONFIG_SYSFS */
584 
585 static u32 calc_checksum(struct page *page)
586 {
587 	u32 checksum;
588 	void *addr = kmap_atomic(page, KM_USER0);
589 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
590 	kunmap_atomic(addr, KM_USER0);
591 	return checksum;
592 }
593 
594 static int memcmp_pages(struct page *page1, struct page *page2)
595 {
596 	char *addr1, *addr2;
597 	int ret;
598 
599 	addr1 = kmap_atomic(page1, KM_USER0);
600 	addr2 = kmap_atomic(page2, KM_USER1);
601 	ret = memcmp(addr1, addr2, PAGE_SIZE);
602 	kunmap_atomic(addr2, KM_USER1);
603 	kunmap_atomic(addr1, KM_USER0);
604 	return ret;
605 }
606 
607 static inline int pages_identical(struct page *page1, struct page *page2)
608 {
609 	return !memcmp_pages(page1, page2);
610 }
611 
612 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
613 			      pte_t *orig_pte)
614 {
615 	struct mm_struct *mm = vma->vm_mm;
616 	unsigned long addr;
617 	pte_t *ptep;
618 	spinlock_t *ptl;
619 	int swapped;
620 	int err = -EFAULT;
621 
622 	addr = page_address_in_vma(page, vma);
623 	if (addr == -EFAULT)
624 		goto out;
625 
626 	ptep = page_check_address(page, mm, addr, &ptl, 0);
627 	if (!ptep)
628 		goto out;
629 
630 	if (pte_write(*ptep)) {
631 		pte_t entry;
632 
633 		swapped = PageSwapCache(page);
634 		flush_cache_page(vma, addr, page_to_pfn(page));
635 		/*
636 		 * Ok this is tricky, when get_user_pages_fast() run it doesnt
637 		 * take any lock, therefore the check that we are going to make
638 		 * with the pagecount against the mapcount is racey and
639 		 * O_DIRECT can happen right after the check.
640 		 * So we clear the pte and flush the tlb before the check
641 		 * this assure us that no O_DIRECT can happen after the check
642 		 * or in the middle of the check.
643 		 */
644 		entry = ptep_clear_flush(vma, addr, ptep);
645 		/*
646 		 * Check that no O_DIRECT or similar I/O is in progress on the
647 		 * page
648 		 */
649 		if ((page_mapcount(page) + 2 + swapped) != page_count(page)) {
650 			set_pte_at_notify(mm, addr, ptep, entry);
651 			goto out_unlock;
652 		}
653 		entry = pte_wrprotect(entry);
654 		set_pte_at_notify(mm, addr, ptep, entry);
655 	}
656 	*orig_pte = *ptep;
657 	err = 0;
658 
659 out_unlock:
660 	pte_unmap_unlock(ptep, ptl);
661 out:
662 	return err;
663 }
664 
665 /**
666  * replace_page - replace page in vma by new ksm page
667  * @vma:      vma that holds the pte pointing to oldpage
668  * @oldpage:  the page we are replacing by newpage
669  * @newpage:  the ksm page we replace oldpage by
670  * @orig_pte: the original value of the pte
671  *
672  * Returns 0 on success, -EFAULT on failure.
673  */
674 static int replace_page(struct vm_area_struct *vma, struct page *oldpage,
675 			struct page *newpage, pte_t orig_pte)
676 {
677 	struct mm_struct *mm = vma->vm_mm;
678 	pgd_t *pgd;
679 	pud_t *pud;
680 	pmd_t *pmd;
681 	pte_t *ptep;
682 	spinlock_t *ptl;
683 	unsigned long addr;
684 	pgprot_t prot;
685 	int err = -EFAULT;
686 
687 	prot = vm_get_page_prot(vma->vm_flags & ~VM_WRITE);
688 
689 	addr = page_address_in_vma(oldpage, vma);
690 	if (addr == -EFAULT)
691 		goto out;
692 
693 	pgd = pgd_offset(mm, addr);
694 	if (!pgd_present(*pgd))
695 		goto out;
696 
697 	pud = pud_offset(pgd, addr);
698 	if (!pud_present(*pud))
699 		goto out;
700 
701 	pmd = pmd_offset(pud, addr);
702 	if (!pmd_present(*pmd))
703 		goto out;
704 
705 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
706 	if (!pte_same(*ptep, orig_pte)) {
707 		pte_unmap_unlock(ptep, ptl);
708 		goto out;
709 	}
710 
711 	get_page(newpage);
712 	page_add_ksm_rmap(newpage);
713 
714 	flush_cache_page(vma, addr, pte_pfn(*ptep));
715 	ptep_clear_flush(vma, addr, ptep);
716 	set_pte_at_notify(mm, addr, ptep, mk_pte(newpage, prot));
717 
718 	page_remove_rmap(oldpage);
719 	put_page(oldpage);
720 
721 	pte_unmap_unlock(ptep, ptl);
722 	err = 0;
723 out:
724 	return err;
725 }
726 
727 /*
728  * try_to_merge_one_page - take two pages and merge them into one
729  * @vma: the vma that hold the pte pointing into oldpage
730  * @oldpage: the page that we want to replace with newpage
731  * @newpage: the page that we want to map instead of oldpage
732  *
733  * Note:
734  * oldpage should be a PageAnon page, while newpage should be a PageKsm page,
735  * or a newly allocated kernel page which page_add_ksm_rmap will make PageKsm.
