xref: /linux/mm/ksm.c (revision c73602ad31cdcf7e6651f43d12f65b5b9b825b6f)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/mmu_notifier.h>
33 #include <linux/swap.h>
34 #include <linux/ksm.h>
35 
36 #include <asm/tlbflush.h>
37 
38 /*
39  * A few notes about the KSM scanning process,
40  * to make it easier to understand the data structures below:
41  *
42  * In order to reduce excessive scanning, KSM sorts the memory pages by their
43  * contents into a data structure that holds pointers to the pages' locations.
44  *
45  * Since the contents of the pages may change at any moment, KSM cannot just
46  * insert the pages into a normal sorted tree and expect it to find anything.
47  * Therefore KSM uses two data structures - the stable and the unstable tree.
48  *
49  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
50  * by their contents.  Because each such page is write-protected, searching on
51  * this tree is fully assured to be working (except when pages are unmapped),
52  * and therefore this tree is called the stable tree.
53  *
54  * In addition to the stable tree, KSM uses a second data structure called the
55  * unstable tree: this tree holds pointers to pages which have been found to
56  * be "unchanged for a period of time".  The unstable tree sorts these pages
57  * by their contents, but since they are not write-protected, KSM cannot rely
58  * upon the unstable tree to work correctly - the unstable tree is liable to
59  * be corrupted as its contents are modified, and so it is called unstable.
60  *
61  * KSM solves this problem by several techniques:
62  *
63  * 1) The unstable tree is flushed every time KSM completes scanning all
64  *    memory areas, and then the tree is rebuilt again from the beginning.
65  * 2) KSM will only insert into the unstable tree, pages whose hash value
66  *    has not changed since the previous scan of all memory areas.
67  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
68  *    colors of the nodes and not on their contents, assuring that even when
69  *    the tree gets "corrupted" it won't get out of balance, so scanning time
70  *    remains the same (also, searching and inserting nodes in an rbtree uses
71  *    the same algorithm, so we have no overhead when we flush and rebuild).
72  * 4) KSM never flushes the stable tree, which means that even if it were to
73  *    take 10 attempts to find a page in the unstable tree, once it is found,
74  *    it is secured in the stable tree.  (When we scan a new page, we first
75  *    compare it against the stable tree, and then against the unstable tree.)
76  */
77 
78 /**
79  * struct mm_slot - ksm information per mm that is being scanned
80  * @link: link to the mm_slots hash list
81  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
82  * @rmap_list: head for this mm_slot's list of rmap_items
83  * @mm: the mm that this information is valid for
84  */
85 struct mm_slot {
86 	struct hlist_node link;
87 	struct list_head mm_list;
88 	struct list_head rmap_list;
89 	struct mm_struct *mm;
90 };
91 
92 /**
93  * struct ksm_scan - cursor for scanning
94  * @mm_slot: the current mm_slot we are scanning
95  * @address: the next address inside that to be scanned
96  * @rmap_item: the current rmap that we are scanning inside the rmap_list
97  * @seqnr: count of completed full scans (needed when removing unstable node)
98  *
99  * There is only the one ksm_scan instance of this cursor structure.
100  */
101 struct ksm_scan {
102 	struct mm_slot *mm_slot;
103 	unsigned long address;
104 	struct rmap_item *rmap_item;
105 	unsigned long seqnr;
106 };
107 
108 /**
109  * struct rmap_item - reverse mapping item for virtual addresses
110  * @link: link into mm_slot's rmap_list (rmap_list is per mm)
111  * @mm: the memory structure this rmap_item is pointing into
112  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
113  * @oldchecksum: previous checksum of the page at that virtual address
114  * @node: rb_node of this rmap_item in either unstable or stable tree
115  * @next: next rmap_item hanging off the same node of the stable tree
116  * @prev: previous rmap_item hanging off the same node of the stable tree
117  */
118 struct rmap_item {
119 	struct list_head link;
120 	struct mm_struct *mm;
121 	unsigned long address;		/* + low bits used for flags below */
122 	union {
123 		unsigned int oldchecksum;		/* when unstable */
124 		struct rmap_item *next;			/* when stable */
125 	};
126 	union {
127 		struct rb_node node;			/* when tree node */
128 		struct rmap_item *prev;			/* in stable list */
129 	};
130 };
131 
132 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
133 #define NODE_FLAG	0x100	/* is a node of unstable or stable tree */
134 #define STABLE_FLAG	0x200	/* is a node or list item of stable tree */
135 
136 /* The stable and unstable tree heads */
137 static struct rb_root root_stable_tree = RB_ROOT;
138 static struct rb_root root_unstable_tree = RB_ROOT;
139 
140 #define MM_SLOTS_HASH_HEADS 1024
141 static struct hlist_head *mm_slots_hash;
142 
143 static struct mm_slot ksm_mm_head = {
144 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
145 };
146 static struct ksm_scan ksm_scan = {
147 	.mm_slot = &ksm_mm_head,
148 };
149 
150 static struct kmem_cache *rmap_item_cache;
151 static struct kmem_cache *mm_slot_cache;
152 
153 /* The number of nodes in the stable tree */
154 static unsigned long ksm_pages_shared;
155 
156 /* The number of page slots additionally sharing those nodes */
157 static unsigned long ksm_pages_sharing;
158 
159 /* The number of nodes in the unstable tree */
160 static unsigned long ksm_pages_unshared;
161 
162 /* The number of rmap_items in use: to calculate pages_volatile */
163 static unsigned long ksm_rmap_items;
164 
165 /* Limit on the number of unswappable pages used */
166 static unsigned long ksm_max_kernel_pages;
167 
168 /* Number of pages ksmd should scan in one batch */
169 static unsigned int ksm_thread_pages_to_scan = 100;
170 
171 /* Milliseconds ksmd should sleep between batches */
172 static unsigned int ksm_thread_sleep_millisecs = 20;
173 
174 #define KSM_RUN_STOP	0
175 #define KSM_RUN_MERGE	1
176 #define KSM_RUN_UNMERGE	2
177 static unsigned int ksm_run = KSM_RUN_STOP;
178 
179 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
180 static DEFINE_MUTEX(ksm_thread_mutex);
181 static DEFINE_SPINLOCK(ksm_mmlist_lock);
182 
183 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
184 		sizeof(struct __struct), __alignof__(struct __struct),\
185 		(__flags), NULL)
186 
187 static int __init ksm_slab_init(void)
188 {
189 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
190 	if (!rmap_item_cache)
191 		goto out;
192 
193 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
194 	if (!mm_slot_cache)
195 		goto out_free;
196 
197 	return 0;
198 
199 out_free:
200 	kmem_cache_destroy(rmap_item_cache);
201 out:
202 	return -ENOMEM;
203 }
204 
205 static void __init ksm_slab_free(void)
206 {
207 	kmem_cache_destroy(mm_slot_cache);
208 	kmem_cache_destroy(rmap_item_cache);
209 	mm_slot_cache = NULL;
210 }
211 
212 static inline struct rmap_item *alloc_rmap_item(void)
213 {
214 	struct rmap_item *rmap_item;
215 
216 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
217 	if (rmap_item)
218 		ksm_rmap_items++;
219 	return rmap_item;
220 }
221 
222 static inline void free_rmap_item(struct rmap_item *rmap_item)
223 {
224 	ksm_rmap_items--;
225 	rmap_item->mm = NULL;	/* debug safety */
226 	kmem_cache_free(rmap_item_cache, rmap_item);
227 }
228 
229 static inline struct mm_slot *alloc_mm_slot(void)
230 {
231 	if (!mm_slot_cache)	/* initialization failed */
232 		return NULL;
233 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
234 }
235 
236 static inline void free_mm_slot(struct mm_slot *mm_slot)
237 {
238 	kmem_cache_free(mm_slot_cache, mm_slot);
239 }
240 
241 static int __init mm_slots_hash_init(void)
242 {
243 	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
244 				GFP_KERNEL);
245 	if (!mm_slots_hash)
246 		return -ENOMEM;
247 	return 0;
248 }
249 
250 static void __init mm_slots_hash_free(void)
251 {
252 	kfree(mm_slots_hash);
253 }
254 
255 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
256 {
257 	struct mm_slot *mm_slot;
258 	struct hlist_head *bucket;
259 	struct hlist_node *node;
260 
261 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
262 				% MM_SLOTS_HASH_HEADS];
263 	hlist_for_each_entry(mm_slot, node, bucket, link) {
264 		if (mm == mm_slot->mm)
265 			return mm_slot;
266 	}
267 	return NULL;
268 }
269 
270 static void insert_to_mm_slots_hash(struct mm_struct *mm,
271 				    struct mm_slot *mm_slot)
272 {
273 	struct hlist_head *bucket;
274 
275 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
276 				% MM_SLOTS_HASH_HEADS];
277 	mm_slot->mm = mm;
278 	INIT_LIST_HEAD(&mm_slot->rmap_list);
279 	hlist_add_head(&mm_slot->link, bucket);
280 }
281 
282 static inline int in_stable_tree(struct rmap_item *rmap_item)
283 {
284 	return rmap_item->address & STABLE_FLAG;
285 }
286 
287 /*
288  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
289  * page tables after it has passed through ksm_exit() - which, if necessary,
290  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
291  * a special flag: they can just back out as soon as mm_users goes to zero.
