xref: /linux/mm/ksm.c (revision d94e5fcbf1420366dcb4102bafe04dbcfc0d0d4b)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/mmu_notifier.h>
33 #include <linux/swap.h>
34 #include <linux/ksm.h>
35 
36 #include <asm/tlbflush.h>
37 
38 /*
39  * A few notes about the KSM scanning process,
40  * to make it easier to understand the data structures below:
41  *
42  * In order to reduce excessive scanning, KSM sorts the memory pages by their
43  * contents into a data structure that holds pointers to the pages' locations.
44  *
45  * Since the contents of the pages may change at any moment, KSM cannot just
46  * insert the pages into a normal sorted tree and expect it to find anything.
47  * Therefore KSM uses two data structures - the stable and the unstable tree.
48  *
49  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
50  * by their contents.  Because each such page is write-protected, searching on
51  * this tree is fully assured to be working (except when pages are unmapped),
52  * and therefore this tree is called the stable tree.
53  *
54  * In addition to the stable tree, KSM uses a second data structure called the
55  * unstable tree: this tree holds pointers to pages which have been found to
56  * be "unchanged for a period of time".  The unstable tree sorts these pages
57  * by their contents, but since they are not write-protected, KSM cannot rely
58  * upon the unstable tree to work correctly - the unstable tree is liable to
59  * be corrupted as its contents are modified, and so it is called unstable.
60  *
61  * KSM solves this problem by several techniques:
62  *
63  * 1) The unstable tree is flushed every time KSM completes scanning all
64  *    memory areas, and then the tree is rebuilt again from the beginning.
65  * 2) KSM will only insert into the unstable tree, pages whose hash value
66  *    has not changed since the previous scan of all memory areas.
67  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
68  *    colors of the nodes and not on their contents, assuring that even when
69  *    the tree gets "corrupted" it won't get out of balance, so scanning time
70  *    remains the same (also, searching and inserting nodes in an rbtree uses
71  *    the same algorithm, so we have no overhead when we flush and rebuild).
72  * 4) KSM never flushes the stable tree, which means that even if it were to
73  *    take 10 attempts to find a page in the unstable tree, once it is found,
74  *    it is secured in the stable tree.  (When we scan a new page, we first
75  *    compare it against the stable tree, and then against the unstable tree.)
76  */
77 
78 /**
79  * struct mm_slot - ksm information per mm that is being scanned
80  * @link: link to the mm_slots hash list
81  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
82  * @rmap_list: head for this mm_slot's list of rmap_items
83  * @mm: the mm that this information is valid for
84  */
85 struct mm_slot {
86 	struct hlist_node link;
87 	struct list_head mm_list;
88 	struct list_head rmap_list;
89 	struct mm_struct *mm;
90 };
91 
92 /**
93  * struct ksm_scan - cursor for scanning
94  * @mm_slot: the current mm_slot we are scanning
95  * @address: the next address inside that to be scanned
96  * @rmap_item: the current rmap that we are scanning inside the rmap_list
97  * @seqnr: count of completed full scans (needed when removing unstable node)
98  *
99  * There is only the one ksm_scan instance of this cursor structure.
100  */
101 struct ksm_scan {
102 	struct mm_slot *mm_slot;
103 	unsigned long address;
104 	struct rmap_item *rmap_item;
105 	unsigned long seqnr;
106 };
107 
108 /**
109  * struct rmap_item - reverse mapping item for virtual addresses
110  * @link: link into mm_slot's rmap_list (rmap_list is per mm)
111  * @mm: the memory structure this rmap_item is pointing into
112  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
113  * @oldchecksum: previous checksum of the page at that virtual address
114  * @node: rb_node of this rmap_item in either unstable or stable tree
115  * @next: next rmap_item hanging off the same node of the stable tree
116  * @prev: previous rmap_item hanging off the same node of the stable tree
117  */
118 struct rmap_item {
119 	struct list_head link;
120 	struct mm_struct *mm;
121 	unsigned long address;		/* + low bits used for flags below */
122 	union {
123 		unsigned int oldchecksum;		/* when unstable */
124 		struct rmap_item *next;			/* when stable */
125 	};
126 	union {
127 		struct rb_node node;			/* when tree node */
128 		struct rmap_item *prev;			/* in stable list */
129 	};
130 };
131 
132 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
133 #define NODE_FLAG	0x100	/* is a node of unstable or stable tree */
134 #define STABLE_FLAG	0x200	/* is a node or list item of stable tree */
135 
136 /* The stable and unstable tree heads */
137 static struct rb_root root_stable_tree = RB_ROOT;
138 static struct rb_root root_unstable_tree = RB_ROOT;
139 
140 #define MM_SLOTS_HASH_HEADS 1024
141 static struct hlist_head *mm_slots_hash;
142 
143 static struct mm_slot ksm_mm_head = {
144 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
145 };
146 static struct ksm_scan ksm_scan = {
147 	.mm_slot = &ksm_mm_head,
148 };
149 
150 static struct kmem_cache *rmap_item_cache;
151 static struct kmem_cache *mm_slot_cache;
152 
153 /* The number of nodes in the stable tree */
154 static unsigned long ksm_pages_shared;
155 
156 /* The number of page slots additionally sharing those nodes */
157 static unsigned long ksm_pages_sharing;
158 
159 /* The number of nodes in the unstable tree */
160 static unsigned long ksm_pages_unshared;
161 
162 /* The number of rmap_items in use: to calculate pages_volatile */
163 static unsigned long ksm_rmap_items;
164 
165 /* Limit on the number of unswappable pages used */
166 static unsigned long ksm_max_kernel_pages;
167 
168 /* Number of pages ksmd should scan in one batch */
169 static unsigned int ksm_thread_pages_to_scan = 100;
170 
171 /* Milliseconds ksmd should sleep between batches */
172 static unsigned int ksm_thread_sleep_millisecs = 20;
173 
174 #define KSM_RUN_STOP	0
175 #define KSM_RUN_MERGE	1
176 #define KSM_RUN_UNMERGE	2
177 static unsigned int ksm_run = KSM_RUN_STOP;
178 
179 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
180 static DEFINE_MUTEX(ksm_thread_mutex);
181 static DEFINE_SPINLOCK(ksm_mmlist_lock);
182 
183 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
184 		sizeof(struct __struct), __alignof__(struct __struct),\
185 		(__flags), NULL)
186 
187 static void __init ksm_init_max_kernel_pages(void)
188 {
189 	ksm_max_kernel_pages = nr_free_buffer_pages() / 4;
190 }
191 
192 static int __init ksm_slab_init(void)
193 {
194 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
195 	if (!rmap_item_cache)
196 		goto out;
197 
198 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
199 	if (!mm_slot_cache)
200 		goto out_free;
201 
202 	return 0;
203 
204 out_free:
205 	kmem_cache_destroy(rmap_item_cache);
206 out:
207 	return -ENOMEM;
208 }
209 
210 static void __init ksm_slab_free(void)
211 {
212 	kmem_cache_destroy(mm_slot_cache);
213 	kmem_cache_destroy(rmap_item_cache);
214 	mm_slot_cache = NULL;
215 }
216 
217 static inline struct rmap_item *alloc_rmap_item(void)
218 {
219 	struct rmap_item *rmap_item;
220 
221 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
222 	if (rmap_item)
223 		ksm_rmap_items++;
224 	return rmap_item;
225 }
226 
227 static inline void free_rmap_item(struct rmap_item *rmap_item)