736  *
737  * This function returns 0 if the pages were merged, -EFAULT otherwise.
738  */
739 static int try_to_merge_one_page(struct vm_area_struct *vma,
740 				 struct page *oldpage,
741 				 struct page *newpage)
742 {
743 	pte_t orig_pte = __pte(0);
744 	int err = -EFAULT;
745 
746 	if (!(vma->vm_flags & VM_MERGEABLE))
747 		goto out;
748 
749 	if (!PageAnon(oldpage))
750 		goto out;
751 
752 	get_page(newpage);
753 	get_page(oldpage);
754 
755 	/*
756 	 * We need the page lock to read a stable PageSwapCache in
757 	 * write_protect_page().  We use trylock_page() instead of
758 	 * lock_page() because we don't want to wait here - we
759 	 * prefer to continue scanning and merging different pages,
760 	 * then come back to this page when it is unlocked.
761 	 */
762 	if (!trylock_page(oldpage))
763 		goto out_putpage;
764 	/*
765 	 * If this anonymous page is mapped only here, its pte may need
766 	 * to be write-protected.  If it's mapped elsewhere, all of its
767 	 * ptes are necessarily already write-protected.  But in either
768 	 * case, we need to lock and check page_count is not raised.
769 	 */
770 	if (write_protect_page(vma, oldpage, &orig_pte)) {
771 		unlock_page(oldpage);
772 		goto out_putpage;
773 	}
774 	unlock_page(oldpage);
775 
776 	if (pages_identical(oldpage, newpage))
777 		err = replace_page(vma, oldpage, newpage, orig_pte);
778 
779 out_putpage:
780 	put_page(oldpage);
781 	put_page(newpage);
782 out:
783 	return err;
784 }
785 
786 /*
787  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
788  * but no new kernel page is allocated: kpage must already be a ksm page.
789  */
790 static int try_to_merge_with_ksm_page(struct mm_struct *mm1,
791 				      unsigned long addr1,
792 				      struct page *page1,
793 				      struct page *kpage)
794 {
795 	struct vm_area_struct *vma;
796 	int err = -EFAULT;
797 
798 	down_read(&mm1->mmap_sem);
799 	if (ksm_test_exit(mm1))
800 		goto out;
801 
802 	vma = find_vma(mm1, addr1);
803 	if (!vma || vma->vm_start > addr1)
804 		goto out;
805 
806 	err = try_to_merge_one_page(vma, page1, kpage);
807 out:
808 	up_read(&mm1->mmap_sem);
809 	return err;
810 }
811 
812 /*
813  * try_to_merge_two_pages - take two identical pages and prepare them
814  * to be merged into one page.
815  *
816  * This function returns 0 if we successfully mapped two identical pages
817  * into one page, -EFAULT otherwise.
818  *
819  * Note that this function allocates a new kernel page: if one of the pages
820  * is already a ksm page, try_to_merge_with_ksm_page should be used.
821  */
822 static int try_to_merge_two_pages(struct mm_struct *mm1, unsigned long addr1,
823 				  struct page *page1, struct mm_struct *mm2,
824 				  unsigned long addr2, struct page *page2)
825 {
826 	struct vm_area_struct *vma;
827 	struct page *kpage;
828 	int err = -EFAULT;
829 
830 	/*
831 	 * The number of nodes in the stable tree
832 	 * is the number of kernel pages that we hold.
833 	 */
834 	if (ksm_max_kernel_pages &&
835 	    ksm_max_kernel_pages <= ksm_pages_shared)
836 		return err;
837 
838 	kpage = alloc_page(GFP_HIGHUSER);
839 	if (!kpage)
840 		return err;
841 
842 	down_read(&mm1->mmap_sem);
843 	if (ksm_test_exit(mm1)) {
844 		up_read(&mm1->mmap_sem);
845 		goto out;
846 	}
847 	vma = find_vma(mm1, addr1);
848 	if (!vma || vma->vm_start > addr1) {
849 		up_read(&mm1->mmap_sem);
850 		goto out;
851 	}
852 
853 	copy_user_highpage(kpage, page1, addr1, vma);
854 	err = try_to_merge_one_page(vma, page1, kpage);
855 	up_read(&mm1->mmap_sem);
856 
857 	if (!err) {
858 		err = try_to_merge_with_ksm_page(mm2, addr2, page2, kpage);
859 		/*
860 		 * If that fails, we have a ksm page with only one pte
861 		 * pointing to it: so break it.
