xref: /linux/mm/ksm.c (revision c2dfe29f30d8850af324449f416491b171af19aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43 
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50 
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)		(x)
53 #define DO_NUMA(x)	do { (x); } while (0)
54 #else
55 #define NUMA(x)		(0)
56 #define DO_NUMA(x)	do { } while (0)
57 #endif
58 
59 typedef u8 rmap_age_t;
60 
61 /**
62  * DOC: Overview
63  *
64  * A few notes about the KSM scanning process,
65  * to make it easier to understand the data structures below:
66  *
67  * In order to reduce excessive scanning, KSM sorts the memory pages by their
68  * contents into a data structure that holds pointers to the pages' locations.
69  *
70  * Since the contents of the pages may change at any moment, KSM cannot just
71  * insert the pages into a normal sorted tree and expect it to find anything.
72  * Therefore KSM uses two data structures - the stable and the unstable tree.
73  *
74  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
75  * by their contents.  Because each such page is write-protected, searching on
76  * this tree is fully assured to be working (except when pages are unmapped),
77  * and therefore this tree is called the stable tree.
78  *
79  * The stable tree node includes information required for reverse
80  * mapping from a KSM page to virtual addresses that map this page.
81  *
82  * In order to avoid large latencies of the rmap walks on KSM pages,
83  * KSM maintains two types of nodes in the stable tree:
84  *
85  * * the regular nodes that keep the reverse mapping structures in a
86  *   linked list
87  * * the "chains" that link nodes ("dups") that represent the same
88  *   write protected memory content, but each "dup" corresponds to a
89  *   different KSM page copy of that content
90  *
91  * Internally, the regular nodes, "dups" and "chains" are represented
92  * using the same struct ksm_stable_node structure.
93  *
94  * In addition to the stable tree, KSM uses a second data structure called the
95  * unstable tree: this tree holds pointers to pages which have been found to
96  * be "unchanged for a period of time".  The unstable tree sorts these pages
97  * by their contents, but since they are not write-protected, KSM cannot rely
98  * upon the unstable tree to work correctly - the unstable tree is liable to
99  * be corrupted as its contents are modified, and so it is called unstable.
100  *
101  * KSM solves this problem by several techniques:
102  *
103  * 1) The unstable tree is flushed every time KSM completes scanning all
104  *    memory areas, and then the tree is rebuilt again from the beginning.
105  * 2) KSM will only insert into the unstable tree, pages whose hash value
106  *    has not changed since the previous scan of all memory areas.
107  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
108  *    colors of the nodes and not on their contents, assuring that even when
109  *    the tree gets "corrupted" it won't get out of balance, so scanning time
110  *    remains the same (also, searching and inserting nodes in an rbtree uses
111  *    the same algorithm, so we have no overhead when we flush and rebuild).
112  * 4) KSM never flushes the stable tree, which means that even if it were to
113  *    take 10 attempts to find a page in the unstable tree, once it is found,
114  *    it is secured in the stable tree.  (When we scan a new page, we first
115  *    compare it against the stable tree, and then against the unstable tree.)
116  *
117  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
118  * stable trees and multiple unstable trees: one of each for each NUMA node.
119  */
120 
121 /**
122  * struct ksm_mm_slot - ksm information per mm that is being scanned
123  * @slot: hash lookup from mm to mm_slot
124  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
125  */
126 struct ksm_mm_slot {
127 	struct mm_slot slot;
128 	struct ksm_rmap_item *rmap_list;
129 };
130 
131 /**
132  * struct ksm_scan - cursor for scanning
133  * @mm_slot: the current mm_slot we are scanning
134  * @address: the next address inside that to be scanned
135  * @rmap_list: link to the next rmap to be scanned in the rmap_list
136  * @seqnr: count of completed full scans (needed when removing unstable node)
137  *
138  * There is only the one ksm_scan instance of this cursor structure.
139  */
140 struct ksm_scan {
141 	struct ksm_mm_slot *mm_slot;
142 	unsigned long address;
143 	struct ksm_rmap_item **rmap_list;
144 	unsigned long seqnr;
145 };
146 
147 /**
148  * struct ksm_stable_node - node of the stable rbtree
149  * @node: rb node of this ksm page in the stable tree
150  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
151  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
152  * @list: linked into migrate_nodes, pending placement in the proper node tree
153  * @hlist: hlist head of rmap_items using this ksm page
154  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
155  * @chain_prune_time: time of the last full garbage collection
156  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
157  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
158  */
159 struct ksm_stable_node {
160 	union {
161 		struct rb_node node;	/* when node of stable tree */
162 		struct {		/* when listed for migration */
163 			struct list_head *head;
164 			struct {
165 				struct hlist_node hlist_dup;
166 				struct list_head list;
167 			};
168 		};
169 	};
170 	struct hlist_head hlist;
171 	union {
172 		unsigned long kpfn;
173 		unsigned long chain_prune_time;
174 	};
175 	/*
176 	 * STABLE_NODE_CHAIN can be any negative number in
177 	 * rmap_hlist_len negative range, but better not -1 to be able
178 	 * to reliably detect underflows.