228 {
229 	ksm_rmap_items--;
230 	rmap_item->mm = NULL;	/* debug safety */
231 	kmem_cache_free(rmap_item_cache, rmap_item);
232 }
233 
234 static inline struct mm_slot *alloc_mm_slot(void)
235 {
236 	if (!mm_slot_cache)	/* initialization failed */
237 		return NULL;
238 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
239 }
240 
241 static inline void free_mm_slot(struct mm_slot *mm_slot)
242 {
243 	kmem_cache_free(mm_slot_cache, mm_slot);
244 }
245 
246 static int __init mm_slots_hash_init(void)
247 {
248 	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
249 				GFP_KERNEL);
250 	if (!mm_slots_hash)
251 		return -ENOMEM;
252 	return 0;
253 }
254 
255 static void __init mm_slots_hash_free(void)
256 {
257 	kfree(mm_slots_hash);
258 }
259 
260 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
261 {
262 	struct mm_slot *mm_slot;
263 	struct hlist_head *bucket;
264 	struct hlist_node *node;
265 
266 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
267 				% MM_SLOTS_HASH_HEADS];
268 	hlist_for_each_entry(mm_slot, node, bucket, link) {
269 		if (mm == mm_slot->mm)
270 			return mm_slot;
271 	}
272 	return NULL;
273 }
274 
275 static void insert_to_mm_slots_hash(struct mm_struct *mm,
276 				    struct mm_slot *mm_slot)
277 {
278 	struct hlist_head *bucket;
279 
280 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
281 				% MM_SLOTS_HASH_HEADS];
282 	mm_slot->mm = mm;
283 	INIT_LIST_HEAD(&mm_slot->rmap_list);
284 	hlist_add_head(&mm_slot->link, bucket);
285 }
286 
287 static inline int in_stable_tree(struct rmap_item *rmap_item)
288 {
289 	return rmap_item->address & STABLE_FLAG;
290 }
291 
292 /*
293  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
294  * page tables after it has passed through ksm_exit() - which, if necessary,
295  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
296  * a special flag: they can just back out as soon as mm_users goes to zero.
297  * ksm_test_exit() is used throughout to make this test for exit: in some
298  * places for correctness, in some places just to avoid unnecessary work.
299  */
300 static inline bool ksm_test_exit(struct mm_struct *mm)
301 {
302 	return atomic_read(&mm->mm_users) == 0;
303 }
304 
305 /*
306  * We use break_ksm to break COW on a ksm page: it's a stripped down
307  *
308  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
309  *		put_page(page);
310  *
311  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
312  * in case the application has unmapped and remapped mm,addr meanwhile.
313  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
314  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
315  */
316 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
317 {
318 	struct page *page;
319 	int ret = 0;
320 
321 	do {
322 		cond_resched();
323 		page = follow_page(vma, addr, FOLL_GET);
324 		if (!page)
325 			break;
326 		if (PageKsm(page))
327 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
328 							FAULT_FLAG_WRITE);
329 		else
330 			ret = VM_FAULT_WRITE;
331 		put_page(page);
332 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
333 	/*
334 	 * We must loop because handle_mm_fault() may back out if there's
335 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
336 	 *
337 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
338 	 * COW has been broken, even if the vma does not permit VM_WRITE;
339 	 * but note that a concurrent fault might break PageKsm for us.
340 	 *
341 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
342 	 * backing file, which also invalidates anonymous pages: that's
343 	 * okay, that truncation will have unmapped the PageKsm for us.
344 	 *
345 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
346 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
347 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
348 	 * to user; and ksmd, having no mm, would never be chosen for that.
349 	 *
350 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
351 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
352 	 * even ksmd can fail in this way - though it's usually breaking ksm
353 	 * just to undo a merge it made a moment before, so unlikely to oom.
354 	 *
355 	 * That's a pity: we might therefore have more kernel pages allocated
356 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
357 	 * will retry to break_cow on each pass, so should recover the page
358 	 * in due course.  The important thing is to not let VM_MERGEABLE
359 	 * be cleared while any such pages might remain in the area.
360 	 */
361 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
362 }
363 
364 static void break_cow(struct mm_struct *mm, unsigned long addr)
365 {
366 	struct vm_area_struct *vma;
367 
368 	down_read(&mm->mmap_sem);
369 	if (ksm_test_exit(mm))
370 		goto out;
371 	vma = find_vma(mm, addr);
372 	if (!vma || vma->vm_start > addr)
373 		goto out;
374 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
375 		goto out;
376 	break_ksm(vma, addr);
377 out:
378 	up_read(&mm->mmap_sem);
379 }
380 
381 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
382 {
383 	struct mm_struct *mm = rmap_item->mm;
384 	unsigned long addr = rmap_item->address;
385 	struct vm_area_struct *vma;
386 	struct page *page;
387 
388 	down_read(&mm->mmap_sem);
389 	if (ksm_test_exit(mm))
390 		goto out;
391 	vma = find_vma(mm, addr);
392 	if (!vma || vma->vm_start > addr)
393 		goto out;
394 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
395 		goto out;
396 
397 	page = follow_page(vma, addr, FOLL_GET);
398 	if (!page)
399 		goto out;
400 	if (PageAnon(page)) {
401 		flush_anon_page(vma, page, addr);
402 		flush_dcache_page(page);
403 	} else {
404 		put_page(page);
405 out:		page = NULL;
406 	}
407 	up_read(&mm->mmap_sem);
408 	return page;
409 }
410 
411 /*
412  * get_ksm_page: checks if the page at the virtual address in rmap_item
413  * is still PageKsm, in which case we can trust the content of the page,
414  * and it returns the gotten page; but NULL if the page has been zapped.
415  */
416 static struct page *get_ksm_page(struct rmap_item *rmap_item)
417 {
418 	struct page *page;
419 
420 	page = get_mergeable_page(rmap_item);
421 	if (page && !PageKsm(page)) {
422 		put_page(page);
423 		page = NULL;
424 	}
425 	return page;
426 }
427 
428 /*
429  * Removing rmap_item from stable or unstable tree.
430  * This function will clean the information from the stable/unstable tree.
431  */
432 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
433 {
434 	if (in_stable_tree(rmap_item)) {
435 		struct rmap_item *next_item = rmap_item->next;
436 
437 		if (rmap_item->address & NODE_FLAG) {
438 			if (next_item) {
439 				rb_replace_node(&rmap_item->node,
440 						&next_item->node,
441 						&root_stable_tree);
442 				next_item->address |= NODE_FLAG;
443 				ksm_pages_sharing--;
444 			} else {
445 				rb_erase(&rmap_item->node, &root_stable_tree);
446 				ksm_pages_shared--;
447 			}
448 		} else {
449 			struct rmap_item *prev_item = rmap_item->prev;
450 
451 			BUG_ON(prev_item->next != rmap_item);
452 			prev_item->next = next_item;
453 			if (next_item) {
454 				BUG_ON(next_item->prev != rmap_item);
455 				next_item->prev = rmap_item->prev;
456 			}
457 			ksm_pages_sharing--;
458 		}
459 
460 		rmap_item->next = NULL;
461 
462 	} else if (rmap_item->address & NODE_FLAG) {
463 		unsigned char age;
464 		/*
465 		 * Usually ksmd can and must skip the rb_erase, because
466 		 * root_unstable_tree was already reset to RB_ROOT.
