1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 #include <linux/pagewalk.h> 43 44 #include <asm/tlbflush.h> 45 #include "internal.h" 46 #include "mm_slot.h" 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/ksm.h> 50 51 #ifdef CONFIG_NUMA 52 #define NUMA(x) (x) 53 #define DO_NUMA(x) do { (x); } while (0) 54 #else 55 #define NUMA(x) (0) 56 #define DO_NUMA(x) do { } while (0) 57 #endif 58 59 typedef u8 rmap_age_t; 60 61 /** 62 * DOC: Overview 63 * 64 * A few notes about the KSM scanning process, 65 * to make it easier to understand the data structures below: 66 * 67 * In order to reduce excessive scanning, KSM sorts the memory pages by their 68 * contents into a data structure that holds pointers to the pages' locations. 69 * 70 * Since the contents of the pages may change at any moment, KSM cannot just 71 * insert the pages into a normal sorted tree and expect it to find anything. 72 * Therefore KSM uses two data structures - the stable and the unstable tree. 73 * 74 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 75 * by their contents. Because each such page is write-protected, searching on 76 * this tree is fully assured to be working (except when pages are unmapped), 77 * and therefore this tree is called the stable tree. 78 * 79 * The stable tree node includes information required for reverse 80 * mapping from a KSM page to virtual addresses that map this page. 81 * 82 * In order to avoid large latencies of the rmap walks on KSM pages, 83 * KSM maintains two types of nodes in the stable tree: 84 * 85 * * the regular nodes that keep the reverse mapping structures in a 86 * linked list 87 * * the "chains" that link nodes ("dups") that represent the same 88 * write protected memory content, but each "dup" corresponds to a 89 * different KSM page copy of that content 90 * 91 * Internally, the regular nodes, "dups" and "chains" are represented 92 * using the same struct ksm_stable_node structure. 93 * 94 * In addition to the stable tree, KSM uses a second data structure called the 95 * unstable tree: this tree holds pointers to pages which have been found to 96 * be "unchanged for a period of time". The unstable tree sorts these pages 97 * by their contents, but since they are not write-protected, KSM cannot rely 98 * upon the unstable tree to work correctly - the unstable tree is liable to 99 * be corrupted as its contents are modified, and so it is called unstable. 100 * 101 * KSM solves this problem by several techniques: 102 * 103 * 1) The unstable tree is flushed every time KSM completes scanning all 104 * memory areas, and then the tree is rebuilt again from the beginning. 105 * 2) KSM will only insert into the unstable tree, pages whose hash value 106 * has not changed since the previous scan of all memory areas. 107 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 108 * colors of the nodes and not on their contents, assuring that even when 109 * the tree gets "corrupted" it won't get out of balance, so scanning time 110 * remains the same (also, searching and inserting nodes in an rbtree uses 111 * the same algorithm, so we have no overhead when we flush and rebuild). 112 * 4) KSM never flushes the stable tree, which means that even if it were to 113 * take 10 attempts to find a page in the unstable tree, once it is found, 114 * it is secured in the stable tree. (When we scan a new page, we first 115 * compare it against the stable tree, and then against the unstable tree.) 116 * 117 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 118 * stable trees and multiple unstable trees: one of each for each NUMA node. 119 */ 120 121 /** 122 * struct ksm_mm_slot - ksm information per mm that is being scanned 123 * @slot: hash lookup from mm to mm_slot 124 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 125 */ 126 struct ksm_mm_slot { 127 struct mm_slot slot; 128 struct ksm_rmap_item *rmap_list; 129 }; 130 131 /** 132 * struct ksm_scan - cursor for scanning 133 * @mm_slot: the current mm_slot we are scanning 134 * @address: the next address inside that to be scanned 135 * @rmap_list: link to the next rmap to be scanned in the rmap_list 136 * @seqnr: count of completed full scans (needed when removing unstable node) 137 * 138 * There is only the one ksm_scan instance of this cursor structure. 139 */ 140 struct ksm_scan { 141 struct ksm_mm_slot *mm_slot; 142 unsigned long address; 143 struct ksm_rmap_item **rmap_list; 144 unsigned long seqnr; 145 }; 146 147 /** 148 * struct ksm_stable_node - node of the stable rbtree 149 * @node: rb node of this ksm page in the stable tree 150 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 151 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 152 * @list: linked into migrate_nodes, pending placement in the proper node tree 153 * @hlist: hlist head of rmap_items using this ksm page 154 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 155 * @chain_prune_time: time of the last full garbage collection 156 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 157 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 158 */ 159 struct ksm_stable_node { 160 union { 161 struct rb_node node; /* when node of stable tree */ 162 struct { /* when listed for migration */ 163 struct list_head *head; 164 struct { 165 struct hlist_node hlist_dup; 166 struct list_head list; 167 }; 168 }; 169 }; 170 struct hlist_head hlist; 171 union { 172 unsigned long kpfn; 173 unsigned long chain_prune_time; 174 }; 175 /* 176 * STABLE_NODE_CHAIN can be any negative number in 177 * rmap_hlist_len negative range, but better not -1 to be able 178 * to reliably detect underflows. 179 */ 180 #define STABLE_NODE_CHAIN -1024 181 int rmap_hlist_len; 182 #ifdef CONFIG_NUMA 183 int nid; 184 #endif 185 }; 186 187 /** 188 * struct ksm_rmap_item - reverse mapping item for virtual addresses 189 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 190 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 191 * @nid: NUMA node id of unstable tree in which linked (may not match page) 192 * @mm: the memory structure this rmap_item is pointing into 193 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 194 * @oldchecksum: previous checksum of the page at that virtual address 195 * @node: rb node of this rmap_item in the unstable tree 196 * @head: pointer to stable_node heading this list in the stable tree 197 * @hlist: link into hlist of rmap_items hanging off that stable_node 198 * @age: number of scan iterations since creation 199 * @remaining_skips: how many scans to skip 200 */ 201 struct ksm_rmap_item { 202 struct ksm_rmap_item *rmap_list; 203 union { 204 struct anon_vma *anon_vma; /* when stable */ 205 #ifdef CONFIG_NUMA 206 int nid; /* when node of unstable tree */ 207 #endif 208 }; 209 struct mm_struct *mm; 210 unsigned long address; /* + low bits used for flags below */ 211 unsigned int oldchecksum; /* when unstable */ 212 rmap_age_t age; 213 rmap_age_t remaining_skips; 214 union { 215 struct rb_node node; /* when node of unstable tree */ 216 struct { /* when listed from stable tree */ 217 struct ksm_stable_node *head; 218 struct hlist_node hlist; 219 }; 220 }; 221 }; 222 223 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 224 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 225 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 226 227 /* The stable and unstable tree heads */ 228 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 229 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 230 static struct rb_root *root_stable_tree = one_stable_tree; 231 static struct rb_root *root_unstable_tree = one_unstable_tree; 232 233 /* Recently migrated nodes of stable tree, pending proper placement */ 234 static LIST_HEAD(migrate_nodes); 235 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 236 237 #define MM_SLOTS_HASH_BITS 10 238 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 239 240 static struct ksm_mm_slot ksm_mm_head = { 241 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), 242 }; 243 static struct ksm_scan ksm_scan = { 244 .mm_slot = &ksm_mm_head, 245 }; 246 247 static struct kmem_cache *rmap_item_cache; 248 static struct kmem_cache *stable_node_cache; 249 static struct kmem_cache *mm_slot_cache; 250 251 /* The number of pages scanned */ 252 static unsigned long ksm_pages_scanned; 253 254 /* The number of nodes in the stable tree */ 255 static unsigned long ksm_pages_shared; 256 257 /* The number of page slots additionally sharing those nodes */ 258 static unsigned long ksm_pages_sharing; 259 260 /* The number of nodes in the unstable tree */ 261 static unsigned long ksm_pages_unshared; 262 263 /* The number of rmap_items in use: to calculate pages_volatile */ 264 static unsigned long ksm_rmap_items; 265 266 /* The number of stable_node chains */ 267 static unsigned long ksm_stable_node_chains; 268 269 /* The number of stable_node dups linked to the stable_node chains */ 270 static unsigned long ksm_stable_node_dups; 271 272 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 273 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 274 275 /* Maximum number of page slots sharing a stable node */ 276 static int ksm_max_page_sharing = 256; 277 278 /* Number of pages ksmd should scan in one batch */ 279 static unsigned int ksm_thread_pages_to_scan = 100; 280 281 /* Milliseconds ksmd should sleep between batches */ 282 static unsigned int ksm_thread_sleep_millisecs = 20; 283 284 /* Checksum of an empty (zeroed) page */ 285 static unsigned int zero_checksum __read_mostly; 286 287 /* Whether to merge empty (zeroed) pages with actual zero pages */ 288 static bool ksm_use_zero_pages __read_mostly; 289 290 /* Skip pages that couldn't be de-duplicated previously */ 291 /* Default to true at least temporarily, for testing */ 292 static bool ksm_smart_scan = true; 293 294 /* The number of zero pages which is placed by KSM */ 295 unsigned long ksm_zero_pages; 296 297 /* The number of pages that have been skipped due to "smart scanning" */ 298 static unsigned long ksm_pages_skipped; 299 300 #ifdef CONFIG_NUMA 301 /* Zeroed when merging across nodes is not allowed */ 302 static unsigned int ksm_merge_across_nodes = 1; 303 static int ksm_nr_node_ids = 1; 304 #else 305 #define ksm_merge_across_nodes 1U 306 #define ksm_nr_node_ids 1 307 #endif 308 309 #define KSM_RUN_STOP 0 310 #define KSM_RUN_MERGE 1 311 #define KSM_RUN_UNMERGE 2 312 #define KSM_RUN_OFFLINE 4 313 static unsigned long ksm_run = KSM_RUN_STOP; 314 static void wait_while_offlining(void); 315 316 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 317 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 318 static DEFINE_MUTEX(ksm_thread_mutex); 319 static DEFINE_SPINLOCK(ksm_mmlist_lock); 320 321 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 322 sizeof(struct __struct), __alignof__(struct __struct),\ 323 (__flags), NULL) 324 325 static int __init ksm_slab_init(void) 326 { 327 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0); 328 if (!rmap_item_cache) 329 goto out; 330 331 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0); 332 if (!stable_node_cache) 333 goto out_free1; 334 335 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0); 336 if (!mm_slot_cache) 337 goto out_free2; 338 339 return 0; 340 341 out_free2: 342 kmem_cache_destroy(stable_node_cache); 343 out_free1: 344 kmem_cache_destroy(rmap_item_cache); 345 out: 346 return -ENOMEM; 347 } 348 349 static void __init ksm_slab_free(void) 350 { 351 kmem_cache_destroy(mm_slot_cache); 352 kmem_cache_destroy(stable_node_cache); 353 kmem_cache_destroy(rmap_item_cache); 354 mm_slot_cache = NULL; 355 } 356 357 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) 358 { 359 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 360 } 361 362 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) 363 { 364 return dup->head == STABLE_NODE_DUP_HEAD; 365 } 366 367 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, 368 struct ksm_stable_node *chain) 369 { 370 VM_BUG_ON(is_stable_node_dup(dup)); 371 dup->head = STABLE_NODE_DUP_HEAD; 372 VM_BUG_ON(!is_stable_node_chain(chain)); 373 hlist_add_head(&dup->hlist_dup, &chain->hlist); 374 ksm_stable_node_dups++; 375 } 376 377 static inline void __stable_node_dup_del(struct ksm_stable_node *dup) 378 { 379 VM_BUG_ON(!is_stable_node_dup(dup)); 380 hlist_del(&dup->hlist_dup); 381 ksm_stable_node_dups--; 382 } 383 384 static inline void stable_node_dup_del(struct ksm_stable_node *dup) 385 { 386 VM_BUG_ON(is_stable_node_chain(dup)); 387 if (is_stable_node_dup(dup)) 388 __stable_node_dup_del(dup); 389 else 390 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 391 #ifdef CONFIG_DEBUG_VM 392 dup->head = NULL; 393 #endif 394 } 395 396 static inline struct ksm_rmap_item *alloc_rmap_item(void) 397 { 398 struct ksm_rmap_item *rmap_item; 399 400 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 401 __GFP_NORETRY | __GFP_NOWARN); 402 if (rmap_item) 403 ksm_rmap_items++; 404 return rmap_item; 405 } 406 407 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) 408 { 409 ksm_rmap_items--; 410 rmap_item->mm->ksm_rmap_items--; 411 rmap_item->mm = NULL; /* debug safety */ 412 kmem_cache_free(rmap_item_cache, rmap_item); 413 } 414 415 static inline struct ksm_stable_node *alloc_stable_node(void) 416 { 417 /* 418 * The allocation can take too long with GFP_KERNEL when memory is under 419 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 420 * grants access to memory reserves, helping to avoid this problem. 