1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/rwsem.h> 23 #include <linux/pagemap.h> 24 #include <linux/rmap.h> 25 #include <linux/spinlock.h> 26 #include <linux/jhash.h> 27 #include <linux/delay.h> 28 #include <linux/kthread.h> 29 #include <linux/wait.h> 30 #include <linux/slab.h> 31 #include <linux/rbtree.h> 32 #include <linux/mmu_notifier.h> 33 #include <linux/swap.h> 34 #include <linux/ksm.h> 35 36 #include <asm/tlbflush.h> 37 38 /* 39 * A few notes about the KSM scanning process, 40 * to make it easier to understand the data structures below: 41 * 42 * In order to reduce excessive scanning, KSM sorts the memory pages by their 43 * contents into a data structure that holds pointers to the pages' locations. 44 * 45 * Since the contents of the pages may change at any moment, KSM cannot just 46 * insert the pages into a normal sorted tree and expect it to find anything. 47 * Therefore KSM uses two data structures - the stable and the unstable tree. 48 * 49 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 50 * by their contents. Because each such page is write-protected, searching on 51 * this tree is fully assured to be working (except when pages are unmapped), 52 * and therefore this tree is called the stable tree. 53 * 54 * In addition to the stable tree, KSM uses a second data structure called the 55 * unstable tree: this tree holds pointers to pages which have been found to 56 * be "unchanged for a period of time". The unstable tree sorts these pages 57 * by their contents, but since they are not write-protected, KSM cannot rely 58 * upon the unstable tree to work correctly - the unstable tree is liable to 59 * be corrupted as its contents are modified, and so it is called unstable. 60 * 61 * KSM solves this problem by several techniques: 62 * 63 * 1) The unstable tree is flushed every time KSM completes scanning all 64 * memory areas, and then the tree is rebuilt again from the beginning. 65 * 2) KSM will only insert into the unstable tree, pages whose hash value 66 * has not changed since the previous scan of all memory areas. 67 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 68 * colors of the nodes and not on their contents, assuring that even when 69 * the tree gets "corrupted" it won't get out of balance, so scanning time 70 * remains the same (also, searching and inserting nodes in an rbtree uses 71 * the same algorithm, so we have no overhead when we flush and rebuild). 72 * 4) KSM never flushes the stable tree, which means that even if it were to 73 * take 10 attempts to find a page in the unstable tree, once it is found, 74 * it is secured in the stable tree. (When we scan a new page, we first 75 * compare it against the stable tree, and then against the unstable tree.) 76 */ 77 78 /** 79 * struct mm_slot - ksm information per mm that is being scanned 80 * @link: link to the mm_slots hash list 81 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 82 * @rmap_list: head for this mm_slot's list of rmap_items 83 * @mm: the mm that this information is valid for 84 */ 85 struct mm_slot { 86 struct hlist_node link; 87 struct list_head mm_list; 88 struct list_head rmap_list; 89 struct mm_struct *mm; 90 }; 91 92 /** 93 * struct ksm_scan - cursor for scanning 94 * @mm_slot: the current mm_slot we are scanning 95 * @address: the next address inside that to be scanned 96 * @rmap_item: the current rmap that we are scanning inside the rmap_list 97 * @seqnr: count of completed full scans (needed when removing unstable node) 98 * 99 * There is only the one ksm_scan instance of this cursor structure. 100 */ 101 struct ksm_scan { 102 struct mm_slot *mm_slot; 103 unsigned long address; 104 struct rmap_item *rmap_item; 105 unsigned long seqnr; 106 }; 107 108 /** 109 * struct rmap_item - reverse mapping item for virtual addresses 110 * @link: link into mm_slot's rmap_list (rmap_list is per mm) 111 * @mm: the memory structure this rmap_item is pointing into 112 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 113 * @oldchecksum: previous checksum of the page at that virtual address 114 * @node: rb_node of this rmap_item in either unstable or stable tree 115 * @next: next rmap_item hanging off the same node of the stable tree 116 * @prev: previous rmap_item hanging off the same node of the stable tree 117 */ 118 struct rmap_item { 119 struct list_head link; 120 struct mm_struct *mm; 121 unsigned long address; /* + low bits used for flags below */ 122 union { 123 unsigned int oldchecksum; /* when unstable */ 124 struct rmap_item *next; /* when stable */ 125 }; 126 union { 127 struct rb_node node; /* when tree node */ 128 struct rmap_item *prev; /* in stable list */ 129 }; 130 }; 131 132 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 133 #define NODE_FLAG 0x100 /* is a node of unstable or stable tree */ 134 #define STABLE_FLAG 0x200 /* is a node or list item of stable tree */ 135 136 /* The stable and unstable tree heads */ 137 static struct rb_root root_stable_tree = RB_ROOT; 138 static struct rb_root root_unstable_tree = RB_ROOT; 139 140 #define MM_SLOTS_HASH_HEADS 1024 141 static struct hlist_head *mm_slots_hash; 142 143 static struct mm_slot ksm_mm_head = { 144 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 145 }; 146 static struct ksm_scan ksm_scan = { 147 .mm_slot = &ksm_mm_head, 148 }; 149 150 static struct kmem_cache *rmap_item_cache; 151 static struct kmem_cache *mm_slot_cache; 152 153 /* The number of nodes in the stable tree */ 154 static unsigned long ksm_pages_shared; 155 156 /* The number of page slots additionally sharing those nodes */ 157 static unsigned long ksm_pages_sharing; 158 159 /* The number of nodes in the unstable tree */ 160 static unsigned long ksm_pages_unshared; 161 162 /* The number of rmap_items in use: to calculate pages_volatile */ 163 static unsigned long ksm_rmap_items; 164 165 /* Limit on the number of unswappable pages used */ 166 static unsigned long ksm_max_kernel_pages; 167 168 /* Number of pages ksmd should scan in one batch */ 169 static unsigned int ksm_thread_pages_to_scan = 100; 170 171 /* Milliseconds ksmd should sleep between batches */ 172 static unsigned int ksm_thread_sleep_millisecs = 20; 173 174 #define KSM_RUN_STOP 0 175 #define KSM_RUN_MERGE 1 176 #define