467 		 * But be careful when an mm is exiting: do the rb_erase
468 		 * if this rmap_item was inserted by this scan, rather
469 		 * than left over from before.
470 		 */
471 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
472 		BUG_ON(age > 1);
473 		if (!age)
474 			rb_erase(&rmap_item->node, &root_unstable_tree);
475 		ksm_pages_unshared--;
476 	}
477 
478 	rmap_item->address &= PAGE_MASK;
479 
480 	cond_resched();		/* we're called from many long loops */
481 }
482 
483 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
484 				       struct list_head *cur)
485 {
486 	struct rmap_item *rmap_item;
487 
488 	while (cur != &mm_slot->rmap_list) {
489 		rmap_item = list_entry(cur, struct rmap_item, link);
490 		cur = cur->next;
491 		remove_rmap_item_from_tree(rmap_item);
492 		list_del(&rmap_item->link);
493 		free_rmap_item(rmap_item);
494 	}
495 }
496 
497 /*
498  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
499  * than check every pte of a given vma, the locking doesn't quite work for
500  * that - an rmap_item is assigned to the stable tree after inserting ksm
501  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
502  * rmap_items from parent to child at fork time (so as not to waste time
503  * if exit comes before the next scan reaches it).
504  *
505  * Similarly, although we'd like to remove rmap_items (so updating counts
506  * and freeing memory) when unmerging an area, it's easier to leave that
507  * to the next pass of ksmd - consider, for example, how ksmd might be
508  * in cmp_and_merge_page on one of the rmap_items we would be removing.
509  */
510 static int unmerge_ksm_pages(struct vm_area_struct *vma,
511 			     unsigned long start, unsigned long end)
512 {
513 	unsigned long addr;
514 	int err = 0;
515 
516 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
517 		if (ksm_test_exit(vma->vm_mm))
518 			break;
519 		if (signal_pending(current))
520 			err = -ERESTARTSYS;
521 		else
522 			err = break_ksm(vma, addr);
523 	}
524 	return err;
525 }
526 
527 #ifdef CONFIG_SYSFS
528 /*
529  * Only called through the sysfs control interface:
530  */
531 static int unmerge_and_remove_all_rmap_items(void)
532 {
533 	struct mm_slot *mm_slot;
534 	struct mm_struct *mm;
535 	struct vm_area_struct *vma;
536 	int err = 0;
537 
538 	spin_lock(&ksm_mmlist_lock);
539 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
540 						struct mm_slot, mm_list);
541 	spin_unlock(&ksm_mmlist_lock);
542 
543 	for (mm_slot = ksm_scan.mm_slot;
544 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
545 		mm = mm_slot->mm;
546 		down_read(&mm->mmap_sem);
547 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
548 			if (ksm_test_exit(mm))
549 				break;
550 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
551 				continue;
552 			err = unmerge_ksm_pages(vma,
553 						vma->vm_start, vma->vm_end);
554 			if (err)
555 				goto error;
556 		}
557 
558 		remove_trailing_rmap_items(mm_slot, mm_slot->rmap_list.next);
559 
560 		spin_lock(&ksm_mmlist_lock);
561 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
562 						struct mm_slot, mm_list);
563 		if (ksm_test_exit(mm)) {
564 			hlist_del(&mm_slot->link);
565 			list_del(&mm_slot->mm_list);
566 			spin_unlock(&ksm_mmlist_lock);
567 
568 			free_mm_slot(mm_slot);
569 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
570 			up_read(&mm->mmap_sem);
571 			mmdrop(mm);
572 		} else {
573 			spin_unlock(&ksm_mmlist_lock);
574 			up_read(&mm->mmap_sem);
575 		}
576 	}
577 
578 	ksm_scan.seqnr = 0;
579 	return 0;
580 
581 error:
582 	up_read(&mm->mmap_sem);
583 	spin_lock(&ksm_mmlist_lock);
584 	ksm_scan.mm_slot = &ksm_mm_head;
585 	spin_unlock(&ksm_mmlist_lock);
586 	return err;
587 }
588 #endif /* CONFIG_SYSFS */
589 
590 static u32 calc_checksum(struct page *page)
591 {
592 	u32 checksum;
593 	void *addr = kmap_atomic(page, KM_USER0);
594 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
595 	kunmap_atomic(addr, KM_USER0);
596 	return checksum;
597 }
598 
599 static int memcmp_pages(struct page *page1, struct page *page2)
600 {
601 	char *addr1, *addr2;
602 	int ret;
603 
604 	addr1 = kmap_atomic(page1, KM_USER0);
605 	addr2 = kmap_atomic(page2, KM_USER1);
606 	ret = memcmp(addr1, addr2, PAGE_SIZE);
607 	kunmap_atomic(addr2, KM_USER1);
608 	kunmap_atomic(addr1, KM_USER0);
609 	return ret;
610 }
611 
612 static inline int pages_identical(struct page *page1, struct page *page2)
613 {
614 	return !memcmp_pages(page1, page2);
615 }
616 
617 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
618 			      pte_t *orig_pte)
619 {
620 	struct mm_struct *mm = vma->vm_mm;
621 	unsigned long addr;
622 	pte_t *ptep;
623 	spinlock_t *ptl;
624 	int swapped;
625 	int err = -EFAULT;
626 
627 	addr = page_address_in_vma(page, vma);
628 	if (addr == -EFAULT)
629 		goto out;
630 
631 	ptep = page_check_address(page, mm, addr, &ptl, 0);
632 	if (!ptep)
633 		goto out;
634 
635 	if (pte_write(*ptep)) {
636 		pte_t entry;
637 
638 		swapped = PageSwapCache(page);
639 		flush_cache_page(vma, addr, page_to_pfn(page));
640 		/*
641 		 * Ok this is tricky, when get_user_pages_fast() run it doesnt
642 		 * take any lock, therefore the check that we are going to make
643 		 * with the pagecount against the mapcount is racey and
644 		 * O_DIRECT can happen right after the check.
645 		 * So we clear the pte and flush the tlb before the check
646 		 * this assure us that no O_DIRECT can happen after the check
647 		 * or in the middle of the check.
648 		 */
649 		entry = ptep_clear_flush(vma, addr, ptep);
650 		/*
651 		 * Check that no O_DIRECT or similar I/O is in progress on the
652 		 * page
653 		 */
654 		if ((page_mapcount(page) + 2 + swapped) != page_count(page)) {
655 			set_pte_at_notify(mm, addr, ptep, entry);
656 			goto out_unlock;
657 		}
658 		entry = pte_wrprotect(entry);
659 		set_pte_at_notify(mm, addr, ptep, entry);
660 	}
661 	*orig_pte = *ptep;
662 	err = 0;
663 
664 out_unlock:
665 	pte_unmap_unlock(ptep, ptl);
666 out:
667 	return err;
668 }
669 
670 /**
671  * replace_page - replace page in vma by new ksm page
672  * @vma:      vma that holds the pte pointing to oldpage
673  * @oldpage:  the page we are replacing by newpage
674  * @newpage:  the ksm page we replace oldpage by
675  * @orig_pte: the original value of the pte
676  *
677  * Returns 0 on success, -EFAULT on failure.