292  * ksm_test_exit() is used throughout to make this test for exit: in some
293  * places for correctness, in some places just to avoid unnecessary work.
294  */
295 static inline bool ksm_test_exit(struct mm_struct *mm)
296 {
297 	return atomic_read(&mm->mm_users) == 0;
298 }
299 
300 /*
301  * We use break_ksm to break COW on a ksm page: it's a stripped down
302  *
303  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
304  *		put_page(page);
305  *
306  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
307  * in case the application has unmapped and remapped mm,addr meanwhile.
308  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
309  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
310  */
311 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
312 {
313 	struct page *page;
314 	int ret = 0;
315 
316 	do {
317 		cond_resched();
318 		page = follow_page(vma, addr, FOLL_GET);
319 		if (!page)
320 			break;
321 		if (PageKsm(page))
322 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
323 							FAULT_FLAG_WRITE);
324 		else
325 			ret = VM_FAULT_WRITE;
326 		put_page(page);
327 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
328 	/*
329 	 * We must loop because handle_mm_fault() may back out if there's
330 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
331 	 *
332 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
333 	 * COW has been broken, even if the vma does not permit VM_WRITE;
334 	 * but note that a concurrent fault might break PageKsm for us.
335 	 *
336 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
337 	 * backing file, which also invalidates anonymous pages: that's
338 	 * okay, that truncation will have unmapped the PageKsm for us.
339 	 *
340 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
341 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
342 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
343 	 * to user; and ksmd, having no mm, would never be chosen for that.
344 	 *
345 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
346 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
347 	 * even ksmd can fail in this way - though it's usually breaking ksm
348 	 * just to undo a merge it made a moment before, so unlikely to oom.
349 	 *
350 	 * That's a pity: we might therefore have more kernel pages allocated
351 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
352 	 * will retry to break_cow on each pass, so should recover the page
353 	 * in due course.  The important thing is to not let VM_MERGEABLE
354 	 * be cleared while any such pages might remain in the area.
355 	 */
356 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
357 }
358 
359 static void break_cow(struct mm_struct *mm, unsigned long addr)
360 {
361 	struct vm_area_struct *vma;
362 
363 	down_read(&mm->mmap_sem);
364 	if (ksm_test_exit(mm))
365 		goto out;
366 	vma = find_vma(mm, addr);
367 	if (!vma || vma->vm_start > addr)
368 		goto out;
369 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
370 		goto out;
371 	break_ksm(vma, addr);
372 out:
373 	up_read(&mm->mmap_sem);
374 }
375 
376 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
377 {
378 	struct mm_struct *mm = rmap_item->mm;
379 	unsigned long addr = rmap_item->address;
380 	struct vm_area_struct *vma;
381 	struct page *page;
382 
383 	down_read(&mm->mmap_sem);
384 	if (ksm_test_exit(mm))
385 		goto out;
386 	vma = find_vma(mm, addr);
387 	if (!vma || vma->vm_start > addr)
388 		goto out;
389 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
390 		goto out;
391 
392 	page = follow_page(vma, addr, FOLL_GET);
393 	if (!page)
394 		goto out;
395 	if (PageAnon(page)) {
396 		flush_anon_page(vma, page, addr);
397 		flush_dcache_page(page);
398 	} else {
399 		put_page(page);
400 out:		page = NULL;
401 	}
402 	up_read(&mm->mmap_sem);
403 	return page;
404 }
405 
406 /*
407  * get_ksm_page: checks if the page at the virtual address in rmap_item
408  * is still PageKsm, in which case we can trust the content of the page,
409  * and it returns the gotten page; but NULL if the page has been zapped.
410  */
411 static struct page *get_ksm_page(struct rmap_item *rmap_item)
412 {
413 	struct page *page;
414 
415 	page = get_mergeable_page(rmap_item);
416 	if (page && !PageKsm(page)) {
417 		put_page(page);
418 		page = NULL;
419 	}
420 	return page;
421 }
422 
423 /*
424  * Removing rmap_item from stable or unstable tree.
425  * This function will clean the information from the stable/unstable tree.
426  */
427 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
428 {
429 	if (in_stable_tree(rmap_item)) {
430 		struct rmap_item *next_item = rmap_item->next;
431 
432 		if (rmap_item->address & NODE_FLAG) {
433 			if (next_item) {
434 				rb_replace_node(&rmap_item->node,
435 						&next_item->node,
436 						&root_stable_tree);
437 				next_item->address |= NODE_FLAG;
438 				ksm_pages_sharing--;
439 			} else {
440 				rb_erase(&rmap_item->node, &root_stable_tree);
441 				ksm_pages_shared--;
442 			}
443 		} else {
444 			struct rmap_item *prev_item = rmap_item->prev;
445 
446 			BUG_ON(prev_item->next != rmap_item);
447 			prev_item->next = next_item;
448 			if (next_item) {
449 				BUG_ON(next_item->prev != rmap_item);
450 				next_item->prev = rmap_item->prev;
451 			}
452 			ksm_pages_sharing--;
453 		}
454 
455 		rmap_item->next = NULL;
456 
457 	} else if (rmap_item->address & NODE_FLAG) {
458 		unsigned char age;
459 		/*
460 		 * Usually ksmd can and must skip the rb_erase, because
461 		 * root_unstable_tree was already reset to RB_ROOT.