421 */ 422 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 423 } 424 425 static inline void free_stable_node(struct ksm_stable_node *stable_node) 426 { 427 VM_BUG_ON(stable_node->rmap_hlist_len && 428 !is_stable_node_chain(stable_node)); 429 kmem_cache_free(stable_node_cache, stable_node); 430 } 431 432 /* 433 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 434 * page tables after it has passed through ksm_exit() - which, if necessary, 435 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 436 * a special flag: they can just back out as soon as mm_users goes to zero. 437 * ksm_test_exit() is used throughout to make this test for exit: in some 438 * places for correctness, in some places just to avoid unnecessary work. 439 */ 440 static inline bool ksm_test_exit(struct mm_struct *mm) 441 { 442 return atomic_read(&mm->mm_users) == 0; 443 } 444 445 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next, 446 struct mm_walk *walk) 447 { 448 struct page *page = NULL; 449 spinlock_t *ptl; 450 pte_t *pte; 451 pte_t ptent; 452 int ret; 453 454 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 455 if (!pte) 456 return 0; 457 ptent = ptep_get(pte); 458 if (pte_present(ptent)) { 459 page = vm_normal_page(walk->vma, addr, ptent); 460 } else if (!pte_none(ptent)) { 461 swp_entry_t entry = pte_to_swp_entry(ptent); 462 463 /* 464 * As KSM pages remain KSM pages until freed, no need to wait 465 * here for migration to end. 466 */ 467 if (is_migration_entry(entry)) 468 page = pfn_swap_entry_to_page(entry); 469 } 470 /* return 1 if the page is an normal ksm page or KSM-placed zero page */ 471 ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent); 472 pte_unmap_unlock(pte, ptl); 473 return ret; 474 } 475 476 static const struct mm_walk_ops break_ksm_ops = { 477 .pmd_entry = break_ksm_pmd_entry, 478 .walk_lock = PGWALK_RDLOCK, 479 }; 480 481 static const struct mm_walk_ops break_ksm_lock_vma_ops = { 482 .pmd_entry = break_ksm_pmd_entry, 483 .walk_lock = PGWALK_WRLOCK, 484 }; 485 486 /* 487 * We use break_ksm to break COW on a ksm page by triggering unsharing, 488 * such that the ksm page will get replaced by an exclusive anonymous page. 489 * 490 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma, 491 * in case the application has unmapped and remapped mm,addr meanwhile. 492 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 493 * mmap of /dev/mem, where we would not want to touch it. 494 * 495 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context 496 * of the process that owns 'vma'. We also do not want to enforce 497 * protection keys here anyway. 498 */ 499 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma) 500 { 501 vm_fault_t ret = 0; 502 const struct mm_walk_ops *ops = lock_vma ? 503 &break_ksm_lock_vma_ops : &break_ksm_ops; 504 505 do { 506 int ksm_page; 507 508 cond_resched(); 509 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL); 510 if (WARN_ON_ONCE(ksm_page < 0)) 511 return ksm_page; 512 if (!ksm_page) 513 return 0; 514 ret = handle_mm_fault(vma, addr, 515 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, 516 NULL); 517 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 518 /* 519 * We must loop until we no longer find a KSM page because 520 * handle_mm_fault() may back out if there's any difficulty e.g. if 521 * pte accessed bit gets updated concurrently. 522 * 523 * VM_FAULT_SIGBUS could occur if we race with truncation of the 524 * backing file, which also invalidates anonymous pages: that's 525 * okay, that truncation will have unmapped the PageKsm for us. 526 * 527 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 528 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 529 * current task has TIF_MEMDIE set, and will be OOM killed on return 530 * to user; and ksmd, having no mm, would never be chosen for that. 531 * 532 * But if the mm is in a limited mem_cgroup, then the fault may fail 533 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 534 * even ksmd can fail in this way - though it's usually breaking ksm 535 * just to undo a merge it made a moment before, so unlikely to oom. 536 * 537 * That's a pity: we might therefore have more kernel pages allocated 538 * than we're counting as nodes in the stable tree; but ksm_do_scan 539 * will retry to break_cow on each pass, so should recover the page 540 * in due course. The important thing is to not let VM_MERGEABLE 541 * be cleared while any such pages might remain in the area. 542 */ 543 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 544 } 545 546 static bool vma_ksm_compatible(struct vm_area_struct *vma) 547 { 548 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP | 549 VM_IO | VM_DONTEXPAND | VM_HUGETLB | 550 VM_MIXEDMAP)) 551 return false; /* just ignore the advice */ 552 553 if (vma_is_dax(vma)) 554 return false; 555 556 #ifdef VM_SAO 557 if (vma->vm_flags & VM_SAO) 558 return false; 559 #endif 560 #ifdef VM_SPARC_ADI 561 if (vma->vm_flags & VM_SPARC_ADI) 562 return false; 563 #endif 564 565 return true; 566 } 567 568 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 569 unsigned long addr) 570 { 571 struct vm_area_struct *vma; 572 if (ksm_test_exit(mm)) 573 return NULL; 574 vma = vma_lookup(mm, addr); 575 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 576 return NULL; 577 return vma; 578 } 579 580 static void break_cow(struct ksm_rmap_item *rmap_item) 581 { 582 struct mm_struct *mm = rmap_item->mm; 583 unsigned long addr = rmap_item->address; 584 struct vm_area_struct *vma; 585 586 /* 587 * It is not an accident that whenever we want to break COW 588 * to undo, we also need to drop a reference to the anon_vma. 589 */ 590 put_anon_vma(rmap_item->anon_vma); 591 592 mmap_read_lock(mm); 593 vma = find_mergeable_vma(mm, addr); 594 if (vma) 595 break_ksm(vma, addr, false); 596 mmap_read_unlock(mm); 597 } 598 599 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) 600 { 601 struct mm_struct *mm = rmap_item->mm; 602 unsigned long addr = rmap_item->address; 603 struct vm_area_struct *vma; 604 struct page *page; 605 606 mmap_read_lock(mm); 607 vma = find_mergeable_vma(mm, addr); 608 if (!vma) 609 goto out; 610 611 page = follow_page(vma, addr, FOLL_GET); 612 if (IS_ERR_OR_NULL(page)) 613 goto out; 614 if (is_zone_device_page(page)) 615 goto out_putpage; 616 if (PageAnon(page)) { 617 flush_anon_page(vma, page, addr); 618 flush_dcache_page(page); 619 } else { 620 out_putpage: 621 put_page(page); 622 out: 623 page = NULL; 624 } 625 mmap_read_unlock(mm); 626 return page; 627 } 628 629 /* 630 * This helper is used for getting right index into array of tree roots. 631 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 632 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 633 * every node has its own stable and unstable tree. 634 */ 635 static inline int get_kpfn_nid(unsigned long kpfn) 636 { 637 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 638 } 639 640 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, 641 struct rb_root *root) 642 { 643 struct ksm_stable_node *chain = alloc_stable_node(); 644 VM_BUG_ON(is_stable_node_chain(dup)); 645 if (likely(chain)) { 646 INIT_HLIST_HEAD(&chain->hlist); 647 chain->chain_prune_time = jiffies; 648 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 649 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 650 chain->nid = NUMA_NO_NODE; /* debug */ 651 #endif 652 ksm_stable_node_chains++; 653 654 /* 655 * Put the stable node chain in the first dimension of 656 * the stable tree and at the same time remove the old 657 * stable node. 658 */ 659 rb_replace_node(&dup->node, &chain->node, root); 660 661 /* 662 * Move the old stable node to the second dimension 663 * queued in the hlist_dup. The invariant is that all 664 * dup stable_nodes in the chain->hlist point to pages 665 * that are write protected and have the exact same 666 * content. 667 */ 668 stable_node_chain_add_dup(dup, chain); 669 } 670 return chain; 671 } 672 673 static inline void free_stable_node_chain(struct ksm_stable_node *chain, 674 struct rb_root *root) 675 { 676 rb_erase(&chain->node, root); 677 free_stable_node(chain); 678 ksm_stable_node_chains--; 679 } 680 681 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) 682 { 683 struct ksm_rmap_item *rmap_item; 684 685 /* check it's not STABLE_NODE_CHAIN or negative */ 686 BUG_ON(stable_node->rmap_hlist_len < 0); 687 688 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 689 if (rmap_item->hlist.next) { 690 ksm_pages_sharing--; 691 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm); 692 } else { 693 ksm_pages_shared--; 694 } 695 696 rmap_item->mm->ksm_merging_pages--; 697 698 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 699 stable_node->rmap_hlist_len--; 700 put_anon_vma(rmap_item->anon_vma); 701 rmap_item->address &= PAGE_MASK; 702 cond_resched(); 703 } 704 705 /* 706 * We need the second aligned pointer of the migrate_nodes 707 * list_head to stay clear from the rb_parent_color union 708 * (aligned and different than any node) and also different 709 * from &migrate_nodes. This will verify that future list.h changes 710 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 711 */ 712 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 713 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 714 715 trace_ksm_remove_ksm_page(stable_node->kpfn); 716 if (stable_node->head == &migrate_nodes) 717 list_del(&stable_node->list); 718 else 719 stable_node_dup_del(stable_node); 720 free_stable_node(stable_node); 721 } 722 723 enum get_ksm_page_flags { 724 GET_KSM_PAGE_NOLOCK, 725 GET_KSM_PAGE_LOCK, 726 GET_KSM_PAGE_TRYLOCK 727 }; 728 729 /* 730 * get_ksm_page: checks if the page indicated by the stable node 731 * is still its ksm page, despite having held no reference to it. 732 * In which case we can trust the content of the page, and it 733 * returns the gotten page; but if the page has now been zapped, 734 * remove the stale node from the stable tree and return NULL. 735 * But beware, the stable node's page might be being migrated. 736 * 737 * You would expect the stable_node to hold a reference to the ksm page. 738 * But if it increments the page's count, swapping out has to wait for 739 * ksmd to come around again before it can free the page, which may take 740 * seconds or even minutes: much too unresponsive. So instead we use a 741 * "keyhole reference": access to the ksm page from the stable node peeps 742 * out through its keyhole to see if that page still holds the right key, 743 * pointing back to this stable node. This relies on freeing a PageAnon 744 * page to reset its page->mapping to NULL, and relies on no other use of 745 * a page to put something that might look like our key in page->mapping. 746 * is on its way to being freed; but it is an anomaly to bear in mind. 747 */ 748 static struct page *get_ksm_page(struct ksm_stable_node *stable_node, 749 enum get_ksm_page_flags flags) 750 { 751 struct page *page; 752 void *expected_mapping; 753 unsigned long kpfn; 754 755 expected_mapping = (void *)((unsigned long)stable_node | 756 PAGE_MAPPING_KSM); 757 again: 758 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 759 page = pfn_to_page(kpfn); 760 if (READ_ONCE(page->mapping) != expected_mapping) 761 goto stale; 762 763 /* 764 * We cannot do anything with the page while its refcount is 0. 765 * Usually 0 means free, or tail of a higher-order page: in which 766 * case this node is no longer referenced, and should be freed; 767 * however, it might mean that the page is under page_ref_freeze(). 768 * The __remove_mapping() case is easy, again the node is now stale; 769 * the same is in reuse_ksm_page() case; but if page is swapcache 770 * in folio_migrate_mapping(), it might still be our page, 771 * in which case it's essential to keep the node. 772 */ 773 while (!get_page_unless_zero(page)) { 774 /* 775 * Another check for page->mapping != expected_mapping would 776 * work here too. We have chosen the !PageSwapCache test to 777 * optimize the common case, when the page is or is about to 778 * be freed: PageSwapCache is cleared (under spin_lock_irq) 779 * in the ref_freeze section of __remove_mapping(); but Anon 780 * page->mapping reset to NULL later, in free_pages_prepare(). 781 */ 782 if (!PageSwapCache(page)) 783 goto stale; 784 cpu_relax(); 785 } 786 787 if (READ_ONCE(page->mapping) != expected_mapping) { 788 put_page(page); 789 goto stale; 790 } 791 792 if (flags == GET_KSM_PAGE_TRYLOCK) { 793 if (!trylock_page(page)) { 794 put_page(page); 795 return ERR_PTR(-EBUSY); 796 } 797 } else if (flags == GET_KSM_PAGE_LOCK) 798 lock_page(page); 799 800 if (flags != GET_KSM_PAGE_NOLOCK) { 801 if (READ_ONCE(page->mapping) != expected_mapping) { 802 unlock_page(page); 803 put_page(page); 804 goto stale; 805 } 806 } 807 return page; 808 809 stale: 810 /* 811 * We come here from above when page->mapping or !PageSwapCache 812 * suggests that the node is stale; but it might be under migration. 813 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 814 * before checking whether node->kpfn has been changed. 815 */ 816 smp_rmb(); 817 if (READ_ONCE(stable_node->kpfn) != kpfn) 818 goto again; 819 remove_node_from_stable_tree(stable_node); 820 return NULL; 821 } 822 823 /* 824 * Removing rmap_item from stable or unstable tree. 825 * This function will clean the information from the stable/unstable tree. 826 */ 827 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) 828 { 829 if (rmap_item->address & STABLE_FLAG) { 830 struct ksm_stable_node *stable_node; 831 struct page *page; 832 833 stable_node = rmap_item->head; 834 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 835 if (!page) 836 goto out; 837 838 hlist_del(&rmap_item->hlist); 839 unlock_page(page); 840 put_page(page); 841 842 if (!hlist_empty(&stable_node->hlist)) 843 ksm_pages_sharing--; 844 else 845 ksm_pages_shared--; 846 847 rmap_item->mm->ksm_merging_pages--; 848 849 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 850 stable_node->rmap_hlist_len--; 851 852 put_anon_vma(rmap_item->anon_vma); 853 rmap_item->head = NULL; 854 rmap_item->address &= PAGE_MASK; 855 856 } else if (rmap_item->address & UNSTABLE_FLAG) { 857 unsigned char age; 858 /* 859 * Usually ksmd can and must skip the rb_erase, because 860 * root_unstable_tree was already reset to RB_ROOT. 861 * But be careful when an mm is exiting: do the rb_erase 862 * if this rmap_item was inserted by this scan, rather 863 * than left over from before. 