862 		 */
863 		if (err)
864 			break_cow(mm1, addr1);
865 	}
866 out:
867 	put_page(kpage);
868 	return err;
869 }
870 
871 /*
872  * stable_tree_search - search page inside the stable tree
873  * @page: the page that we are searching identical pages to.
874  * @page2: pointer into identical page that we are holding inside the stable
875  *	   tree that we have found.
876  * @rmap_item: the reverse mapping item
877  *
878  * This function checks if there is a page inside the stable tree
879  * with identical content to the page that we are scanning right now.
880  *
881  * This function return rmap_item pointer to the identical item if found,
882  * NULL otherwise.
883  */
884 static struct rmap_item *stable_tree_search(struct page *page,
885 					    struct page **page2,
886 					    struct rmap_item *rmap_item)
887 {
888 	struct rb_node *node = root_stable_tree.rb_node;
889 
890 	while (node) {
891 		struct rmap_item *tree_rmap_item, *next_rmap_item;
892 		int ret;
893 
894 		tree_rmap_item = rb_entry(node, struct rmap_item, node);
895 		while (tree_rmap_item) {
896 			BUG_ON(!in_stable_tree(tree_rmap_item));
897 			cond_resched();
898 			page2[0] = get_ksm_page(tree_rmap_item);
899 			if (page2[0])
900 				break;
901 			next_rmap_item = tree_rmap_item->next;
902 			remove_rmap_item_from_tree(tree_rmap_item);
903 			tree_rmap_item = next_rmap_item;
904 		}
905 		if (!tree_rmap_item)
906 			return NULL;
907 
908 		ret = memcmp_pages(page, page2[0]);
909 
910 		if (ret < 0) {
911 			put_page(page2[0]);
912 			node = node->rb_left;
913 		} else if (ret > 0) {
914 			put_page(page2[0]);
915 			node = node->rb_right;
916 		} else {
917 			return tree_rmap_item;
918 		}
919 	}
920 
921 	return NULL;
922 }
923 
924 /*
925  * stable_tree_insert - insert rmap_item pointing to new ksm page
926  * into the stable tree.
927  *
928  * @page: the page that we are searching identical page to inside the stable
929  *	  tree.
930  * @rmap_item: pointer to the reverse mapping item.
931  *
932  * This function returns rmap_item if success, NULL otherwise.
933  */
934 static struct rmap_item *stable_tree_insert(struct page *page,
935 					    struct rmap_item *rmap_item)
936 {
937 	struct rb_node **new = &root_stable_tree.rb_node;
938 	struct rb_node *parent = NULL;
939 
940 	while (*new) {
941 		struct rmap_item *tree_rmap_item, *next_rmap_item;
942 		struct page *tree_page;
943 		int ret;
944 
945 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
946 		while (tree_rmap_item) {
947 			BUG_ON(!in_stable_tree(tree_rmap_item));
948 			cond_resched();
949 			tree_page = get_ksm_page(tree_rmap_item);
950 			if (tree_page)
951 				break;
952 			next_rmap_item = tree_rmap_item->next;
953 			remove_rmap_item_from_tree(tree_rmap_item);
954 			tree_rmap_item = next_rmap_item;
955 		}
956 		if (!tree_rmap_item)
957 			return NULL;
958 
959 		ret = memcmp_pages(page, tree_page);
960 		put_page(tree_page);
961 
962 		parent = *new;
963 		if (ret < 0)
964 			new = &parent->rb_left;
965 		else if (ret > 0)
966 			new = &parent->rb_right;
967 		else {
968 			/*
969 			 * It is not a bug that stable_tree_search() didn't
970 			 * find this node: because at that time our page was
971 			 * not yet write-protected, so may have changed since.
972 			 */
973 			return NULL;
974 		}
975 	}
976 
977 	rmap_item->address |= NODE_FLAG | STABLE_FLAG;
978 	rmap_item->next = NULL;
979 	rb_link_node(&rmap_item->node, parent, new);
980 	rb_insert_color(&rmap_item->node, &root_stable_tree);
981 
982 	ksm_pages_shared++;
983 	return rmap_item;
984 }
985 
986 /*
987  * unstable_tree_search_insert - search and insert items into the unstable tree.
988  *
989  * @page: the page that we are going to search for identical page or to insert
990  *	  into the unstable tree
991  * @page2: pointer into identical page that was found inside the unstable tree
992  * @rmap_item: the reverse mapping item of page
993  *
994  * This function searches for a page in the unstable tree identical to the
995  * page currently being scanned; and if no identical page is found in the
996  * tree, we insert rmap_item as a new object into the unstable tree.
997  *
998  * This function returns pointer to rmap_item found to be identical
999  * to the currently scanned page, NULL otherwise.
1000  *
1001  * This function does both searching and inserting, because they share
1002  * the same walking algorithm in an rbtree.