462 		 * But be careful when an mm is exiting: do the rb_erase
463 		 * if this rmap_item was inserted by this scan, rather
464 		 * than left over from before.
465 		 */
466 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
467 		BUG_ON(age > 1);
468 		if (!age)
469 			rb_erase(&rmap_item->node, &root_unstable_tree);
470 		ksm_pages_unshared--;
471 	}
472 
473 	rmap_item->address &= PAGE_MASK;
474 
475 	cond_resched();		/* we're called from many long loops */
476 }
477 
478 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
479 				       struct list_head *cur)
480 {
481 	struct rmap_item *rmap_item;
482 
483 	while (cur != &mm_slot->rmap_list) {
484 		rmap_item = list_entry(cur, struct rmap_item, link);
485 		cur = cur->next;
486 		remove_rmap_item_from_tree(rmap_item);
487 		list_del(&rmap_item->link);
488 		free_rmap_item(rmap_item);
489 	}
490 }
491 
492 /*
493  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
494  * than check every pte of a given vma, the locking doesn't quite work for
495  * that - an rmap_item is assigned to the stable tree after inserting ksm
496  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
497  * rmap_items from parent to child at fork time (so as not to waste time
498  * if exit comes before the next scan reaches it).
499  *
500  * Similarly, although we'd like to remove rmap_items (so updating counts
501  * and freeing memory) when unmerging an area, it's easier to leave that
502  * to the next pass of ksmd - consider, for example, how ksmd might be
503  * in cmp_and_merge_page on one of the rmap_items we would be removing.
504  */
505 static int unmerge_ksm_pages(struct vm_area_struct *vma,
506 			     unsigned long start, unsigned long end)
507 {
508 	unsigned long addr;
509 	int err = 0;
510 
511 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
512 		if (ksm_test_exit(vma->vm_mm))
513 			break;
514 		if (signal_pending(current))
515 			err = -ERESTARTSYS;
516 		else
517 			err = break_ksm(vma, addr);
518 	}
519 	return err;
520 }
521 
522 #ifdef CONFIG_SYSFS
523 /*
524  * Only called through the sysfs control interface:
525  */
526 static int unmerge_and_remove_all_rmap_items(void)
527 {
528 	struct mm_slot *mm_slot;
529 	struct mm_struct *mm;
530 	struct vm_area_struct *vma;
531 	int err = 0;
532 
533 	spin_lock(&ksm_mmlist_lock);
534 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
535 						struct mm_slot, mm_list);
536 	spin_unlock(&ksm_mmlist_lock);
537 
538 	for (mm_slot = ksm_scan.mm_slot;
539 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
540 		mm = mm_slot->mm;
541 		down_read(&mm->mmap_sem);
542 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
543 			if (ksm_test_exit(mm))
544 				break;
545 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
546 				continue;
547 			err = unmerge_ksm_pages(vma,
548 						vma->vm_start, vma->vm_end);
549 			if (err)
550 				goto error;
551 		}
552 
553 		remove_trailing_rmap_items(mm_slot, mm_slot->rmap_list.next);
554 
555 		spin_lock(&ksm_mmlist_lock);
556 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
557 						struct mm_slot, mm_list);
558 		if (ksm_test_exit(mm)) {
559 			hlist_del(&mm_slot->link);
560 			list_del(&mm_slot->mm_list);
561 			spin_unlock(&ksm_mmlist_lock);
562 
563 			free_mm_slot(mm_slot);
564 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
565 			up_read(&mm->mmap_sem);
566 			mmdrop(mm);
567 		} else {
568 			spin_unlock(&ksm_mmlist_lock);
569 			up_read(&mm->mmap_sem);
570 		}
571 	}
572 
573 	ksm_scan.seqnr = 0;
574 	return 0;
575 
576 error:
577 	up_read(&mm->mmap_sem);
578 	spin_lock(&ksm_mmlist_lock);
579 	ksm_scan.mm_slot = &ksm_mm_head;
580 	spin_unlock(&ksm_mmlist_lock);
581 	return err;
582 }
583 #endif /* CONFIG_SYSFS */
584 
585 static u32 calc_checksum(struct page *page)
586 {
587 	u32 checksum;
588 	void *addr = kmap_atomic(page, KM_USER0);
589 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
590 	kunmap_atomic(addr, KM_USER0);
591 	return checksum;
592 }
593 
594 static int memcmp_pages(struct page *page1, struct page *page2)
595 {
596 	char *addr1, *addr2;
597 	int ret;
598 
599 	addr1 = kmap_atomic(page1, KM_USER0);
600 	addr2 = kmap_atomic(page2, KM_USER1);
601 	ret = memcmp(addr1, addr2, PAGE_SIZE);
602 	kunmap_atomic(addr2, KM_USER1);
603 	kunmap_atomic(addr1, KM_USER0);
604 	return ret;
605 }
606 
607 static inline int pages_identical(struct page *page1, struct page *page2)
608 {
609 	return !memcmp_pages(page1, page2);
610 }
611 
612 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
613 			      pte_t *orig_pte)
614 {
615 	struct mm_struct *mm = vma->vm_mm;
616 	unsigned long addr;
617 	pte_t *ptep;
618 	spinlock_t *ptl;
619 	int swapped;
620 	int err = -EFAULT;
621 
622 	addr = page_address_in_vma(page, vma);
623 	if (addr == -EFAULT)
624 		goto out;
625 
626 	ptep = page_check_address(page, mm, addr, &ptl, 0);
627 	if (!ptep)
628 		goto out;
629 
630 	if (pte_write(*ptep)) {
631 		pte_t entry;
632 
633 		swapped = PageSwapCache(page);
634 		flush_cache_page(vma, addr, page_to_pfn(page));
635 		/*
636 		 * Ok this is tricky, when get_user_pages_fast() run it doesnt
637 		 * take any lock, therefore the check that we are going to make
638 		 * with the pagecount against the mapcount is racey and
639 		 * O_DIRECT can happen right after the check.
640 		 * So we clear the pte and flush the tlb before the check
641 		 * this assure us that no O_DIRECT can happen after the check
642 		 * or in the middle of the check.
643 		 */
644 		entry = ptep_clear_flush(vma, addr, ptep);
645 		/*
646 		 * Check that no O_DIRECT or similar I/O is in progress on the
647 		 * page
648 		 */
649 		if ((page_mapcount(page) + 2 + swapped) != page_count(page)) {
650 			set_pte_at_notify(mm, addr, ptep, entry);
651 			goto out_unlock;
652 		}
653 		entry = pte_wrprotect(entry);
654 		set_pte_at_notify(mm, addr, ptep, entry);
655 	}
656 	*orig_pte = *ptep;
657 	err = 0;
658 
659 out_unlock:
660 	pte_unmap_unlock(ptep, ptl);
661 out:
662 	return err;
663 }
664 
665 /**
666  * replace_page - replace page in vma by new ksm page
667  * @vma:      vma that holds the pte pointing to oldpage
668  * @oldpage:  the page we are replacing by newpage
669  * @newpage:  the ksm page we replace oldpage by
670  * @orig_pte: the original value of the pte
671  *
672  * Returns 0 on success, -EFAULT on failure.