864 */ 865 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 866 BUG_ON(age > 1); 867 if (!age) 868 rb_erase(&rmap_item->node, 869 root_unstable_tree + NUMA(rmap_item->nid)); 870 ksm_pages_unshared--; 871 rmap_item->address &= PAGE_MASK; 872 } 873 out: 874 cond_resched(); /* we're called from many long loops */ 875 } 876 877 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) 878 { 879 while (*rmap_list) { 880 struct ksm_rmap_item *rmap_item = *rmap_list; 881 *rmap_list = rmap_item->rmap_list; 882 remove_rmap_item_from_tree(rmap_item); 883 free_rmap_item(rmap_item); 884 } 885 } 886 887 /* 888 * Though it's very tempting to unmerge rmap_items from stable tree rather 889 * than check every pte of a given vma, the locking doesn't quite work for 890 * that - an rmap_item is assigned to the stable tree after inserting ksm 891 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 892 * rmap_items from parent to child at fork time (so as not to waste time 893 * if exit comes before the next scan reaches it). 894 * 895 * Similarly, although we'd like to remove rmap_items (so updating counts 896 * and freeing memory) when unmerging an area, it's easier to leave that 897 * to the next pass of ksmd - consider, for example, how ksmd might be 898 * in cmp_and_merge_page on one of the rmap_items we would be removing. 899 */ 900 static int unmerge_ksm_pages(struct vm_area_struct *vma, 901 unsigned long start, unsigned long end, bool lock_vma) 902 { 903 unsigned long addr; 904 int err = 0; 905 906 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 907 if (ksm_test_exit(vma->vm_mm)) 908 break; 909 if (signal_pending(current)) 910 err = -ERESTARTSYS; 911 else 912 err = break_ksm(vma, addr, lock_vma); 913 } 914 return err; 915 } 916 917 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio) 918 { 919 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 920 } 921 922 static inline struct ksm_stable_node *page_stable_node(struct page *page) 923 { 924 return folio_stable_node(page_folio(page)); 925 } 926 927 static inline void set_page_stable_node(struct page *page, 928 struct ksm_stable_node *stable_node) 929 { 930 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page); 931 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 932 } 933 934 #ifdef CONFIG_SYSFS 935 /* 936 * Only called through the sysfs control interface: 937 */ 938 static int remove_stable_node(struct ksm_stable_node *stable_node) 939 { 940 struct page *page; 941 int err; 942 943 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 944 if (!page) { 945 /* 946 * get_ksm_page did remove_node_from_stable_tree itself. 947 */ 948 return 0; 949 } 950 951 /* 952 * Page could be still mapped if this races with __mmput() running in 953 * between ksm_exit() and exit_mmap(). Just refuse to let 954 * merge_across_nodes/max_page_sharing be switched. 955 */ 956 err = -EBUSY; 957 if (!page_mapped(page)) { 958 /* 959 * The stable node did not yet appear stale to get_ksm_page(), 960 * since that allows for an unmapped ksm page to be recognized 961 * right up until it is freed; but the node is safe to remove. 962 * This page might be in an LRU cache waiting to be freed, 963 * or it might be PageSwapCache (perhaps under writeback), 964 * or it might have been removed from swapcache a moment ago. 965 */ 966 set_page_stable_node(page, NULL); 967 remove_node_from_stable_tree(stable_node); 968 err = 0; 969 } 970 971 unlock_page(page); 972 put_page(page); 973 return err; 974 } 975 976 static int remove_stable_node_chain(struct ksm_stable_node *stable_node, 977 struct rb_root *root) 978 { 979 struct ksm_stable_node *dup; 980 struct hlist_node *hlist_safe; 981 982 if (!is_stable_node_chain(stable_node)) { 983 VM_BUG_ON(is_stable_node_dup(stable_node)); 984 if (remove_stable_node(stable_node)) 985 return true; 986 else 987 return false; 988 } 989 990 hlist_for_each_entry_safe(dup, hlist_safe, 991 &stable_node->hlist, hlist_dup) { 992 VM_BUG_ON(!is_stable_node_dup(dup)); 993 if (remove_stable_node(dup)) 994 return true; 995 } 996 BUG_ON(!hlist_empty(&stable_node->hlist)); 997 free_stable_node_chain(stable_node, root); 998 return false; 999 } 1000 1001 static int remove_all_stable_nodes(void) 1002 { 1003 struct ksm_stable_node *stable_node, *next; 1004 int nid; 1005 int err = 0; 1006 1007 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 1008 while (root_stable_tree[nid].rb_node) { 1009 stable_node = rb_entry(root_stable_tree[nid].rb_node, 1010 struct ksm_stable_node, node); 1011 if (remove_stable_node_chain(stable_node, 1012 root_stable_tree + nid)) { 1013 err = -EBUSY; 1014 break; /* proceed to next nid */ 1015 } 1016 cond_resched(); 1017 } 1018 } 1019 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 1020 if (remove_stable_node(stable_node)) 1021 err = -EBUSY; 1022 cond_resched(); 1023 } 1024 return err; 1025 } 1026 1027 static int unmerge_and_remove_all_rmap_items(void) 1028 { 1029 struct ksm_mm_slot *mm_slot; 1030 struct mm_slot *slot; 1031 struct mm_struct *mm; 1032 struct vm_area_struct *vma; 1033 int err = 0; 1034 1035 spin_lock(&ksm_mmlist_lock); 1036 slot = list_entry(ksm_mm_head.slot.mm_node.next, 1037 struct mm_slot, mm_node); 1038 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1039 spin_unlock(&ksm_mmlist_lock); 1040 1041 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; 1042 mm_slot = ksm_scan.mm_slot) { 1043 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); 1044 1045 mm = mm_slot->slot.mm; 1046 mmap_read_lock(mm); 1047 1048 /* 1049 * Exit right away if mm is exiting to avoid lockdep issue in 1050 * the maple tree 1051 */ 1052 if (ksm_test_exit(mm)) 1053 goto mm_exiting; 1054 1055 for_each_vma(vmi, vma) { 1056 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 1057 continue; 1058 err = unmerge_ksm_pages(vma, 1059 vma->vm_start, vma->vm_end, false); 1060 if (err) 1061 goto error; 1062 } 1063 1064 mm_exiting: 1065 remove_trailing_rmap_items(&mm_slot->rmap_list); 1066 mmap_read_unlock(mm); 1067 1068 spin_lock(&ksm_mmlist_lock); 1069 slot = list_entry(mm_slot->slot.mm_node.next, 1070 struct mm_slot, mm_node); 1071 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1072 if (ksm_test_exit(mm)) { 1073 hash_del(&mm_slot->slot.hash); 1074 list_del(&mm_slot->slot.mm_node); 1075 spin_unlock(&ksm_mmlist_lock); 1076 1077 mm_slot_free(mm_slot_cache, mm_slot); 1078 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1079 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 1080 mmdrop(mm); 1081 } else 1082 spin_unlock(&ksm_mmlist_lock); 1083 } 1084 1085 /* Clean up stable nodes, but don't worry if some are still busy */ 1086 remove_all_stable_nodes(); 1087 ksm_scan.seqnr = 0; 1088 return 0; 1089 1090 error: 1091 mmap_read_unlock(mm); 1092 spin_lock(&ksm_mmlist_lock); 1093 ksm_scan.mm_slot = &ksm_mm_head; 1094 spin_unlock(&ksm_mmlist_lock); 1095 return err; 1096 } 1097 #endif /* CONFIG_SYSFS */ 1098 1099 static u32 calc_checksum(struct page *page) 1100 { 1101 u32 checksum; 1102 void *addr = kmap_atomic(page); 1103 checksum = xxhash(addr, PAGE_SIZE, 0); 1104 kunmap_atomic(addr); 1105 return checksum; 1106 } 1107 1108 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1109 pte_t *orig_pte) 1110 { 1111 struct mm_struct *mm = vma->vm_mm; 1112 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0); 1113 int swapped; 1114 int err = -EFAULT; 1115 struct mmu_notifier_range range; 1116 bool anon_exclusive; 1117 pte_t entry; 1118 1119 pvmw.address = page_address_in_vma(page, vma); 1120 if (pvmw.address == -EFAULT) 1121 goto out; 1122 1123 BUG_ON(PageTransCompound(page)); 1124 1125 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address, 1126 pvmw.address + PAGE_SIZE); 1127 mmu_notifier_invalidate_range_start(&range); 1128 1129 if (!page_vma_mapped_walk(&pvmw)) 1130 goto out_mn; 1131 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1132 goto out_unlock; 1133 1134 anon_exclusive = PageAnonExclusive(page); 1135 entry = ptep_get(pvmw.pte); 1136 if (pte_write(entry) || pte_dirty(entry) || 1137 anon_exclusive || mm_tlb_flush_pending(mm)) { 1138 swapped = PageSwapCache(page); 1139 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1140 /* 1141 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1142 * take any lock, therefore the check that we are going to make 1143 * with the pagecount against the mapcount is racy and 1144 * O_DIRECT can happen right after the check. 1145 * So we clear the pte and flush the tlb before the check 1146 * this assure us that no O_DIRECT can happen after the check 1147 * or in the middle of the check. 1148 * 1149 * No need to notify as we are downgrading page table to read 1150 * only not changing it to point to a new page. 1151 * 1152 * See Documentation/mm/mmu_notifier.rst 1153 */ 1154 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1155 /* 1156 * Check that no O_DIRECT or similar I/O is in progress on the 1157 * page 1158 */ 1159 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1160 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1161 goto out_unlock; 1162 } 1163 1164 /* See page_try_share_anon_rmap(): clear PTE first. */ 1165 if (anon_exclusive && page_try_share_anon_rmap(page)) { 1166 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1167 goto out_unlock; 1168 } 1169 1170 if (pte_dirty(entry)) 1171 set_page_dirty(page); 1172 entry = pte_mkclean(entry); 1173 1174 if (pte_write(entry)) 1175 entry = pte_wrprotect(entry); 1176 1177 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1178 } 1179 *orig_pte = entry; 1180 err = 0; 1181 1182 out_unlock: 1183 page_vma_mapped_walk_done(&pvmw); 1184 out_mn: 1185 mmu_notifier_invalidate_range_end(&range); 1186 out: 1187 return err; 1188 } 1189 1190 /** 1191 * replace_page - replace page in vma by new ksm page 1192 * @vma: vma that holds the pte pointing to page 1193 * @page: the page we are replacing by kpage 1194 * @kpage: the ksm page we replace page by 1195 * @orig_pte: the original value of the pte 1196 * 1197 * Returns 0 on success, -EFAULT on failure. 1198 */ 1199 static int replace_page(struct vm_area_struct *vma, struct page *page, 1200 struct page *kpage, pte_t orig_pte) 1201 { 1202 struct mm_struct *mm = vma->vm_mm; 1203 struct folio *folio; 1204 pmd_t *pmd; 1205 pmd_t pmde; 1206 pte_t *ptep; 1207 pte_t newpte; 1208 spinlock_t *ptl; 1209 unsigned long addr; 1210 int err = -EFAULT; 1211 struct mmu_notifier_range range; 1212 1213 addr = page_address_in_vma(page, vma); 1214 if (addr == -EFAULT) 1215 goto out; 1216 1217 pmd = mm_find_pmd(mm, addr); 1218 if (!pmd) 1219 goto out; 1220 /* 1221 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 1222 * without holding anon_vma lock for write. So when looking for a 1223 * genuine pmde (in which to find pte), test present and !THP together. 1224 */ 1225 pmde = pmdp_get_lockless(pmd); 1226 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 1227 goto out; 1228 1229 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1230 addr + PAGE_SIZE); 1231 mmu_notifier_invalidate_range_start(&range); 1232 1233 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1234 if (!ptep) 1235 goto out_mn; 1236 if (!pte_same(ptep_get(ptep), orig_pte)) { 1237 pte_unmap_unlock(ptep, ptl); 1238 goto out_mn; 1239 } 1240 VM_BUG_ON_PAGE(PageAnonExclusive(page), page); 1241 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage); 1242 1243 /* 1244 * No need to check ksm_use_zero_pages here: we can only have a 1245 * zero_page here if ksm_use_zero_pages was enabled already. 1246 */ 1247 if (!is_zero_pfn(page_to_pfn(kpage))) { 1248 get_page(kpage); 1249 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE); 1250 newpte = mk_pte(kpage, vma->vm_page_prot); 1251 } else { 1252 /* 1253 * Use pte_mkdirty to mark the zero page mapped by KSM, and then 1254 * we can easily track all KSM-placed zero pages by checking if 1255 * the dirty bit in zero page's PTE is set. 1256 */ 1257 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot))); 1258 ksm_zero_pages++; 1259 mm->ksm_zero_pages++; 1260 /* 1261 * We're replacing an anonymous page with a zero page, which is 1262 * not anonymous. We need to do proper accounting otherwise we 1263 * will get wrong values in /proc, and a BUG message in dmesg 1264 * when tearing down the mm. 1265 */ 1266 dec_mm_counter(mm, MM_ANONPAGES); 1267 } 1268 1269 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep))); 1270 /* 1271 * No need to notify as we are replacing a read only page with another 1272 * read only page with the same content. 1273 * 1274 * See Documentation/mm/mmu_notifier.rst 1275 */ 1276 ptep_clear_flush(vma, addr, ptep); 1277 set_pte_at_notify(mm, addr, ptep, newpte); 1278 1279 folio = page_folio(page); 1280 page_remove_rmap(page, vma, false); 1281 if (!folio_mapped(folio)) 1282 folio_free_swap(folio); 1283 folio_put(folio); 1284 1285 pte_unmap_unlock(ptep, ptl); 1286 err = 0; 1287 out_mn: 1288 mmu_notifier_invalidate_range_end(&range); 1289 out: 1290 return err; 1291 } 1292 1293 /* 1294 * try_to_merge_one_page - take two pages and merge them into one 1295 * @vma: the vma that holds the pte pointing to page 1296 * @page: the PageAnon page that we want to replace with kpage 1297 * @kpage: the PageKsm page that we want to map instead of page, 1298 * or NULL the first time when we want to use page as kpage. 