KSM_RUN_UNMERGE 2 177 static unsigned int ksm_run = KSM_RUN_STOP; 178 179 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 180 static DEFINE_MUTEX(ksm_thread_mutex); 181 static DEFINE_SPINLOCK(ksm_mmlist_lock); 182 183 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 184 sizeof(struct __struct), __alignof__(struct __struct),\ 185 (__flags), NULL) 186 187 static int __init ksm_slab_init(void) 188 { 189 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 190 if (!rmap_item_cache) 191 goto out; 192 193 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 194 if (!mm_slot_cache) 195 goto out_free; 196 197 return 0; 198 199 out_free: 200 kmem_cache_destroy(rmap_item_cache); 201 out: 202 return -ENOMEM; 203 } 204 205 static void __init ksm_slab_free(void) 206 { 207 kmem_cache_destroy(mm_slot_cache); 208 kmem_cache_destroy(rmap_item_cache); 209 mm_slot_cache = NULL; 210 } 211 212 static inline struct rmap_item *alloc_rmap_item(void) 213 { 214 struct rmap_item *rmap_item; 215 216 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL); 217 if (rmap_item) 218 ksm_rmap_items++; 219 return rmap_item; 220 } 221 222 static inline void free_rmap_item(struct rmap_item *rmap_item) 223 { 224 ksm_rmap_items--; 225 rmap_item->mm = NULL; /* debug safety */ 226 kmem_cache_free(rmap_item_cache, rmap_item); 227 } 228 229 static inline struct mm_slot *alloc_mm_slot(void) 230 { 231 if (!mm_slot_cache) /* initialization failed */ 232 return NULL; 233 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 234 } 235 236 static inline void free_mm_slot(struct mm_slot *mm_slot) 237 { 238 kmem_cache_free(mm_slot_cache, mm_slot); 239 } 240 241 static int __init mm_slots_hash_init(void) 242 { 243 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head), 244 GFP_KERNEL); 245 if (!mm_slots_hash) 246 return -ENOMEM; 247 return 0; 248 } 249 250 static void __init mm_slots_hash_free(void) 251 { 252 kfree(mm_slots_hash); 253 } 254 255 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 256 { 257 struct mm_slot *mm_slot; 258 struct hlist_head *bucket; 259 struct hlist_node *node; 260 261 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) 262 % MM_SLOTS_HASH_HEADS]; 263 hlist_for_each_entry(mm_slot, node, bucket, link) { 264 if (mm == mm_slot->mm) 265 return mm_slot; 266 } 267 return NULL; 268 } 269 270 static void insert_to_mm_slots_hash(struct mm_struct *mm, 271 struct mm_slot *mm_slot) 272 { 273 struct hlist_head *bucket; 274 275 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) 276 % MM_SLOTS_HASH_HEADS]; 277 mm_slot->mm = mm; 278 INIT_LIST_HEAD(&mm_slot->rmap_list); 279 hlist_add_head(&mm_slot->link, bucket); 280 } 281 282 static inline int in_stable_tree(struct rmap_item *rmap_item) 283 { 284 return rmap_item->address & STABLE_FLAG; 285 } 286 287 /* 288 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 289 * page tables after it has passed through ksm_exit() - which, if necessary, 290 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 291 * a special flag: they can just back out as soon as mm_users goes to zero. 292 * ksm_test_exit() is used throughout to make this test for exit: in some 293 * places for correctness, in some places just to avoid unnecessary work. 294 */ 295 static inline bool ksm_test_exit(struct mm_struct *mm) 296 { 297 return atomic_read(&mm->mm_users) == 0; 298 } 299 300 /* 301 * We use break_ksm to break COW on a ksm page: it's a stripped down 302 * 303 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1) 304 * put_page(page); 305 * 306 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 307 * in case the application has unmapped and remapped mm,addr meanwhile. 308 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 309 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 310 */ 311 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 312 { 313 struct page *page; 314 int ret = 0; 315 316 do { 317 cond_resched(); 318 page = follow_page(vma, addr, FOLL_GET); 319 if (!page) 320 break; 321 if (PageKsm(page)) 322 ret = handle_mm_fault(vma->vm_mm, vma, addr, 323 FAULT_FLAG_WRITE); 324 else 325 ret = VM_FAULT_WRITE; 326 put_page(page); 327 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM))); 328 /* 329 * We must loop because handle_mm_fault() may back out if there's 330 * any difficulty e.g. if pte accessed bit gets updated concurrently. 331 * 332 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 333 * COW has been broken, even if the vma does not permit VM_WRITE; 334 * but note that a concurrent fault might break PageKsm for us. 335 * 336 * VM_FAULT_SIGBUS could occur if we race with truncation of the 337 * backing file, which also invalidates anonymous pages: that's 338 * okay, that truncation will have unmapped the PageKsm for us. 339 * 340 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 341 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 342 * current task has TIF_MEMDIE set, and will be OOM killed on return 343 * to user; and ksmd, having no mm, would never be chosen for that. 344 * 345 * But if the mm is in a limited mem_cgroup, then the fault may fail 346 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 347 * even ksmd can fail in this way - though it's usually breaking ksm 348 * just to undo a merge it made a moment before, so unlikely to oom. 349 * 350 * That's a pity: we might therefore have more kernel pages allocated 351 * than we're counting as nodes in the stable tree; but ksm_do_scan 352 * will retry to break_cow on each pass, so should recover the page 353 * in due course. The important thing is to not let VM_MERGEABLE 354 * be cleared while any such pages might remain in the area. 355 */ 356 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 357 } 358 359 static void break_cow(struct mm_struct *mm, unsigned long addr) 360 { 361 struct vm_area_struct *vma; 362 363 down_read(&mm->mmap_sem); 364 if (ksm_test_exit(mm)) 365 goto out; 366 vma = find_vma(mm, addr); 367 if (!vma || vma->vm_start > addr) 368 goto out; 369 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 370 goto out; 371 break_ksm(vma, addr); 372 out: 373 up_read(&mm->mmap_sem); 374 } 375 376 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 377 { 378 struct mm_struct *mm = rmap_item->mm; 379 unsigned long addr = rmap_item->address; 380 struct vm_area_struct *vma; 381 struct page *page; 382 383 down_read(&mm->mmap_sem); 384 if (ksm_test_exit(mm)) 385 goto out; 386 vma = find_vma(mm, addr); 387 if (!vma || vma->vm_start > addr) 388 goto out; 389 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 390 goto out; 391 392 page = follow_page(vma, addr, FOLL_GET); 393 if (!page) 394 goto out; 395 if (PageAnon(page)) { 396 flush_anon_page(vma, page, addr); 397 flush_dcache_page(page); 398 } else { 399 put_page(page); 400 out: page = NULL; 401 } 402 up_read(&mm->mmap_sem); 403 return page; 404 } 405 406 /* 407 * get_ksm_page: checks if the page at the virtual address in rmap_item 408 * is still PageKsm, in which case we can trust the content of the page, 409 * and it returns the gotten page; but NULL if the page has been zapped. 