673  */
674 static int replace_page(struct vm_area_struct *vma, struct page *oldpage,
675 			struct page *newpage, pte_t orig_pte)
676 {
677 	struct mm_struct *mm = vma->vm_mm;
678 	pgd_t *pgd;
679 	pud_t *pud;
680 	pmd_t *pmd;
681 	pte_t *ptep;
682 	spinlock_t *ptl;
683 	unsigned long addr;
684 	pgprot_t prot;
685 	int err = -EFAULT;
686 
687 	prot = vm_get_page_prot(vma->vm_flags & ~VM_WRITE);
688 
689 	addr = page_address_in_vma(oldpage, vma);
690 	if (addr == -EFAULT)
691 		goto out;
692 
693 	pgd = pgd_offset(mm, addr);
694 	if (!pgd_present(*pgd))
695 		goto out;
696 
697 	pud = pud_offset(pgd, addr);
698 	if (!pud_present(*pud))
699 		goto out;
700 
701 	pmd = pmd_offset(pud, addr);
702 	if (!pmd_present(*pmd))
703 		goto out;
704 
705 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
706 	if (!pte_same(*ptep, orig_pte)) {
707 		pte_unmap_unlock(ptep, ptl);
708 		goto out;
709 	}
710 
711 	get_page(newpage);
712 	page_add_ksm_rmap(newpage);
713 
714 	flush_cache_page(vma, addr, pte_pfn(*ptep));
715 	ptep_clear_flush(vma, addr, ptep);
716 	set_pte_at_notify(mm, addr, ptep, mk_pte(newpage, prot));
717 
718 	page_remove_rmap(oldpage);
719 	put_page(oldpage);
720 
721 	pte_unmap_unlock(ptep, ptl);
722 	err = 0;
723 out:
724 	return err;
725 }
726 
727 /*
728  * try_to_merge_one_page - take two pages and merge them into one
729  * @vma: the vma that hold the pte pointing into oldpage
730  * @oldpage: the page that we want to replace with newpage
731  * @newpage: the page that we want to map instead of oldpage
732  *
733  * Note:
734  * oldpage should be a PageAnon page, while newpage should be a PageKsm page,
735  * or a newly allocated kernel page which page_add_ksm_rmap will make PageKsm.
736  *
737  * This function returns 0 if the pages were merged, -EFAULT otherwise.
738  */
739 static int try_to_merge_one_page(struct vm_area_struct *vma,
740 				 struct page *oldpage,
741 				 struct page *newpage)
742 {
743 	pte_t orig_pte = __pte(0);
744 	int err = -EFAULT;
745 
746 	if (!(vma->vm_flags & VM_MERGEABLE))
747 		goto out;
748 
749 	if (!PageAnon(oldpage))
750 		goto out;
751 
752 	get_page(newpage);
753 	get_page(oldpage);
754 
755 	/*
756 	 * We need the page lock to read a stable PageSwapCache in
757 	 * write_protect_page().  We use trylock_page() instead of
758 	 * lock_page() because we don't want to wait here - we
759 	 * prefer to continue scanning and merging different pages,
760 	 * then come back to this page when it is unlocked.
761 	 */
762 	if (!trylock_page(oldpage))
763 		goto out_putpage;
764 	/*
765 	 * If this anonymous page is mapped only here, its pte may need
766 	 * to be write-protected.  If it's mapped elsewhere, all of its
767 	 * ptes are necessarily already write-protected.  But in either
768 	 * case, we need to lock and check page_count is not raised.
769 	 */
770 	if (write_protect_page(vma, oldpage, &orig_pte)) {
771 		unlock_page(oldpage);
772 		goto out_putpage;
773 	}
774 	unlock_page(oldpage);
775 
776 	if (pages_identical(oldpage, newpage))
777 		err = replace_page(vma, oldpage, newpage, orig_pte);
778 
779 out_putpage:
780 	put_page(oldpage);
781 	put_page(newpage);
782 out:
783 	return err;
784 }
785 
786 /*
787  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
788  * but no new kernel page is allocated: kpage must already be a ksm page.
789  */
790 static int try_to_merge_with_ksm_page(struct mm_struct *mm1,
791 				      unsigned long addr1,
792 				      struct page *page1,
793 				      struct page *kpage)
794 {
795 	struct vm_area_struct *vma;
796 	int err = -EFAULT;
797 
798 	down_read(&mm1->mmap_sem);
799 	if (ksm_test_exit(mm1))
800 		goto out;
801 
802 	vma = find_vma(mm1, addr1);
803 	if (!vma || vma->vm_start > addr1)
804 		goto out;
805 
806 	err = try_to_merge_one_page(vma, page1, kpage);
807 out:
808 	up_read(&mm1->mmap_sem);
809 	return err;
810 }
811 
812 /*
813  * try_to_merge_two_pages - take two identical pages and prepare them
814  * to be merged into one page.
815  *
816  * This function returns 0 if we successfully mapped two identical pages
817  * into one page, -EFAULT otherwise.
818  *
819  * Note that this function allocates a new kernel page: if one of the pages
820  * is already a ksm page, try_to_merge_with_ksm_page should be used.
821  */
822 static int try_to_merge_two_pages(struct mm_struct *mm1, unsigned long addr1,
823 				  struct page *page1, struct mm_struct *mm2,
824 				  unsigned long addr2, struct page *page2)
825 {
826 	struct vm_area_struct *vma;
827 	struct page *kpage;
828 	int err = -EFAULT;
829 
830 	/*
831 	 * The number of nodes in the stable tree
832 	 * is the number of kernel pages that we hold.
833 	 */
834 	if (ksm_max_kernel_pages &&
835 	    ksm_max_kernel_pages <= ksm_pages_shared)
836 		return err;
837 
838 	kpage = alloc_page(GFP_HIGHUSER);
839 	if (!kpage)
840 		return err;
841 
842 	down_read(&mm1->mmap_sem);
843 	if (ksm_test_exit(mm1)) {
844 		up_read(&mm1->mmap_sem);
845 		goto out;
846 	}
847 	vma = find_vma(mm1, addr1);
848 	if (!vma || vma->vm_start > addr1) {
849 		up_read(&mm1->mmap_sem);
850 		goto out;
851 	}
852 
853 	copy_user_highpage(kpage, page1, addr1, vma);
854 	err = try_to_merge_one_page(vma, page1, kpage);
855 	up_read(&mm1->mmap_sem);
856 
857 	if (!err) {
858 		err = try_to_merge_with_ksm_page(mm2, addr2, page2, kpage);
859 		/*
860 		 * If that fails, we have a ksm page with only one pte
861 		 * pointing to it: so break it.
862 		 */
863 		if (err)
864 			break_cow(mm1, addr1);
865 	}
866 out:
867 	put_page(kpage);
868 	return err;
869 }
870 
871 /*
872  * stable_tree_search - search page inside the stable tree
873  * @page: the page that we are searching identical pages to.
874  * @page2: pointer into identical page that we are holding inside the stable
875  *	   tree that we have found.