678  */
679 static int replace_page(struct vm_area_struct *vma, struct page *oldpage,
680 			struct page *newpage, pte_t orig_pte)
681 {
682 	struct mm_struct *mm = vma->vm_mm;
683 	pgd_t *pgd;
684 	pud_t *pud;
685 	pmd_t *pmd;
686 	pte_t *ptep;
687 	spinlock_t *ptl;
688 	unsigned long addr;
689 	pgprot_t prot;
690 	int err = -EFAULT;
691 
692 	prot = vm_get_page_prot(vma->vm_flags & ~VM_WRITE);
693 
694 	addr = page_address_in_vma(oldpage, vma);
695 	if (addr == -EFAULT)
696 		goto out;
697 
698 	pgd = pgd_offset(mm, addr);
699 	if (!pgd_present(*pgd))
700 		goto out;
701 
702 	pud = pud_offset(pgd, addr);
703 	if (!pud_present(*pud))
704 		goto out;
705 
706 	pmd = pmd_offset(pud, addr);
707 	if (!pmd_present(*pmd))
708 		goto out;
709 
710 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
711 	if (!pte_same(*ptep, orig_pte)) {
712 		pte_unmap_unlock(ptep, ptl);
713 		goto out;
714 	}
715 
716 	get_page(newpage);
717 	page_add_ksm_rmap(newpage);
718 
719 	flush_cache_page(vma, addr, pte_pfn(*ptep));
720 	ptep_clear_flush(vma, addr, ptep);
721 	set_pte_at_notify(mm, addr, ptep, mk_pte(newpage, prot));
722 
723 	page_remove_rmap(oldpage);
724 	put_page(oldpage);
725 
726 	pte_unmap_unlock(ptep, ptl);
727 	err = 0;
728 out:
729 	return err;
730 }
731 
732 /*
733  * try_to_merge_one_page - take two pages and merge them into one
734  * @vma: the vma that hold the pte pointing into oldpage
735  * @oldpage: the page that we want to replace with newpage
736  * @newpage: the page that we want to map instead of oldpage
737  *
738  * Note:
739  * oldpage should be a PageAnon page, while newpage should be a PageKsm page,
740  * or a newly allocated kernel page which page_add_ksm_rmap will make PageKsm.
741  *
742  * This function returns 0 if the pages were merged, -EFAULT otherwise.
743  */
744 static int try_to_merge_one_page(struct vm_area_struct *vma,
745 				 struct page *oldpage,
746 				 struct page *newpage)
747 {
748 	pte_t orig_pte = __pte(0);
749 	int err = -EFAULT;
750 
751 	if (!(vma->vm_flags & VM_MERGEABLE))
752 		goto out;
753 
754 	if (!PageAnon(oldpage))
755 		goto out;
756 
757 	get_page(newpage);
758 	get_page(oldpage);
759 
760 	/*
761 	 * We need the page lock to read a stable PageSwapCache in
762 	 * write_protect_page().  We use trylock_page() instead of
763 	 * lock_page() because we don't want to wait here - we
764 	 * prefer to continue scanning and merging different pages,
765 	 * then come back to this page when it is unlocked.
766 	 */
767 	if (!trylock_page(oldpage))
768 		goto out_putpage;
769 	/*
770 	 * If this anonymous page is mapped only here, its pte may need
771 	 * to be write-protected.  If it's mapped elsewhere, all of its
772 	 * ptes are necessarily already write-protected.  But in either
773 	 * case, we need to lock and check page_count is not raised.
774 	 */
775 	if (write_protect_page(vma, oldpage, &orig_pte)) {
776 		unlock_page(oldpage);
777 		goto out_putpage;
778 	}
779 	unlock_page(oldpage);
780 
781 	if (pages_identical(oldpage, newpage))
782 		err = replace_page(vma, oldpage, newpage, orig_pte);
783 
784 out_putpage:
785 	put_page(oldpage);
786 	put_page(newpage);
787 out:
788 	return err;
789 }
790 
791 /*
792  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
793  * but no new kernel page is allocated: kpage must already be a ksm page.
794  */
795 static int try_to_merge_with_ksm_page(struct mm_struct *mm1,
796 				      unsigned long addr1,
797 				      struct page *page1,
798 				      struct page *kpage)
799 {
800 	struct vm_area_struct *vma;
801 	int err = -EFAULT;
802 
803 	down_read(&mm1->mmap_sem);
804 	if (ksm_test_exit(mm1))
805 		goto out;
806 
807 	vma = find_vma(mm1, addr1);
808 	if (!vma || vma->vm_start > addr1)
809 		goto out;
810 
811 	err = try_to_merge_one_page(vma, page1, kpage);
812 out:
813 	up_read(&mm1->mmap_sem);
814 	return err;
815 }
816 
817 /*
818  * try_to_merge_two_pages - take two identical pages and prepare them
819  * to be merged into one page.
820  *
821  * This function returns 0 if we successfully mapped two identical pages
822  * into one page, -EFAULT otherwise.
823  *
824  * Note that this function allocates a new kernel page: if one of the pages
825  * is already a ksm page, try_to_merge_with_ksm_page should be used.
826  */
827 static int try_to_merge_two_pages(struct mm_struct *mm1, unsigned long addr1,
828 				  struct page *page1, struct mm_struct *mm2,
829 				  unsigned long addr2, struct page *page2)
830 {
831 	struct vm_area_struct *vma;
832 	struct page *kpage;
833 	int err = -EFAULT;
834 
835 	/*
836 	 * The number of nodes in the stable tree
837 	 * is the number of kernel pages that we hold.
838 	 */
839 	if (ksm_max_kernel_pages &&
840 	    ksm_max_kernel_pages <= ksm_pages_shared)
841 		return err;
842 
843 	kpage = alloc_page(GFP_HIGHUSER);
844 	if (!kpage)
845 		return err;
846 
847 	down_read(&mm1->mmap_sem);
848 	if (ksm_test_exit(mm1)) {
849 		up_read(&mm1->mmap_sem);
850 		goto out;
851 	}
852 	vma = find_vma(mm1, addr1);
853 	if (!vma || vma->vm_start > addr1) {
854 		up_read(&mm1->mmap_sem);
855 		goto out;
856 	}
857 
858 	copy_user_highpage(kpage, page1, addr1, vma);
859 	err = try_to_merge_one_page(vma, page1, kpage);
860 	up_read(&mm1->mmap_sem);
861 
862 	if (!err) {
863 		err = try_to_merge_with_ksm_page(mm2, addr2, page2, kpage);
864 		/*
865 		 * If that fails, we have a ksm page with only one pte
866 		 * pointing to it: so break it.
867 		 */
868 		if (err)
869 			break_cow(mm1, addr1);
870 	}
871 out:
872 	put_page(kpage);
873 	return err;
874 }
875 
876 /*
877  * stable_tree_search - search page inside the stable tree
878  * @page: the page that we are searching identical pages to.