1299 * 1300 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1301 */ 1302 static int try_to_merge_one_page(struct vm_area_struct *vma, 1303 struct page *page, struct page *kpage) 1304 { 1305 pte_t orig_pte = __pte(0); 1306 int err = -EFAULT; 1307 1308 if (page == kpage) /* ksm page forked */ 1309 return 0; 1310 1311 if (!PageAnon(page)) 1312 goto out; 1313 1314 /* 1315 * We need the page lock to read a stable PageSwapCache in 1316 * write_protect_page(). We use trylock_page() instead of 1317 * lock_page() because we don't want to wait here - we 1318 * prefer to continue scanning and merging different pages, 1319 * then come back to this page when it is unlocked. 1320 */ 1321 if (!trylock_page(page)) 1322 goto out; 1323 1324 if (PageTransCompound(page)) { 1325 if (split_huge_page(page)) 1326 goto out_unlock; 1327 } 1328 1329 /* 1330 * If this anonymous page is mapped only here, its pte may need 1331 * to be write-protected. If it's mapped elsewhere, all of its 1332 * ptes are necessarily already write-protected. But in either 1333 * case, we need to lock and check page_count is not raised. 1334 */ 1335 if (write_protect_page(vma, page, &orig_pte) == 0) { 1336 if (!kpage) { 1337 /* 1338 * While we hold page lock, upgrade page from 1339 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1340 * stable_tree_insert() will update stable_node. 1341 */ 1342 set_page_stable_node(page, NULL); 1343 mark_page_accessed(page); 1344 /* 1345 * Page reclaim just frees a clean page with no dirty 1346 * ptes: make sure that the ksm page would be swapped. 1347 */ 1348 if (!PageDirty(page)) 1349 SetPageDirty(page); 1350 err = 0; 1351 } else if (pages_identical(page, kpage)) 1352 err = replace_page(vma, page, kpage, orig_pte); 1353 } 1354 1355 out_unlock: 1356 unlock_page(page); 1357 out: 1358 return err; 1359 } 1360 1361 /* 1362 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1363 * but no new kernel page is allocated: kpage must already be a ksm page. 1364 * 1365 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1366 */ 1367 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, 1368 struct page *page, struct page *kpage) 1369 { 1370 struct mm_struct *mm = rmap_item->mm; 1371 struct vm_area_struct *vma; 1372 int err = -EFAULT; 1373 1374 mmap_read_lock(mm); 1375 vma = find_mergeable_vma(mm, rmap_item->address); 1376 if (!vma) 1377 goto out; 1378 1379 err = try_to_merge_one_page(vma, page, kpage); 1380 if (err) 1381 goto out; 1382 1383 /* Unstable nid is in union with stable anon_vma: remove first */ 1384 remove_rmap_item_from_tree(rmap_item); 1385 1386 /* Must get reference to anon_vma while still holding mmap_lock */ 1387 rmap_item->anon_vma = vma->anon_vma; 1388 get_anon_vma(vma->anon_vma); 1389 out: 1390 mmap_read_unlock(mm); 1391 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page), 1392 rmap_item, mm, err); 1393 return err; 1394 } 1395 1396 /* 1397 * try_to_merge_two_pages - take two identical pages and prepare them 1398 * to be merged into one page. 1399 * 1400 * This function returns the kpage if we successfully merged two identical 1401 * pages into one ksm page, NULL otherwise. 1402 * 1403 * Note that this function upgrades page to ksm page: if one of the pages 1404 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1405 */ 1406 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, 1407 struct page *page, 1408 struct ksm_rmap_item *tree_rmap_item, 1409 struct page *tree_page) 1410 { 1411 int err; 1412 1413 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1414 if (!err) { 1415 err = try_to_merge_with_ksm_page(tree_rmap_item, 1416 tree_page, page); 1417 /* 1418 * If that fails, we have a ksm page with only one pte 1419 * pointing to it: so break it. 1420 */ 1421 if (err) 1422 break_cow(rmap_item); 1423 } 1424 return err ? NULL : page; 1425 } 1426 1427 static __always_inline 1428 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) 1429 { 1430 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1431 /* 1432 * Check that at least one mapping still exists, otherwise 1433 * there's no much point to merge and share with this 1434 * stable_node, as the underlying tree_page of the other 1435 * sharer is going to be freed soon. 1436 */ 1437 return stable_node->rmap_hlist_len && 1438 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1439 } 1440 1441 static __always_inline 1442 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) 1443 { 1444 return __is_page_sharing_candidate(stable_node, 0); 1445 } 1446 1447 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup, 1448 struct ksm_stable_node **_stable_node, 1449 struct rb_root *root, 1450 bool prune_stale_stable_nodes) 1451 { 1452 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1453 struct hlist_node *hlist_safe; 1454 struct page *_tree_page, *tree_page = NULL; 1455 int nr = 0; 1456 int found_rmap_hlist_len; 1457 1458 if (!prune_stale_stable_nodes || 1459 time_before(jiffies, stable_node->chain_prune_time + 1460 msecs_to_jiffies( 1461 ksm_stable_node_chains_prune_millisecs))) 1462 prune_stale_stable_nodes = false; 1463 else 1464 stable_node->chain_prune_time = jiffies; 1465 1466 hlist_for_each_entry_safe(dup, hlist_safe, 1467 &stable_node->hlist, hlist_dup) { 1468 cond_resched(); 1469 /* 1470 * We must walk all stable_node_dup to prune the stale 1471 * stable nodes during lookup. 1472 * 1473 * get_ksm_page can drop the nodes from the 1474 * stable_node->hlist if they point to freed pages 1475 * (that's why we do a _safe walk). The "dup" 1476 * stable_node parameter itself will be freed from 1477 * under us if it returns NULL. 1478 */ 1479 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1480 if (!_tree_page) 1481 continue; 1482 nr += 1; 1483 if (is_page_sharing_candidate(dup)) { 1484 if (!found || 1485 dup->rmap_hlist_len > found_rmap_hlist_len) { 1486 if (found) 1487 put_page(tree_page); 1488 found = dup; 1489 found_rmap_hlist_len = found->rmap_hlist_len; 1490 tree_page = _tree_page; 1491 1492 /* skip put_page for found dup */ 1493 if (!prune_stale_stable_nodes) 1494 break; 1495 continue; 1496 } 1497 } 1498 put_page(_tree_page); 1499 } 1500 1501 if (found) { 1502 /* 1503 * nr is counting all dups in the chain only if 1504 * prune_stale_stable_nodes is true, otherwise we may 1505 * break the loop at nr == 1 even if there are 1506 * multiple entries. 1507 */ 1508 if (prune_stale_stable_nodes && nr == 1) { 1509 /* 1510 * If there's not just one entry it would 1511 * corrupt memory, better BUG_ON. In KSM 1512 * context with no lock held it's not even 1513 * fatal. 1514 */ 1515 BUG_ON(stable_node->hlist.first->next); 1516 1517 /* 1518 * There's just one entry and it is below the 1519 * deduplication limit so drop the chain. 1520 */ 1521 rb_replace_node(&stable_node->node, &found->node, 1522 root); 1523 free_stable_node(stable_node); 1524 ksm_stable_node_chains--; 1525 ksm_stable_node_dups--; 1526 /* 1527 * NOTE: the caller depends on the stable_node 1528 * to be equal to stable_node_dup if the chain 1529 * was collapsed. 1530 */ 1531 *_stable_node = found; 1532 /* 1533 * Just for robustness, as stable_node is 1534 * otherwise left as a stable pointer, the 1535 * compiler shall optimize it away at build 1536 * time. 1537 */ 1538 stable_node = NULL; 1539 } else if (stable_node->hlist.first != &found->hlist_dup && 1540 __is_page_sharing_candidate(found, 1)) { 1541 /* 1542 * If the found stable_node dup can accept one 1543 * more future merge (in addition to the one 1544 * that is underway) and is not at the head of 1545 * the chain, put it there so next search will 1546 * be quicker in the !prune_stale_stable_nodes 1547 * case. 1548 * 1549 * NOTE: it would be inaccurate to use nr > 1 1550 * instead of checking the hlist.first pointer 1551 * directly, because in the 1552 * prune_stale_stable_nodes case "nr" isn't 1553 * the position of the found dup in the chain, 1554 * but the total number of dups in the chain. 1555 */ 1556 hlist_del(&found->hlist_dup); 1557 hlist_add_head(&found->hlist_dup, 1558 &stable_node->hlist); 1559 } 1560 } 1561 1562 *_stable_node_dup = found; 1563 return tree_page; 1564 } 1565 1566 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node, 1567 struct rb_root *root) 1568 { 1569 if (!is_stable_node_chain(stable_node)) 1570 return stable_node; 1571 if (hlist_empty(&stable_node->hlist)) { 1572 free_stable_node_chain(stable_node, root); 1573 return NULL; 1574 } 1575 return hlist_entry(stable_node->hlist.first, 1576 typeof(*stable_node), hlist_dup); 1577 } 1578 1579 /* 1580 * Like for get_ksm_page, this function can free the *_stable_node and 1581 * *_stable_node_dup if the returned tree_page is NULL. 1582 * 1583 * It can also free and overwrite *_stable_node with the found 1584 * stable_node_dup if the chain is collapsed (in which case 1585 * *_stable_node will be equal to *_stable_node_dup like if the chain 1586 * never existed). It's up to the caller to verify tree_page is not 1587 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1588 * 1589 * *_stable_node_dup is really a second output parameter of this 1590 * function and will be overwritten in all cases, the caller doesn't 1591 * need to initialize it. 1592 */ 1593 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, 1594 struct ksm_stable_node **_stable_node, 1595 struct rb_root *root, 1596 bool prune_stale_stable_nodes) 1597 { 1598 struct ksm_stable_node *stable_node = *_stable_node; 1599 if (!is_stable_node_chain(stable_node)) { 1600 if (is_page_sharing_candidate(stable_node)) { 1601 *_stable_node_dup = stable_node; 1602 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1603 } 1604 /* 1605 * _stable_node_dup set to NULL means the stable_node 1606 * reached the ksm_max_page_sharing limit. 1607 */ 1608 *_stable_node_dup = NULL; 1609 return NULL; 1610 } 1611 return stable_node_dup(_stable_node_dup, _stable_node, root, 1612 prune_stale_stable_nodes); 1613 } 1614 1615 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d, 1616 struct ksm_stable_node **s_n, 1617 struct rb_root *root) 1618 { 1619 return __stable_node_chain(s_n_d, s_n, root, true); 1620 } 1621 1622 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d, 1623 struct ksm_stable_node *s_n, 1624 struct rb_root *root) 1625 { 1626 struct ksm_stable_node *old_stable_node = s_n; 1627 struct page *tree_page; 1628 1629 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1630 /* not pruning dups so s_n cannot have changed */ 1631 VM_BUG_ON(s_n != old_stable_node); 1632 return tree_page; 1633 } 1634 1635 /* 1636 * stable_tree_search - search for page inside the stable tree 1637 * 1638 * This function checks if there is a page inside the stable tree 1639 * with identical content to the page that we are scanning right now. 1640 * 1641 * This function returns the stable tree node of identical content if found, 1642 * NULL otherwise. 1643 */ 1644 static struct page *stable_tree_search(struct page *page) 1645 { 1646 int nid; 1647 struct rb_root *root; 1648 struct rb_node **new; 1649 struct rb_node *parent; 1650 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1651 struct ksm_stable_node *page_node; 1652 1653 page_node = page_stable_node(page); 1654 if (page_node && page_node->head != &migrate_nodes) { 1655 /* ksm page forked */ 1656 get_page(page); 1657 return page; 1658 } 1659 1660 nid = get_kpfn_nid(page_to_pfn(page)); 1661 root = root_stable_tree + nid; 1662 again: 1663 new = &root->rb_node; 1664 parent = NULL; 1665 1666 while (*new) { 1667 struct page *tree_page; 1668 int ret; 1669 1670 cond_resched(); 1671 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1672 stable_node_any = NULL; 1673 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1674 /* 1675 * NOTE: stable_node may have been freed by 1676 * chain_prune() if the returned stable_node_dup is 1677 * not NULL. stable_node_dup may have been inserted in 1678 * the rbtree instead as a regular stable_node (in 1679 * order to collapse the stable_node chain if a single 1680 * stable_node dup was found in it). In such case the 1681 * stable_node is overwritten by the callee to point 1682 * to the stable_node_dup that was collapsed in the 1683 * stable rbtree and stable_node will be equal to 1684 * stable_node_dup like if the chain never existed. 1685 */ 1686 if (!stable_node_dup) { 1687 /* 1688 * Either all stable_node dups were full in 1689 * this stable_node chain, or this chain was 1690 * empty and should be rb_erased. 1691 */ 1692 stable_node_any = stable_node_dup_any(stable_node, 1693 root); 1694 if (!stable_node_any) { 1695 /* rb_erase just run */ 1696 goto again; 1697 } 1698 /* 1699 * Take any of the stable_node dups page of 1700 * this stable_node chain to let the tree walk 1701 * continue. All KSM pages belonging to the 1702 * stable_node dups in a stable_node chain 1703 * have the same content and they're 1704 * write protected at all times. Any will work 1705 * fine to continue the walk. 1706 */ 1707 tree_page = get_ksm_page(stable_node_any, 1708 GET_KSM_PAGE_NOLOCK); 1709 } 1710 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1711 if (!tree_page) { 1712 /* 1713 * If we walked over a stale stable_node, 1714 * get_ksm_page() will call rb_erase() and it 1715 * may rebalance the tree from under us. So 1716 * restart the search from scratch. Returning 1717 * NULL would be safe too, but we'd generate 1718 * false negative insertions just because some 1719 * stable_node was stale. 1720 */ 1721 goto again; 1722 } 1723 1724 ret = memcmp_pages(page, tree_page); 1725 put_page(tree_page); 1726 1727 parent = *new; 1728 if (ret < 0) 1729 new = &parent->rb_left; 1730 else if (ret > 0) 1731 new = &parent->rb_right; 1732 else { 1733 if (page_node) { 1734 VM_BUG_ON(page_node->head != &migrate_nodes); 1735 /* 1736 * Test if the migrated page should be merged 1737 * into a stable node dup. If the mapcount is 1738 * 1 we can migrate it with another KSM page 1739 * without adding it to the chain. 