410 */ 411 static struct page *get_ksm_page(struct rmap_item *rmap_item) 412 { 413 struct page *page; 414 415 page = get_mergeable_page(rmap_item); 416 if (page && !PageKsm(page)) { 417 put_page(page); 418 page = NULL; 419 } 420 return page; 421 } 422 423 /* 424 * Removing rmap_item from stable or unstable tree. 425 * This function will clean the information from the stable/unstable tree. 426 */ 427 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 428 { 429 if (in_stable_tree(rmap_item)) { 430 struct rmap_item *next_item = rmap_item->next; 431 432 if (rmap_item->address & NODE_FLAG) { 433 if (next_item) { 434 rb_replace_node(&rmap_item->node, 435 &next_item->node, 436 &root_stable_tree); 437 next_item->address |= NODE_FLAG; 438 ksm_pages_sharing--; 439 } else { 440 rb_erase(&rmap_item->node, &root_stable_tree); 441 ksm_pages_shared--; 442 } 443 } else { 444 struct rmap_item *prev_item = rmap_item->prev; 445 446 BUG_ON(prev_item->next != rmap_item); 447 prev_item->next = next_item; 448 if (next_item) { 449 BUG_ON(next_item->prev != rmap_item); 450 next_item->prev = rmap_item->prev; 451 } 452 ksm_pages_sharing--; 453 } 454 455 rmap_item->next = NULL; 456 457 } else if (rmap_item->address & NODE_FLAG) { 458 unsigned char age; 459 /* 460 * Usually ksmd can and must skip the rb_erase, because 461 * root_unstable_tree was already reset to RB_ROOT. 462 * But be careful when an mm is exiting: do the rb_erase 463 * if this rmap_item was inserted by this scan, rather 464 * than left over from before. 465 */ 466 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 467 BUG_ON(age > 1); 468 if (!age) 469 rb_erase(&rmap_item->node, &root_unstable_tree); 470 ksm_pages_unshared--; 471 } 472 473 rmap_item->address &= PAGE_MASK; 474 475 cond_resched(); /* we're called from many long loops */ 476 } 477 478 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 479 struct list_head *cur) 480 { 481 struct rmap_item *rmap_item; 482 483 while (cur != &mm_slot->rmap_list) { 484 rmap_item = list_entry(cur, struct rmap_item, link); 485 cur = cur->next; 486 remove_rmap_item_from_tree(rmap_item); 487 list_del(&rmap_item->link); 488 free_rmap_item(rmap_item); 489 } 490 } 491 492 /* 493 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather 494 * than check every pte of a given vma, the locking doesn't quite work for 495 * that - an rmap_item is assigned to the stable tree after inserting ksm 496 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 497 * rmap_items from parent to child at fork time (so as not to waste time 498 * if exit comes before the next scan reaches it). 499 * 500 * Similarly, although we'd like to remove rmap_items (so updating counts 501 * and freeing memory) when unmerging an area, it's easier to leave that 502 * to the next pass of ksmd - consider, for example, how ksmd might be 503 * in cmp_and_merge_page on one of the rmap_items we would be removing. 504 */ 505 static int unmerge_ksm_pages(struct vm_area_struct *vma, 506 unsigned long start, unsigned long end) 507 { 508 unsigned long addr; 509 int err = 0; 510 511 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 512 if (ksm_test_exit(vma->vm_mm)) 513 break; 514 if (signal_pending(current)) 515 err = -ERESTARTSYS; 516 else 517 err = break_ksm(vma, addr); 518 } 519 return err; 520 } 521 522 #ifdef CONFIG_SYSFS 523 /* 524 * Only called through the sysfs control interface: 525 */ 526 static int unmerge_and_remove_all_rmap_items(void) 527 { 528 struct mm_slot *mm_slot; 529 struct mm_struct *mm; 530 struct vm_area_struct *vma; 531 int err = 0; 532 533 spin_lock(&ksm_mmlist_lock); 534 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 535 struct mm_slot, mm_list); 536 spin_unlock(&ksm_mmlist_lock); 537 538 for (mm_slot = ksm_scan.mm_slot; 539 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 540 mm = mm_slot->mm; 541 down_read(&mm->mmap_sem); 542 for (vma = mm->mmap; vma; vma = vma->vm_next) { 543 if (ksm_test_exit(mm)) 544 break; 545 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 546 continue; 547 err = unmerge_ksm_pages(vma, 548 vma->vm_start, vma->vm_end); 549 if (err) 550 goto error; 551 } 552 553 remove_trailing_rmap_items(mm_slot, mm_slot->rmap_list.next); 554 555 spin_lock(&ksm_mmlist_lock); 556 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 557 struct mm_slot, mm_list); 558 if (ksm_test_exit(mm)) { 559 hlist_del(&mm_slot->link); 560 list_del(&mm_slot->mm_list); 561 spin_unlock(&ksm_mmlist_lock); 562 563 free_mm_slot(mm_slot); 564 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 565 up_read(&mm->mmap_sem); 566 mmdrop(mm); 567 } else { 568 spin_unlock(&ksm_mmlist_lock); 569 up_read(&mm->mmap_sem); 570 } 571 } 572 573 ksm_scan.seqnr = 0; 574 return 0; 575 576 error: 577 up_read(&mm->mmap_sem); 578 spin_lock(&ksm_mmlist_lock); 579 ksm_scan.mm_slot = &ksm_mm_head; 580 spin_unlock(&ksm_mmlist_lock); 581 return err; 582 } 583 #endif /* CONFIG_SYSFS */ 584 585 static u32 calc_checksum(struct page *page) 586 { 587 u32 checksum; 588 void *addr = kmap_atomic(page, KM_USER0); 589 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 590 kunmap_atomic(addr, KM_USER0); 591 return checksum; 592 } 593 594 static int memcmp_pages(struct page *page1, struct page *page2) 595 { 596 char *addr1, *addr2; 597 int ret; 598 599 addr1 = kmap_atomic(page1, KM_USER0); 600 addr2 = kmap_atomic(page2, KM_USER1); 601 ret = memcmp(addr1, addr2, PAGE_SIZE); 602 kunmap_atomic(addr2, KM_USER1); 