1003  */
1004 static struct rmap_item *unstable_tree_search_insert(struct page *page,
1005 						struct page **page2,
1006 						struct rmap_item *rmap_item)
1007 {
1008 	struct rb_node **new = &root_unstable_tree.rb_node;
1009 	struct rb_node *parent = NULL;
1010 
1011 	while (*new) {
1012 		struct rmap_item *tree_rmap_item;
1013 		int ret;
1014 
1015 		cond_resched();
1016 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1017 		page2[0] = get_mergeable_page(tree_rmap_item);
1018 		if (!page2[0])
1019 			return NULL;
1020 
1021 		/*
1022 		 * Don't substitute an unswappable ksm page
1023 		 * just for one good swappable forked page.
1024 		 */
1025 		if (page == page2[0]) {
1026 			put_page(page2[0]);
1027 			return NULL;
1028 		}
1029 
1030 		ret = memcmp_pages(page, page2[0]);
1031 
1032 		parent = *new;
1033 		if (ret < 0) {
1034 			put_page(page2[0]);
1035 			new = &parent->rb_left;
1036 		} else if (ret > 0) {
1037 			put_page(page2[0]);
1038 			new = &parent->rb_right;
1039 		} else {
1040 			return tree_rmap_item;
1041 		}
1042 	}
1043 
1044 	rmap_item->address |= NODE_FLAG;
1045 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1046 	rb_link_node(&rmap_item->node, parent, new);
1047 	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1048 
1049 	ksm_pages_unshared++;
1050 	return NULL;
1051 }
1052 
1053 /*
1054  * stable_tree_append - add another rmap_item to the linked list of
1055  * rmap_items hanging off a given node of the stable tree, all sharing
1056  * the same ksm page.
1057  */
1058 static void stable_tree_append(struct rmap_item *rmap_item,
1059 			       struct rmap_item *tree_rmap_item)
1060 {
1061 	rmap_item->next = tree_rmap_item->next;
1062 	rmap_item->prev = tree_rmap_item;
1063 
1064 	if (tree_rmap_item->next)
1065 		tree_rmap_item->next->prev = rmap_item;
1066 
1067 	tree_rmap_item->next = rmap_item;
1068 	rmap_item->address |= STABLE_FLAG;
1069 
1070 	ksm_pages_sharing++;
1071 }
1072 
1073 /*
1074  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1075  * if not, compare checksum to previous and if it's the same, see if page can
1076  * be inserted into the unstable tree, or merged with a page already there and
1077  * both transferred to the stable tree.
1078  *
1079  * @page: the page that we are searching identical page to.
1080  * @rmap_item: the reverse mapping into the virtual address of this page
1081  */
1082 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1083 {
1084 	struct page *page2[1];
1085 	struct rmap_item *tree_rmap_item;
1086 	unsigned int checksum;
1087 	int err;
1088 
1089 	if (in_stable_tree(rmap_item))
1090 		remove_rmap_item_from_tree(rmap_item);
1091 
1092 	/* We first start with searching the page inside the stable tree */
1093 	tree_rmap_item = stable_tree_search(page, page2, rmap_item);
1094 	if (tree_rmap_item) {
1095 		if (page == page2[0])			/* forked */
1096 			err = 0;
1097 		else
1098 			err = try_to_merge_with_ksm_page(rmap_item->mm,
1099 							 rmap_item->address,
1100 							 page, page2[0]);
1101 		put_page(page2[0]);
1102 
1103 		if (!err) {
1104 			/*
1105 			 * The page was successfully merged:
1106 			 * add its rmap_item to the stable tree.
1107 			 */
1108 			stable_tree_append(rmap_item, tree_rmap_item);
1109 		}
1110 		return;
1111 	}
1112 
1113 	/*
1114 	 * A ksm page might have got here by fork, but its other
1115 	 * references have already been removed from the stable tree.
1116 	 * Or it might be left over from a break_ksm which failed
1117 	 * when the mem_cgroup had reached its limit: try again now.
1118 	 */
1119 	if (PageKsm(page))
1120 		break_cow(rmap_item->mm, rmap_item->address);
1121 
1122 	/*
1123 	 * In case the hash value of the page was changed from the last time we
1124 	 * have calculated it, this page to be changed frequely, therefore we
1125 	 * don't want to insert it to the unstable tree, and we don't want to
1126 	 * waste our time to search if there is something identical to it there.
1127 	 */
1128 	checksum = calc_checksum(page);
1129 	if (rmap_item->oldchecksum != checksum) {
1130 		rmap_item->oldchecksum = checksum;
1131 		return;
1132 	}
1133 
1134 	tree_rmap_item = unstable_tree_search_insert(page, page2, rmap_item);
1135 	if (tree_rmap_item) {
1136 		err = try_to_merge_two_pages(rmap_item->mm,
1137 					     rmap_item->address, page,
1138 					     tree_rmap_item->mm,
1139 					     tree_rmap_item->address, page2[0]);
1140 		/*
1141 		 * As soon as we merge this page, we want to remove the
1142 		 * rmap_item of the page we have merged with from the unstable
1143 		 * tree, and insert it instead as new node in the stable tree.