1740 */ 1741 if (page_mapcount(page) > 1) 1742 goto chain_append; 1743 } 1744 1745 if (!stable_node_dup) { 1746 /* 1747 * If the stable_node is a chain and 1748 * we got a payload match in memcmp 1749 * but we cannot merge the scanned 1750 * page in any of the existing 1751 * stable_node dups because they're 1752 * all full, we need to wait the 1753 * scanned page to find itself a match 1754 * in the unstable tree to create a 1755 * brand new KSM page to add later to 1756 * the dups of this stable_node. 1757 */ 1758 return NULL; 1759 } 1760 1761 /* 1762 * Lock and unlock the stable_node's page (which 1763 * might already have been migrated) so that page 1764 * migration is sure to notice its raised count. 1765 * It would be more elegant to return stable_node 1766 * than kpage, but that involves more changes. 1767 */ 1768 tree_page = get_ksm_page(stable_node_dup, 1769 GET_KSM_PAGE_TRYLOCK); 1770 1771 if (PTR_ERR(tree_page) == -EBUSY) 1772 return ERR_PTR(-EBUSY); 1773 1774 if (unlikely(!tree_page)) 1775 /* 1776 * The tree may have been rebalanced, 1777 * so re-evaluate parent and new. 1778 */ 1779 goto again; 1780 unlock_page(tree_page); 1781 1782 if (get_kpfn_nid(stable_node_dup->kpfn) != 1783 NUMA(stable_node_dup->nid)) { 1784 put_page(tree_page); 1785 goto replace; 1786 } 1787 return tree_page; 1788 } 1789 } 1790 1791 if (!page_node) 1792 return NULL; 1793 1794 list_del(&page_node->list); 1795 DO_NUMA(page_node->nid = nid); 1796 rb_link_node(&page_node->node, parent, new); 1797 rb_insert_color(&page_node->node, root); 1798 out: 1799 if (is_page_sharing_candidate(page_node)) { 1800 get_page(page); 1801 return page; 1802 } else 1803 return NULL; 1804 1805 replace: 1806 /* 1807 * If stable_node was a chain and chain_prune collapsed it, 1808 * stable_node has been updated to be the new regular 1809 * stable_node. A collapse of the chain is indistinguishable 1810 * from the case there was no chain in the stable 1811 * rbtree. Otherwise stable_node is the chain and 1812 * stable_node_dup is the dup to replace. 1813 */ 1814 if (stable_node_dup == stable_node) { 1815 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1816 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1817 /* there is no chain */ 1818 if (page_node) { 1819 VM_BUG_ON(page_node->head != &migrate_nodes); 1820 list_del(&page_node->list); 1821 DO_NUMA(page_node->nid = nid); 1822 rb_replace_node(&stable_node_dup->node, 1823 &page_node->node, 1824 root); 1825 if (is_page_sharing_candidate(page_node)) 1826 get_page(page); 1827 else 1828 page = NULL; 1829 } else { 1830 rb_erase(&stable_node_dup->node, root); 1831 page = NULL; 1832 } 1833 } else { 1834 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1835 __stable_node_dup_del(stable_node_dup); 1836 if (page_node) { 1837 VM_BUG_ON(page_node->head != &migrate_nodes); 1838 list_del(&page_node->list); 1839 DO_NUMA(page_node->nid = nid); 1840 stable_node_chain_add_dup(page_node, stable_node); 1841 if (is_page_sharing_candidate(page_node)) 1842 get_page(page); 1843 else 1844 page = NULL; 1845 } else { 1846 page = NULL; 1847 } 1848 } 1849 stable_node_dup->head = &migrate_nodes; 1850 list_add(&stable_node_dup->list, stable_node_dup->head); 1851 return page; 1852 1853 chain_append: 1854 /* stable_node_dup could be null if it reached the limit */ 1855 if (!stable_node_dup) 1856 stable_node_dup = stable_node_any; 1857 /* 1858 * If stable_node was a chain and chain_prune collapsed it, 1859 * stable_node has been updated to be the new regular 1860 * stable_node. A collapse of the chain is indistinguishable 1861 * from the case there was no chain in the stable 1862 * rbtree. Otherwise stable_node is the chain and 1863 * stable_node_dup is the dup to replace. 1864 */ 1865 if (stable_node_dup == stable_node) { 1866 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1867 /* chain is missing so create it */ 1868 stable_node = alloc_stable_node_chain(stable_node_dup, 1869 root); 1870 if (!stable_node) 1871 return NULL; 1872 } 1873 /* 1874 * Add this stable_node dup that was 1875 * migrated to the stable_node chain 1876 * of the current nid for this page 1877 * content. 1878 */ 1879 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1880 VM_BUG_ON(page_node->head != &migrate_nodes); 1881 list_del(&page_node->list); 1882 DO_NUMA(page_node->nid = nid); 1883 stable_node_chain_add_dup(page_node, stable_node); 1884 goto out; 1885 } 1886 1887 /* 1888 * stable_tree_insert - insert stable tree node pointing to new ksm page 1889 * into the stable tree. 1890 * 1891 * This function returns the stable tree node just allocated on success, 1892 * NULL otherwise. 1893 */ 1894 static struct ksm_stable_node *stable_tree_insert(struct page *kpage) 1895 { 1896 int nid; 1897 unsigned long kpfn; 1898 struct rb_root *root; 1899 struct rb_node **new; 1900 struct rb_node *parent; 1901 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1902 bool need_chain = false; 1903 1904 kpfn = page_to_pfn(kpage); 1905 nid = get_kpfn_nid(kpfn); 1906 root = root_stable_tree + nid; 1907 again: 1908 parent = NULL; 1909 new = &root->rb_node; 1910 1911 while (*new) { 1912 struct page *tree_page; 1913 int ret; 1914 1915 cond_resched(); 1916 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1917 stable_node_any = NULL; 1918 tree_page = chain(&stable_node_dup, stable_node, root); 1919 if (!stable_node_dup) { 1920 /* 1921 * Either all stable_node dups were full in 1922 * this stable_node chain, or this chain was 1923 * empty and should be rb_erased. 1924 */ 1925 stable_node_any = stable_node_dup_any(stable_node, 1926 root); 1927 if (!stable_node_any) { 1928 /* rb_erase just run */ 1929 goto again; 1930 } 1931 /* 1932 * Take any of the stable_node dups page of 1933 * this stable_node chain to let the tree walk 1934 * continue. All KSM pages belonging to the 1935 * stable_node dups in a stable_node chain 1936 * have the same content and they're 1937 * write protected at all times. Any will work 1938 * fine to continue the walk. 1939 */ 1940 tree_page = get_ksm_page(stable_node_any, 1941 GET_KSM_PAGE_NOLOCK); 1942 } 1943 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1944 if (!tree_page) { 1945 /* 1946 * If we walked over a stale stable_node, 1947 * get_ksm_page() will call rb_erase() and it 1948 * may rebalance the tree from under us. So 1949 * restart the search from scratch. Returning 1950 * NULL would be safe too, but we'd generate 1951 * false negative insertions just because some 1952 * stable_node was stale. 1953 */ 1954 goto again; 1955 } 1956 1957 ret = memcmp_pages(kpage, tree_page); 1958 put_page(tree_page); 1959 1960 parent = *new; 1961 if (ret < 0) 1962 new = &parent->rb_left; 1963 else if (ret > 0) 1964 new = &parent->rb_right; 1965 else { 1966 need_chain = true; 1967 break; 1968 } 1969 } 1970 1971 stable_node_dup = alloc_stable_node(); 1972 if (!stable_node_dup) 1973 return NULL; 1974 1975 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1976 stable_node_dup->kpfn = kpfn; 1977 set_page_stable_node(kpage, stable_node_dup); 1978 stable_node_dup->rmap_hlist_len = 0; 1979 DO_NUMA(stable_node_dup->nid = nid); 1980 if (!need_chain) { 1981 rb_link_node(&stable_node_dup->node, parent, new); 1982 rb_insert_color(&stable_node_dup->node, root); 1983 } else { 1984 if (!is_stable_node_chain(stable_node)) { 1985 struct ksm_stable_node *orig = stable_node; 1986 /* chain is missing so create it */ 1987 stable_node = alloc_stable_node_chain(orig, root); 1988 if (!stable_node) { 1989 free_stable_node(stable_node_dup); 1990 return NULL; 1991 } 1992 } 1993 stable_node_chain_add_dup(stable_node_dup, stable_node); 1994 } 1995 1996 return stable_node_dup; 1997 } 1998 1999 /* 2000 * unstable_tree_search_insert - search for identical page, 2001 * else insert rmap_item into the unstable tree. 2002 * 2003 * This function searches for a page in the unstable tree identical to the 2004 * page currently being scanned; and if no identical page is found in the 2005 * tree, we insert rmap_item as a new object into the unstable tree. 2006 * 2007 * This function returns pointer to rmap_item found to be identical 2008 * to the currently scanned page, NULL otherwise. 2009 * 2010 * This function does both searching and inserting, because they share 2011 * the same walking algorithm in an rbtree. 2012 */ 2013 static 2014 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, 2015 struct page *page, 2016 struct page **tree_pagep) 2017 { 2018 struct rb_node **new; 2019 struct rb_root *root; 2020 struct rb_node *parent = NULL; 2021 int nid; 2022 2023 nid = get_kpfn_nid(page_to_pfn(page)); 2024 root = root_unstable_tree + nid; 2025 new = &root->rb_node; 2026 2027 while (*new) { 2028 struct ksm_rmap_item *tree_rmap_item; 2029 struct page *tree_page; 2030 int ret; 2031 2032 cond_resched(); 2033 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); 2034 tree_page = get_mergeable_page(tree_rmap_item); 2035 if (!tree_page) 2036 return NULL; 2037 2038 /* 2039 * Don't substitute a ksm page for a forked page. 2040 */ 2041 if (page == tree_page) { 2042 put_page(tree_page); 2043 return NULL; 2044 } 2045 2046 ret = memcmp_pages(page, tree_page); 2047 2048 parent = *new; 2049 if (ret < 0) { 2050 put_page(tree_page); 2051 new = &parent->rb_left; 2052 } else if (ret > 0) { 2053 put_page(tree_page); 2054 new = &parent->rb_right; 2055 } else if (!ksm_merge_across_nodes && 2056 page_to_nid(tree_page) != nid) { 2057 /* 2058 * If tree_page has been migrated to another NUMA node, 2059 * it will be flushed out and put in the right unstable 2060 * tree next time: only merge with it when across_nodes. 2061 */ 2062 put_page(tree_page); 2063 return NULL; 2064 } else { 2065 *tree_pagep = tree_page; 2066 return tree_rmap_item; 2067 } 2068 } 2069 2070 rmap_item->address |= UNSTABLE_FLAG; 2071 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 2072 DO_NUMA(rmap_item->nid = nid); 2073 rb_link_node(&rmap_item->node, parent, new); 2074 rb_insert_color(&rmap_item->node, root); 2075 2076 ksm_pages_unshared++; 2077 return NULL; 2078 } 2079 2080 /* 2081 * stable_tree_append - add another rmap_item to the linked list of 2082 * rmap_items hanging off a given node of the stable tree, all sharing 2083 * the same ksm page. 2084 */ 2085 static void stable_tree_append(struct ksm_rmap_item *rmap_item, 2086 struct ksm_stable_node *stable_node, 2087 bool max_page_sharing_bypass) 2088 { 2089 /* 2090 * rmap won't find this mapping if we don't insert the 2091 * rmap_item in the right stable_node 2092 * duplicate. page_migration could break later if rmap breaks, 2093 * so we can as well crash here. We really need to check for 2094 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2095 * for other negative values as an underflow if detected here 2096 * for the first time (and not when decreasing rmap_hlist_len) 2097 * would be sign of memory corruption in the stable_node. 2098 */ 2099 BUG_ON(stable_node->rmap_hlist_len < 0); 2100 2101 stable_node->rmap_hlist_len++; 2102 if (!max_page_sharing_bypass) 2103 /* possibly non fatal but unexpected overflow, only warn */ 2104 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2105 ksm_max_page_sharing); 2106 2107 rmap_item->head = stable_node; 2108 rmap_item->address |= STABLE_FLAG; 2109 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2110 2111 if (rmap_item->hlist.next) 2112 ksm_pages_sharing++; 2113 else 2114 ksm_pages_shared++; 2115 2116 rmap_item->mm->ksm_merging_pages++; 2117 } 2118 2119 /* 2120 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2121 * if not, compare checksum to previous and if it's the same, see if page can 2122 * be inserted into the unstable tree, or merged with a page already there and 2123 * both transferred to the stable tree. 2124 * 2125 * @page: the page that we are searching identical page to. 2126 * @rmap_item: the reverse mapping into the virtual address of this page 2127 */ 2128 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) 2129 { 2130 struct mm_struct *mm = rmap_item->mm; 2131 struct ksm_rmap_item *tree_rmap_item; 2132 struct page *tree_page = NULL; 2133 struct ksm_stable_node *stable_node; 2134 struct page *kpage; 2135 unsigned int checksum; 2136 int err; 2137 bool max_page_sharing_bypass = false; 2138 2139 stable_node = page_stable_node(page); 2140 if (stable_node) { 2141 if (stable_node->head != &migrate_nodes && 2142 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2143 NUMA(stable_node->nid)) { 2144 stable_node_dup_del(stable_node); 2145 stable_node->head = &migrate_nodes; 2146 list_add(&stable_node->list, stable_node->head); 2147 } 2148 if (stable_node->head != &migrate_nodes && 2149 rmap_item->head == stable_node) 2150 return; 2151 /* 2152 * If it's a KSM fork, allow it to go over the sharing limit 2153 * without warnings. 2154 */ 2155 if (!is_page_sharing_candidate(stable_node)) 2156 max_page_sharing_bypass = true; 2157 } 2158 2159 /* We first start with searching the page inside the stable tree */ 2160 kpage = stable_tree_search(page); 2161 if (kpage == page && rmap_item->head == stable_node) { 2162 put_page(kpage); 2163 return; 2164 } 2165 2166 remove_rmap_item_from_tree(rmap_item); 2167 2168 if (kpage) { 2169 if (PTR_ERR(kpage) == -EBUSY) 2170 return; 2171 2172 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2173 if (!err) { 2174 /* 2175 * The page was successfully merged: 2176 * add its rmap_item to the stable tree. 2177 */ 2178 lock_page(kpage); 2179 stable_tree_append(rmap_item, page_stable_node(kpage), 2180 max_page_sharing_bypass); 2181 unlock_page(kpage); 2182 } 2183 put_page(kpage); 2184 return; 2185 } 2186 2187 /* 2188 * If the hash value of the page has changed from the last time 2189 * we calculated it, this page is changing frequently: therefore we 2190 * don't want to insert it in the unstable tree, and we don't want 2191 * to waste our time searching for something identical to it there. 