603 kunmap_atomic(addr1, KM_USER0); 604 return ret; 605 } 606 607 static inline int pages_identical(struct page *page1, struct page *page2) 608 { 609 return !memcmp_pages(page1, page2); 610 } 611 612 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 613 pte_t *orig_pte) 614 { 615 struct mm_struct *mm = vma->vm_mm; 616 unsigned long addr; 617 pte_t *ptep; 618 spinlock_t *ptl; 619 int swapped; 620 int err = -EFAULT; 621 622 addr = page_address_in_vma(page, vma); 623 if (addr == -EFAULT) 624 goto out; 625 626 ptep = page_check_address(page, mm, addr, &ptl, 0); 627 if (!ptep) 628 goto out; 629 630 if (pte_write(*ptep)) { 631 pte_t entry; 632 633 swapped = PageSwapCache(page); 634 flush_cache_page(vma, addr, page_to_pfn(page)); 635 /* 636 * Ok this is tricky, when get_user_pages_fast() run it doesnt 637 * take any lock, therefore the check that we are going to make 638 * with the pagecount against the mapcount is racey and 639 * O_DIRECT can happen right after the check. 640 * So we clear the pte and flush the tlb before the check 641 * this assure us that no O_DIRECT can happen after the check 642 * or in the middle of the check. 643 */ 644 entry = ptep_clear_flush(vma, addr, ptep); 645 /* 646 * Check that no O_DIRECT or similar I/O is in progress on the 647 * page 648 */ 649 if ((page_mapcount(page) + 2 + swapped) != page_count(page)) { 650 set_pte_at_notify(mm, addr, ptep, entry); 651 goto out_unlock; 652 } 653 entry = pte_wrprotect(entry); 654 set_pte_at_notify(mm, addr, ptep, entry); 655 } 656 *orig_pte = *ptep; 657 err = 0; 658 659 out_unlock: 660 pte_unmap_unlock(ptep, ptl); 661 out: 662 return err; 663 } 664 665 /** 666 * replace_page - replace page in vma by new ksm page 667 * @vma: vma that holds the pte pointing to oldpage 668 * @oldpage: the page we are replacing by newpage 669 * @newpage: the ksm page we replace oldpage by 670 * @orig_pte: the original value of the pte 671 * 672 * Returns 0 on success, -EFAULT on failure. 673 */ 674 static int replace_page(struct vm_area_struct *vma, struct page *oldpage, 675 struct page *newpage, pte_t orig_pte) 676 { 677 struct mm_struct *mm = vma->vm_mm; 678 pgd_t *pgd; 679 pud_t *pud; 680 pmd_t *pmd; 681 pte_t *ptep; 682 spinlock_t *ptl; 683 unsigned long addr; 684 pgprot_t prot; 685 int err = -EFAULT; 686 687 prot = vm_get_page_prot(vma->vm_flags & ~VM_WRITE); 688 689 addr = page_address_in_vma(oldpage, vma); 690 if (addr == -EFAULT) 691 goto out; 692 693 pgd = pgd_offset(mm, addr); 694 if (!pgd_present(*pgd)) 695 goto out; 696 697 pud = pud_offset(pgd, addr); 698 if (!pud_present(*pud)) 699 goto out; 700 701 pmd = pmd_offset(pud, addr); 702 if (!pmd_present(*pmd)) 703 goto out; 704 705 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 706 if (!pte_same(*ptep, orig_pte)) { 707 pte_unmap_unlock(ptep, ptl); 708 goto out; 709 } 710 711 get_page(newpage); 712 page_add_ksm_rmap(newpage); 713 714 flush_cache_page(vma, addr, pte_pfn(*ptep)); 715 ptep_clear_flush(vma, addr, ptep); 716 set_pte_at_notify(mm, addr, ptep, mk_pte(newpage, prot)); 717 718 page_remove_rmap(oldpage); 719 put_page(oldpage); 720 721 pte_unmap_unlock(ptep, ptl); 722 err = 0; 723 out: 724 return err; 725 } 726 727 /* 728 * try_to_merge_one_page - take two pages and merge them into one 729 * @vma: the vma that hold the pte pointing into oldpage 730 * @oldpage: the page that we want to replace with newpage 731 * @newpage: the page that we want to map instead of oldpage 732 * 733 * Note: 734 * oldpage should be a PageAnon page, while newpage should be a PageKsm page, 735 * or a newly allocated kernel page which page_add_ksm_rmap will make PageKsm. 736 * 737 * This function returns 0 if the pages were merged, -EFAULT otherwise. 738 */ 739 static int try_to_merge_one_page(struct vm_area_struct *vma, 740 struct page *oldpage, 741 struct page *newpage) 742 { 743 pte_t orig_pte = __pte(0); 744 int err = -EFAULT; 745 746 if (!(vma->vm_flags & VM_MERGEABLE)) 747 goto out; 748 749 if (!PageAnon(oldpage)) 750 goto out; 751 752 get_page(newpage); 753 get_page(oldpage); 754 755 /* 756 * We need the page lock to read a stable PageSwapCache in 757 * write_protect_page(). We use trylock_page() instead of 758 * lock_page() because we don't want to wait here - we 759 * prefer to continue scanning and merging different pages, 760 * then come back to this page when it is unlocked. 761 */ 762 if (!trylock_page(oldpage)) 763 goto out_putpage; 764 /* 765 * If this anonymous page is mapped only here, its pte may need 766 * to be write-protected. If it's mapped elsewhere, all of its 767 * ptes are necessarily already write-protected. But in either 768 * case, we need to lock and check page_count is not raised. 769 */ 770 if (write_protect_page(vma, oldpage, &orig_pte)) { 771 unlock_page(oldpage); 772 goto out_putpage; 773 } 774 unlock_page(oldpage); 775 776 if (pages_identical(oldpage, newpage)) 777 err = replace_page(vma, oldpage, newpage, orig_pte); 778 779 out_putpage: 780 put_page(oldpage); 781 put_page(newpage); 782 out: 783 return err; 784 } 785 786 /* 787 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 788 * but no new kernel page is allocated: kpage must already be a ksm page. 789 */ 790 static int try_to_merge_with_ksm_page(struct mm_struct *mm1, 791 unsigned long addr1, 792 struct page *page1, 793 struct page *kpage) 794 { 795 struct vm_area_struct *vma; 796 int err = -EFAULT; 797 798 down_read(&mm1->mmap_sem); 799 if (ksm_test_exit(mm1)) 800 goto out; 801 802 vma = find_vma(mm1, addr1); 803 if (!vma || vma->vm_start > addr1) 804 goto out; 805 806 err = try_to_merge_one_page(vma, page1, kpage); 807 out: 808 up_read(&mm1->mmap_sem); 809 return err; 810 } 811 812 /* 813 * try_to_merge_two_pages - take two identical pages and prepare them 814 * to be merged into one page. 815 * 816 * This function returns 0 if we successfully mapped two identical pages 817 * into one page, -EFAULT otherwise. 