1144 		 */
1145 		if (!err) {
1146 			rb_erase(&tree_rmap_item->node, &root_unstable_tree);
1147 			tree_rmap_item->address &= ~NODE_FLAG;
1148 			ksm_pages_unshared--;
1149 
1150 			/*
1151 			 * If we fail to insert the page into the stable tree,
1152 			 * we will have 2 virtual addresses that are pointing
1153 			 * to a ksm page left outside the stable tree,
1154 			 * in which case we need to break_cow on both.
1155 			 */
1156 			if (stable_tree_insert(page2[0], tree_rmap_item))
1157 				stable_tree_append(rmap_item, tree_rmap_item);
1158 			else {
1159 				break_cow(tree_rmap_item->mm,
1160 						tree_rmap_item->address);
1161 				break_cow(rmap_item->mm, rmap_item->address);
1162 			}
1163 		}
1164 
1165 		put_page(page2[0]);
1166 	}
1167 }
1168 
1169 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1170 					    struct list_head *cur,
1171 					    unsigned long addr)
1172 {
1173 	struct rmap_item *rmap_item;
1174 
1175 	while (cur != &mm_slot->rmap_list) {
1176 		rmap_item = list_entry(cur, struct rmap_item, link);
1177 		if ((rmap_item->address & PAGE_MASK) == addr) {
1178 			if (!in_stable_tree(rmap_item))
1179 				remove_rmap_item_from_tree(rmap_item);
1180 			return rmap_item;
1181 		}
1182 		if (rmap_item->address > addr)
1183 			break;
1184 		cur = cur->next;
1185 		remove_rmap_item_from_tree(rmap_item);
1186 		list_del(&rmap_item->link);
1187 		free_rmap_item(rmap_item);
1188 	}
1189 
1190 	rmap_item = alloc_rmap_item();
1191 	if (rmap_item) {
1192 		/* It has already been zeroed */
1193 		rmap_item->mm = mm_slot->mm;
1194 		rmap_item->address = addr;
1195 		list_add_tail(&rmap_item->link, cur);
1196 	}
1197 	return rmap_item;
1198 }
1199 
1200 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1201 {
1202 	struct mm_struct *mm;
1203 	struct mm_slot *slot;
1204 	struct vm_area_struct *vma;
1205 	struct rmap_item *rmap_item;
1206 
1207 	if (list_empty(&ksm_mm_head.mm_list))
1208 		return NULL;
1209 
1210 	slot = ksm_scan.mm_slot;
1211 	if (slot == &ksm_mm_head) {
1212 		root_unstable_tree = RB_ROOT;
1213 
1214 		spin_lock(&ksm_mmlist_lock);
1215 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1216 		ksm_scan.mm_slot = slot;
1217 		spin_unlock(&ksm_mmlist_lock);
1218 next_mm:
1219 		ksm_scan.address = 0;
1220 		ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1221 						struct rmap_item, link);
1222 	}
1223 
1224 	mm = slot->mm;
1225 	down_read(&mm->mmap_sem);
1226 	if (ksm_test_exit(mm))
1227 		vma = NULL;
1228 	else
1229 		vma = find_vma(mm, ksm_scan.address);
1230 
1231 	for (; vma; vma = vma->vm_next) {
1232 		if (!(vma->vm_flags & VM_MERGEABLE))
1233 			continue;
1234 		if (ksm_scan.address < vma->vm_start)
1235 			ksm_scan.address = vma->vm_start;
1236 		if (!vma->anon_vma)
1237 			ksm_scan.address = vma->vm_end;
1238 
1239 		while (ksm_scan.address < vma->vm_end) {
1240 			if (ksm_test_exit(mm))
1241 				break;
1242 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1243 			if (*page && PageAnon(*page)) {
1244 				flush_anon_page(vma, *page, ksm_scan.address);
1245 				flush_dcache_page(*page);
1246 				rmap_item = get_next_rmap_item(slot,
1247 					ksm_scan.rmap_item->link.next,
1248 					ksm_scan.address);
1249 				if (rmap_item) {
1250 					ksm_scan.rmap_item = rmap_item;
1251 					ksm_scan.address += PAGE_SIZE;
1252 				} else
1253 					put_page(*page);
1254 				up_read(&mm->mmap_sem);
1255 				return rmap_item;
1256 			}
1257 			if (*page)
1258 				put_page(*page);
1259 			ksm_scan.address += PAGE_SIZE;
1260 			cond_resched();
1261 		}
1262 	}
1263 
1264 	if (ksm_test_exit(mm)) {
1265 		ksm_scan.address = 0;
1266 		ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1267 						struct rmap_item, link);
1268 	}
1269 	/*
1270 	 * Nuke all the rmap_items that are above this current rmap:
1271 	 * because there were no VM_MERGEABLE vmas with such addresses.