2192 */ 2193 checksum = calc_checksum(page); 2194 if (rmap_item->oldchecksum != checksum) { 2195 rmap_item->oldchecksum = checksum; 2196 return; 2197 } 2198 2199 /* 2200 * Same checksum as an empty page. We attempt to merge it with the 2201 * appropriate zero page if the user enabled this via sysfs. 2202 */ 2203 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2204 struct vm_area_struct *vma; 2205 2206 mmap_read_lock(mm); 2207 vma = find_mergeable_vma(mm, rmap_item->address); 2208 if (vma) { 2209 err = try_to_merge_one_page(vma, page, 2210 ZERO_PAGE(rmap_item->address)); 2211 trace_ksm_merge_one_page( 2212 page_to_pfn(ZERO_PAGE(rmap_item->address)), 2213 rmap_item, mm, err); 2214 } else { 2215 /* 2216 * If the vma is out of date, we do not need to 2217 * continue. 2218 */ 2219 err = 0; 2220 } 2221 mmap_read_unlock(mm); 2222 /* 2223 * In case of failure, the page was not really empty, so we 2224 * need to continue. Otherwise we're done. 2225 */ 2226 if (!err) 2227 return; 2228 } 2229 tree_rmap_item = 2230 unstable_tree_search_insert(rmap_item, page, &tree_page); 2231 if (tree_rmap_item) { 2232 bool split; 2233 2234 kpage = try_to_merge_two_pages(rmap_item, page, 2235 tree_rmap_item, tree_page); 2236 /* 2237 * If both pages we tried to merge belong to the same compound 2238 * page, then we actually ended up increasing the reference 2239 * count of the same compound page twice, and split_huge_page 2240 * failed. 2241 * Here we set a flag if that happened, and we use it later to 2242 * try split_huge_page again. Since we call put_page right 2243 * afterwards, the reference count will be correct and 2244 * split_huge_page should succeed. 2245 */ 2246 split = PageTransCompound(page) 2247 && compound_head(page) == compound_head(tree_page); 2248 put_page(tree_page); 2249 if (kpage) { 2250 /* 2251 * The pages were successfully merged: insert new 2252 * node in the stable tree and add both rmap_items. 2253 */ 2254 lock_page(kpage); 2255 stable_node = stable_tree_insert(kpage); 2256 if (stable_node) { 2257 stable_tree_append(tree_rmap_item, stable_node, 2258 false); 2259 stable_tree_append(rmap_item, stable_node, 2260 false); 2261 } 2262 unlock_page(kpage); 2263 2264 /* 2265 * If we fail to insert the page into the stable tree, 2266 * we will have 2 virtual addresses that are pointing 2267 * to a ksm page left outside the stable tree, 2268 * in which case we need to break_cow on both. 2269 */ 2270 if (!stable_node) { 2271 break_cow(tree_rmap_item); 2272 break_cow(rmap_item); 2273 } 2274 } else if (split) { 2275 /* 2276 * We are here if we tried to merge two pages and 2277 * failed because they both belonged to the same 2278 * compound page. We will split the page now, but no 2279 * merging will take place. 2280 * We do not want to add the cost of a full lock; if 2281 * the page is locked, it is better to skip it and 2282 * perhaps try again later. 2283 */ 2284 if (!trylock_page(page)) 2285 return; 2286 split_huge_page(page); 2287 unlock_page(page); 2288 } 2289 } 2290 } 2291 2292 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, 2293 struct ksm_rmap_item **rmap_list, 2294 unsigned long addr) 2295 { 2296 struct ksm_rmap_item *rmap_item; 2297 2298 while (*rmap_list) { 2299 rmap_item = *rmap_list; 2300 if ((rmap_item->address & PAGE_MASK) == addr) 2301 return rmap_item; 2302 if (rmap_item->address > addr) 2303 break; 2304 *rmap_list = rmap_item->rmap_list; 2305 remove_rmap_item_from_tree(rmap_item); 2306 free_rmap_item(rmap_item); 2307 } 2308 2309 rmap_item = alloc_rmap_item(); 2310 if (rmap_item) { 2311 /* It has already been zeroed */ 2312 rmap_item->mm = mm_slot->slot.mm; 2313 rmap_item->mm->ksm_rmap_items++; 2314 rmap_item->address = addr; 2315 rmap_item->rmap_list = *rmap_list; 2316 *rmap_list = rmap_item; 2317 } 2318 return rmap_item; 2319 } 2320 2321 /* 2322 * Calculate skip age for the ksm page age. The age determines how often 2323 * de-duplicating has already been tried unsuccessfully. If the age is 2324 * smaller, the scanning of this page is skipped for less scans. 2325 * 2326 * @age: rmap_item age of page 2327 */ 2328 static unsigned int skip_age(rmap_age_t age) 2329 { 2330 if (age <= 3) 2331 return 1; 2332 if (age <= 5) 2333 return 2; 2334 if (age <= 8) 2335 return 4; 2336 2337 return 8; 2338 } 2339 2340 /* 2341 * Determines if a page should be skipped for the current scan. 2342 * 2343 * @page: page to check 2344 * @rmap_item: associated rmap_item of page 2345 */ 2346 static bool should_skip_rmap_item(struct page *page, 2347 struct ksm_rmap_item *rmap_item) 2348 { 2349 rmap_age_t age; 2350 2351 if (!ksm_smart_scan) 2352 return false; 2353 2354 /* 2355 * Never skip pages that are already KSM; pages cmp_and_merge_page() 2356 * will essentially ignore them, but we still have to process them 2357 * properly. 2358 */ 2359 if (PageKsm(page)) 2360 return false; 2361 2362 age = rmap_item->age; 2363 if (age != U8_MAX) 2364 rmap_item->age++; 2365 2366 /* 2367 * Smaller ages are not skipped, they need to get a chance to go 2368 * through the different phases of the KSM merging. 2369 */ 2370 if (age < 3) 2371 return false; 2372 2373 /* 2374 * Are we still allowed to skip? If not, then don't skip it 2375 * and determine how much more often we are allowed to skip next. 2376 */ 2377 if (!rmap_item->remaining_skips) { 2378 rmap_item->remaining_skips = skip_age(age); 2379 return false; 2380 } 2381 2382 /* Skip this page */ 2383 ksm_pages_skipped++; 2384 rmap_item->remaining_skips--; 2385 remove_rmap_item_from_tree(rmap_item); 2386 return true; 2387 } 2388 2389 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) 2390 { 2391 struct mm_struct *mm; 2392 struct ksm_mm_slot *mm_slot; 2393 struct mm_slot *slot; 2394 struct vm_area_struct *vma; 2395 struct ksm_rmap_item *rmap_item; 2396 struct vma_iterator vmi; 2397 int nid; 2398 2399 if (list_empty(&ksm_mm_head.slot.mm_node)) 2400 return NULL; 2401 2402 mm_slot = ksm_scan.mm_slot; 2403 if (mm_slot == &ksm_mm_head) { 2404 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items); 2405 2406 /* 2407 * A number of pages can hang around indefinitely in per-cpu 2408 * LRU cache, raised page count preventing write_protect_page 2409 * from merging them. Though it doesn't really matter much, 2410 * it is puzzling to see some stuck in pages_volatile until 2411 * other activity jostles them out, and they also prevented 2412 * LTP's KSM test from succeeding deterministically; so drain 2413 * them here (here rather than on entry to ksm_do_scan(), 2414 * so we don't IPI too often when pages_to_scan is set low). 2415 */ 2416 lru_add_drain_all(); 2417 2418 /* 2419 * Whereas stale stable_nodes on the stable_tree itself 2420 * get pruned in the regular course of stable_tree_search(), 2421 * those moved out to the migrate_nodes list can accumulate: 2422 * so prune them once before each full scan. 2423 */ 2424 if (!ksm_merge_across_nodes) { 2425 struct ksm_stable_node *stable_node, *next; 2426 struct page *page; 2427 2428 list_for_each_entry_safe(stable_node, next, 2429 &migrate_nodes, list) { 2430 page = get_ksm_page(stable_node, 2431 GET_KSM_PAGE_NOLOCK); 2432 if (page) 2433 put_page(page); 2434 cond_resched(); 2435 } 2436 } 2437 2438 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2439 root_unstable_tree[nid] = RB_ROOT; 2440 2441 spin_lock(&ksm_mmlist_lock); 2442 slot = list_entry(mm_slot->slot.mm_node.next, 2443 struct mm_slot, mm_node); 2444 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2445 ksm_scan.mm_slot = mm_slot; 2446 spin_unlock(&ksm_mmlist_lock); 2447 /* 2448 * Although we tested list_empty() above, a racing __ksm_exit 2449 * of the last mm on the list may have removed it since then. 2450 */ 2451 if (mm_slot == &ksm_mm_head) 2452 return NULL; 2453 next_mm: 2454 ksm_scan.address = 0; 2455 ksm_scan.rmap_list = &mm_slot->rmap_list; 2456 } 2457 2458 slot = &mm_slot->slot; 2459 mm = slot->mm; 2460 vma_iter_init(&vmi, mm, ksm_scan.address); 2461 2462 mmap_read_lock(mm); 2463 if (ksm_test_exit(mm)) 2464 goto no_vmas; 2465 2466 for_each_vma(vmi, vma) { 2467 if (!(vma->vm_flags & VM_MERGEABLE)) 2468 continue; 2469 if (ksm_scan.address < vma->vm_start) 2470 ksm_scan.address = vma->vm_start; 2471 if (!vma->anon_vma) 2472 ksm_scan.address = vma->vm_end; 2473 2474 while (ksm_scan.address < vma->vm_end) { 2475 if (ksm_test_exit(mm)) 2476 break; 2477 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2478 if (IS_ERR_OR_NULL(*page)) { 2479 ksm_scan.address += PAGE_SIZE; 2480 cond_resched(); 2481 continue; 2482 } 2483 if (is_zone_device_page(*page)) 2484 goto next_page; 2485 if (PageAnon(*page)) { 2486 flush_anon_page(vma, *page, ksm_scan.address); 2487 flush_dcache_page(*page); 2488 rmap_item = get_next_rmap_item(mm_slot, 2489 ksm_scan.rmap_list, ksm_scan.address); 2490 if (rmap_item) { 2491 ksm_scan.rmap_list = 2492 &rmap_item->rmap_list; 2493 2494 if (should_skip_rmap_item(*page, rmap_item)) 2495 goto next_page; 2496 2497 ksm_scan.address += PAGE_SIZE; 2498 } else 2499 put_page(*page); 2500 mmap_read_unlock(mm); 2501 return rmap_item; 2502 } 2503 next_page: 2504 put_page(*page); 2505 ksm_scan.address += PAGE_SIZE; 2506 cond_resched(); 2507 } 2508 } 2509 2510 if (ksm_test_exit(mm)) { 2511 no_vmas: 2512 ksm_scan.address = 0; 2513 ksm_scan.rmap_list = &mm_slot->rmap_list; 2514 } 2515 /* 2516 * Nuke all the rmap_items that are above this current rmap: 2517 * because there were no VM_MERGEABLE vmas with such addresses. 2518 */ 2519 remove_trailing_rmap_items(ksm_scan.rmap_list); 2520 2521 spin_lock(&ksm_mmlist_lock); 2522 slot = list_entry(mm_slot->slot.mm_node.next, 2523 struct mm_slot, mm_node); 2524 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2525 if (ksm_scan.address == 0) { 2526 /* 2527 * We've completed a full scan of all vmas, holding mmap_lock 2528 * throughout, and found no VM_MERGEABLE: so do the same as 2529 * __ksm_exit does to remove this mm from all our lists now. 2530 * This applies either when cleaning up after __ksm_exit 2531 * (but beware: we can reach here even before __ksm_exit), 2532 * or when all VM_MERGEABLE areas have been unmapped (and 2533 * mmap_lock then protects against race with MADV_MERGEABLE). 2534 */ 2535 hash_del(&mm_slot->slot.hash); 2536 list_del(&mm_slot->slot.mm_node); 2537 spin_unlock(&ksm_mmlist_lock); 2538 2539 mm_slot_free(mm_slot_cache, mm_slot); 2540 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2541 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2542 mmap_read_unlock(mm); 2543 mmdrop(mm); 2544 } else { 2545 mmap_read_unlock(mm); 2546 /* 2547 * mmap_read_unlock(mm) first because after 2548 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2549 * already have been freed under us by __ksm_exit() 2550 * because the "mm_slot" is still hashed and 2551 * ksm_scan.mm_slot doesn't point to it anymore. 2552 */ 2553 spin_unlock(&ksm_mmlist_lock); 2554 } 2555 2556 /* Repeat until we've completed scanning the whole list */ 2557 mm_slot = ksm_scan.mm_slot; 2558 if (mm_slot != &ksm_mm_head) 2559 goto next_mm; 2560 2561 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items); 2562 ksm_scan.seqnr++; 2563 return NULL; 2564 } 2565 2566 /** 2567 * ksm_do_scan - the ksm scanner main worker function. 2568 * @scan_npages: number of pages we want to scan before we return. 2569 */ 2570 static void ksm_do_scan(unsigned int scan_npages) 2571 { 2572 struct ksm_rmap_item *rmap_item; 2573 struct page *page; 2574 unsigned int npages = scan_npages; 2575 2576 while (npages-- && likely(!freezing(current))) { 2577 cond_resched(); 2578 rmap_item = scan_get_next_rmap_item(&page); 2579 if (!rmap_item) 2580 return; 2581 cmp_and_merge_page(page, rmap_item); 2582 put_page(page); 2583 } 2584 2585 ksm_pages_scanned += scan_npages - npages; 2586 } 2587 2588 static int ksmd_should_run(void) 2589 { 2590 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); 2591 } 2592 2593 static int ksm_scan_thread(void *nothing) 2594 { 2595 unsigned int sleep_ms; 2596 2597 set_freezable(); 2598 set_user_nice(current, 5); 2599 2600 while (!kthread_should_stop()) { 2601 mutex_lock(&ksm_thread_mutex); 2602 wait_while_offlining(); 2603 if (ksmd_should_run()) 2604 ksm_do_scan(ksm_thread_pages_to_scan); 2605 mutex_unlock(&ksm_thread_mutex); 2606 2607 try_to_freeze(); 2608 2609 if (ksmd_should_run()) { 2610 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2611 wait_event_interruptible_timeout(ksm_iter_wait, 2612 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2613 msecs_to_jiffies(sleep_ms)); 2614 } else { 2615 wait_event_freezable(ksm_thread_wait, 2616 ksmd_should_run() || kthread_should_stop()); 2617 } 2618 } 2619 return 0; 2620 } 2621 2622 static void __ksm_add_vma(struct vm_area_struct *vma) 2623 { 2624 unsigned long vm_flags = vma->vm_flags; 2625 2626 if (vm_flags & VM_MERGEABLE) 2627 return; 2628 2629 if (vma_ksm_compatible(vma)) 2630 vm_flags_set(vma, VM_MERGEABLE); 2631 } 2632 2633 static int __ksm_del_vma(struct vm_area_struct *vma) 2634 { 2635 int err; 2636 2637 if (!