818 * 819 * Note that this function allocates a new kernel page: if one of the pages 820 * is already a ksm page, try_to_merge_with_ksm_page should be used. 821 */ 822 static int try_to_merge_two_pages(struct mm_struct *mm1, unsigned long addr1, 823 struct page *page1, struct mm_struct *mm2, 824 unsigned long addr2, struct page *page2) 825 { 826 struct vm_area_struct *vma; 827 struct page *kpage; 828 int err = -EFAULT; 829 830 /* 831 * The number of nodes in the stable tree 832 * is the number of kernel pages that we hold. 833 */ 834 if (ksm_max_kernel_pages && 835 ksm_max_kernel_pages <= ksm_pages_shared) 836 return err; 837 838 kpage = alloc_page(GFP_HIGHUSER); 839 if (!kpage) 840 return err; 841 842 down_read(&mm1->mmap_sem); 843 if (ksm_test_exit(mm1)) { 844 up_read(&mm1->mmap_sem); 845 goto out; 846 } 847 vma = find_vma(mm1, addr1); 848 if (!vma || vma->vm_start > addr1) { 849 up_read(&mm1->mmap_sem); 850 goto out; 851 } 852 853 copy_user_highpage(kpage, page1, addr1, vma); 854 err = try_to_merge_one_page(vma, page1, kpage); 855 up_read(&mm1->mmap_sem); 856 857 if (!err) { 858 err = try_to_merge_with_ksm_page(mm2, addr2, page2, kpage); 859 /* 860 * If that fails, we have a ksm page with only one pte 861 * pointing to it: so break it. 862 */ 863 if (err) 864 break_cow(mm1, addr1); 865 } 866 out: 867 put_page(kpage); 868 return err; 869 } 870 871 /* 872 * stable_tree_search - search page inside the stable tree 873 * @page: the page that we are searching identical pages to. 874 * @page2: pointer into identical page that we are holding inside the stable 875 * tree that we have found. 876 * @rmap_item: the reverse mapping item 877 * 878 * This function checks if there is a page inside the stable tree 879 * with identical content to the page that we are scanning right now. 880 * 881 * This function return rmap_item pointer to the identical item if found, 882 * NULL otherwise. 883 */ 884 static struct rmap_item *stable_tree_search(struct page *page, 885 struct page **page2, 886 struct rmap_item *rmap_item) 887 { 888 struct rb_node *node = root_stable_tree.rb_node; 889 890 while (node) { 891 struct rmap_item *tree_rmap_item, *next_rmap_item; 892 int ret; 893 894 tree_rmap_item = rb_entry(node, struct rmap_item, node); 895 while (tree_rmap_item) { 896 BUG_ON(!in_stable_tree(tree_rmap_item)); 897 cond_resched(); 898 page2[0] = get_ksm_page(tree_rmap_item); 899 if (page2[0]) 900 break; 901 next_rmap_item = tree_rmap_item->next; 902 remove_rmap_item_from_tree(tree_rmap_item); 903 tree_rmap_item = next_rmap_item; 904 } 905 if (!tree_rmap_item) 906 return NULL; 907 908 ret = memcmp_pages(page, page2[0]); 909 910 if (ret < 0) { 911 put_page(page2[0]); 912 node = node->rb_left; 913 } else if (ret > 0) { 914 put_page(page2[0]); 915 node = node->rb_right; 916 } else { 917 return tree_rmap_item; 918 } 919 } 920 921 return NULL; 922 } 923 924 /* 925 * stable_tree_insert - insert rmap_item pointing to new ksm page 926 * into the stable tree. 927 * 928 * @page: the page that we are searching identical page to inside the stable 929 * tree. 930 * @rmap_item: pointer to the reverse mapping item. 931 * 932 * This function returns rmap_item if success, NULL otherwise. 933 */ 934 static struct rmap_item *stable_tree_insert(struct page *page, 935 struct rmap_item *rmap_item) 936 { 937 struct rb_node **new = &root_stable_tree.rb_node; 938 struct rb_node *parent = NULL; 939 940 while (*new) { 941 struct rmap_item *tree_rmap_item, *next_rmap_item; 942 struct page *tree_page; 943 int ret; 944 945 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 946 while (tree_rmap_item) { 947 BUG_ON(!in_stable_tree(tree_rmap_item)); 948 cond_resched(); 949 tree_page = get_ksm_page(tree_rmap_item); 950 if (tree_page) 951 break; 952 next_rmap_item = tree_rmap_item->next; 953 remove_rmap_item_from_tree(tree_rmap_item); 954 tree_rmap_item = next_rmap_item; 955 } 956 if (!tree_rmap_item) 957 return NULL; 958 959 ret = memcmp_pages(page, tree_page); 960 put_page(tree_page); 961 962 parent = *new; 963 if (ret < 0) 964 new = &parent->rb_left; 965 else if (ret > 0) 966 new = &parent->rb_right; 967 else { 968 /* 969 * It is not a bug that stable_tree_search() didn't 970 * find this node: because at that time our page was 971 * not yet write-protected, so may have changed since. 972 */ 973 return NULL; 974 } 975 } 976 977 rmap_item->address |= NODE_FLAG | STABLE_FLAG; 978 rmap_item->next = NULL; 979 rb_link_node(&rmap_item->node, parent, new); 980 rb_insert_color(&rmap_item->node, &root_stable_tree); 981 982 ksm_pages_shared++; 983 return rmap_item; 984 } 985 986 /* 987 * unstable_tree_search_insert - search and insert items into the unstable tree. 988 * 989 * @page: the page that we are going to search for identical page or to insert 990 * into the unstable tree 991 * @page2: pointer into identical page that was found inside the unstable tree 992 * @rmap_item: the reverse mapping item of page 993 * 994 * This function searches for a page in the unstable tree identical to the 995 * page currently being scanned; and if no identical page is found in the 996 * tree, we insert rmap_item as a new object into the unstable tree. 997 * 998 * This function returns pointer to rmap_item found to be identical 999 * to the currently scanned page, NULL otherwise. 1000 * 1001 * This function does both searching and inserting, because they share 1002 * the same walking algorithm in an rbtree. 1003 */ 1004 static struct rmap_item *unstable_tree_search_insert(struct page *page, 1005 struct page **page2, 1006 struct rmap_item *rmap_item) 1007 { 1008 struct rb_node **new = &root_unstable_tree.rb_node; 1009 struct rb_node *parent = NULL; 1010 1011 while (*new) { 1012 struct rmap_item *tree_rmap_item; 1013 int ret; 1014 1015 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1016 page2[0] = get_mergeable_page(tree_rmap_item); 1017 if (!page2[0]) 1018 return NULL; 1019 1020 /* 1021 * Don't substitute an unswappable ksm page 1022 * just for one good swappable forked page. 1023 */ 1024 if (page == page2[0]) { 1025 put_page(page2[0]); 1026 return NULL; 1027 } 1028 1029 ret = memcmp_pages(page, page2[0]); 1030 1031 parent = *new; 1032 if (ret < 0) { 1033 put_page(page2[0]); 1034 new = &parent->rb_left; 1035 } else if (ret > 0) { 1036 put_page(page2[0]); 1037 new = &parent->rb_right; 1038 } else { 1039 return tree_rmap_item; 1040 } 1041 } 1042 1043 rmap_item->address |= NODE_FLAG; 1044 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1045 rb_link_node(&rmap_item->node, parent, new); 1046 rb_insert_color(&rmap_item->node, &root_unstable_tree); 1047 1048 