1272 	 */
1273 	remove_trailing_rmap_items(slot, ksm_scan.rmap_item->link.next);
1274 
1275 	spin_lock(&ksm_mmlist_lock);
1276 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1277 						struct mm_slot, mm_list);
1278 	if (ksm_scan.address == 0) {
1279 		/*
1280 		 * We've completed a full scan of all vmas, holding mmap_sem
1281 		 * throughout, and found no VM_MERGEABLE: so do the same as
1282 		 * __ksm_exit does to remove this mm from all our lists now.
1283 		 * This applies either when cleaning up after __ksm_exit
1284 		 * (but beware: we can reach here even before __ksm_exit),
1285 		 * or when all VM_MERGEABLE areas have been unmapped (and
1286 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1287 		 */
1288 		hlist_del(&slot->link);
1289 		list_del(&slot->mm_list);
1290 		spin_unlock(&ksm_mmlist_lock);
1291 
1292 		free_mm_slot(slot);
1293 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1294 		up_read(&mm->mmap_sem);
1295 		mmdrop(mm);
1296 	} else {
1297 		spin_unlock(&ksm_mmlist_lock);
1298 		up_read(&mm->mmap_sem);
1299 	}
1300 
1301 	/* Repeat until we've completed scanning the whole list */
1302 	slot = ksm_scan.mm_slot;
1303 	if (slot != &ksm_mm_head)
1304 		goto next_mm;
1305 
1306 	ksm_scan.seqnr++;
1307 	return NULL;
1308 }
1309 
1310 /**
1311  * ksm_do_scan  - the ksm scanner main worker function.
1312  * @scan_npages - number of pages we want to scan before we return.
1313  */
1314 static void ksm_do_scan(unsigned int scan_npages)
1315 {
1316 	struct rmap_item *rmap_item;
1317 	struct page *page;
1318 
1319 	while (scan_npages--) {
1320 		cond_resched();
1321 		rmap_item = scan_get_next_rmap_item(&page);
1322 		if (!rmap_item)
1323 			return;
1324 		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1325 			cmp_and_merge_page(page, rmap_item);
1326 		else if (page_mapcount(page) == 1) {
1327 			/*
1328 			 * Replace now-unshared ksm page by ordinary page.
1329 			 */
1330 			break_cow(rmap_item->mm, rmap_item->address);
1331 			remove_rmap_item_from_tree(rmap_item);
1332 			rmap_item->oldchecksum = calc_checksum(page);
1333 		}
1334 		put_page(page);
1335 	}
1336 }
1337 
1338 static int ksmd_should_run(void)
1339 {
1340 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1341 }
1342 
1343 static int ksm_scan_thread(void *nothing)
1344 {
1345 	set_user_nice(current, 5);
1346 
1347 	while (!kthread_should_stop()) {
1348 		mutex_lock(&ksm_thread_mutex);
1349 		if (ksmd_should_run())
1350 			ksm_do_scan(ksm_thread_pages_to_scan);
1351 		mutex_unlock(&ksm_thread_mutex);
1352 
1353 		if (ksmd_should_run()) {
1354 			schedule_timeout_interruptible(
1355 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1356 		} else {
1357 			wait_event_interruptible(ksm_thread_wait,
1358 				ksmd_should_run() || kthread_should_stop());
1359 		}
1360 	}
1361 	return 0;
1362 }
1363 
1364 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1365 		unsigned long end, int advice, unsigned long *vm_flags)
1366 {
1367 	struct mm_struct *mm = vma->vm_mm;
1368 	int err;
1369 
1370 	switch (advice) {
1371 	case MADV_MERGEABLE:
1372 		/*
1373 		 * Be somewhat over-protective for now!
1374 		 */
1375 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1376 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1377 				 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1378 				 VM_MIXEDMAP  | VM_SAO))
1379 			return 0;		/* just ignore the advice */
1380 
1381 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1382 			err = __ksm_enter(mm);
1383 			if (err)
1384 				return err;
1385 		}
1386 
1387 		*vm_flags |= VM_MERGEABLE;
1388 		break;
1389 
1390 	case MADV_UNMERGEABLE:
1391 		if (!(*vm_flags & VM_MERGEABLE))
1392 			return 0;		/* just ignore the advice */
1393 
1394 		if (vma->anon_vma) {
1395 			err = unmerge_ksm_pages(vma, start, end);
1396 			if (err)
1397 				return err;
1398 		}
1399 
1400 		*vm_flags &= ~VM_MERGEABLE;
1401 		break;
1402 	}
1403 
1404 	return 0;
1405 }
1406 
1407 int __ksm_enter(struct mm_struct *mm)
1408 {
1409 	struct mm_slot *mm_slot;
1410 	int needs_wakeup;
1411 
1412 	mm_slot = alloc_mm_slot();
1413 	if (!mm_slot)
1414 		return -ENOMEM;
1415 
1416 	/* Check ksm_run too?  Would need tighter locking */
1417 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1418 
1419 	spin_lock(&ksm_mmlist_lock);
1420 	insert_to_mm_slots_hash(mm, mm_slot);
1421 	/*
1422 	 * Insert just behind the scanning cursor, to let the area settle
1423 	 * down a little; when fork is followed by immediate exec, we don't
1424 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1425 	 */
1426 	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1427 	spin_unlock(&ksm_mmlist_lock);
1428 
1429 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1430 	atomic_inc(&mm->mm_count);
1431 
1432 	if (needs_wakeup)
1433 		wake_up_interruptible(&ksm_thread_wait);
1434 
1435 	return 0;
1436 }
1437 
1438 void __ksm_exit(struct mm_struct *mm)
1439 {
1440 	struct mm_slot *mm_slot;
1441 	int easy_to_free = 0;
1442 
1443 	/*
1444 	 * This process is exiting: if it's straightforward (as is the
1445 	 * case when ksmd was never running), free mm_slot immediately.