876  * @rmap_item: the reverse mapping item
877  *
878  * This function checks if there is a page inside the stable tree
879  * with identical content to the page that we are scanning right now.
880  *
881  * This function return rmap_item pointer to the identical item if found,
882  * NULL otherwise.
883  */
884 static struct rmap_item *stable_tree_search(struct page *page,
885 					    struct page **page2,
886 					    struct rmap_item *rmap_item)
887 {
888 	struct rb_node *node = root_stable_tree.rb_node;
889 
890 	while (node) {
891 		struct rmap_item *tree_rmap_item, *next_rmap_item;
892 		int ret;
893 
894 		tree_rmap_item = rb_entry(node, struct rmap_item, node);
895 		while (tree_rmap_item) {
896 			BUG_ON(!in_stable_tree(tree_rmap_item));
897 			cond_resched();
898 			page2[0] = get_ksm_page(tree_rmap_item);
899 			if (page2[0])
900 				break;
901 			next_rmap_item = tree_rmap_item->next;
902 			remove_rmap_item_from_tree(tree_rmap_item);
903 			tree_rmap_item = next_rmap_item;
904 		}
905 		if (!tree_rmap_item)
906 			return NULL;
907 
908 		ret = memcmp_pages(page, page2[0]);
909 
910 		if (ret < 0) {
911 			put_page(page2[0]);
912 			node = node->rb_left;
913 		} else if (ret > 0) {
914 			put_page(page2[0]);
915 			node = node->rb_right;
916 		} else {
917 			return tree_rmap_item;
918 		}
919 	}
920 
921 	return NULL;
922 }
923 
924 /*
925  * stable_tree_insert - insert rmap_item pointing to new ksm page
926  * into the stable tree.
927  *
928  * @page: the page that we are searching identical page to inside the stable
929  *	  tree.
930  * @rmap_item: pointer to the reverse mapping item.
931  *
932  * This function returns rmap_item if success, NULL otherwise.
933  */
934 static struct rmap_item *stable_tree_insert(struct page *page,
935 					    struct rmap_item *rmap_item)
936 {
937 	struct rb_node **new = &root_stable_tree.rb_node;
938 	struct rb_node *parent = NULL;
939 
940 	while (*new) {
941 		struct rmap_item *tree_rmap_item, *next_rmap_item;
942 		struct page *tree_page;
943 		int ret;
944 
945 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
946 		while (tree_rmap_item) {
947 			BUG_ON(!in_stable_tree(tree_rmap_item));
948 			cond_resched();
949 			tree_page = get_ksm_page(tree_rmap_item);
950 			if (tree_page)
951 				break;
952 			next_rmap_item = tree_rmap_item->next;
953 			remove_rmap_item_from_tree(tree_rmap_item);
954 			tree_rmap_item = next_rmap_item;
955 		}
956 		if (!tree_rmap_item)
957 			return NULL;
958 
959 		ret = memcmp_pages(page, tree_page);
960 		put_page(tree_page);
961 
962 		parent = *new;
963 		if (ret < 0)
964 			new = &parent->rb_left;
965 		else if (ret > 0)
966 			new = &parent->rb_right;
967 		else {
968 			/*
969 			 * It is not a bug that stable_tree_search() didn't
970 			 * find this node: because at that time our page was
971 			 * not yet write-protected, so may have changed since.
972 			 */
973 			return NULL;
974 		}
975 	}
976 
977 	rmap_item->address |= NODE_FLAG | STABLE_FLAG;
978 	rmap_item->next = NULL;
979 	rb_link_node(&rmap_item->node, parent, new);
980 	rb_insert_color(&rmap_item->node, &root_stable_tree);
981 
982 	ksm_pages_shared++;
983 	return rmap_item;
984 }
985 
986 /*
987  * unstable_tree_search_insert - search and insert items into the unstable tree.
988  *
989  * @page: the page that we are going to search for identical page or to insert
990  *	  into the unstable tree
991  * @page2: pointer into identical page that was found inside the unstable tree
992  * @rmap_item: the reverse mapping item of page
993  *
994  * This function searches for a page in the unstable tree identical to the
995  * page currently being scanned; and if no identical page is found in the
996  * tree, we insert rmap_item as a new object into the unstable tree.
997  *
998  * This function returns pointer to rmap_item found to be identical
999  * to the currently scanned page, NULL otherwise.
1000  *
1001  * This function does both searching and inserting, because they share
1002  * the same walking algorithm in an rbtree.
1003  */
1004 static struct rmap_item *unstable_tree_search_insert(struct page *page,
1005 						struct page **page2,
1006 						struct rmap_item *rmap_item)
1007 {
1008 	struct rb_node **new = &root_unstable_tree.rb_node;
1009 	struct rb_node *parent = NULL;
1010 
1011 	while (*new) {
1012 		struct rmap_item *tree_rmap_item;
1013 		int ret;
1014 
1015 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1016 		page2[0] = get_mergeable_page(tree_rmap_item);
1017 		if (!page2[0])
1018 			return NULL;
1019 
1020 		/*
1021 		 * Don't substitute an unswappable ksm page
1022 		 * just for one good swappable forked page.
1023 		 */
1024 		if (page == page2[0]) {
1025 			put_page(page2[0]);
1026 			return NULL;
1027 		}
1028 
1029 		ret = memcmp_pages(page, page2[0]);
1030 
1031 		parent = *new;
1032 		if (ret < 0) {
1033 			put_page(page2[0]);
1034 			new = &parent->rb_left;
1035 		} else if (ret > 0) {
1036 			put_page(page2[0]);
1037 			new = &parent->rb_right;
1038 		} else {
1039 			return tree_rmap_item;
1040 		}
1041 	}
1042 
1043 	rmap_item->address |= NODE_FLAG;
1044 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1045 	rb_link_node(&rmap_item->node, parent, new);
1046 	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1047 
1048 	ksm_pages_unshared++;
1049 	return NULL;
1050 }
1051 
1052 /*
1053  * stable_tree_append - add another rmap_item to the linked list of
1054  * rmap_items hanging off a given node of the stable tree, all sharing
1055  * the same ksm page.
1056  */
1057 static void stable_tree_append(struct rmap_item *rmap_item,
1058 			       struct rmap_item *tree_rmap_item)
1059 {
1060 	rmap_item->next = tree_rmap_item->next;
1061 	rmap_item->prev = tree_rmap_item;
1062 
1063 	if (tree_rmap_item->next)
1064 		tree_rmap_item->next->prev = rmap_item;
1065 
1066 	tree_rmap_item->next = rmap_item;
1067 	rmap_item->address |= STABLE_FLAG;
1068 
1069 	ksm_pages_sharing++;
1070 }
1071 
1072 /*
1073  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1074  * if not, compare checksum to previous and if it's the same, see if page can
1075  * be inserted into the unstable tree, or merged with a page already there and
1076  * both transferred to the stable tree.
1077  *
1078  * @page: the page that we are searching identical page to.