879  * @page2: pointer into identical page that we are holding inside the stable
880  *	   tree that we have found.
881  * @rmap_item: the reverse mapping item
882  *
883  * This function checks if there is a page inside the stable tree
884  * with identical content to the page that we are scanning right now.
885  *
886  * This function return rmap_item pointer to the identical item if found,
887  * NULL otherwise.
888  */
889 static struct rmap_item *stable_tree_search(struct page *page,
890 					    struct page **page2,
891 					    struct rmap_item *rmap_item)
892 {
893 	struct rb_node *node = root_stable_tree.rb_node;
894 
895 	while (node) {
896 		struct rmap_item *tree_rmap_item, *next_rmap_item;
897 		int ret;
898 
899 		tree_rmap_item = rb_entry(node, struct rmap_item, node);
900 		while (tree_rmap_item) {
901 			BUG_ON(!in_stable_tree(tree_rmap_item));
902 			cond_resched();
903 			page2[0] = get_ksm_page(tree_rmap_item);
904 			if (page2[0])
905 				break;
906 			next_rmap_item = tree_rmap_item->next;
907 			remove_rmap_item_from_tree(tree_rmap_item);
908 			tree_rmap_item = next_rmap_item;
909 		}
910 		if (!tree_rmap_item)
911 			return NULL;
912 
913 		ret = memcmp_pages(page, page2[0]);
914 
915 		if (ret < 0) {
916 			put_page(page2[0]);
917 			node = node->rb_left;
918 		} else if (ret > 0) {
919 			put_page(page2[0]);
920 			node = node->rb_right;
921 		} else {
922 			return tree_rmap_item;
923 		}
924 	}
925 
926 	return NULL;
927 }
928 
929 /*
930  * stable_tree_insert - insert rmap_item pointing to new ksm page
931  * into the stable tree.
932  *
933  * @page: the page that we are searching identical page to inside the stable
934  *	  tree.
935  * @rmap_item: pointer to the reverse mapping item.
936  *
937  * This function returns rmap_item if success, NULL otherwise.
938  */
939 static struct rmap_item *stable_tree_insert(struct page *page,
940 					    struct rmap_item *rmap_item)
941 {
942 	struct rb_node **new = &root_stable_tree.rb_node;
943 	struct rb_node *parent = NULL;
944 
945 	while (*new) {
946 		struct rmap_item *tree_rmap_item, *next_rmap_item;
947 		struct page *tree_page;
948 		int ret;
949 
950 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
951 		while (tree_rmap_item) {
952 			BUG_ON(!in_stable_tree(tree_rmap_item));
953 			cond_resched();
954 			tree_page = get_ksm_page(tree_rmap_item);
955 			if (tree_page)
956 				break;
957 			next_rmap_item = tree_rmap_item->next;
958 			remove_rmap_item_from_tree(tree_rmap_item);
959 			tree_rmap_item = next_rmap_item;
960 		}
961 		if (!tree_rmap_item)
962 			return NULL;
963 
964 		ret = memcmp_pages(page, tree_page);
965 		put_page(tree_page);
966 
967 		parent = *new;
968 		if (ret < 0)
969 			new = &parent->rb_left;
970 		else if (ret > 0)
971 			new = &parent->rb_right;
972 		else {
973 			/*
974 			 * It is not a bug that stable_tree_search() didn't
975 			 * find this node: because at that time our page was
976 			 * not yet write-protected, so may have changed since.
977 			 */
978 			return NULL;
979 		}
980 	}
981 
982 	rmap_item->address |= NODE_FLAG | STABLE_FLAG;
983 	rmap_item->next = NULL;
984 	rb_link_node(&rmap_item->node, parent, new);
985 	rb_insert_color(&rmap_item->node, &root_stable_tree);
986 
987 	ksm_pages_shared++;
988 	return rmap_item;
989 }
990 
991 /*
992  * unstable_tree_search_insert - search and insert items into the unstable tree.
993  *
994  * @page: the page that we are going to search for identical page or to insert
995  *	  into the unstable tree
996  * @page2: pointer into identical page that was found inside the unstable tree
997  * @rmap_item: the reverse mapping item of page
998  *
999  * This function searches for a page in the unstable tree identical to the
1000  * page currently being scanned; and if no identical page is found in the
1001  * tree, we insert rmap_item as a new object into the unstable tree.
1002  *
1003  * This function returns pointer to rmap_item found to be identical
1004  * to the currently scanned page, NULL otherwise.
1005  *
1006  * This function does both searching and inserting, because they share
1007  * the same walking algorithm in an rbtree.
1008  */
1009 static struct rmap_item *unstable_tree_search_insert(struct page *page,
1010 						struct page **page2,
1011 						struct rmap_item *rmap_item)
1012 {
1013 	struct rb_node **new = &root_unstable_tree.rb_node;
1014 	struct rb_node *parent = NULL;
1015 
1016 	while (*new) {
1017 		struct rmap_item *tree_rmap_item;
1018 		int ret;
1019 
1020 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1021 		page2[0] = get_mergeable_page(tree_rmap_item);
1022 		if (!page2[0])
1023 			return NULL;
1024 
1025 		/*
1026 		 * Don't substitute an unswappable ksm page
1027 		 * just for one good swappable forked page.
1028 		 */
1029 		if (page == page2[0]) {
1030 			put_page(page2[0]);
1031 			return NULL;
1032 		}
1033 
1034 		ret = memcmp_pages(page, page2[0]);
1035 
1036 		parent = *new;
1037 		if (ret < 0) {
1038 			put_page(page2[0]);
1039 			new = &parent->rb_left;
1040 		} else if (ret > 0) {
1041 			put_page(page2[0]);
1042 			new = &parent->rb_right;
1043 		} else {
1044 			return tree_rmap_item;
1045 		}
1046 	}
1047 
1048 	rmap_item->address |= NODE_FLAG;
1049 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1050 	rb_link_node(&rmap_item->node, parent, new);
1051 	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1052 
1053 	ksm_pages_unshared++;
1054 	return NULL;
1055 }
1056 
1057 /*
1058  * stable_tree_append - add another rmap_item to the linked list of
1059  * rmap_items hanging off a given node of the stable tree, all sharing
1060  * the same ksm page.
1061  */
1062 static void stable_tree_append(struct rmap_item *rmap_item,
1063 			       struct rmap_item *tree_rmap_item)
1064 {
1065 	rmap_item->next = tree_rmap_item->next;
1066 	rmap_item->prev = tree_rmap_item;
1067 
1068 	if (tree_rmap_item->next)
1069 		tree_rmap_item->next->prev = rmap_item;
1070 
1071 	tree_rmap_item->next = rmap_item;
1072 	rmap_item->address |= STABLE_FLAG;
1073 
1074 	ksm_pages_sharing++;
1075 }
1076 
1077 /*
1078  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1079  * if not, compare checksum to previous and if it's the same, see if page can
1080  * be inserted into the unstable tree, or merged with a page already there and
1081  * both transferred to the stable tree.
1082  *
1083  * @page: the page that we are searching identical page to.