1446 	 * But if it's at the cursor or has rmap_items linked to it, use
1447 	 * mmap_sem to synchronize with any break_cows before pagetables
1448 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1449 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1450 	 */
1451 
1452 	spin_lock(&ksm_mmlist_lock);
1453 	mm_slot = get_mm_slot(mm);
1454 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1455 		if (list_empty(&mm_slot->rmap_list)) {
1456 			hlist_del(&mm_slot->link);
1457 			list_del(&mm_slot->mm_list);
1458 			easy_to_free = 1;
1459 		} else {
1460 			list_move(&mm_slot->mm_list,
1461 				  &ksm_scan.mm_slot->mm_list);
1462 		}
1463 	}
1464 	spin_unlock(&ksm_mmlist_lock);
1465 
1466 	if (easy_to_free) {
1467 		free_mm_slot(mm_slot);
1468 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1469 		mmdrop(mm);
1470 	} else if (mm_slot) {
1471 		down_write(&mm->mmap_sem);
1472 		up_write(&mm->mmap_sem);
1473 	}
1474 }
1475 
1476 #ifdef CONFIG_SYSFS
1477 /*
1478  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1479  */
1480 
1481 #define KSM_ATTR_RO(_name) \
1482 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1483 #define KSM_ATTR(_name) \
1484 	static struct kobj_attribute _name##_attr = \
1485 		__ATTR(_name, 0644, _name##_show, _name##_store)
1486 
1487 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1488 				    struct kobj_attribute *attr, char *buf)
1489 {
1490 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1491 }
1492 
1493 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1494 				     struct kobj_attribute *attr,
1495 				     const char *buf, size_t count)
1496 {
1497 	unsigned long msecs;
1498 	int err;
1499 
1500 	err = strict_strtoul(buf, 10, &msecs);
1501 	if (err || msecs > UINT_MAX)
1502 		return -EINVAL;
1503 
1504 	ksm_thread_sleep_millisecs = msecs;
1505 
1506 	return count;
1507 }
1508 KSM_ATTR(sleep_millisecs);
1509 
1510 static ssize_t pages_to_scan_show(struct kobject *kobj,
1511 				  struct kobj_attribute *attr, char *buf)
1512 {
1513 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1514 }
1515 
1516 static ssize_t pages_to_scan_store(struct kobject *kobj,
1517 				   struct kobj_attribute *attr,
1518 				   const char *buf, size_t count)
1519 {
1520 	int err;
1521 	unsigned long nr_pages;
1522 
1523 	err = strict_strtoul(buf, 10, &nr_pages);
1524 	if (err || nr_pages > UINT_MAX)
1525 		return -EINVAL;
1526 
1527 	ksm_thread_pages_to_scan = nr_pages;
1528 
1529 	return count;
1530 }
1531 KSM_ATTR(pages_to_scan);
1532 
1533 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1534 			char *buf)
1535 {
1536 	return sprintf(buf, "%u\n", ksm_run);
1537 }
1538 
1539 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1540 			 const char *buf, size_t count)
1541 {
1542 	int err;
1543 	unsigned long flags;
1544 
1545 	err = strict_strtoul(buf, 10, &flags);
1546 	if (err || flags > UINT_MAX)
1547 		return -EINVAL;
1548 	if (flags > KSM_RUN_UNMERGE)
1549 		return -EINVAL;
1550 
1551 	/*
1552 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1553 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1554 	 * breaking COW to free the unswappable pages_shared (but leaves
1555 	 * mm_slots on the list for when ksmd may be set running again).