179 	 */
180 #define STABLE_NODE_CHAIN -1024
181 	int rmap_hlist_len;
182 #ifdef CONFIG_NUMA
183 	int nid;
184 #endif
185 };
186 
187 /**
188  * struct ksm_rmap_item - reverse mapping item for virtual addresses
189  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
190  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
191  * @nid: NUMA node id of unstable tree in which linked (may not match page)
192  * @mm: the memory structure this rmap_item is pointing into
193  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
194  * @oldchecksum: previous checksum of the page at that virtual address
195  * @node: rb node of this rmap_item in the unstable tree
196  * @head: pointer to stable_node heading this list in the stable tree
197  * @hlist: link into hlist of rmap_items hanging off that stable_node
198  * @age: number of scan iterations since creation
199  * @remaining_skips: how many scans to skip
200  */
201 struct ksm_rmap_item {
202 	struct ksm_rmap_item *rmap_list;
203 	union {
204 		struct anon_vma *anon_vma;	/* when stable */
205 #ifdef CONFIG_NUMA
206 		int nid;		/* when node of unstable tree */
207 #endif
208 	};
209 	struct mm_struct *mm;
210 	unsigned long address;		/* + low bits used for flags below */
211 	unsigned int oldchecksum;	/* when unstable */
212 	rmap_age_t age;
213 	rmap_age_t remaining_skips;
214 	union {
215 		struct rb_node node;	/* when node of unstable tree */
216 		struct {		/* when listed from stable tree */
217 			struct ksm_stable_node *head;
218 			struct hlist_node hlist;
219 		};
220 	};
221 };
222 
223 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
224 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
225 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
226 
227 /* The stable and unstable tree heads */
228 static struct rb_root one_stable_tree[1] = { RB_ROOT };
229 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
230 static struct rb_root *root_stable_tree = one_stable_tree;
231 static struct rb_root *root_unstable_tree = one_unstable_tree;
232 
233 /* Recently migrated nodes of stable tree, pending proper placement */
234 static LIST_HEAD(migrate_nodes);
235 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
236 
237 #define MM_SLOTS_HASH_BITS 10
238 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
239 
240 static struct ksm_mm_slot ksm_mm_head = {
241 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
242 };
243 static struct ksm_scan ksm_scan = {
244 	.mm_slot = &ksm_mm_head,
245 };
246 
247 static struct kmem_cache *rmap_item_cache;
248 static struct kmem_cache *stable_node_cache;
249 static struct kmem_cache *mm_slot_cache;
250 
251 /* The number of pages scanned */
252 static unsigned long ksm_pages_scanned;
253 
254 /* The number of nodes in the stable tree */
255 static unsigned long ksm_pages_shared;
256 
257 /* The number of page slots additionally sharing those nodes */
258 static unsigned long ksm_pages_sharing;
259 
260 /* The number of nodes in the unstable tree */
261 static unsigned long ksm_pages_unshared;
262 
263 /* The number of rmap_items in use: to calculate pages_volatile */
264 static unsigned long ksm_rmap_items;
265 
266 /* The number of stable_node chains */
267 static unsigned long ksm_stable_node_chains;
268 
269 /* The number of stable_node dups linked to the stable_node chains */
270 static unsigned long ksm_stable_node_dups;
271 
272 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
273 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
274 
275 /* Maximum number of page slots sharing a stable node */
276 static int ksm_max_page_sharing = 256;
277 
278 /* Number of pages ksmd should scan in one batch */
279 static unsigned int ksm_thread_pages_to_scan = 100;
280 
281 /* Milliseconds ksmd should sleep between batches */
282 static unsigned int ksm_thread_sleep_millisecs = 20;
283 
284 /* Checksum of an empty (zeroed) page */
285 static unsigned int zero_checksum __read_mostly;
286 
287 /* Whether to merge empty (zeroed) pages with actual zero pages */
288 static bool ksm_use_zero_pages __read_mostly;
289 
290 /* Skip pages that couldn't be de-duplicated previously */
291 /* Default to true at least temporarily, for testing */
292 static bool ksm_smart_scan = true;
293 
294 /* The number of zero pages which is placed by KSM */
295 unsigned long ksm_zero_pages;
296 
297 /* The number of pages that have been skipped due to "smart scanning" */
298 static unsigned long ksm_pages_skipped;
299 
300 #ifdef CONFIG_NUMA
301 /* Zeroed when merging across nodes is not allowed */
302 static unsigned int ksm_merge_across_nodes = 1;
303 static int ksm_nr_node_ids = 1;
304 #else
305 #define ksm_merge_across_nodes	1U
306 #define ksm_nr_node_ids		1
307 #endif
308 
309 #define KSM_RUN_STOP	0
310 #define KSM_RUN_MERGE	1
311 #define KSM_RUN_UNMERGE	2
312 #define KSM_RUN_OFFLINE	4
313 static unsigned long ksm_run = KSM_RUN_STOP;
314 static void wait_while_offlining(void);
315 
316 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
317 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
318 static DEFINE_MUTEX(ksm_thread_mutex);
319 static DEFINE_SPINLOCK(ksm_mmlist_lock);
320 
321 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
322 		sizeof(struct __struct), __alignof__(struct __struct),\
323 		(__flags), NULL)
324 
325 static int __init ksm_slab_init(void)
326 {
327 	rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
328 	if (!rmap_item_cache)
329 		goto out;
330 
331 	stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
332 	if (!stable_node_cache)
333 		goto out_free1;
334 
335 	mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
336 	if (!mm_slot_cache)
337 		goto out_free2;
338 
339 	return 0;
340 
341 out_free2:
342 	kmem_cache_destroy(stable_node_cache);
343 out_free1:
344 	kmem_cache_destroy(rmap_item_cache);
345 out:
346 	return -ENOMEM;
347 }
348 
349 static void __init ksm_slab_free(void)
350 {
351 	kmem_cache_destroy(mm_slot_cache);
352 	kmem_cache_destroy(stable_node_cache);
353 	kmem_cache_destroy(rmap_item_cache);
354 	mm_slot_cache = NULL;
355 }
356 
357 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
358 {
359 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
360 }
361 
362 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
363 {
364 	return dup->head == STABLE_NODE_DUP_HEAD;
365 }
366 
367 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
368 					     struct ksm_stable_node *chain)
369 {
370 	VM_BUG_ON(is_stable_node_dup(dup));
371 	dup->head = STABLE_NODE_DUP_HEAD;
372 	VM_BUG_ON(!is_stable_node_chain(chain));
373 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
374 	ksm_stable_node_dups++;
375 }
376 
377 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
378 {
379 	VM_BUG_ON(!is_stable_node_dup(dup));
380 	hlist_del(&dup->hlist_dup);
381 	ksm_stable_node_dups--;
382 }
383 
384 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
385 {
386 	VM_BUG_ON(is_stable_node_chain(dup));
387 	if (is_stable_node_dup(dup))
388 		__stable_node_dup_del(dup);
389 	else
390 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
391 #ifdef CONFIG_DEBUG_VM
392 	dup->head = NULL;
393 #endif
394 }
395 
396 static inline struct ksm_rmap_item *alloc_rmap_item(void)
397 {
398 	struct ksm_rmap_item *rmap_item;
399 
400 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
401 						__GFP_NORETRY | __GFP_NOWARN);
402 	if (rmap_item)
403 		ksm_rmap_items++;
404 	return rmap_item;
405 }
406 
407 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
408 {
409 	ksm_rmap_items--;
410 	rmap_item->mm->ksm_rmap_items--;
411 	rmap_item->mm = NULL;	/* debug safety */
412 	kmem_cache_free(rmap_item_cache, rmap_item);
413 }
414 
415 static inline struct ksm_stable_node *alloc_stable_node(void)
416 {
417 	/*
418 	 * The allocation can take too long with GFP_KERNEL when memory is under
419 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
420 	 * grants access to memory reserves, helping to avoid this problem.
421 	 */
422 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
423 }
424 
425 static inline void free_stable_node(struct ksm_stable_node *stable_node)
426 {
427 	VM_BUG_ON(stable_node->rmap_hlist_len &&
428 		  !is_stable_node_chain(stable_node));
429 	kmem_cache_free(stable_node_cache, stable_node);
430 }
431 
432 /*
433  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
434  * page tables after it has passed through ksm_exit() - which, if necessary,
435  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
436  * a special flag: they can just back out as soon as mm_users goes to zero.