1079  * @rmap_item: the reverse mapping into the virtual address of this page
1080  */
1081 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1082 {
1083 	struct page *page2[1];
1084 	struct rmap_item *tree_rmap_item;
1085 	unsigned int checksum;
1086 	int err;
1087 
1088 	if (in_stable_tree(rmap_item))
1089 		remove_rmap_item_from_tree(rmap_item);
1090 
1091 	/* We first start with searching the page inside the stable tree */
1092 	tree_rmap_item = stable_tree_search(page, page2, rmap_item);
1093 	if (tree_rmap_item) {
1094 		if (page == page2[0])			/* forked */
1095 			err = 0;
1096 		else
1097 			err = try_to_merge_with_ksm_page(rmap_item->mm,
1098 							 rmap_item->address,
1099 							 page, page2[0]);
1100 		put_page(page2[0]);
1101 
1102 		if (!err) {
1103 			/*
1104 			 * The page was successfully merged:
1105 			 * add its rmap_item to the stable tree.
1106 			 */
1107 			stable_tree_append(rmap_item, tree_rmap_item);
1108 		}
1109 		return;
1110 	}
1111 
1112 	/*
1113 	 * A ksm page might have got here by fork, but its other
1114 	 * references have already been removed from the stable tree.
1115 	 * Or it might be left over from a break_ksm which failed
1116 	 * when the mem_cgroup had reached its limit: try again now.
1117 	 */
1118 	if (PageKsm(page))
1119 		break_cow(rmap_item->mm, rmap_item->address);
1120 
1121 	/*
1122 	 * In case the hash value of the page was changed from the last time we
1123 	 * have calculated it, this page to be changed frequely, therefore we
1124 	 * don't want to insert it to the unstable tree, and we don't want to
1125 	 * waste our time to search if there is something identical to it there.
1126 	 */
1127 	checksum = calc_checksum(page);
1128 	if (rmap_item->oldchecksum != checksum) {
1129 		rmap_item->oldchecksum = checksum;
1130 		return;
1131 	}
1132 
1133 	tree_rmap_item = unstable_tree_search_insert(page, page2, rmap_item);
1134 	if (tree_rmap_item) {
1135 		err = try_to_merge_two_pages(rmap_item->mm,
1136 					     rmap_item->address, page,
1137 					     tree_rmap_item->mm,
1138 					     tree_rmap_item->address, page2[0]);
1139 		/*
1140 		 * As soon as we merge this page, we want to remove the
1141 		 * rmap_item of the page we have merged with from the unstable
1142 		 * tree, and insert it instead as new node in the stable tree.
1143 		 */
1144 		if (!err) {
1145 			rb_erase(&tree_rmap_item->node, &root_unstable_tree);
1146 			tree_rmap_item->address &= ~NODE_FLAG;
1147 			ksm_pages_unshared--;
1148 
1149 			/*
1150 			 * If we fail to insert the page into the stable tree,
1151 			 * we will have 2 virtual addresses that are pointing
1152 			 * to a ksm page left outside the stable tree,
1153 			 * in which case we need to break_cow on both.
1154 			 */
1155 			if (stable_tree_insert(page2[0], tree_rmap_item))
1156 				stable_tree_append(rmap_item, tree_rmap_item);
1157 			else {
1158 				break_cow(tree_rmap_item->mm,
1159 						tree_rmap_item->address);
1160 				break_cow(rmap_item->mm, rmap_item->address);
1161 			}
1162 		}
1163 
1164 		put_page(page2[0]);
1165 	}
1166 }
1167 
1168 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1169 					    struct list_head *cur,
1170 					    unsigned long addr)
1171 {
1172 	struct rmap_item *rmap_item;
1173 
1174 	while (cur != &mm_slot->rmap_list) {
1175 		rmap_item = list_entry(cur, struct rmap_item, link);
1176 		if ((rmap_item->address & PAGE_MASK) == addr) {
1177 			if (!in_stable_tree(rmap_item))
1178 				remove_rmap_item_from_tree(rmap_item);
1179 			return rmap_item;
1180 		}
1181 		if (rmap_item->address > addr)
1182 			break;
1183 		cur = cur->next;
1184 		remove_rmap_item_from_tree(rmap_item);
1185 		list_del(&rmap_item->link);
1186 		free_rmap_item(rmap_item);
1187 	}
1188 
1189 	rmap_item = alloc_rmap_item();
1190 	if (rmap_item) {
1191 		/* It has already been zeroed */
1192 		rmap_item->mm = mm_slot->mm;
1193 		rmap_item->address = addr;
1194 		list_add_tail(&rmap_item->link, cur);
1195 	}
1196 	return rmap_item;
1197 }
1198 
1199 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1200 {
1201 	struct mm_struct *mm;
1202 	struct mm_slot *slot;
1203 	struct vm_area_struct *vma;
1204 	struct rmap_item *rmap_item;
1205 
1206 	if (list_empty(&ksm_mm_head.mm_list))
1207 		return NULL;
1208 
1209 	slot = ksm_scan.mm_slot;
1210 	if (slot == &ksm_mm_head) {
1211 		root_unstable_tree = RB_ROOT;
1212 
1213 		spin_lock(&ksm_mmlist_lock);
1214 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1215 		ksm_scan.mm_slot = slot;
1216 		spin_unlock(&ksm_mmlist_lock);
1217 next_mm:
1218 		ksm_scan.address = 0;
1219 		ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1220 						struct rmap_item, link);
1221 	}
1222 
1223 	mm = slot->mm;
1224 	down_read(&mm->mmap_sem);
1225 	if (ksm_test_exit(mm))
1226 		vma = NULL;
1227 	else
1228 		vma = find_vma(mm, ksm_scan.address);
1229 
1230 	for (; vma; vma = vma->vm_next) {
1231 		if (!(vma->vm_flags & VM_MERGEABLE))
1232 			continue;
1233 		if (ksm_scan.address < vma->vm_start)
1234 			ksm_scan.address = vma->vm_start;
1235 		if (!vma->anon_vma)
1236 			ksm_scan.address = vma->vm_end;
1237 
1238 		while (ksm_scan.address < vma->vm_end) {
1239 			if (ksm_test_exit(mm))
1240 				break;
1241 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1242 			if (*page && PageAnon(*page)) {
1243 				flush_anon_page(vma, *page, ksm_scan.address);
1244 				flush_dcache_page(*page);
1245 				rmap_item = get_next_rmap_item(slot,
1246 					ksm_scan.rmap_item->link.next,
1247 					ksm_scan.address);
1248 				if (rmap_item) {
1249 					ksm_scan.rmap_item = rmap_item;
1250 					ksm_scan.address += PAGE_SIZE;
1251 				} else
1252 					put_page(*page);
1253 				up_read(&mm->mmap_sem);
1254 				return rmap_item;
1255 			}
1256 			if (*page)
1257 				put_page(*page);
1258 			ksm_scan.address += PAGE_SIZE;
1259 			cond_resched();
1260 		}
1261 	}
1262 
1263 	if (ksm_test_exit(mm)) {
1264 		ksm_scan.address = 0;
1265 		ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1266 						struct rmap_item, link);
1267 	}
1268 	/*
1269 	 * Nuke all the rmap_items that are above this current rmap:
1270 	 * because there were no VM_MERGEABLE vmas with such addresses.