1084  * @rmap_item: the reverse mapping into the virtual address of this page
1085  */
1086 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1087 {
1088 	struct page *page2[1];
1089 	struct rmap_item *tree_rmap_item;
1090 	unsigned int checksum;
1091 	int err;
1092 
1093 	if (in_stable_tree(rmap_item))
1094 		remove_rmap_item_from_tree(rmap_item);
1095 
1096 	/* We first start with searching the page inside the stable tree */
1097 	tree_rmap_item = stable_tree_search(page, page2, rmap_item);
1098 	if (tree_rmap_item) {
1099 		if (page == page2[0])			/* forked */
1100 			err = 0;
1101 		else
1102 			err = try_to_merge_with_ksm_page(rmap_item->mm,
1103 							 rmap_item->address,
1104 							 page, page2[0]);
1105 		put_page(page2[0]);
1106 
1107 		if (!err) {
1108 			/*
1109 			 * The page was successfully merged:
1110 			 * add its rmap_item to the stable tree.
1111 			 */
1112 			stable_tree_append(rmap_item, tree_rmap_item);
1113 		}
1114 		return;
1115 	}
1116 
1117 	/*
1118 	 * A ksm page might have got here by fork, but its other
1119 	 * references have already been removed from the stable tree.
1120 	 * Or it might be left over from a break_ksm which failed
1121 	 * when the mem_cgroup had reached its limit: try again now.
1122 	 */
1123 	if (PageKsm(page))
1124 		break_cow(rmap_item->mm, rmap_item->address);
1125 
1126 	/*
1127 	 * In case the hash value of the page was changed from the last time we
1128 	 * have calculated it, this page to be changed frequely, therefore we
1129 	 * don't want to insert it to the unstable tree, and we don't want to
1130 	 * waste our time to search if there is something identical to it there.
1131 	 */
1132 	checksum = calc_checksum(page);
1133 	if (rmap_item->oldchecksum != checksum) {
1134 		rmap_item->oldchecksum = checksum;
1135 		return;
1136 	}
1137 
1138 	tree_rmap_item = unstable_tree_search_insert(page, page2, rmap_item);
1139 	if (tree_rmap_item) {
1140 		err = try_to_merge_two_pages(rmap_item->mm,
1141 					     rmap_item->address, page,
1142 					     tree_rmap_item->mm,
1143 					     tree_rmap_item->address, page2[0]);
1144 		/*
1145 		 * As soon as we merge this page, we want to remove the
1146 		 * rmap_item of the page we have merged with from the unstable
1147 		 * tree, and insert it instead as new node in the stable tree.
1148 		 */
1149 		if (!err) {
1150 			rb_erase(&tree_rmap_item->node, &root_unstable_tree);
1151 			tree_rmap_item->address &= ~NODE_FLAG;
1152 			ksm_pages_unshared--;
1153 
1154 			/*
1155 			 * If we fail to insert the page into the stable tree,
1156 			 * we will have 2 virtual addresses that are pointing
1157 			 * to a ksm page left outside the stable tree,
1158 			 * in which case we need to break_cow on both.
1159 			 */
1160 			if (stable_tree_insert(page2[0], tree_rmap_item))
1161 				stable_tree_append(rmap_item, tree_rmap_item);
1162 			else {
1163 				break_cow(tree_rmap_item->mm,
1164 						tree_rmap_item->address);
1165 				break_cow(rmap_item->mm, rmap_item->address);
1166 			}
1167 		}
1168 
1169 		put_page(page2[0]);
1170 	}
1171 }
1172 
1173 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1174 					    struct list_head *cur,
1175 					    unsigned long addr)
1176 {
1177 	struct rmap_item *rmap_item;
1178 
1179 	while (cur != &mm_slot->rmap_list) {
1180 		rmap_item = list_entry(cur, struct rmap_item, link);
1181 		if ((rmap_item->address & PAGE_MASK) == addr) {
1182 			if (!in_stable_tree(rmap_item))
1183 				remove_rmap_item_from_tree(rmap_item);
1184 			return rmap_item;
1185 		}
1186 		if (rmap_item->address > addr)
1187 			break;
1188 		cur = cur->next;
1189 		remove_rmap_item_from_tree(rmap_item);
1190 		list_del(&rmap_item->link);
1191 		free_rmap_item(rmap_item);
1192 	}
1193 
1194 	rmap_item = alloc_rmap_item();
1195 	if (rmap_item) {
1196 		/* It has already been zeroed */
1197 		rmap_item->mm = mm_slot->mm;
1198 		rmap_item->address = addr;
1199 		list_add_tail(&rmap_item->link, cur);
1200 	}
1201 	return rmap_item;
1202 }
1203 
1204 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1205 {
1206 	struct mm_struct *mm;
1207 	struct mm_slot *slot;
1208 	struct vm_area_struct *vma;
1209 	struct rmap_item *rmap_item;
1210 
1211 	if (list_empty(&ksm_mm_head.mm_list))
1212 		return NULL;
1213 
1214 	slot = ksm_scan.mm_slot;
1215 	if (slot == &ksm_mm_head) {
1216 		root_unstable_tree = RB_ROOT;
1217 
1218 		spin_lock(&ksm_mmlist_lock);
1219 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1220 		ksm_scan.mm_slot = slot;
1221 		spin_unlock(&ksm_mmlist_lock);
1222 next_mm:
1223 		ksm_scan.address = 0;
1224 		ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1225 						struct rmap_item, link);
1226 	}
1227 
1228 	mm = slot->mm;
1229 	down_read(&mm->mmap_sem);
1230 	if (ksm_test_exit(mm))
1231 		vma = NULL;
1232 	else
1233 		vma = find_vma(mm, ksm_scan.address);
1234 
1235 	for (; vma; vma = vma->vm_next) {
1236 		if (!(vma->vm_flags & VM_MERGEABLE))
1237 			continue;
1238 		if (ksm_scan.address < vma->vm_start)
1239 			ksm_scan.address = vma->vm_start;
1240 		if (!vma->anon_vma)
1241 			ksm_scan.address = vma->vm_end;
1242 
1243 		while (ksm_scan.address < vma->vm_end) {
1244 			if (ksm_test_exit(mm))
1245 				break;
1246 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1247 			if (*page && PageAnon(*page)) {
1248 				flush_anon_page(vma, *page, ksm_scan.address);
1249 				flush_dcache_page(*page);
1250 				rmap_item = get_next_rmap_item(slot,
1251 					ksm_scan.rmap_item->link.next,
1252 					ksm_scan.address);
1253 				if (rmap_item) {
1254 					ksm_scan.rmap_item = rmap_item;
1255 					ksm_scan.address += PAGE_SIZE;
1256 				} else
1257 					put_page(*page);
1258 				up_read(&mm->mmap_sem);
1259 				return rmap_item;
1260 			}
1261 			if (*page)
1262 				put_page(*page);
1263 			ksm_scan.address += PAGE_SIZE;
1264 			cond_resched();
1265 		}
1266 	}
1267 
1268 	if (ksm_test_exit(mm)) {
1269 		ksm_scan.address = 0;
1270 		ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1271 						struct rmap_item, link);
1272 	}
1273 	/*
1274 	 * Nuke all the rmap_items that are above this current rmap:
1275 	 * because there were no VM_MERGEABLE vmas with such addresses.