437  * ksm_test_exit() is used throughout to make this test for exit: in some
438  * places for correctness, in some places just to avoid unnecessary work.
439  */
440 static inline bool ksm_test_exit(struct mm_struct *mm)
441 {
442 	return atomic_read(&mm->mm_users) == 0;
443 }
444 
445 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
446 			struct mm_walk *walk)
447 {
448 	struct page *page = NULL;
449 	spinlock_t *ptl;
450 	pte_t *pte;
451 	pte_t ptent;
452 	int ret;
453 
454 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
455 	if (!pte)
456 		return 0;
457 	ptent = ptep_get(pte);
458 	if (pte_present(ptent)) {
459 		page = vm_normal_page(walk->vma, addr, ptent);
460 	} else if (!pte_none(ptent)) {
461 		swp_entry_t entry = pte_to_swp_entry(ptent);
462 
463 		/*
464 		 * As KSM pages remain KSM pages until freed, no need to wait
465 		 * here for migration to end.
466 		 */
467 		if (is_migration_entry(entry))
468 			page = pfn_swap_entry_to_page(entry);
469 	}
470 	/* return 1 if the page is an normal ksm page or KSM-placed zero page */
471 	ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent);
472 	pte_unmap_unlock(pte, ptl);
473 	return ret;
474 }
475 
476 static const struct mm_walk_ops break_ksm_ops = {
477 	.pmd_entry = break_ksm_pmd_entry,
478 	.walk_lock = PGWALK_RDLOCK,
479 };
480 
481 static const struct mm_walk_ops break_ksm_lock_vma_ops = {
482 	.pmd_entry = break_ksm_pmd_entry,
483 	.walk_lock = PGWALK_WRLOCK,
484 };
485 
486 /*
487  * We use break_ksm to break COW on a ksm page by triggering unsharing,
488  * such that the ksm page will get replaced by an exclusive anonymous page.
489  *
490  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
491  * in case the application has unmapped and remapped mm,addr meanwhile.
492  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
493  * mmap of /dev/mem, where we would not want to touch it.
494  *
495  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
496  * of the process that owns 'vma'.  We also do not want to enforce
497  * protection keys here anyway.
498  */
499 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
500 {
501 	vm_fault_t ret = 0;
502 	const struct mm_walk_ops *ops = lock_vma ?
503 				&break_ksm_lock_vma_ops : &break_ksm_ops;
504 
505 	do {
506 		int ksm_page;
507 
508 		cond_resched();
509 		ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
510 		if (WARN_ON_ONCE(ksm_page < 0))
511 			return ksm_page;
512 		if (!ksm_page)
513 			return 0;
514 		ret = handle_mm_fault(vma, addr,
515 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
516 				      NULL);
517 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
518 	/*
519 	 * We must loop until we no longer find a KSM page because
520 	 * handle_mm_fault() may back out if there's any difficulty e.g. if
521 	 * pte accessed bit gets updated concurrently.
522 	 *
523 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
524 	 * backing file, which also invalidates anonymous pages: that's
525 	 * okay, that truncation will have unmapped the PageKsm for us.
526 	 *
527 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
528 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
529 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
530 	 * to user; and ksmd, having no mm, would never be chosen for that.
531 	 *
532 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
533 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
534 	 * even ksmd can fail in this way - though it's usually breaking ksm
535 	 * just to undo a merge it made a moment before, so unlikely to oom.
536 	 *
537 	 * That's a pity: we might therefore have more kernel pages allocated
538 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
539 	 * will retry to break_cow on each pass, so should recover the page
540 	 * in due course.  The important thing is to not let VM_MERGEABLE
541 	 * be cleared while any such pages might remain in the area.
542 	 */
543 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
544 }
545 
546 static bool vma_ksm_compatible(struct vm_area_struct *vma)
547 {
548 	if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
549 			     VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
550 			     VM_MIXEDMAP))
551 		return false;		/* just ignore the advice */
552 
553 	if (vma_is_dax(vma))
554 		return false;
555 
556 #ifdef VM_SAO
557 	if (vma->vm_flags & VM_SAO)
558 		return false;
559 #endif
560 #ifdef VM_SPARC_ADI
561 	if (vma->vm_flags & VM_SPARC_ADI)
562 		return false;
563 #endif
564 
565 	return true;
566 }
567 
568 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
569 		unsigned long addr)
570 {
571 	struct vm_area_struct *vma;
572 	if (ksm_test_exit(mm))
573 		return NULL;
574 	vma = vma_lookup(mm, addr);
575 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
576 		return NULL;
577 	return vma;
578 }
579 
580 static void break_cow(struct ksm_rmap_item *rmap_item)
581 {
582 	struct mm_struct *mm = rmap_item->mm;
583 	unsigned long addr = rmap_item->address;
584 	struct vm_area_struct *vma;
585 
586 	/*
587 	 * It is not an accident that whenever we want to break COW
588 	 * to undo, we also need to drop a reference to the anon_vma.
589 	 */
590 	put_anon_vma(rmap_item->anon_vma);
591 
592 	mmap_read_lock(mm);
593 	vma = find_mergeable_vma(mm, addr);
594 	if (vma)
595 		break_ksm(vma, addr, false);
596 	mmap_read_unlock(mm);
597 }
598 
599 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
600 {
601 	struct mm_struct *mm = rmap_item->mm;
602 	unsigned long addr = rmap_item->address;
603 	struct vm_area_struct *vma;
604 	struct page *page;
605 
606 	mmap_read_lock(mm);
607 	vma = find_mergeable_vma(mm, addr);
608 	if (!vma)
609 		goto out;
610 
611 	page = follow_page(vma, addr, FOLL_GET);
612 	if (IS_ERR_OR_NULL(page))
613 		goto out;
614 	if (is_zone_device_page(page))
615 		goto out_putpage;
616 	if (PageAnon(page)) {
617 		flush_anon_page(vma, page, addr);
618 		flush_dcache_page(page);
619 	} else {
620 out_putpage:
621 		put_page(page);
622 out:
623 		page = NULL;
624 	}
625 	mmap_read_unlock(mm);
626 	return page;
627 }
628 
629 /*
630  * This helper is used for getting right index into array of tree roots.
631  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
632  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
633  * every node has its own stable and unstable tree.
634  */
635 static inline int get_kpfn_nid(unsigned long kpfn)
636 {
637 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
638 }
639 
640 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
641 						   struct rb_root *root)
642 {
643 	struct ksm_stable_node *chain = alloc_stable_node();
644 	VM_BUG_ON(is_stable_node_chain(dup));
645 	if (likely(chain)) {
646 		INIT_HLIST_HEAD(&chain->hlist);
647 		chain->chain_prune_time = jiffies;
648 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
649 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
650 		chain->nid = NUMA_NO_NODE; /* debug */
651 #endif
652 		ksm_stable_node_chains++;
653 
654 		/*
655 		 * Put the stable node chain in the first dimension of
656 		 * the stable tree and at the same time remove the old
657 		 * stable node.