ksm_pages_unshared++; 1049 return NULL; 1050 } 1051 1052 /* 1053 * stable_tree_append - add another rmap_item to the linked list of 1054 * rmap_items hanging off a given node of the stable tree, all sharing 1055 * the same ksm page. 1056 */ 1057 static void stable_tree_append(struct rmap_item *rmap_item, 1058 struct rmap_item *tree_rmap_item) 1059 { 1060 rmap_item->next = tree_rmap_item->next; 1061 rmap_item->prev = tree_rmap_item; 1062 1063 if (tree_rmap_item->next) 1064 tree_rmap_item->next->prev = rmap_item; 1065 1066 tree_rmap_item->next = rmap_item; 1067 rmap_item->address |= STABLE_FLAG; 1068 1069 ksm_pages_sharing++; 1070 } 1071 1072 /* 1073 * cmp_and_merge_page - first see if page can be merged into the stable tree; 1074 * if not, compare checksum to previous and if it's the same, see if page can 1075 * be inserted into the unstable tree, or merged with a page already there and 1076 * both transferred to the stable tree. 1077 * 1078 * @page: the page that we are searching identical page to. 1079 * @rmap_item: the reverse mapping into the virtual address of this page 1080 */ 1081 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 1082 { 1083 struct page *page2[1]; 1084 struct rmap_item *tree_rmap_item; 1085 unsigned int checksum; 1086 int err; 1087 1088 if (in_stable_tree(rmap_item)) 1089 remove_rmap_item_from_tree(rmap_item); 1090 1091 /* We first start with searching the page inside the stable tree */ 1092 tree_rmap_item = stable_tree_search(page, page2, rmap_item); 1093 if (tree_rmap_item) { 1094 if (page == page2[0]) /* forked */ 1095 err = 0; 1096 else 1097 err = try_to_merge_with_ksm_page(rmap_item->mm, 1098 rmap_item->address, 1099 page, page2[0]); 1100 put_page(page2[0]); 1101 1102 if (!err) { 1103 /* 1104 * The page was successfully merged: 1105 * add its rmap_item to the stable tree. 1106 */ 1107 stable_tree_append(rmap_item, tree_rmap_item); 1108 } 1109 return; 1110 } 1111 1112 /* 1113 * A ksm page might have got here by fork, but its other 1114 * references have already been removed from the stable tree. 1115 * Or it might be left over from a break_ksm which failed 1116 * when the mem_cgroup had reached its limit: try again now. 1117 */ 1118 if (PageKsm(page)) 1119 break_cow(rmap_item->mm, rmap_item->address); 1120 1121 /* 1122 * In case the hash value of the page was changed from the last time we 1123 * have calculated it, this page to be changed frequely, therefore we 1124 * don't want to insert it to the unstable tree, and we don't want to 1125 * waste our time to search if there is something identical to it there. 1126 */ 1127 checksum = calc_checksum(page); 1128 if (rmap_item->oldchecksum != checksum) { 1129 rmap_item->oldchecksum = checksum; 1130 return; 1131 } 1132 1133 tree_rmap_item = unstable_tree_search_insert(page, page2, rmap_item); 1134 if (tree_rmap_item) { 1135 err = try_to_merge_two_pages(rmap_item->mm, 1136 rmap_item->address, page, 1137 tree_rmap_item->mm, 1138 tree_rmap_item->address, page2[0]); 1139 /* 1140 * As soon as we merge this page, we want to remove the 1141 * rmap_item of the page we have merged with from the unstable 1142 * tree, and insert it instead as new node in the stable tree. 1143 */ 1144 if (!err) { 1145 rb_erase(&tree_rmap_item->node, &root_unstable_tree); 1146 tree_rmap_item->address &= ~NODE_FLAG; 1147 ksm_pages_unshared--; 1148 1149 /* 1150 * If we fail to insert the page into the stable tree, 1151 * we will have 2 virtual addresses that are pointing 1152 * to a ksm page left outside the stable tree, 1153 * in which case we need to break_cow on both. 1154 */ 1155 if (stable_tree_insert(page2[0], tree_rmap_item)) 1156 stable_tree_append(rmap_item, tree_rmap_item); 1157 else { 1158 break_cow(tree_rmap_item->mm, 1159 tree_rmap_item->address); 1160 break_cow(rmap_item->mm, rmap_item->address); 1161 } 1162 } 1163 1164 put_page(page2[0]); 1165 } 1166 } 1167 1168 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 1169 struct list_head *cur, 1170 unsigned long addr) 1171 { 1172 struct rmap_item *rmap_item; 1173 1174 while (cur != &mm_slot->rmap_list) { 1175 rmap_item = list_entry(cur, struct rmap_item, link); 1176 if ((rmap_item->address & PAGE_MASK) == addr) { 1177 if (!in_stable_tree(rmap_item)) 1178 remove_rmap_item_from_tree(rmap_item); 1179 return rmap_item; 1180 } 1181 if (rmap_item->address > addr) 1182 break; 1183 cur = cur->next; 1184 remove_rmap_item_from_tree(rmap_item); 1185 list_del(&rmap_item->link); 1186 free_rmap_item(rmap_item); 1187 } 1188 1189 rmap_item = alloc_rmap_item(); 1190 if (rmap_item) { 1191 /* It has already been zeroed */ 1192 rmap_item->mm = mm_slot->mm; 1193 rmap_item->address = addr; 1194 list_add_tail(&rmap_item->link, cur); 1195 } 1196 return rmap_item; 1197 } 1198 1199 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 1200 { 1201 struct mm_struct *mm; 1202 struct mm_slot *slot; 1203 struct vm_area_struct *vma; 1204 struct rmap_item *rmap_item; 1205 1206 if (list_empty(&ksm_mm_head.mm_list)) 1207 return NULL; 1208 1209 slot = ksm_scan.mm_slot; 1210 if (slot == &ksm_mm_head) { 1211 root_unstable_tree = RB_ROOT; 1212 1213 spin_lock(&ksm_mmlist_lock); 1214 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 1215 ksm_scan.mm_slot = slot; 1216 spin_unlock(&ksm_mmlist_lock); 1217 next_mm: 1218 ksm_scan.address = 0; 1219 ksm_scan.rmap_item = list_entry(&slot->rmap_list, 1220 struct rmap_item, link); 1221 } 1222 1223 mm = slot->mm; 1224 down_read(&mm->mmap_sem); 1225 if (ksm_test_exit(mm)) 1226 vma = NULL; 1227 else 1228 vma = find_vma(mm, ksm_scan.address); 1229 1230 for (; vma; vma = vma->vm_next) { 1231 if (!(vma->vm_flags & VM_MERGEABLE)) 1232 continue; 1233 if (ksm_scan.address < vma->vm_start) 1234 ksm_scan.address = vma->vm_start; 1235 if (!vma->anon_vma) 1236 ksm_scan.address = vma->vm_end; 1237 1238 while (ksm_scan.address < vma->vm_end) { 1239 if (ksm_test_exit(mm)) 1240 break; 1241 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 1242 if (*page && PageAnon(*page)) { 1243 flush_anon_page(vma, *page, ksm_scan.address); 1244 flush_dcache_page(*page); 1245 rmap_item = get_next_rmap_item(slot, 1246 ksm_scan.rmap_item->link.next, 1247 ksm_scan.address); 1248 if (rmap_item) { 1249 ksm_scan.rmap_item = rmap_item; 1250 ksm_scan.address += PAGE_SIZE; 1251 } else 1252 put_page(*page); 1253 up_read(&mm->mmap_sem); 1254 return rmap_item; 1255 } 1256 if (*page) 1257 put_page(*page); 1258 ksm_scan.address += PAGE_SIZE; 1259 cond_resched(); 1260 } 1261 } 1262 1263 if (ksm_test_exit(mm)) { 1264 ksm_scan.address = 0; 1265 ksm_scan.rmap_item = list_entry(&slot->rmap_list, 1266 struct rmap_item, link); 1267 } 1268 /* 1269 * Nuke all the rmap_items that are above this current rmap: 1270 * because there were no VM_MERGEABLE vmas with such addresses. 