1276 	 */
1277 	remove_trailing_rmap_items(slot, ksm_scan.rmap_item->link.next);
1278 
1279 	spin_lock(&ksm_mmlist_lock);
1280 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1281 						struct mm_slot, mm_list);
1282 	if (ksm_scan.address == 0) {
1283 		/*
1284 		 * We've completed a full scan of all vmas, holding mmap_sem
1285 		 * throughout, and found no VM_MERGEABLE: so do the same as
1286 		 * __ksm_exit does to remove this mm from all our lists now.
1287 		 * This applies either when cleaning up after __ksm_exit
1288 		 * (but beware: we can reach here even before __ksm_exit),
1289 		 * or when all VM_MERGEABLE areas have been unmapped (and
1290 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1291 		 */
1292 		hlist_del(&slot->link);
1293 		list_del(&slot->mm_list);
1294 		spin_unlock(&ksm_mmlist_lock);
1295 
1296 		free_mm_slot(slot);
1297 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1298 		up_read(&mm->mmap_sem);
1299 		mmdrop(mm);
1300 	} else {
1301 		spin_unlock(&ksm_mmlist_lock);
1302 		up_read(&mm->mmap_sem);
1303 	}
1304 
1305 	/* Repeat until we've completed scanning the whole list */
1306 	slot = ksm_scan.mm_slot;
1307 	if (slot != &ksm_mm_head)
1308 		goto next_mm;
1309 
1310 	ksm_scan.seqnr++;
1311 	return NULL;
1312 }
1313 
1314 /**
1315  * ksm_do_scan  - the ksm scanner main worker function.
1316  * @scan_npages - number of pages we want to scan before we return.
1317  */
1318 static void ksm_do_scan(unsigned int scan_npages)
1319 {
1320 	struct rmap_item *rmap_item;
1321 	struct page *page;
1322 
1323 	while (scan_npages--) {
1324 		cond_resched();
1325 		rmap_item = scan_get_next_rmap_item(&page);
1326 		if (!rmap_item)
1327 			return;
1328 		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1329 			cmp_and_merge_page(page, rmap_item);
1330 		else if (page_mapcount(page) == 1) {
1331 			/*
1332 			 * Replace now-unshared ksm page by ordinary page.
1333 			 */
1334 			break_cow(rmap_item->mm, rmap_item->address);
1335 			remove_rmap_item_from_tree(rmap_item);
1336 			rmap_item->oldchecksum = calc_checksum(page);
1337 		}
1338 		put_page(page);
1339 	}
1340 }
1341 
1342 static int ksmd_should_run(void)
1343 {
1344 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1345 }
1346 
1347 static int ksm_scan_thread(void *nothing)
1348 {
1349 	set_user_nice(current, 5);
1350 
1351 	while (!kthread_should_stop()) {
1352 		mutex_lock(&ksm_thread_mutex);
1353 		if (ksmd_should_run())
1354 			ksm_do_scan(ksm_thread_pages_to_scan);
1355 		mutex_unlock(&ksm_thread_mutex);
1356 
1357 		if (ksmd_should_run()) {
1358 			schedule_timeout_interruptible(
1359 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1360 		} else {
1361 			wait_event_interruptible(ksm_thread_wait,
1362 				ksmd_should_run() || kthread_should_stop());
1363 		}
1364 	}
1365 	return 0;
1366 }
1367 
1368 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1369 		unsigned long end, int advice, unsigned long *vm_flags)
1370 {
1371 	struct mm_struct *mm = vma->vm_mm;
1372 	int err;
1373 
1374 	switch (advice) {
1375 	case MADV_MERGEABLE:
1376 		/*
1377 		 * Be somewhat over-protective for now!
1378 		 */
1379 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1380 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1381 				 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1382 				 VM_MIXEDMAP  | VM_SAO))
1383 			return 0;		/* just ignore the advice */
1384 
1385 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1386 			err = __ksm_enter(mm);
1387 			if (err)
1388 				return err;
1389 		}
1390 
1391 		*vm_flags |= VM_MERGEABLE;
1392 		break;
1393 
1394 	case MADV_UNMERGEABLE:
1395 		if (!(*vm_flags & VM_MERGEABLE))
1396 			return 0;		/* just ignore the advice */
1397 
1398 		if (vma->anon_vma) {
1399 			err = unmerge_ksm_pages(vma, start, end);
1400 			if (err)
1401 				return err;
1402 		}
1403 
1404 		*vm_flags &= ~VM_MERGEABLE;
1405 		break;
1406 	}
1407 
1408 	return 0;
1409 }
1410 
1411 int __ksm_enter(struct mm_struct *mm)
1412 {
1413 	struct mm_slot *mm_slot;
1414 	int needs_wakeup;
1415 
1416 	mm_slot = alloc_mm_slot();
1417 	if (!mm_slot)
1418 		return -ENOMEM;
1419 
1420 	/* Check ksm_run too?  Would need tighter locking */
1421 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1422 
1423 	spin_lock(&ksm_mmlist_lock);
1424 	insert_to_mm_slots_hash(mm, mm_slot);
1425 	/*
1426 	 * Insert just behind the scanning cursor, to let the area settle
1427 	 * down a little; when fork is followed by immediate exec, we don't
1428 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1429 	 */
1430 	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1431 	spin_unlock(&ksm_mmlist_lock);
1432 
1433 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1434 	atomic_inc(&mm->mm_count);
1435 
1436 	if (needs_wakeup)
1437 		wake_up_interruptible(&ksm_thread_wait);
1438 
1439 	return 0;
1440 }
1441 
1442 void __ksm_exit(struct mm_struct *mm)
1443 {
1444 	struct mm_slot *mm_slot;
1445 	int easy_to_free = 0;
1446 
1447 	/*
1448 	 * This process is exiting: if it's straightforward (as is the
1449 	 * case when ksmd was never running), free mm_slot immediately.