658 		 */
659 		rb_replace_node(&dup->node, &chain->node, root);
660 
661 		/*
662 		 * Move the old stable node to the second dimension
663 		 * queued in the hlist_dup. The invariant is that all
664 		 * dup stable_nodes in the chain->hlist point to pages
665 		 * that are write protected and have the exact same
666 		 * content.
667 		 */
668 		stable_node_chain_add_dup(dup, chain);
669 	}
670 	return chain;
671 }
672 
673 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
674 					  struct rb_root *root)
675 {
676 	rb_erase(&chain->node, root);
677 	free_stable_node(chain);
678 	ksm_stable_node_chains--;
679 }
680 
681 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
682 {
683 	struct ksm_rmap_item *rmap_item;
684 
685 	/* check it's not STABLE_NODE_CHAIN or negative */
686 	BUG_ON(stable_node->rmap_hlist_len < 0);
687 
688 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
689 		if (rmap_item->hlist.next) {
690 			ksm_pages_sharing--;
691 			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
692 		} else {
693 			ksm_pages_shared--;
694 		}
695 
696 		rmap_item->mm->ksm_merging_pages--;
697 
698 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
699 		stable_node->rmap_hlist_len--;
700 		put_anon_vma(rmap_item->anon_vma);
701 		rmap_item->address &= PAGE_MASK;
702 		cond_resched();
703 	}
704 
705 	/*
706 	 * We need the second aligned pointer of the migrate_nodes
707 	 * list_head to stay clear from the rb_parent_color union
708 	 * (aligned and different than any node) and also different
709 	 * from &migrate_nodes. This will verify that future list.h changes
710 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
711 	 */
712 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
713 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
714 
715 	trace_ksm_remove_ksm_page(stable_node->kpfn);
716 	if (stable_node->head == &migrate_nodes)
717 		list_del(&stable_node->list);
718 	else
719 		stable_node_dup_del(stable_node);
720 	free_stable_node(stable_node);
721 }
722 
723 enum get_ksm_page_flags {
724 	GET_KSM_PAGE_NOLOCK,
725 	GET_KSM_PAGE_LOCK,
726 	GET_KSM_PAGE_TRYLOCK
727 };
728 
729 /*
730  * get_ksm_page: checks if the page indicated by the stable node
731  * is still its ksm page, despite having held no reference to it.
732  * In which case we can trust the content of the page, and it
733  * returns the gotten page; but if the page has now been zapped,
734  * remove the stale node from the stable tree and return NULL.
735  * But beware, the stable node's page might be being migrated.
736  *
737  * You would expect the stable_node to hold a reference to the ksm page.
738  * But if it increments the page's count, swapping out has to wait for
739  * ksmd to come around again before it can free the page, which may take
740  * seconds or even minutes: much too unresponsive.  So instead we use a
741  * "keyhole reference": access to the ksm page from the stable node peeps
742  * out through its keyhole to see if that page still holds the right key,
743  * pointing back to this stable node.  This relies on freeing a PageAnon
744  * page to reset its page->mapping to NULL, and relies on no other use of
745  * a page to put something that might look like our key in page->mapping.
746  * is on its way to being freed; but it is an anomaly to bear in mind.
747  */
748 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
749 				 enum get_ksm_page_flags flags)
750 {
751 	struct page *page;
752 	void *expected_mapping;
753 	unsigned long kpfn;
754 
755 	expected_mapping = (void *)((unsigned long)stable_node |
756 					PAGE_MAPPING_KSM);
757 again:
758 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
759 	page = pfn_to_page(kpfn);
760 	if (READ_ONCE(page->mapping) != expected_mapping)
761 		goto stale;
762 
763 	/*
764 	 * We cannot do anything with the page while its refcount is 0.
765 	 * Usually 0 means free, or tail of a higher-order page: in which
766 	 * case this node is no longer referenced, and should be freed;
767 	 * however, it might mean that the page is under page_ref_freeze().
768 	 * The __remove_mapping() case is easy, again the node is now stale;
769 	 * the same is in reuse_ksm_page() case; but if page is swapcache
770 	 * in folio_migrate_mapping(), it might still be our page,
771 	 * in which case it's essential to keep the node.
772 	 */
773 	while (!get_page_unless_zero(page)) {
774 		/*
775 		 * Another check for page->mapping != expected_mapping would
776 		 * work here too.  We have chosen the !PageSwapCache test to
777 		 * optimize the common case, when the page is or is about to
778 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
779 		 * in the ref_freeze section of __remove_mapping(); but Anon
780 		 * page->mapping reset to NULL later, in free_pages_prepare().
781 		 */
782 		if (!PageSwapCache(page))
783 			goto stale;
784 		cpu_relax();
785 	}
786 
787 	if (READ_ONCE(page->mapping) != expected_mapping) {
788 		put_page(page);
789 		goto stale;
790 	}
791 
792 	if (flags == GET_KSM_PAGE_TRYLOCK) {
793 		if (!trylock_page(page)) {
794 			put_page(page);
795 			return ERR_PTR(-EBUSY);
796 		}
797 	} else if (flags == GET_KSM_PAGE_LOCK)
798 		lock_page(page);
799 
800 	if (flags != GET_KSM_PAGE_NOLOCK) {
801 		if (READ_ONCE(page->mapping) != expected_mapping) {
802 			unlock_page(page);
803 			put_page(page);
804 			goto stale;
805 		}
806 	}
807 	return page;
808 
809 stale:
810 	/*
811 	 * We come here from above when page->mapping or !PageSwapCache
812 	 * suggests that the node is stale; but it might be under migration.
813 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
814 	 * before checking whether node->kpfn has been changed.
815 	 */
816 	smp_rmb();
817 	if (READ_ONCE(stable_node->kpfn) != kpfn)
818 		goto again;
819 	remove_node_from_stable_tree(stable_node);
820 	return NULL;
821 }
822 
823 /*
824  * Removing rmap_item from stable or unstable tree.
825  * This function will clean the information from the stable/unstable tree.