1271 	 */
1272 	remove_trailing_rmap_items(slot, ksm_scan.rmap_item->link.next);
1273 
1274 	spin_lock(&ksm_mmlist_lock);
1275 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1276 						struct mm_slot, mm_list);
1277 	if (ksm_scan.address == 0) {
1278 		/*
1279 		 * We've completed a full scan of all vmas, holding mmap_sem
1280 		 * throughout, and found no VM_MERGEABLE: so do the same as
1281 		 * __ksm_exit does to remove this mm from all our lists now.
1282 		 * This applies either when cleaning up after __ksm_exit
1283 		 * (but beware: we can reach here even before __ksm_exit),
1284 		 * or when all VM_MERGEABLE areas have been unmapped (and
1285 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1286 		 */
1287 		hlist_del(&slot->link);
1288 		list_del(&slot->mm_list);
1289 		spin_unlock(&ksm_mmlist_lock);
1290 
1291 		free_mm_slot(slot);
1292 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1293 		up_read(&mm->mmap_sem);
1294 		mmdrop(mm);
1295 	} else {
1296 		spin_unlock(&ksm_mmlist_lock);
1297 		up_read(&mm->mmap_sem);
1298 	}
1299 
1300 	/* Repeat until we've completed scanning the whole list */
1301 	slot = ksm_scan.mm_slot;
1302 	if (slot != &ksm_mm_head)
1303 		goto next_mm;
1304 
1305 	ksm_scan.seqnr++;
1306 	return NULL;
1307 }
1308 
1309 /**
1310  * ksm_do_scan  - the ksm scanner main worker function.
1311  * @scan_npages - number of pages we want to scan before we return.
1312  */
1313 static void ksm_do_scan(unsigned int scan_npages)
1314 {
1315 	struct rmap_item *rmap_item;
1316 	struct page *page;
1317 
1318 	while (scan_npages--) {
1319 		cond_resched();
1320 		rmap_item = scan_get_next_rmap_item(&page);
1321 		if (!rmap_item)
1322 			return;
1323 		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1324 			cmp_and_merge_page(page, rmap_item);
1325 		else if (page_mapcount(page) == 1) {
1326 			/*
1327 			 * Replace now-unshared ksm page by ordinary page.
1328 			 */
1329 			break_cow(rmap_item->mm, rmap_item->address);
1330 			remove_rmap_item_from_tree(rmap_item);
1331 			rmap_item->oldchecksum = calc_checksum(page);
1332 		}
1333 		put_page(page);
1334 	}
1335 }
1336 
1337 static int ksmd_should_run(void)
1338 {
1339 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1340 }
1341 
1342 static int ksm_scan_thread(void *nothing)
1343 {
1344 	set_user_nice(current, 5);
1345 
1346 	while (!kthread_should_stop()) {
1347 		mutex_lock(&ksm_thread_mutex);
1348 		if (ksmd_should_run())
1349 			ksm_do_scan(ksm_thread_pages_to_scan);
1350 		mutex_unlock(&ksm_thread_mutex);
1351 
1352 		if (ksmd_should_run()) {
1353 			schedule_timeout_interruptible(
1354 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1355 		} else {
1356 			wait_event_interruptible(ksm_thread_wait,
1357 				ksmd_should_run() || kthread_should_stop());
1358 		}
1359 	}
1360 	return 0;
1361 }
1362 
1363 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1364 		unsigned long end, int advice, unsigned long *vm_flags)
1365 {
1366 	struct mm_struct *mm = vma->vm_mm;
1367 	int err;
1368 
1369 	switch (advice) {
1370 	case MADV_MERGEABLE:
1371 		/*
1372 		 * Be somewhat over-protective for now!
1373 		 */
1374 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1375 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1376 				 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1377 				 VM_MIXEDMAP  | VM_SAO))
1378 			return 0;		/* just ignore the advice */
1379 
1380 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1381 			err = __ksm_enter(mm);
1382 			if (err)
1383 				return err;
1384 		}
1385 
1386 		*vm_flags |= VM_MERGEABLE;
1387 		break;
1388 
1389 	case MADV_UNMERGEABLE:
1390 		if (!(*vm_flags & VM_MERGEABLE))
1391 			return 0;		/* just ignore the advice */
1392 
1393 		if (vma->anon_vma) {
1394 			err = unmerge_ksm_pages(vma, start, end);
1395 			if (err)
1396 				return err;
1397 		}
1398 
1399 		*vm_flags &= ~VM_MERGEABLE;
1400 		break;
1401 	}
1402 
1403 	return 0;
1404 }
1405 
1406 int __ksm_enter(struct mm_struct *mm)
1407 {
1408 	struct mm_slot *mm_slot;
1409 	int needs_wakeup;
1410 
1411 	mm_slot = alloc_mm_slot();
1412 	if (!mm_slot)
1413 		return -ENOMEM;
1414 
1415 	/* Check ksm_run too?  Would need tighter locking */
1416 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1417 
1418 	spin_lock(&ksm_mmlist_lock);
1419 	insert_to_mm_slots_hash(mm, mm_slot);
1420 	/*
1421 	 * Insert just behind the scanning cursor, to let the area settle
1422 	 * down a little; when fork is followed by immediate exec, we don't
1423 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1424 	 */
1425 	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1426 	spin_unlock(&ksm_mmlist_lock);
1427 
1428 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1429 	atomic_inc(&mm->mm_count);
1430 
1431 	if (needs_wakeup)
1432 		wake_up_interruptible(&ksm_thread_wait);
1433 
1434 	return 0;
1435 }
1436 
1437 void __ksm_exit(struct mm_struct *mm)
1438 {
1439 	struct mm_slot *mm_slot;
1440 	int easy_to_free = 0;
1441 
1442 	/*
1443 	 * This process is exiting: if it's straightforward (as is the
1444 	 * case when ksmd was never running), free mm_slot immediately.