(vma->vm_flags & VM_MERGEABLE)) 2638 return 0; 2639 2640 if (vma->anon_vma) { 2641 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true); 2642 if (err) 2643 return err; 2644 } 2645 2646 vm_flags_clear(vma, VM_MERGEABLE); 2647 return 0; 2648 } 2649 /** 2650 * ksm_add_vma - Mark vma as mergeable if compatible 2651 * 2652 * @vma: Pointer to vma 2653 */ 2654 void ksm_add_vma(struct vm_area_struct *vma) 2655 { 2656 struct mm_struct *mm = vma->vm_mm; 2657 2658 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2659 __ksm_add_vma(vma); 2660 } 2661 2662 static void ksm_add_vmas(struct mm_struct *mm) 2663 { 2664 struct vm_area_struct *vma; 2665 2666 VMA_ITERATOR(vmi, mm, 0); 2667 for_each_vma(vmi, vma) 2668 __ksm_add_vma(vma); 2669 } 2670 2671 static int ksm_del_vmas(struct mm_struct *mm) 2672 { 2673 struct vm_area_struct *vma; 2674 int err; 2675 2676 VMA_ITERATOR(vmi, mm, 0); 2677 for_each_vma(vmi, vma) { 2678 err = __ksm_del_vma(vma); 2679 if (err) 2680 return err; 2681 } 2682 return 0; 2683 } 2684 2685 /** 2686 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all 2687 * compatible VMA's 2688 * 2689 * @mm: Pointer to mm 2690 * 2691 * Returns 0 on success, otherwise error code 2692 */ 2693 int ksm_enable_merge_any(struct mm_struct *mm) 2694 { 2695 int err; 2696 2697 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2698 return 0; 2699 2700 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2701 err = __ksm_enter(mm); 2702 if (err) 2703 return err; 2704 } 2705 2706 set_bit(MMF_VM_MERGE_ANY, &mm->flags); 2707 ksm_add_vmas(mm); 2708 2709 return 0; 2710 } 2711 2712 /** 2713 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm, 2714 * previously enabled via ksm_enable_merge_any(). 2715 * 2716 * Disabling merging implies unmerging any merged pages, like setting 2717 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and 2718 * merging on all compatible VMA's remains enabled. 2719 * 2720 * @mm: Pointer to mm 2721 * 2722 * Returns 0 on success, otherwise error code 2723 */ 2724 int ksm_disable_merge_any(struct mm_struct *mm) 2725 { 2726 int err; 2727 2728 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2729 return 0; 2730 2731 err = ksm_del_vmas(mm); 2732 if (err) { 2733 ksm_add_vmas(mm); 2734 return err; 2735 } 2736 2737 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2738 return 0; 2739 } 2740 2741 int ksm_disable(struct mm_struct *mm) 2742 { 2743 mmap_assert_write_locked(mm); 2744 2745 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) 2746 return 0; 2747 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2748 return ksm_disable_merge_any(mm); 2749 return ksm_del_vmas(mm); 2750 } 2751 2752 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2753 unsigned long end, int advice, unsigned long *vm_flags) 2754 { 2755 struct mm_struct *mm = vma->vm_mm; 2756 int err; 2757 2758 switch (advice) { 2759 case MADV_MERGEABLE: 2760 if (vma->vm_flags & VM_MERGEABLE) 2761 return 0; 2762 if (!vma_ksm_compatible(vma)) 2763 return 0; 2764 2765 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2766 err = __ksm_enter(mm); 2767 if (err) 2768 return err; 2769 } 2770 2771 *vm_flags |= VM_MERGEABLE; 2772 break; 2773 2774 case MADV_UNMERGEABLE: 2775 if (!(*vm_flags & VM_MERGEABLE)) 2776 return 0; /* just ignore the advice */ 2777 2778 if (vma->anon_vma) { 2779 err = unmerge_ksm_pages(vma, start, end, true); 2780 if (err) 2781 return err; 2782 } 2783 2784 *vm_flags &= ~VM_MERGEABLE; 2785 break; 2786 } 2787 2788 return 0; 2789 } 2790 EXPORT_SYMBOL_GPL(ksm_madvise); 2791 2792 int __ksm_enter(struct mm_struct *mm) 2793 { 2794 struct ksm_mm_slot *mm_slot; 2795 struct mm_slot *slot; 2796 int needs_wakeup; 2797 2798 mm_slot = mm_slot_alloc(mm_slot_cache); 2799 if (!mm_slot) 2800 return -ENOMEM; 2801 2802 slot = &mm_slot->slot; 2803 2804 /* Check ksm_run too? Would need tighter locking */ 2805 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); 2806 2807 spin_lock(&ksm_mmlist_lock); 2808 mm_slot_insert(mm_slots_hash, mm, slot); 2809 /* 2810 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2811 * insert just behind the scanning cursor, to let the area settle 2812 * down a little; when fork is followed by immediate exec, we don't 2813 * want ksmd to waste time setting up and tearing down an rmap_list. 2814 * 2815 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2816 * scanning cursor, otherwise KSM pages in newly forked mms will be 2817 * missed: then we might as well insert at the end of the list. 2818 */ 2819 if (ksm_run & KSM_RUN_UNMERGE) 2820 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); 2821 else 2822 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); 2823 spin_unlock(&ksm_mmlist_lock); 2824 2825 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2826 mmgrab(mm); 2827 2828 if (needs_wakeup) 2829 wake_up_interruptible(&ksm_thread_wait); 2830 2831 trace_ksm_enter(mm); 2832 return 0; 2833 } 2834 2835 void __ksm_exit(struct mm_struct *mm) 2836 { 2837 struct ksm_mm_slot *mm_slot; 2838 struct mm_slot *slot; 2839 int easy_to_free = 0; 2840 2841 /* 2842 * This process is exiting: if it's straightforward (as is the 2843 * case when ksmd was never running), free mm_slot immediately. 2844 * But if it's at the cursor or has rmap_items linked to it, use 2845 * mmap_lock to synchronize with any break_cows before pagetables 2846 * are freed, and leave the mm_slot on the list for ksmd to free. 2847 * Beware: ksm may already have noticed it exiting and freed the slot. 2848 */ 2849 2850 spin_lock(&ksm_mmlist_lock); 2851 slot = mm_slot_lookup(mm_slots_hash, mm); 2852 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2853 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2854 if (!mm_slot->rmap_list) { 2855 hash_del(&slot->hash); 2856 list_del(&slot->mm_node); 2857 easy_to_free = 1; 2858 } else { 2859 list_move(&slot->mm_node, 2860 &ksm_scan.mm_slot->slot.mm_node); 2861 } 2862 } 2863 spin_unlock(&ksm_mmlist_lock); 2864 2865 if (easy_to_free) { 2866 mm_slot_free(mm_slot_cache, mm_slot); 2867 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2868 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2869 mmdrop(mm); 2870 } else if (mm_slot) { 2871 mmap_write_lock(mm); 2872 mmap_write_unlock(mm); 2873 } 2874 2875 trace_ksm_exit(mm); 2876 } 2877 2878 struct page *ksm_might_need_to_copy(struct page *page, 2879 struct vm_area_struct *vma, unsigned long address) 2880 { 2881 struct folio *folio = page_folio(page); 2882 struct anon_vma *anon_vma = folio_anon_vma(folio); 2883 struct page *new_page; 2884 2885 if (PageKsm(page)) { 2886 if (page_stable_node(page) && 2887 !(ksm_run & KSM_RUN_UNMERGE)) 2888 return page; /* no need to copy it */ 2889 } else if (!anon_vma) { 2890 return page; /* no need to copy it */ 2891 } else if (page->index == linear_page_index(vma, address) && 2892 anon_vma->root == vma->anon_vma->root) { 2893 return page; /* still no need to copy it */ 2894 } 2895 if (PageHWPoison(page)) 2896 return ERR_PTR(-EHWPOISON); 2897 if (!PageUptodate(page)) 2898 return page; /* let do_swap_page report the error */ 2899 2900 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2901 if (new_page && 2902 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) { 2903 put_page(new_page); 2904 new_page = NULL; 2905 } 2906 if (new_page) { 2907 if (copy_mc_user_highpage(new_page, page, address, vma)) { 2908 put_page(new_page); 2909 memory_failure_queue(page_to_pfn(page), 0); 2910 return ERR_PTR(-EHWPOISON); 2911 } 2912 SetPageDirty(new_page); 2913 __SetPageUptodate(new_page); 2914 __SetPageLocked(new_page); 2915 #ifdef CONFIG_SWAP 2916 count_vm_event(KSM_SWPIN_COPY); 2917 #endif 2918 } 2919 2920 return new_page; 2921 } 2922 2923 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) 2924 { 2925 struct ksm_stable_node *stable_node; 2926 struct ksm_rmap_item *rmap_item; 2927 int search_new_forks = 0; 2928 2929 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 2930 2931 /* 2932 * Rely on the page lock to protect against concurrent modifications 2933 * to that page's node of the stable tree. 2934 */ 2935 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2936 2937 stable_node = folio_stable_node(folio); 2938 if (!stable_node) 2939 return; 2940 again: 2941 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2942 struct anon_vma *anon_vma = rmap_item->anon_vma; 2943 struct anon_vma_chain *vmac; 2944 struct vm_area_struct *vma; 2945 2946 cond_resched(); 2947 if (!anon_vma_trylock_read(anon_vma)) { 2948 if (rwc->try_lock) { 2949 rwc->contended = true; 2950 return; 2951 } 2952 anon_vma_lock_read(anon_vma); 2953 } 2954 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2955 0, ULONG_MAX) { 2956 unsigned long addr; 2957 2958 cond_resched(); 2959 vma = vmac->vma; 2960 2961 /* Ignore the stable/unstable/sqnr flags */ 2962 addr = rmap_item->address & PAGE_MASK; 2963 2964 if (addr < vma->vm_start || addr >= vma->vm_end) 2965 continue; 2966 /* 2967 * Initially we examine only the vma which covers this 2968 * rmap_item; but later, if there is still work to do, 2969 * we examine covering vmas in other mms: in case they 2970 * were forked from the original since ksmd passed. 2971 */ 2972 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2973 continue; 2974 2975 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2976 continue; 2977 2978 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 2979 anon_vma_unlock_read(anon_vma); 2980 return; 2981 } 2982 if (rwc->done && rwc->done(folio)) { 2983 anon_vma_unlock_read(anon_vma); 2984 return; 2985 } 2986 } 2987 anon_vma_unlock_read(anon_vma); 2988 } 2989 if (!search_new_forks++) 2990 goto again; 2991 } 2992 2993 #ifdef CONFIG_MEMORY_FAILURE 2994 /* 2995 * Collect processes when the error hit an ksm page. 2996 */ 2997 void collect_procs_ksm(struct page *page, struct list_head *to_kill, 2998 int force_early) 2999 { 3000 struct ksm_stable_node *stable_node; 3001 struct ksm_rmap_item *rmap_item; 3002 struct folio *folio = page_folio(page); 3003 struct vm_area_struct *vma; 3004 struct task_struct *tsk; 3005 3006 stable_node = folio_stable_node(folio); 3007 if (!stable_node) 3008 return; 3009 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 3010 struct anon_vma *av = rmap_item->anon_vma; 3011 3012 anon_vma_lock_read(av); 3013 rcu_read_lock(); 3014 for_each_process(tsk) { 3015 struct anon_vma_chain *vmac; 3016 unsigned long addr; 3017 struct task_struct *t = 3018 task_early_kill(tsk, force_early); 3019 if (!t) 3020 continue; 3021 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0, 3022 ULONG_MAX) 3023 { 3024 vma = vmac->vma; 3025 if (vma->vm_mm == t->mm) { 3026 addr = rmap_item->address & PAGE_MASK; 3027 add_to_kill_ksm(t, page, vma, to_kill, 3028 addr); 3029 } 3030 } 3031 } 3032 rcu_read_unlock(); 3033 anon_vma_unlock_read(av); 3034 } 3035 } 3036 #endif 3037 3038 #ifdef CONFIG_MIGRATION 3039 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 3040 { 3041 struct ksm_stable_node *stable_node; 3042 3043 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3044 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 3045 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 3046 3047 stable_node = folio_stable_node(folio); 3048 if (stable_node) { 3049 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 3050 stable_node->kpfn = folio_pfn(newfolio); 3051 /* 3052 * newfolio->mapping was set in advance; now we need smp_wmb() 3053 * to make sure that the new stable_node->kpfn is visible 3054 * to get_ksm_page() before it can see that folio->mapping 3055 * has gone stale (or that folio_test_swapcache has been cleared). 3056 */ 3057 smp_wmb(); 3058 set_page_stable_node(&folio->page, NULL); 3059 } 3060 } 3061 #endif /* CONFIG_MIGRATION */ 3062 3063 #ifdef CONFIG_MEMORY_HOTREMOVE 3064 static void wait_while_offlining(void) 3065 { 3066 while (ksm_run & KSM_RUN_OFFLINE) { 3067 mutex_unlock(&ksm_thread_mutex); 3068 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 3069 TASK_UNINTERRUPTIBLE); 3070 mutex_lock(&ksm_thread_mutex); 3071 } 3072 } 3073 3074 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, 3075 unsigned long start_pfn, 3076 unsigned long end_pfn) 3077 { 3078 if (stable_node->kpfn >= start_pfn && 3079 stable_node->kpfn < end_pfn) { 3080 /* 3081 * Don't get_ksm_page, page has already gone: 3082 * which is why we keep kpfn instead of page* 3083 */ 3084 remove_node_from_stable_tree(stable_node); 3085 return true; 3086 } 3087 return false; 3088 } 3089 3090 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, 3091 unsigned long start_pfn, 3092 unsigned long end_pfn, 3093 struct rb_root *root) 3094 { 3095 struct ksm_stable_node *dup; 3096 struct hlist_node *hlist_safe; 3097 3098 if (!is_stable_node_chain(stable_node)) { 3099 VM_BUG_ON(is_stable_node_dup(stable_node)); 3100 return stable_node_dup_remove_range(stable_node, start_pfn, 3101 end_pfn); 3102 } 3103 3104 hlist_for_each_entry_safe(dup, hlist_safe, 3105 &stable_node->hlist, hlist_dup) { 3106 VM_BUG_ON(!is_stable_node_dup(dup)); 3107 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 3108 } 3109 if (hlist_empty(&stable_node->hlist)) { 3110 free_stable_node_chain(stable_node, root); 3111 return true; /* notify caller that tree was rebalanced */ 3112 } else 3113 return false; 3114 } 3115 3116 static void ksm_check_stable_tree(unsigned long start_pfn, 3117 unsigned long end_pfn) 3118 { 3119 struct ksm_stable_node *stable_node, *next; 3120 struct rb_node *node; 3121 int nid; 3122 3123 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 3124 node = rb_first(root_stable_tree + nid); 3125 while (node) { 3126 stable_node = rb_entry(node, struct ksm_stable_node, node); 3127 if (stable_node_chain_remove_range(stable_node, 3128 start_pfn, end_pfn, 3129 root_stable_tree + 3130 nid)) 3131 node = rb_first(root_stable_tree + nid); 3132 else 3133 node = rb_next(node); 3134 cond_resched(); 3135 } 3136 } 3137 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 3138 if (stable_node->kpfn >= start_pfn && 3139 stable_node->kpfn < end_pfn) 3140 remove_node_from_stable_tree(stable_node); 3141 cond_resched(); 3142 } 3143 } 3144 3145 static int ksm_memory_callback(struct notifier_block *self, 3146 unsigned long action, void *arg) 3147 { 3148 struct memory_notify *mn = arg; 3149 3150 switch (action) { 3151 case MEM_GOING_OFFLINE: 3152 /* 3153 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 3154 * and remove_all_stable_nodes() while memory is going offline: 3155 * it is unsafe for them to touch the stable tree at this time. 3156 * But unmerge_ksm_pages(), rmap lookups and other entry points 3157 * which do not need the ksm_thread_mutex are all safe. 3158 */ 3159 mutex_lock(&ksm_thread_mutex); 3160 ksm_run |= KSM_RUN_OFFLINE; 3161 mutex_unlock(&ksm_thread_mutex); 3162 break; 3163 3164 case MEM_OFFLINE: 3165 /* 3166 * Most of the work is done by page migration; but there might 3167 * be a few stable_nodes left over, still pointing to struct 3168 * pages which have been offlined: prune those from the tree, 3169 * otherwise get_ksm_page() might later try to access a 3170 * non-existent struct page. 3171 */ 3172 ksm_check_stable_tree(mn->start_pfn, 3173 mn->start_pfn + mn->nr_pages); 3174 fallthrough; 3175 case MEM_CANCEL_OFFLINE: 3176 mutex_lock(&ksm_thread_mutex); 3177 ksm_run &= ~KSM_RUN_OFFLINE; 3178 mutex_unlock(&ksm_thread_mutex); 3179 3180 smp_mb(); /* wake_up_bit advises this */ 3181 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 3182 break; 3183 } 3184 return NOTIFY_OK; 3185 } 3186 #else 3187 static void wait_while_offlining(void) 3188 { 3189 } 3190 #endif /* CONFIG_MEMORY_HOTREMOVE */ 3191 3192 #ifdef CONFIG_PROC_FS 3193 long ksm_process_profit(struct mm_struct *mm) 3194 { 3195 return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE - 3196 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item); 3197 } 3198 #endif /* CONFIG_PROC_FS */ 3199 3200 #ifdef CONFIG_SYSFS 3201 /* 3202 * This all compiles without CONFIG_SYSFS, but is a waste of space. 