826  */
827 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
828 {
829 	if (rmap_item->address & STABLE_FLAG) {
830 		struct ksm_stable_node *stable_node;
831 		struct page *page;
832 
833 		stable_node = rmap_item->head;
834 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
835 		if (!page)
836 			goto out;
837 
838 		hlist_del(&rmap_item->hlist);
839 		unlock_page(page);
840 		put_page(page);
841 
842 		if (!hlist_empty(&stable_node->hlist))
843 			ksm_pages_sharing--;
844 		else
845 			ksm_pages_shared--;
846 
847 		rmap_item->mm->ksm_merging_pages--;
848 
849 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
850 		stable_node->rmap_hlist_len--;
851 
852 		put_anon_vma(rmap_item->anon_vma);
853 		rmap_item->head = NULL;
854 		rmap_item->address &= PAGE_MASK;
855 
856 	} else if (rmap_item->address & UNSTABLE_FLAG) {
857 		unsigned char age;
858 		/*
859 		 * Usually ksmd can and must skip the rb_erase, because
860 		 * root_unstable_tree was already reset to RB_ROOT.
861 		 * But be careful when an mm is exiting: do the rb_erase
862 		 * if this rmap_item was inserted by this scan, rather
863 		 * than left over from before.
864 		 */
865 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
866 		BUG_ON(age > 1);
867 		if (!age)
868 			rb_erase(&rmap_item->node,
869 				 root_unstable_tree + NUMA(rmap_item->nid));
870 		ksm_pages_unshared--;
871 		rmap_item->address &= PAGE_MASK;
872 	}
873 out:
874 	cond_resched();		/* we're called from many long loops */
875 }
876 
877 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
878 {
879 	while (*rmap_list) {
880 		struct ksm_rmap_item *rmap_item = *rmap_list;
881 		*rmap_list = rmap_item->rmap_list;
882 		remove_rmap_item_from_tree(rmap_item);
883 		free_rmap_item(rmap_item);
884 	}
885 }
886 
887 /*
888  * Though it's very tempting to unmerge rmap_items from stable tree rather
889  * than check every pte of a given vma, the locking doesn't quite work for
890  * that - an rmap_item is assigned to the stable tree after inserting ksm
891  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
892  * rmap_items from parent to child at fork time (so as not to waste time
893  * if exit comes before the next scan reaches it).
894  *
895  * Similarly, although we'd like to remove rmap_items (so updating counts
896  * and freeing memory) when unmerging an area, it's easier to leave that
897  * to the next pass of ksmd - consider, for example, how ksmd might be
898  * in cmp_and_merge_page on one of the rmap_items we would be removing.
899  */
900 static int unmerge_ksm_pages(struct vm_area_struct *vma,
901 			     unsigned long start, unsigned long end, bool lock_vma)
902 {
903 	unsigned long addr;
904 	int err = 0;
905 
906 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
907 		if (ksm_test_exit(vma->vm_mm))
908 			break;
909 		if (signal_pending(current))
910 			err = -ERESTARTSYS;
911 		else
912 			err = break_ksm(vma, addr, lock_vma);
913 	}
914 	return err;
915 }
916 
917 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
918 {
919 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
920 }
921 
922 static inline struct ksm_stable_node *page_stable_node(struct page *page)
923 {
924 	return folio_stable_node(page_folio(page));
925 }
926 
927 static inline void set_page_stable_node(struct page *page,
928 					struct ksm_stable_node *stable_node)
929 {
930 	VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
931 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
932 }
933 
934 #ifdef CONFIG_SYSFS
935 /*
936  * Only called through the sysfs control interface:
937  */
938 static int remove_stable_node(struct ksm_stable_node *stable_node)
939 {
940 	struct page *page;
941 	int err;
942 
943 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
944 	if (!page) {
945 		/*
946 		 * get_ksm_page did remove_node_from_stable_tree itself.
947 		 */
948 		return 0;
949 	}
950 
951 	/*
952 	 * Page could be still mapped if this races with __mmput() running in
953 	 * between ksm_exit() and exit_mmap(). Just refuse to let
954 	 * merge_across_nodes/max_page_sharing be switched.
955 	 */
956 	err = -EBUSY;
957 	if (!page_mapped(page)) {
958 		/*
959 		 * The stable node did not yet appear stale to get_ksm_page(),
960 		 * since that allows for an unmapped ksm page to be recognized
961 		 * right up until it is freed; but the node is safe to remove.
962 		 * This page might be in an LRU cache waiting to be freed,
963 		 * or it might be PageSwapCache (perhaps under writeback),
964 		 * or it might have been removed from swapcache a moment ago.
965 		 */
966 		set_page_stable_node(page, NULL);
967 		remove_node_from_stable_tree(stable_node);
968 		err = 0;
969 	}
970 
971 	unlock_page(page);
972 	put_page(page);
973 	return err;
974 }
975 
976 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
977 				    struct rb_root *root)
978 {
979 	struct ksm_stable_node *dup;
980 	struct hlist_node *hlist_safe;
981 
982 	if (!is_stable_node_chain(stable_node)) {
983 		VM_BUG_ON(is_stable_node_dup(stable_node));
984 		if (remove_stable_node(stable_node))
985 			return true;
986 		else
987 			return false;
988 	}
989 
990 	hlist_for_each_entry_safe(dup, hlist_safe,
991 				  &stable_node->hlist, hlist_dup) {
992 		VM_BUG_ON(!is_stable_node_dup(dup));
993 		if (remove_stable_node(dup))
994 			return true;
995 	}
996 	BUG_ON(!hlist_empty(&stable_node->hlist));
997 	free_stable_node_chain(stable_node, root);
998 	return false;
999 }
1000 
1001 static int remove_all_stable_nodes(void)
1002 {
1003 	struct ksm_stable_node *stable_node, *next;
1004 	int nid;
1005 	int err = 0;
1006 
1007 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1008 		while (root_stable_tree[nid].rb_node) {
1009 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
1010 						struct ksm_stable_node, node);
1011 			if (remove_stable_node_chain(stable_node,
1012 						     root_stable_tree + nid)) {
1013 				err = -EBUSY;
1014 				break;	/* proceed to next nid */
1015 			}
1016 			cond_resched();
1017 		}
1018 	}
1019 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1020 		if (remove_stable_node(stable_node))
1021 			err = -EBUSY;
1022 		cond_resched();
1023 	}
1024 	return err;
1025 }
1026 
1027 static int unmerge_and_remove_all_rmap_items(void)
1028 {
1029 	struct ksm_mm_slot *mm_slot;
1030 	struct mm_slot *slot;
1031 	struct mm_struct *mm;
1032 	struct vm_area_struct *vma;
1033 	int err = 0;
1034 
1035 	spin_lock(&ksm_mmlist_lock);
1036 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1037 			  struct mm_slot, mm_node);