1271 */ 1272 remove_trailing_rmap_items(slot, ksm_scan.rmap_item->link.next); 1273 1274 spin_lock(&ksm_mmlist_lock); 1275 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 1276 struct mm_slot, mm_list); 1277 if (ksm_scan.address == 0) { 1278 /* 1279 * We've completed a full scan of all vmas, holding mmap_sem 1280 * throughout, and found no VM_MERGEABLE: so do the same as 1281 * __ksm_exit does to remove this mm from all our lists now. 1282 * This applies either when cleaning up after __ksm_exit 1283 * (but beware: we can reach here even before __ksm_exit), 1284 * or when all VM_MERGEABLE areas have been unmapped (and 1285 * mmap_sem then protects against race with MADV_MERGEABLE). 1286 */ 1287 hlist_del(&slot->link); 1288 list_del(&slot->mm_list); 1289 spin_unlock(&ksm_mmlist_lock); 1290 1291 free_mm_slot(slot); 1292 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1293 up_read(&mm->mmap_sem); 1294 mmdrop(mm); 1295 } else { 1296 spin_unlock(&ksm_mmlist_lock); 1297 up_read(&mm->mmap_sem); 1298 } 1299 1300 /* Repeat until we've completed scanning the whole list */ 1301 slot = ksm_scan.mm_slot; 1302 if (slot != &ksm_mm_head) 1303 goto next_mm; 1304 1305 ksm_scan.seqnr++; 1306 return NULL; 1307 } 1308 1309 /** 1310 * ksm_do_scan - the ksm scanner main worker function. 1311 * @scan_npages - number of pages we want to scan before we return. 1312 */ 1313 static void ksm_do_scan(unsigned int scan_npages) 1314 { 1315 struct rmap_item *rmap_item; 1316 struct page *page; 1317 1318 while (scan_npages--) { 1319 cond_resched(); 1320 rmap_item = scan_get_next_rmap_item(&page); 1321 if (!rmap_item) 1322 return; 1323 if (!PageKsm(page) || !in_stable_tree(rmap_item)) 1324 cmp_and_merge_page(page, rmap_item); 1325 else if (page_mapcount(page) == 1) { 1326 /* 1327 * Replace now-unshared ksm page by ordinary page. 1328 */ 1329 break_cow(rmap_item->mm, rmap_item->address); 1330 remove_rmap_item_from_tree(rmap_item); 1331 rmap_item->oldchecksum = calc_checksum(page); 1332 } 1333 put_page(page); 1334 } 1335 } 1336 1337 static int ksmd_should_run(void) 1338 { 1339 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 1340 } 1341 1342 static int ksm_scan_thread(void *nothing) 1343 { 1344 set_user_nice(current, 5); 1345 1346 while (!kthread_should_stop()) { 1347 mutex_lock(&ksm_thread_mutex); 1348 if (ksmd_should_run()) 1349 ksm_do_scan(ksm_thread_pages_to_scan); 1350 mutex_unlock(&ksm_thread_mutex); 1351 1352 if (ksmd_should_run()) { 1353 schedule_timeout_interruptible( 1354 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 1355 } else { 1356 wait_event_interruptible(ksm_thread_wait, 1357 ksmd_should_run() || kthread_should_stop()); 1358 } 1359 } 1360 return 0; 1361 } 1362 1363 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 1364 unsigned long end, int advice, unsigned long *vm_flags) 1365 { 1366 struct mm_struct *mm = vma->vm_mm; 1367 int err; 1368 1369 switch (advice) { 1370 case MADV_MERGEABLE: 1371 /* 1372 * Be somewhat over-protective for now! 1373 */ 1374 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 1375 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 1376 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE | 1377 VM_MIXEDMAP | VM_SAO)) 1378 return 0; /* just ignore the advice */ 1379 1380 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 1381 err = __ksm_enter(mm); 1382 if (err) 1383 return err; 1384 } 1385 1386 *vm_flags |= VM_MERGEABLE; 1387 break; 1388 1389 case MADV_UNMERGEABLE: 1390 if (!(*vm_flags & VM_MERGEABLE)) 1391 return 0; /* just ignore the advice */ 1392 1393 if (vma->anon_vma) { 1394 err = unmerge_ksm_pages(vma, start, end); 1395 if (err) 1396 return err; 1397 } 1398 1399 *vm_flags &= ~VM_MERGEABLE; 1400 break; 1401 } 1402 1403 return 0; 1404 } 1405 1406 int __ksm_enter(struct mm_struct *mm) 1407 { 1408 struct mm_slot *mm_slot; 1409 int needs_wakeup; 1410 1411 mm_slot = alloc_mm_slot(); 1412 if (!mm_slot) 1413 return -ENOMEM; 1414 1415 /* Check ksm_run too? Would need tighter locking */ 1416 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 1417 1418 spin_lock(&ksm_mmlist_lock); 1419 insert_to_mm_slots_hash(mm, mm_slot); 1420 /* 1421 * Insert just behind the scanning cursor, to let the area settle 1422 * down a little; when fork is followed by immediate exec, we don't 1423 * want ksmd to waste time setting up and tearing down an rmap_list. 1424 */ 1425 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 1426 spin_unlock(&ksm_mmlist_lock); 1427 1428 set_bit(MMF_VM_MERGEABLE, &mm->flags); 1429 atomic_inc(&mm->mm_count); 1430 1431 if (needs_wakeup) 1432 wake_up_interruptible(&ksm_thread_wait); 1433 1434 return 0; 1435 } 1436 1437 void __ksm_exit(struct mm_struct *mm) 1438 { 1439 struct mm_slot *mm_slot; 1440 int easy_to_free = 0; 1441 1442 /* 1443 * This process is exiting: if it's straightforward (as is the 1444 * case when ksmd was never running), free mm_slot immediately. 1445 * But if it's at the cursor or has rmap_items linked to it, use 1446 * mmap_sem to synchronize with any break_cows before pagetables 1447 * are freed, and leave the mm_slot on the list for ksmd to free. 1448 * Beware: ksm may already have noticed it exiting and freed the slot. 1449 */ 1450 1451 spin_lock(&ksm_mmlist_lock); 1452 mm_slot = get_mm_slot(mm); 1453 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 1454 if (list_empty(&mm_slot->rmap_list)) { 1455 hlist_del(&mm_slot->link); 1456 list_del(&mm_slot->mm_list); 1457 easy_to_free = 1; 1458 } else { 1459 list_move(&mm_slot->mm_list, 1460 &ksm_scan.mm_slot->mm_list); 1461 } 1462 } 1463 spin_unlock(&ksm_mmlist_lock); 1464 1465 if (easy_to_free) { 1466 free_mm_slot(mm_slot); 1467 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1468 mmdrop(mm); 1469 } else if (mm_slot) { 1470 down_write(&mm->mmap_sem); 1471 up_write(&mm->mmap_sem); 1472 } 1473 } 1474 1475 #ifdef CONFIG_SYSFS 1476 /* 1477 * This all compiles without CONFIG_SYSFS, but is a waste of space. 