1445 	 * But if it's at the cursor or has rmap_items linked to it, use
1446 	 * mmap_sem to synchronize with any break_cows before pagetables
1447 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1448 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1449 	 */
1450 
1451 	spin_lock(&ksm_mmlist_lock);
1452 	mm_slot = get_mm_slot(mm);
1453 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1454 		if (list_empty(&mm_slot->rmap_list)) {
1455 			hlist_del(&mm_slot->link);
1456 			list_del(&mm_slot->mm_list);
1457 			easy_to_free = 1;
1458 		} else {
1459 			list_move(&mm_slot->mm_list,
1460 				  &ksm_scan.mm_slot->mm_list);
1461 		}
1462 	}
1463 	spin_unlock(&ksm_mmlist_lock);
1464 
1465 	if (easy_to_free) {
1466 		free_mm_slot(mm_slot);
1467 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1468 		mmdrop(mm);
1469 	} else if (mm_slot) {
1470 		down_write(&mm->mmap_sem);
1471 		up_write(&mm->mmap_sem);
1472 	}
1473 }
1474 
1475 #ifdef CONFIG_SYSFS
1476 /*
1477  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1478  */
1479 
1480 #define KSM_ATTR_RO(_name) \
1481 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1482 #define KSM_ATTR(_name) \
1483 	static struct kobj_attribute _name##_attr = \
1484 		__ATTR(_name, 0644, _name##_show, _name##_store)
1485 
1486 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1487 				    struct kobj_attribute *attr, char *buf)
1488 {
1489 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1490 }
1491 
1492 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1493 				     struct kobj_attribute *attr,
1494 				     const char *buf, size_t count)
1495 {
1496 	unsigned long msecs;
1497 	int err;
1498 
1499 	err = strict_strtoul(buf, 10, &msecs);
1500 	if (err || msecs > UINT_MAX)
1501 		return -EINVAL;
1502 
1503 	ksm_thread_sleep_millisecs = msecs;
1504 
1505 	return count;
1506 }
1507 KSM_ATTR(sleep_millisecs);
1508 
1509 static ssize_t pages_to_scan_show(struct kobject *kobj,
1510 				  struct kobj_attribute *attr, char *buf)
1511 {
1512 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1513 }
1514 
1515 static ssize_t pages_to_scan_store(struct kobject *kobj,
1516 				   struct kobj_attribute *attr,
1517 				   const char *buf, size_t count)
1518 {
1519 	int err;
1520 	unsigned long nr_pages;
1521 
1522 	err = strict_strtoul(buf, 10, &nr_pages);
1523 	if (err || nr_pages > UINT_MAX)
1524 		return -EINVAL;
1525 
1526 	ksm_thread_pages_to_scan = nr_pages;
1527 
1528 	return count;
1529 }
1530 KSM_ATTR(pages_to_scan);
1531 
1532 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1533 			char *buf)
1534 {
1535 	return sprintf(buf, "%u\n", ksm_run);
1536 }
1537 
1538 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1539 			 const char *buf, size_t count)
1540 {
1541 	int err;
1542 	unsigned long flags;
1543 
1544 	err = strict_strtoul(buf, 10, &flags);
1545 	if (err || flags > UINT_MAX)
1546 		return -EINVAL;
1547 	if (flags > KSM_RUN_UNMERGE)
1548 		return -EINVAL;
1549 
1550 	/*
1551 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1552 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1553 	 * breaking COW to free the unswappable pages_shared (but leaves
1554 	 * mm_slots on the list for when ksmd may be set running again).
1555 	 */
1556 
1557 	mutex_lock(&ksm_thread_mutex);
1558 	if (ksm_run != flags) {
1559 		ksm_run = flags;
1560 		if (flags & KSM_RUN_UNMERGE) {
1561 			current->flags |= PF_OOM_ORIGIN;
1562 			err = unmerge_and_remove_all_rmap_items();
1563 			current->flags &= ~PF_OOM_ORIGIN;
1564 			if (err) {
1565 				ksm_run = KSM_RUN_STOP;
1566 				count = err;
1567 			}
1568 		}
1569 	}
1570 	mutex_unlock(&ksm_thread_mutex);
1571 
1572 	if (flags & KSM_RUN_MERGE)
1573 		wake_up_interruptible(&ksm_thread_wait);
1574 
1575 	return count;
1576 }
1577 KSM_ATTR(run);
1578 
1579 static ssize_t max_kernel_pages_store(struct kobject *kobj,
1580 				      struct kobj_attribute *attr,
1581 				      const char *buf, size_t count)
1582 {
1583 	int err;
1584 	unsigned long nr_pages;
1585 
1586 	err = strict_strtoul(buf, 10, &nr_pages);
1587 	if (err)
1588 		return -EINVAL;
1589 
1590 	ksm_max_kernel_pages = nr_pages;
1591 
1592 	return count;
1593 }
1594 
1595 static ssize_t max_kernel_pages_show(struct kobject *kobj,
1596 				     struct kobj_attribute *attr, char *buf)
1597 {
1598 	return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1599 }
1600 KSM_ATTR(max_kernel_pages);
1601 
1602 static ssize_t pages_shared_show(struct kobject *kobj,
1603 				 struct kobj_attribute *attr, char *buf)
1604 {
1605 	return sprintf(buf, "%lu\n", ksm_pages_shared);
1606 }
1607 KSM_ATTR_RO(pages_shared);
1608 
1609 static ssize_t pages_sharing_show(struct kobject *kobj,
1610 				  struct kobj_attribute *attr, char *buf)
1611 {
1612 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1613 }
1614 KSM_ATTR_RO(pages_sharing);
1615 
1616 static ssize_t pages_unshared_show(struct kobject *kobj,
1617 				   struct kobj_attribute *attr, char *buf)
1618 {
1619 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1620 }
1621 KSM_ATTR_RO(pages_unshared);
1622 
1623 static ssize_t pages_volatile_show(struct kobject *kobj,
1624 				   struct kobj_attribute *attr, char *buf)
1625 {
1626 	long ksm_pages_volatile;
1627 
1628 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1629 				- ksm_pages_sharing - ksm_pages_unshared;
1630 	/*
1631 	 * It was not worth any locking to calculate that statistic,
1632 	 * but it might therefore sometimes be negative: conceal that.
1633 	 */
1634 	if (ksm_pages_volatile < 0)
1635 		ksm_pages_volatile = 0;
1636 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1637 }
1638 KSM_ATTR_RO(pages_volatile);
1639 
1640 static ssize_t full_scans_show(struct kobject *kobj,
1641 			       struct kobj_attribute *attr, char *buf)
1642 {
1643 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1644 }
1645 KSM_ATTR_RO(full_scans);
1646 
1647 static struct attribute *ksm_attrs[] = {
1648 	&sleep_millisecs_attr.attr,
1649 	&pages_to_scan_attr.attr,
1650 	&run_attr.attr,
1651 	&max_kernel_pages_attr.attr,
1652 	&pages_shared_attr.attr,
1653 	&pages_sharing_attr.attr,
1654 	&pages_unshared_attr.attr,
1655 	&pages_volatile_attr.attr,
1656 	&full_scans_attr.attr,
1657 	NULL,
1658 };
1659 
1660 static struct attribute_group ksm_attr_group = {
1661 	.attrs = ksm_attrs,
1662 	.name = "ksm",
1663 };
1664 #endif /* CONFIG_SYSFS */
1665 
1666 static int __init ksm_init(void)
1667 {
1668 	struct task_struct *ksm_thread;
1669 	int err;
1670 
1671 	ksm_max_kernel_pages = totalram_pages / 4;
1672 
1673 	err = ksm_slab_init();
1674 	if (err)
1675 		goto out;
1676 
1677 	err = mm_slots_hash_init();
1678 	if (err)
1679 		goto out_free1;
1680 
1681 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1682 	if (IS_ERR(ksm_thread)) {
1683 		printk(KERN_ERR "ksm: creating kthread failed\n");
1684 		err = PTR_ERR(ksm_thread);
1685 		goto out_free2;
1686 	}
1687 
1688 #ifdef CONFIG_SYSFS
1689 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1690 	if (err) {
1691 		printk(KERN_ERR "ksm: register sysfs failed\n");
1692 		kthread_stop(ksm_thread);
1693 		goto out_free2;
1694 	}
1695 #else
1696 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
1697 
1698 #endif /* CONFIG_SYSFS */
1699 
1700 	return 0;
1701 
1702 out_free2:
1703 	mm_slots_hash_free();
1704 out_free1:
1705 	ksm_slab_free();
1706 out:
1707 	return err;
1708 }
1709 module_init(ksm_init)
1710