1038 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1039 	spin_unlock(&ksm_mmlist_lock);
1040 
1041 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1042 	     mm_slot = ksm_scan.mm_slot) {
1043 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1044 
1045 		mm = mm_slot->slot.mm;
1046 		mmap_read_lock(mm);
1047 
1048 		/*
1049 		 * Exit right away if mm is exiting to avoid lockdep issue in
1050 		 * the maple tree
1051 		 */
1052 		if (ksm_test_exit(mm))
1053 			goto mm_exiting;
1054 
1055 		for_each_vma(vmi, vma) {
1056 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1057 				continue;
1058 			err = unmerge_ksm_pages(vma,
1059 						vma->vm_start, vma->vm_end, false);
1060 			if (err)
1061 				goto error;
1062 		}
1063 
1064 mm_exiting:
1065 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1066 		mmap_read_unlock(mm);
1067 
1068 		spin_lock(&ksm_mmlist_lock);
1069 		slot = list_entry(mm_slot->slot.mm_node.next,
1070 				  struct mm_slot, mm_node);
1071 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1072 		if (ksm_test_exit(mm)) {
1073 			hash_del(&mm_slot->slot.hash);
1074 			list_del(&mm_slot->slot.mm_node);
1075 			spin_unlock(&ksm_mmlist_lock);
1076 
1077 			mm_slot_free(mm_slot_cache, mm_slot);
1078 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1079 			clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1080 			mmdrop(mm);
1081 		} else
1082 			spin_unlock(&ksm_mmlist_lock);
1083 	}
1084 
1085 	/* Clean up stable nodes, but don't worry if some are still busy */
1086 	remove_all_stable_nodes();
1087 	ksm_scan.seqnr = 0;
1088 	return 0;
1089 
1090 error:
1091 	mmap_read_unlock(mm);
1092 	spin_lock(&ksm_mmlist_lock);
1093 	ksm_scan.mm_slot = &ksm_mm_head;
1094 	spin_unlock(&ksm_mmlist_lock);
1095 	return err;
1096 }
1097 #endif /* CONFIG_SYSFS */
1098 
1099 static u32 calc_checksum(struct page *page)
1100 {
1101 	u32 checksum;
1102 	void *addr = kmap_atomic(page);
1103 	checksum = xxhash(addr, PAGE_SIZE, 0);
1104 	kunmap_atomic(addr);
1105 	return checksum;
1106 }
1107 
1108 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1109 			      pte_t *orig_pte)
1110 {
1111 	struct mm_struct *mm = vma->vm_mm;
1112 	DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1113 	int swapped;
1114 	int err = -EFAULT;
1115 	struct mmu_notifier_range range;
1116 	bool anon_exclusive;
1117 	pte_t entry;
1118 
1119 	pvmw.address = page_address_in_vma(page, vma);
1120 	if (pvmw.address == -EFAULT)
1121 		goto out;
1122 
1123 	BUG_ON(PageTransCompound(page));
1124 
1125 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1126 				pvmw.address + PAGE_SIZE);
1127 	mmu_notifier_invalidate_range_start(&range);
1128 
1129 	if (!page_vma_mapped_walk(&pvmw))
1130 		goto out_mn;
1131 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1132 		goto out_unlock;
1133 
1134 	anon_exclusive = PageAnonExclusive(page);
1135 	entry = ptep_get(pvmw.pte);
1136 	if (pte_write(entry) || pte_dirty(entry) ||
1137 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1138 		swapped = PageSwapCache(page);
1139 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1140 		/*
1141 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1142 		 * take any lock, therefore the check that we are going to make
1143 		 * with the pagecount against the mapcount is racy and
1144 		 * O_DIRECT can happen right after the check.
1145 		 * So we clear the pte and flush the tlb before the check
1146 		 * this assure us that no O_DIRECT can happen after the check
1147 		 * or in the middle of the check.
1148 		 *
1149 		 * No need to notify as we are downgrading page table to read
1150 		 * only not changing it to point to a new page.
1151 		 *
1152 		 * See Documentation/mm/mmu_notifier.rst
1153 		 */
1154 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1155 		/*
1156 		 * Check that no O_DIRECT or similar I/O is in progress on the
1157 		 * page
1158 		 */
1159 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1160 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1161 			goto out_unlock;
1162 		}
1163 
1164 		/* See page_try_share_anon_rmap(): clear PTE first. */
1165 		if (anon_exclusive && page_try_share_anon_rmap(page)) {
1166 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1167 			goto out_unlock;
1168 		}
1169 
1170 		if (pte_dirty(entry))
1171 			set_page_dirty(page);
1172 		entry = pte_mkclean(entry);
1173 
1174 		if (pte_write(entry))
1175 			entry = pte_wrprotect(entry);
1176 
1177 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1178 	}
1179 	*orig_pte = entry;
1180 	err = 0;
1181 
1182 out_unlock:
1183 	page_vma_mapped_walk_done(&pvmw);
1184 out_mn:
1185 	mmu_notifier_invalidate_range_end(&range);
1186 out:
1187 	return err;
1188 }
1189 
1190 /**
1191  * replace_page - replace page in vma by new ksm page
1192  * @vma:      vma that holds the pte pointing to page
1193  * @page:     the page we are replacing by kpage
1194  * @kpage:    the ksm page we replace page by
1195  * @orig_pte: the original value of the pte
1196  *
1197  * Returns 0 on success, -EFAULT on failure.
1198  */
1199 static int replace_page(struct vm_area_struct *vma, struct page *page,
1200 			struct page *kpage, pte_t orig_pte)
1201 {
1202 	struct mm_struct *mm = vma->vm_mm;
1203 	struct folio *folio;
1204 	pmd_t *pmd;
1205 	pmd_t pmde;
1206 	pte_t *ptep;
1207 	pte_t newpte;
1208 	spinlock_t *ptl;
1209 	unsigned long addr;
1210 	int err = -EFAULT;
1211 	struct mmu_notifier_range range;
1212 
1213 	addr = page_address_in_vma(page, vma);
1214 	if (addr == -EFAULT)
1215 		goto out;
1216 
1217 	pmd = mm_find_pmd(mm, addr);
1218 	if (!pmd)
1219 		goto out;
1220 	/*
1221 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1222 	 * without holding anon_vma lock for write.  So when looking for a
1223 	 * genuine pmde (in which to find pte), test present and !THP together.
1224 	 */
1225 	pmde = pmdp_get_lockless(pmd);
1226 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1227 		goto out;
1228 
1229 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1230 				addr + PAGE_SIZE);
1231 	mmu_notifier_invalidate_range_start(&range);
1232 
1233 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1234 	if (!ptep)
1235 		goto out_mn;
1236 	if (!pte_same(ptep_get(ptep), orig_pte)) {
1237 		pte_unmap_unlock(ptep, ptl);
1238 		goto out_mn;
1239 	}
1240 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1241 	VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1242 
1243 	/*
1244 	 * No need to check ksm_use_zero_pages here: we can only have a
1245 	 * zero_page here if ksm_use_zero_pages was enabled already.