3203 */ 3204 3205 #define KSM_ATTR_RO(_name) \ 3206 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3207 #define KSM_ATTR(_name) \ 3208 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3209 3210 static ssize_t sleep_millisecs_show(struct kobject *kobj, 3211 struct kobj_attribute *attr, char *buf) 3212 { 3213 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 3214 } 3215 3216 static ssize_t sleep_millisecs_store(struct kobject *kobj, 3217 struct kobj_attribute *attr, 3218 const char *buf, size_t count) 3219 { 3220 unsigned int msecs; 3221 int err; 3222 3223 err = kstrtouint(buf, 10, &msecs); 3224 if (err) 3225 return -EINVAL; 3226 3227 ksm_thread_sleep_millisecs = msecs; 3228 wake_up_interruptible(&ksm_iter_wait); 3229 3230 return count; 3231 } 3232 KSM_ATTR(sleep_millisecs); 3233 3234 static ssize_t pages_to_scan_show(struct kobject *kobj, 3235 struct kobj_attribute *attr, char *buf) 3236 { 3237 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 3238 } 3239 3240 static ssize_t pages_to_scan_store(struct kobject *kobj, 3241 struct kobj_attribute *attr, 3242 const char *buf, size_t count) 3243 { 3244 unsigned int nr_pages; 3245 int err; 3246 3247 err = kstrtouint(buf, 10, &nr_pages); 3248 if (err) 3249 return -EINVAL; 3250 3251 ksm_thread_pages_to_scan = nr_pages; 3252 3253 return count; 3254 } 3255 KSM_ATTR(pages_to_scan); 3256 3257 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 3258 char *buf) 3259 { 3260 return sysfs_emit(buf, "%lu\n", ksm_run); 3261 } 3262 3263 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 3264 const char *buf, size_t count) 3265 { 3266 unsigned int flags; 3267 int err; 3268 3269 err = kstrtouint(buf, 10, &flags); 3270 if (err) 3271 return -EINVAL; 3272 if (flags > KSM_RUN_UNMERGE) 3273 return -EINVAL; 3274 3275 /* 3276 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 3277 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 3278 * breaking COW to free the pages_shared (but leaves mm_slots 3279 * on the list for when ksmd may be set running again). 3280 */ 3281 3282 mutex_lock(&ksm_thread_mutex); 3283 wait_while_offlining(); 3284 if (ksm_run != flags) { 3285 ksm_run = flags; 3286 if (flags & KSM_RUN_UNMERGE) { 3287 set_current_oom_origin(); 3288 err = unmerge_and_remove_all_rmap_items(); 3289 clear_current_oom_origin(); 3290 if (err) { 3291 ksm_run = KSM_RUN_STOP; 3292 count = err; 3293 } 3294 } 3295 } 3296 mutex_unlock(&ksm_thread_mutex); 3297 3298 if (flags & KSM_RUN_MERGE) 3299 wake_up_interruptible(&ksm_thread_wait); 3300 3301 return count; 3302 } 3303 KSM_ATTR(run); 3304 3305 #ifdef CONFIG_NUMA 3306 static ssize_t merge_across_nodes_show(struct kobject *kobj, 3307 struct kobj_attribute *attr, char *buf) 3308 { 3309 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 3310 } 3311 3312 static ssize_t merge_across_nodes_store(struct kobject *kobj, 3313 struct kobj_attribute *attr, 3314 const char *buf, size_t count) 3315 { 3316 int err; 3317 unsigned long knob; 3318 3319 err = kstrtoul(buf, 10, &knob); 3320 if (err) 3321 return err; 3322 if (knob > 1) 3323 return -EINVAL; 3324 3325 mutex_lock(&ksm_thread_mutex); 3326 wait_while_offlining(); 3327 if (ksm_merge_across_nodes != knob) { 3328 if (ksm_pages_shared || remove_all_stable_nodes()) 3329 err = -EBUSY; 3330 else if (root_stable_tree == one_stable_tree) { 3331 struct rb_root *buf; 3332 /* 3333 * This is the first time that we switch away from the 3334 * default of merging across nodes: must now allocate 3335 * a buffer to hold as many roots as may be needed. 3336 * Allocate stable and unstable together: 3337 * MAXSMP NODES_SHIFT 10 will use 16kB. 3338 */ 3339 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 3340 GFP_KERNEL); 3341 /* Let us assume that RB_ROOT is NULL is zero */ 3342 if (!buf) 3343 err = -ENOMEM; 3344 else { 3345 root_stable_tree = buf; 3346 root_unstable_tree = buf + nr_node_ids; 3347 /* Stable tree is empty but not the unstable */ 3348 root_unstable_tree[0] = one_unstable_tree[0]; 3349 } 3350 } 3351 if (!err) { 3352 ksm_merge_across_nodes = knob; 3353 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3354 } 3355 } 3356 mutex_unlock(&ksm_thread_mutex); 3357 3358 return err ? err : count; 3359 } 3360 KSM_ATTR(merge_across_nodes); 3361 #endif 3362 3363 static ssize_t use_zero_pages_show(struct kobject *kobj, 3364 struct kobj_attribute *attr, char *buf) 3365 { 3366 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 3367 } 3368 static ssize_t use_zero_pages_store(struct kobject *kobj, 3369 struct kobj_attribute *attr, 3370 const char *buf, size_t count) 3371 { 3372 int err; 3373 bool value; 3374 3375 err = kstrtobool(buf, &value); 3376 if (err) 3377 return -EINVAL; 3378 3379 ksm_use_zero_pages = value; 3380 3381 return count; 3382 } 3383 KSM_ATTR(use_zero_pages); 3384 3385 static ssize_t max_page_sharing_show(struct kobject *kobj, 3386 struct kobj_attribute *attr, char *buf) 3387 { 3388 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3389 } 3390 3391 static ssize_t max_page_sharing_store(struct kobject *kobj, 3392 struct kobj_attribute *attr, 3393 const char *buf, size_t count) 3394 { 3395 int err; 3396 int knob; 3397 3398 err = kstrtoint(buf, 10, &knob); 3399 if (err) 3400 return err; 3401 /* 3402 * When a KSM page is created it is shared by 2 mappings. This 3403 * being a signed comparison, it implicitly verifies it's not 3404 * negative. 3405 */ 3406 if (knob < 2) 3407 return -EINVAL; 3408 3409 if (READ_ONCE(ksm_max_page_sharing) == knob) 3410 return count; 3411 3412 mutex_lock(&ksm_thread_mutex); 3413 wait_while_offlining(); 3414 if (ksm_max_page_sharing != knob) { 3415 if (ksm_pages_shared || remove_all_stable_nodes()) 3416 err = -EBUSY; 3417 else 3418 ksm_max_page_sharing = knob; 3419 } 3420 mutex_unlock(&ksm_thread_mutex); 3421 3422 return err ? err : count; 3423 } 3424 KSM_ATTR(max_page_sharing); 3425 3426 static ssize_t pages_scanned_show(struct kobject *kobj, 3427 struct kobj_attribute *attr, char *buf) 3428 { 3429 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned); 3430 } 3431 KSM_ATTR_RO(pages_scanned); 3432 3433 static ssize_t pages_shared_show(struct kobject *kobj, 3434 struct kobj_attribute *attr, char *buf) 3435 { 3436 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3437 } 3438 KSM_ATTR_RO(pages_shared); 3439 3440 static ssize_t pages_sharing_show(struct kobject *kobj, 3441 struct kobj_attribute *attr, char *buf) 3442 { 3443 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3444 } 3445 KSM_ATTR_RO(pages_sharing); 3446 3447 static ssize_t pages_unshared_show(struct kobject *kobj, 3448 struct kobj_attribute *attr, char *buf) 3449 { 3450 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3451 } 3452 KSM_ATTR_RO(pages_unshared); 3453 3454 static ssize_t pages_volatile_show(struct kobject *kobj, 3455 struct kobj_attribute *attr, char *buf) 3456 { 3457 long ksm_pages_volatile; 3458 3459 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3460 - ksm_pages_sharing - ksm_pages_unshared; 3461 /* 3462 * It was not worth any locking to calculate that statistic, 3463 * but it might therefore sometimes be negative: conceal that. 3464 */ 3465 if (ksm_pages_volatile < 0) 3466 ksm_pages_volatile = 0; 3467 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3468 } 3469 KSM_ATTR_RO(pages_volatile); 3470 3471 static ssize_t pages_skipped_show(struct kobject *kobj, 3472 struct kobj_attribute *attr, char *buf) 3473 { 3474 return sysfs_emit(buf, "%lu\n", ksm_pages_skipped); 3475 } 3476 KSM_ATTR_RO(pages_skipped); 3477 3478 static ssize_t ksm_zero_pages_show(struct kobject *kobj, 3479 struct kobj_attribute *attr, char *buf) 3480 { 3481 return sysfs_emit(buf, "%ld\n", ksm_zero_pages); 3482 } 3483 KSM_ATTR_RO(ksm_zero_pages); 3484 3485 static ssize_t general_profit_show(struct kobject *kobj, 3486 struct kobj_attribute *attr, char *buf) 3487 { 3488 long general_profit; 3489 3490 general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE - 3491 ksm_rmap_items * sizeof(struct ksm_rmap_item); 3492 3493 return sysfs_emit(buf, "%ld\n", general_profit); 3494 } 3495 KSM_ATTR_RO(general_profit); 3496 3497 static ssize_t stable_node_dups_show(struct kobject *kobj, 3498 struct kobj_attribute *attr, char *buf) 3499 { 3500 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3501 } 3502 KSM_ATTR_RO(stable_node_dups); 3503 3504 static ssize_t stable_node_chains_show(struct kobject *kobj, 3505 struct kobj_attribute *attr, char *buf) 3506 { 3507 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3508 } 3509 KSM_ATTR_RO(stable_node_chains); 3510 3511 static ssize_t 3512 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3513 struct kobj_attribute *attr, 3514 char *buf) 3515 { 3516 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3517 } 3518 3519 static ssize_t 3520 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3521 struct kobj_attribute *attr, 3522 const char *buf, size_t count) 3523 { 3524 unsigned int msecs; 3525 int err; 3526 3527 err = kstrtouint(buf, 10, &msecs); 3528 if (err) 3529 return -EINVAL; 3530 3531 ksm_stable_node_chains_prune_millisecs = msecs; 3532 3533 return count; 3534 } 3535 KSM_ATTR(stable_node_chains_prune_millisecs); 3536 3537 static ssize_t full_scans_show(struct kobject *kobj, 3538 struct kobj_attribute *attr, char *buf) 3539 { 3540 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3541 } 3542 KSM_ATTR_RO(full_scans); 3543 3544 static ssize_t smart_scan_show(struct kobject *kobj, 3545 struct kobj_attribute *attr, char *buf) 3546 { 3547 return sysfs_emit(buf, "%u\n", ksm_smart_scan); 3548 } 3549 3550 static ssize_t smart_scan_store(struct kobject *kobj, 3551 struct kobj_attribute *attr, 3552 const char *buf, size_t count) 3553 { 3554 int err; 3555 bool value; 3556 3557 err = kstrtobool(buf, &value); 3558 if (err) 3559 return -EINVAL; 3560 3561 ksm_smart_scan = value; 3562 return count; 3563 } 3564 KSM_ATTR(smart_scan); 3565 3566 static struct attribute *ksm_attrs[] = { 3567 &sleep_millisecs_attr.attr, 3568 &pages_to_scan_attr.attr, 3569 &run_attr.attr, 3570 &pages_scanned_attr.attr, 3571 &pages_shared_attr.attr, 3572 &pages_sharing_attr.attr, 3573 &pages_unshared_attr.attr, 3574 &pages_volatile_attr.attr, 3575 &pages_skipped_attr.attr, 3576 &ksm_zero_pages_attr.attr, 3577 &full_scans_attr.attr, 3578 #ifdef CONFIG_NUMA 3579 &merge_across_nodes_attr.attr, 3580 #endif 3581 &max_page_sharing_attr.attr, 3582 &stable_node_chains_attr.attr, 3583 &stable_node_dups_attr.attr, 3584 &stable_node_chains_prune_millisecs_attr.attr, 3585 &use_zero_pages_attr.attr, 3586 &general_profit_attr.attr, 3587 &smart_scan_attr.attr, 3588 NULL, 3589 }; 3590 3591 static const struct attribute_group ksm_attr_group = { 3592 .attrs = ksm_attrs, 3593 .name = "ksm", 3594 }; 3595 #endif /* CONFIG_SYSFS */ 3596 3597 static int __init ksm_init(void) 3598 { 3599 struct task_struct *ksm_thread; 3600 int err; 3601 3602 /* The correct value depends on page size and endianness */ 3603 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3604 /* Default to false for backwards compatibility */ 3605 ksm_use_zero_pages = false; 3606 3607 err = ksm_slab_init(); 3608 if (err) 3609 goto out; 3610 3611 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3612 if (IS_ERR(ksm_thread)) { 3613 pr_err("ksm: creating kthread failed\n"); 3614 err = PTR_ERR(ksm_thread); 3615 goto out_free; 3616 } 3617 3618 #ifdef CONFIG_SYSFS 3619 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3620 if (err) { 3621 pr_err("ksm: register sysfs failed\n"); 3622 kthread_stop(ksm_thread); 3623 goto out_free; 3624 } 3625 #else 3626 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3627 3628 #endif /* CONFIG_SYSFS */ 3629 3630 #ifdef CONFIG_MEMORY_HOTREMOVE 3631 /* There is no significance to this priority 100 */ 3632 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI); 3633 #endif 3634 return 0; 3635 3636 out_free: 3637 ksm_slab_free(); 3638 out: 3639 return err; 3640 } 3641 subsys_initcall(ksm_init); 3642