1556 	 */
1557 
1558 	mutex_lock(&ksm_thread_mutex);
1559 	if (ksm_run != flags) {
1560 		ksm_run = flags;
1561 		if (flags & KSM_RUN_UNMERGE) {
1562 			current->flags |= PF_OOM_ORIGIN;
1563 			err = unmerge_and_remove_all_rmap_items();
1564 			current->flags &= ~PF_OOM_ORIGIN;
1565 			if (err) {
1566 				ksm_run = KSM_RUN_STOP;
1567 				count = err;
1568 			}
1569 		}
1570 	}
1571 	mutex_unlock(&ksm_thread_mutex);
1572 
1573 	if (flags & KSM_RUN_MERGE)
1574 		wake_up_interruptible(&ksm_thread_wait);
1575 
1576 	return count;
1577 }
1578 KSM_ATTR(run);
1579 
1580 static ssize_t max_kernel_pages_store(struct kobject *kobj,
1581 				      struct kobj_attribute *attr,
1582 				      const char *buf, size_t count)
1583 {
1584 	int err;
1585 	unsigned long nr_pages;
1586 
1587 	err = strict_strtoul(buf, 10, &nr_pages);
1588 	if (err)
1589 		return -EINVAL;
1590 
1591 	ksm_max_kernel_pages = nr_pages;
1592 
1593 	return count;
1594 }
1595 
1596 static ssize_t max_kernel_pages_show(struct kobject *kobj,
1597 				     struct kobj_attribute *attr, char *buf)
1598 {
1599 	return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1600 }
1601 KSM_ATTR(max_kernel_pages);
1602 
1603 static ssize_t pages_shared_show(struct kobject *kobj,
1604 				 struct kobj_attribute *attr, char *buf)
1605 {
1606 	return sprintf(buf, "%lu\n", ksm_pages_shared);
1607 }
1608 KSM_ATTR_RO(pages_shared);
1609 
1610 static ssize_t pages_sharing_show(struct kobject *kobj,
1611 				  struct kobj_attribute *attr, char *buf)
1612 {
1613 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1614 }
1615 KSM_ATTR_RO(pages_sharing);
1616 
1617 static ssize_t pages_unshared_show(struct kobject *kobj,
1618 				   struct kobj_attribute *attr, char *buf)
1619 {
1620 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1621 }
1622 KSM_ATTR_RO(pages_unshared);
1623 
1624 static ssize_t pages_volatile_show(struct kobject *kobj,
1625 				   struct kobj_attribute *attr, char *buf)
1626 {
1627 	long ksm_pages_volatile;
1628 
1629 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1630 				- ksm_pages_sharing - ksm_pages_unshared;
1631 	/*
1632 	 * It was not worth any locking to calculate that statistic,
1633 	 * but it might therefore sometimes be negative: conceal that.
1634 	 */
1635 	if (ksm_pages_volatile < 0)
1636 		ksm_pages_volatile = 0;
1637 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1638 }
1639 KSM_ATTR_RO(pages_volatile);
1640 
1641 static ssize_t full_scans_show(struct kobject *kobj,
1642 			       struct kobj_attribute *attr, char *buf)
1643 {
1644 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1645 }
1646 KSM_ATTR_RO(full_scans);
1647 
1648 static struct attribute *ksm_attrs[] = {
1649 	&sleep_millisecs_attr.attr,
1650 	&pages_to_scan_attr.attr,
1651 	&run_attr.attr,
1652 	&max_kernel_pages_attr.attr,
1653 	&pages_shared_attr.attr,
1654 	&pages_sharing_attr.attr,
1655 	&pages_unshared_attr.attr,
1656 	&pages_volatile_attr.attr,
1657 	&full_scans_attr.attr,
1658 	NULL,
1659 };
1660 
1661 static struct attribute_group ksm_attr_group = {
1662 	.attrs = ksm_attrs,
1663 	.name = "ksm",
1664 };
1665 #endif /* CONFIG_SYSFS */
1666 
1667 static int __init ksm_init(void)
1668 {
1669 	struct task_struct *ksm_thread;
1670 	int err;
1671 
1672 	ksm_max_kernel_pages = totalram_pages / 4;
1673 
1674 	err = ksm_slab_init();
1675 	if (err)
1676 		goto out;
1677 
1678 	err = mm_slots_hash_init();
1679 	if (err)
1680 		goto out_free1;
1681 
1682 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1683 	if (IS_ERR(ksm_thread)) {
1684 		printk(KERN_ERR "ksm: creating kthread failed\n");
1685 		err = PTR_ERR(ksm_thread);
1686 		goto out_free2;
1687 	}
1688 
1689 #ifdef CONFIG_SYSFS
1690 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1691 	if (err) {
1692 		printk(KERN_ERR "ksm: register sysfs failed\n");
1693 		kthread_stop(ksm_thread);
1694 		goto out_free2;
1695 	}
1696 #else
1697 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
1698 
1699 #endif /* CONFIG_SYSFS */
1700 
1701 	return 0;
1702 
1703 out_free2:
1704 	mm_slots_hash_free();
1705 out_free1:
1706 	ksm_slab_free();
1707 out:
1708 	return err;
1709 }
1710 module_init(ksm_init)
1711