1246 	 */
1247 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1248 		get_page(kpage);
1249 		page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1250 		newpte = mk_pte(kpage, vma->vm_page_prot);
1251 	} else {
1252 		/*
1253 		 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1254 		 * we can easily track all KSM-placed zero pages by checking if
1255 		 * the dirty bit in zero page's PTE is set.
1256 		 */
1257 		newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1258 		ksm_zero_pages++;
1259 		mm->ksm_zero_pages++;
1260 		/*
1261 		 * We're replacing an anonymous page with a zero page, which is
1262 		 * not anonymous. We need to do proper accounting otherwise we
1263 		 * will get wrong values in /proc, and a BUG message in dmesg
1264 		 * when tearing down the mm.
1265 		 */
1266 		dec_mm_counter(mm, MM_ANONPAGES);
1267 	}
1268 
1269 	flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1270 	/*
1271 	 * No need to notify as we are replacing a read only page with another
1272 	 * read only page with the same content.
1273 	 *
1274 	 * See Documentation/mm/mmu_notifier.rst
1275 	 */
1276 	ptep_clear_flush(vma, addr, ptep);
1277 	set_pte_at_notify(mm, addr, ptep, newpte);
1278 
1279 	folio = page_folio(page);
1280 	page_remove_rmap(page, vma, false);
1281 	if (!folio_mapped(folio))
1282 		folio_free_swap(folio);
1283 	folio_put(folio);
1284 
1285 	pte_unmap_unlock(ptep, ptl);
1286 	err = 0;
1287 out_mn:
1288 	mmu_notifier_invalidate_range_end(&range);
1289 out:
1290 	return err;
1291 }
1292 
1293 /*
1294  * try_to_merge_one_page - take two pages and merge them into one
1295  * @vma: the vma that holds the pte pointing to page
1296  * @page: the PageAnon page that we want to replace with kpage
1297  * @kpage: the PageKsm page that we want to map instead of page,
1298  *         or NULL the first time when we want to use page as kpage.
1299  *
1300  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1301  */
1302 static int try_to_merge_one_page(struct vm_area_struct *vma,
1303 				 struct page *page, struct page *kpage)
1304 {
1305 	pte_t orig_pte = __pte(0);
1306 	int err = -EFAULT;
1307 
1308 	if (page == kpage)			/* ksm page forked */
1309 		return 0;
1310 
1311 	if (!PageAnon(page))
1312 		goto out;
1313 
1314 	/*
1315 	 * We need the page lock to read a stable PageSwapCache in
1316 	 * write_protect_page().  We use trylock_page() instead of
1317 	 * lock_page() because we don't want to wait here - we
1318 	 * prefer to continue scanning and merging different pages,
1319 	 * then come back to this page when it is unlocked.
1320 	 */
1321 	if (!trylock_page(page))
1322 		goto out;
1323 
1324 	if (PageTransCompound(page)) {
1325 		if (split_huge_page(page))
1326 			goto out_unlock;
1327 	}
1328 
1329 	/*
1330 	 * If this anonymous page is mapped only here, its pte may need
1331 	 * to be write-protected.  If it's mapped elsewhere, all of its
1332 	 * ptes are necessarily already write-protected.  But in either
1333 	 * case, we need to lock and check page_count is not raised.
1334 	 */
1335 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1336 		if (!kpage) {
1337 			/*
1338 			 * While we hold page lock, upgrade page from
1339 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1340 			 * stable_tree_insert() will update stable_node.
1341 			 */
1342 			set_page_stable_node(page, NULL);
1343 			mark_page_accessed(page);
1344 			/*
1345 			 * Page reclaim just frees a clean page with no dirty
1346 			 * ptes: make sure that the ksm page would be swapped.
1347 			 */
1348 			if (!PageDirty(page))
1349 				SetPageDirty(page);
1350 			err = 0;
1351 		} else if (pages_identical(page, kpage))
1352 			err = replace_page(vma, page, kpage, orig_pte);
1353 	}
1354 
1355 out_unlock:
1356 	unlock_page(page);
1357 out:
1358 	return err;
1359 }
1360 
1361 /*
1362  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1363  * but no new kernel page is allocated: kpage must already be a ksm page.
1364  *
1365  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1366  */
1367 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1368 				      struct page *page, struct page *kpage)
1369 {
1370 	struct mm_struct *mm = rmap_item->mm;
1371 	struct vm_area_struct *vma;
1372 	int err = -EFAULT;
1373 
1374 	mmap_read_lock(mm);
1375 	vma = find_mergeable_vma(mm, rmap_item->address);
1376 	if (!vma)
1377 		goto out;
1378 
1379 	err = try_to_merge_one_page(vma, page, kpage);
1380 	if (err)
1381 		goto out;
1382 
1383 	/* Unstable nid is in union with stable anon_vma: remove first */
1384 	remove_rmap_item_from_tree(rmap_item);
1385 
1386 	/* Must get reference to anon_vma while still holding mmap_lock */
1387 	rmap_item->anon_vma = vma->anon_vma;
1388 	get_anon_vma(vma->anon_vma);
1389 out:
1390 	mmap_read_unlock(mm);
1391 	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1392 				rmap_item, mm, err);
1393 	return err;
1394 }
1395 
1396 /*
1397  * try_to_merge_two_pages - take two identical pages and prepare them
1398  * to be merged into one page.
1399  *
1400  * This function returns the kpage if we successfully merged two identical
1401  * pages into one ksm page, NULL otherwise.
1402  *
1403  * Note that this function upgrades page to ksm page: if one of the pages
1404  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1405  */
1406 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1407 					   struct page *page,
1408 					   struct ksm_rmap_item *tree_rmap_item,
1409 					   struct page *tree_page)
1410 {
1411 	int err;
1412 
1413 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1414 	if (!err) {
1415 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1416 							tree_page, page);
1417 		/*
1418 		 * If that fails, we have a ksm page with only one pte
1419 		 * pointing to it: so break it.
1420 		 */
1421 		if (err)
1422 			break_cow(rmap_item);
1423 	}
1424 	return err ? NULL : page;
1425 }
1426 
1427 static __always_inline
1428 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1429 {
1430 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1431 	/*
1432 	 * Check that at least one mapping still exists, otherwise
1433 	 * there's no much point to merge and share with this
1434 	 * stable_node, as the underlying tree_page of the other
1435 	 * sharer is going to be freed soon.