1478 */ 1479 1480 #define KSM_ATTR_RO(_name) \ 1481 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1482 #define KSM_ATTR(_name) \ 1483 static struct kobj_attribute _name##_attr = \ 1484 __ATTR(_name, 0644, _name##_show, _name##_store) 1485 1486 static ssize_t sleep_millisecs_show(struct kobject *kobj, 1487 struct kobj_attribute *attr, char *buf) 1488 { 1489 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 1490 } 1491 1492 static ssize_t sleep_millisecs_store(struct kobject *kobj, 1493 struct kobj_attribute *attr, 1494 const char *buf, size_t count) 1495 { 1496 unsigned long msecs; 1497 int err; 1498 1499 err = strict_strtoul(buf, 10, &msecs); 1500 if (err || msecs > UINT_MAX) 1501 return -EINVAL; 1502 1503 ksm_thread_sleep_millisecs = msecs; 1504 1505 return count; 1506 } 1507 KSM_ATTR(sleep_millisecs); 1508 1509 static ssize_t pages_to_scan_show(struct kobject *kobj, 1510 struct kobj_attribute *attr, char *buf) 1511 { 1512 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 1513 } 1514 1515 static ssize_t pages_to_scan_store(struct kobject *kobj, 1516 struct kobj_attribute *attr, 1517 const char *buf, size_t count) 1518 { 1519 int err; 1520 unsigned long nr_pages; 1521 1522 err = strict_strtoul(buf, 10, &nr_pages); 1523 if (err || nr_pages > UINT_MAX) 1524 return -EINVAL; 1525 1526 ksm_thread_pages_to_scan = nr_pages; 1527 1528 return count; 1529 } 1530 KSM_ATTR(pages_to_scan); 1531 1532 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 1533 char *buf) 1534 { 1535 return sprintf(buf, "%u\n", ksm_run); 1536 } 1537 1538 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 1539 const char *buf, size_t count) 1540 { 1541 int err; 1542 unsigned long flags; 1543 1544 err = strict_strtoul(buf, 10, &flags); 1545 if (err || flags > UINT_MAX) 1546 return -EINVAL; 1547 if (flags > KSM_RUN_UNMERGE) 1548 return -EINVAL; 1549 1550 /* 1551 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 1552 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 1553 * breaking COW to free the unswappable pages_shared (but leaves 1554 * mm_slots on the list for when ksmd may be set running again). 1555 */ 1556 1557 mutex_lock(&ksm_thread_mutex); 1558 if (ksm_run != flags) { 1559 ksm_run = flags; 1560 if (flags & KSM_RUN_UNMERGE) { 1561 current->flags |= PF_OOM_ORIGIN; 1562 err = unmerge_and_remove_all_rmap_items(); 1563 current->flags &= ~PF_OOM_ORIGIN; 1564 if (err) { 1565 ksm_run = KSM_RUN_STOP; 1566 count = err; 1567 } 1568 } 1569 } 1570 mutex_unlock(&ksm_thread_mutex); 1571 1572 if (flags & KSM_RUN_MERGE) 1573 wake_up_interruptible(&ksm_thread_wait); 1574 1575 return count; 1576 } 1577 KSM_ATTR(run); 1578 1579 static ssize_t max_kernel_pages_store(struct kobject *kobj, 1580 struct kobj_attribute *attr, 1581 const char *buf, size_t count) 1582 { 1583 int err; 1584 unsigned long nr_pages; 1585 1586 err = strict_strtoul(buf, 10, &nr_pages); 1587 if (err) 1588 return -EINVAL; 1589 1590 ksm_max_kernel_pages = nr_pages; 1591 1592 return count; 1593 } 1594 1595 static ssize_t max_kernel_pages_show(struct kobject *kobj, 1596 struct kobj_attribute *attr, char *buf) 1597 { 1598 return sprintf(buf, "%lu\n", ksm_max_kernel_pages); 1599 } 1600 KSM_ATTR(max_kernel_pages); 1601 1602 static ssize_t pages_shared_show(struct kobject *kobj, 1603 struct kobj_attribute *attr, char *buf) 1604 { 1605 return sprintf(buf, "%lu\n", ksm_pages_shared); 1606 } 1607 KSM_ATTR_RO(pages_shared); 1608 1609 static ssize_t pages_sharing_show(struct kobject *kobj, 1610 struct kobj_attribute *attr, char *buf) 1611 { 1612 return sprintf(buf, "%lu\n", ksm_pages_sharing); 1613 } 1614 KSM_ATTR_RO(pages_sharing); 1615 1616 static ssize_t pages_unshared_show(struct kobject *kobj, 1617 struct kobj_attribute *attr, char *buf) 1618 { 1619 return sprintf(buf, "%lu\n", ksm_pages_unshared); 1620 } 1621 KSM_ATTR_RO(pages_unshared); 1622 1623 static ssize_t pages_volatile_show(struct kobject *kobj, 1624 struct kobj_attribute *attr, char *buf) 1625 { 1626 long ksm_pages_volatile; 1627 1628 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 1629 - ksm_pages_sharing - ksm_pages_unshared; 1630 /* 1631 * It was not worth any locking to calculate that statistic, 1632 * but it might therefore sometimes be negative: conceal that. 1633 */ 1634 if (ksm_pages_volatile < 0) 1635 ksm_pages_volatile = 0; 1636 return sprintf(buf, "%ld\n", ksm_pages_volatile); 1637 } 1638 KSM_ATTR_RO(pages_volatile); 1639 1640 static ssize_t full_scans_show(struct kobject *kobj, 1641 struct kobj_attribute *attr, char *buf) 1642 { 1643 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 1644 } 1645 KSM_ATTR_RO(full_scans); 1646 1647 static struct attribute *ksm_attrs[] = { 1648 &sleep_millisecs_attr.attr, 1649 &pages_to_scan_attr.attr, 1650 &run_attr.attr, 1651 &max_kernel_pages_attr.attr, 1652 &pages_shared_attr.attr, 1653 &pages_sharing_attr.attr, 1654 &pages_unshared_attr.attr, 1655 &pages_volatile_attr.attr, 1656 &full_scans_attr.attr, 1657 NULL, 1658 }; 1659 1660 static struct attribute_group ksm_attr_group = { 1661 .attrs = ksm_attrs, 1662 .name = "ksm", 1663 }; 1664 #endif /* CONFIG_SYSFS */ 1665 1666 static int __init ksm_init(void) 1667 { 1668 struct task_struct *ksm_thread; 1669 int err; 1670 1671 ksm_max_kernel_pages = totalram_pages / 4; 1672 1673 err = ksm_slab_init(); 1674 if (err) 1675 goto out; 1676 1677 err = mm_slots_hash_init(); 1678 if (err) 1679 goto out_free1; 1680 1681 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 1682 if (IS_ERR(ksm_thread)) { 1683 printk(KERN_ERR "ksm: creating kthread failed\n"); 1684 err = PTR_ERR(ksm_thread); 1685 goto out_free2; 1686 } 1687 1688 #ifdef CONFIG_SYSFS 1689 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 1690 if (err) { 1691 printk(KERN_ERR "ksm: register sysfs failed\n"); 1692 kthread_stop(ksm_thread); 1693 goto out_free2; 1694 } 1695 #else 1696 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 1697 1698 #endif /* CONFIG_SYSFS */ 1699 1700 return 0; 1701 1702 out_free2: 1703 mm_slots_hash_free(); 1704 out_free1: 1705 ksm_slab_free(); 1706 out: 1707 return err; 1708 } 1709 module_init(ksm_init) 1710