1450 	 * But if it's at the cursor or has rmap_items linked to it, use
1451 	 * mmap_sem to synchronize with any break_cows before pagetables
1452 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1453 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1454 	 */
1455 
1456 	spin_lock(&ksm_mmlist_lock);
1457 	mm_slot = get_mm_slot(mm);
1458 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1459 		if (list_empty(&mm_slot->rmap_list)) {
1460 			hlist_del(&mm_slot->link);
1461 			list_del(&mm_slot->mm_list);
1462 			easy_to_free = 1;
1463 		} else {
1464 			list_move(&mm_slot->mm_list,
1465 				  &ksm_scan.mm_slot->mm_list);
1466 		}
1467 	}
1468 	spin_unlock(&ksm_mmlist_lock);
1469 
1470 	if (easy_to_free) {
1471 		free_mm_slot(mm_slot);
1472 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1473 		mmdrop(mm);
1474 	} else if (mm_slot) {
1475 		down_write(&mm->mmap_sem);
1476 		up_write(&mm->mmap_sem);
1477 	}
1478 }
1479 
1480 #ifdef CONFIG_SYSFS
1481 /*
1482  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1483  */
1484 
1485 #define KSM_ATTR_RO(_name) \
1486 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1487 #define KSM_ATTR(_name) \
1488 	static struct kobj_attribute _name##_attr = \
1489 		__ATTR(_name, 0644, _name##_show, _name##_store)
1490 
1491 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1492 				    struct kobj_attribute *attr, char *buf)
1493 {
1494 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1495 }
1496 
1497 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1498 				     struct kobj_attribute *attr,
1499 				     const char *buf, size_t count)
1500 {
1501 	unsigned long msecs;
1502 	int err;
1503 
1504 	err = strict_strtoul(buf, 10, &msecs);
1505 	if (err || msecs > UINT_MAX)
1506 		return -EINVAL;
1507 
1508 	ksm_thread_sleep_millisecs = msecs;
1509 
1510 	return count;
1511 }
1512 KSM_ATTR(sleep_millisecs);
1513 
1514 static ssize_t pages_to_scan_show(struct kobject *kobj,
1515 				  struct kobj_attribute *attr, char *buf)
1516 {
1517 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1518 }
1519 
1520 static ssize_t pages_to_scan_store(struct kobject *kobj,
1521 				   struct kobj_attribute *attr,
1522 				   const char *buf, size_t count)
1523 {
1524 	int err;
1525 	unsigned long nr_pages;
1526 
1527 	err = strict_strtoul(buf, 10, &nr_pages);
1528 	if (err || nr_pages > UINT_MAX)
1529 		return -EINVAL;
1530 
1531 	ksm_thread_pages_to_scan = nr_pages;
1532 
1533 	return count;
1534 }
1535 KSM_ATTR(pages_to_scan);
1536 
1537 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1538 			char *buf)
1539 {
1540 	return sprintf(buf, "%u\n", ksm_run);
1541 }
1542 
1543 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1544 			 const char *buf, size_t count)
1545 {
1546 	int err;
1547 	unsigned long flags;
1548 
1549 	err = strict_strtoul(buf, 10, &flags);
1550 	if (err || flags > UINT_MAX)
1551 		return -EINVAL;
1552 	if (flags > KSM_RUN_UNMERGE)
1553 		return -EINVAL;
1554 
1555 	/*
1556 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1557 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1558 	 * breaking COW to free the unswappable pages_shared (but leaves
1559 	 * mm_slots on the list for when ksmd may be set running again).
1560 	 */
1561 
1562 	mutex_lock(&ksm_thread_mutex);
1563 	if (ksm_run != flags) {
1564 		ksm_run = flags;
1565 		if (flags & KSM_RUN_UNMERGE) {
1566 			current->flags |= PF_OOM_ORIGIN;
1567 			err = unmerge_and_remove_all_rmap_items();
1568 			current->flags &= ~PF_OOM_ORIGIN;
1569 			if (err) {
1570 				ksm_run = KSM_RUN_STOP;
1571 				count = err;
1572 			}
1573 		}
1574 	}
1575 	mutex_unlock(&ksm_thread_mutex);
1576 
1577 	if (flags & KSM_RUN_MERGE)
1578 		wake_up_interruptible(&ksm_thread_wait);
1579 
1580 	return count;
1581 }
1582 KSM_ATTR(run);
1583 
1584 static ssize_t max_kernel_pages_store(struct kobject *kobj,
1585 				      struct kobj_attribute *attr,
1586 				      const char *buf, size_t count)
1587 {
1588 	int err;
1589 	unsigned long nr_pages;
1590 
1591 	err = strict_strtoul(buf, 10, &nr_pages);
1592 	if (err)
1593 		return -EINVAL;
1594 
1595 	ksm_max_kernel_pages = nr_pages;
1596 
1597 	return count;
1598 }
1599 
1600 static ssize_t max_kernel_pages_show(struct kobject *kobj,
1601 				     struct kobj_attribute *attr, char *buf)
1602 {
1603 	return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1604 }
1605 KSM_ATTR(max_kernel_pages);
1606 
1607 static ssize_t pages_shared_show(struct kobject *kobj,
1608 				 struct kobj_attribute *attr, char *buf)
1609 {
1610 	return sprintf(buf, "%lu\n", ksm_pages_shared);
1611 }
1612 KSM_ATTR_RO(pages_shared);
1613 
1614 static ssize_t pages_sharing_show(struct kobject *kobj,
1615 				  struct kobj_attribute *attr, char *buf)
1616 {
1617 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1618 }
1619 KSM_ATTR_RO(pages_sharing);
1620 
1621 static ssize_t pages_unshared_show(struct kobject *kobj,
1622 				   struct kobj_attribute *attr, char *buf)
1623 {
1624 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1625 }
1626 KSM_ATTR_RO(pages_unshared);
1627 
1628 static ssize_t pages_volatile_show(struct kobject *kobj,
1629 				   struct kobj_attribute *attr, char *buf)
1630 {
1631 	long ksm_pages_volatile;
1632 
1633 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1634 				- ksm_pages_sharing - ksm_pages_unshared;
1635 	/*
1636 	 * It was not worth any locking to calculate that statistic,
1637 	 * but it might therefore sometimes be negative: conceal that.
1638 	 */
1639 	if (ksm_pages_volatile < 0)
1640 		ksm_pages_volatile = 0;
1641 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1642 }
1643 KSM_ATTR_RO(pages_volatile);
1644 
1645 static ssize_t full_scans_show(struct kobject *kobj,
1646 			       struct kobj_attribute *attr, char *buf)
1647 {
1648 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1649 }
1650 KSM_ATTR_RO(full_scans);
1651 
1652 static struct attribute *ksm_attrs[] = {
1653 	&sleep_millisecs_attr.attr,
1654 	&pages_to_scan_attr.attr,
1655 	&run_attr.attr,
1656 	&max_kernel_pages_attr.attr,
1657 	&pages_shared_attr.attr,
1658 	&pages_sharing_attr.attr,
1659 	&pages_unshared_attr.attr,
1660 	&pages_volatile_attr.attr,
1661 	&full_scans_attr.attr,
1662 	NULL,
1663 };
1664 
1665 static struct attribute_group ksm_attr_group = {
1666 	.attrs = ksm_attrs,
1667 	.name = "ksm",
1668 };
1669 #endif /* CONFIG_SYSFS */
1670 
1671 static int __init ksm_init(void)
1672 {
1673 	struct task_struct *ksm_thread;
1674 	int err;
1675 
1676 	ksm_init_max_kernel_pages();
1677 
1678 	err = ksm_slab_init();
1679 	if (err)
1680 		goto out;
1681 
1682 	err = mm_slots_hash_init();
1683 	if (err)
1684 		goto out_free1;
1685 
1686 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1687 	if (IS_ERR(ksm_thread)) {
1688 		printk(KERN_ERR "ksm: creating kthread failed\n");
1689 		err = PTR_ERR(ksm_thread);
1690 		goto out_free2;
1691 	}
1692 
1693 #ifdef CONFIG_SYSFS
1694 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1695 	if (err) {
1696 		printk(KERN_ERR "ksm: register sysfs failed\n");
1697 		kthread_stop(ksm_thread);
1698 		goto out_free2;
1699 	}
1700 #endif /* CONFIG_SYSFS */
1701 
1702 	return 0;
1703 
1704 out_free2:
1705 	mm_slots_hash_free();
1706 out_free1:
1707 	ksm_slab_free();
1708 out:
1709 	return err;
1710 }
1711 module_init(ksm_init)
1712