1436 	 */
1437 	return stable_node->rmap_hlist_len &&
1438 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1439 }
1440 
1441 static __always_inline
1442 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1443 {
1444 	return __is_page_sharing_candidate(stable_node, 0);
1445 }
1446 
1447 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1448 				    struct ksm_stable_node **_stable_node,
1449 				    struct rb_root *root,
1450 				    bool prune_stale_stable_nodes)
1451 {
1452 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1453 	struct hlist_node *hlist_safe;
1454 	struct page *_tree_page, *tree_page = NULL;
1455 	int nr = 0;
1456 	int found_rmap_hlist_len;
1457 
1458 	if (!prune_stale_stable_nodes ||
1459 	    time_before(jiffies, stable_node->chain_prune_time +
1460 			msecs_to_jiffies(
1461 				ksm_stable_node_chains_prune_millisecs)))
1462 		prune_stale_stable_nodes = false;
1463 	else
1464 		stable_node->chain_prune_time = jiffies;
1465 
1466 	hlist_for_each_entry_safe(dup, hlist_safe,
1467 				  &stable_node->hlist, hlist_dup) {
1468 		cond_resched();
1469 		/*
1470 		 * We must walk all stable_node_dup to prune the stale
1471 		 * stable nodes during lookup.
1472 		 *
1473 		 * get_ksm_page can drop the nodes from the
1474 		 * stable_node->hlist if they point to freed pages
1475 		 * (that's why we do a _safe walk). The "dup"
1476 		 * stable_node parameter itself will be freed from
1477 		 * under us if it returns NULL.
1478 		 */
1479 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1480 		if (!_tree_page)
1481 			continue;
1482 		nr += 1;
1483 		if (is_page_sharing_candidate(dup)) {
1484 			if (!found ||
1485 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1486 				if (found)
1487 					put_page(tree_page);
1488 				found = dup;
1489 				found_rmap_hlist_len = found->rmap_hlist_len;
1490 				tree_page = _tree_page;
1491 
1492 				/* skip put_page for found dup */
1493 				if (!prune_stale_stable_nodes)
1494 					break;
1495 				continue;
1496 			}
1497 		}
1498 		put_page(_tree_page);
1499 	}
1500 
1501 	if (found) {
1502 		/*
1503 		 * nr is counting all dups in the chain only if
1504 		 * prune_stale_stable_nodes is true, otherwise we may
1505 		 * break the loop at nr == 1 even if there are
1506 		 * multiple entries.
1507 		 */
1508 		if (prune_stale_stable_nodes && nr == 1) {
1509 			/*
1510 			 * If there's not just one entry it would
1511 			 * corrupt memory, better BUG_ON. In KSM
1512 			 * context with no lock held it's not even
1513 			 * fatal.
1514 			 */
1515 			BUG_ON(stable_node->hlist.first->next);
1516 
1517 			/*
1518 			 * There's just one entry and it is below the
1519 			 * deduplication limit so drop the chain.
1520 			 */
1521 			rb_replace_node(&stable_node->node, &found->node,
1522 					root);
1523 			free_stable_node(stable_node);
1524 			ksm_stable_node_chains--;
1525 			ksm_stable_node_dups--;
1526 			/*
1527 			 * NOTE: the caller depends on the stable_node
1528 			 * to be equal to stable_node_dup if the chain
1529 			 * was collapsed.
1530 			 */
1531 			*_stable_node = found;
1532 			/*
1533 			 * Just for robustness, as stable_node is
1534 			 * otherwise left as a stable pointer, the
1535 			 * compiler shall optimize it away at build
1536 			 * time.
1537 			 */
1538 			stable_node = NULL;
1539 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1540 			   __is_page_sharing_candidate(found, 1)) {
1541 			/*
1542 			 * If the found stable_node dup can accept one
1543 			 * more future merge (in addition to the one
1544 			 * that is underway) and is not at the head of
1545 			 * the chain, put it there so next search will
1546 			 * be quicker in the !prune_stale_stable_nodes
1547 			 * case.
1548 			 *
1549 			 * NOTE: it would be inaccurate to use nr > 1
1550 			 * instead of checking the hlist.first pointer
1551 			 * directly, because in the
1552 			 * prune_stale_stable_nodes case "nr" isn't
1553 			 * the position of the found dup in the chain,
1554 			 * but the total number of dups in the chain.
1555 			 */
1556 			hlist_del(&found->hlist_dup);
1557 			hlist_add_head(&found->hlist_dup,
1558 				       &stable_node->hlist);
1559 		}
1560 	}
1561 
1562 	*_stable_node_dup = found;
1563 	return tree_page;
1564 }
1565 
1566 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1567 					       struct rb_root *root)
1568 {
1569 	if (!is_stable_node_chain(stable_node))
1570 		return stable_node;
1571 	if (hlist_empty(&stable_node->hlist)) {
1572 		free_stable_node_chain(stable_node, root);
1573 		return NULL;
1574 	}
1575 	return hlist_entry(stable_node->hlist.first,
1576 			   typeof(*stable_node), hlist_dup);
1577 }
1578 
1579 /*
1580  * Like for get_ksm_page, this function can free the *_stable_node and
1581  * *_stable_node_dup if the returned tree_page is NULL.
1582  *
1583  * It can also free and overwrite *_stable_node with the found
1584  * stable_node_dup if the chain is collapsed (in which case
1585  * *_stable_node will be equal to *_stable_node_dup like if the chain
1586  * never existed). It's up to the caller to verify tree_page is not
1587  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1588  *
1589  * *_stable_node_dup is really a second output parameter of this
1590  * function and will be overwritten in all cases, the caller doesn't
1591  * need to initialize it.
1592  */
1593 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1594 					struct ksm_stable_node **_stable_node,
1595 					struct rb_root *root,
1596 					bool prune_stale_stable_nodes)
1597 {
1598 	struct ksm_stable_node *stable_node = *_stable_node;
1599 	if (!is_stable_node_chain(stable_node)) {
1600 		if (is_page_sharing_candidate(stable_node)) {
1601 			*_stable_node_dup = stable_node;
1602 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1603 		}
1604 		/*
1605 		 * _stable_node_dup set to NULL means the stable_node
1606 		 * reached the ksm_max_page_sharing limit.
1607 		 */
1608 		*_stable_node_dup = NULL;
1609 		return NULL;
1610 	}
1611 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1612 			       prune_stale_stable_nodes);
1613 }
1614 
1615 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1616 						struct ksm_stable_node **s_n,
1617 						struct rb_root *root)
1618 {
1619 	return __stable_node_chain(s_n_d, s_n, root, true);
1620 }
1621 
1622 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1623 					  struct ksm_stable_node *s_n,
1624 					  struct rb_root *root)
1625 {
1626 	struct ksm_stable_node *old_stable_node = s_n;
1627 	struct page *tree_page;
1628 
1629 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1630 	/* not pruning dups so s_n cannot have changed */
1631 	VM_BUG_ON(s_n != old_stable_node);
1632 	return tree_page;
1633 }
1634 
1635 /*
1636  * stable_tree_search - search for page inside the stable tree
1637  *
1638  * This function checks if there is a page inside the stable tree
1639  * with identical content to the page that we are scanning right now.
1640  *
1641  * This function returns the stable tree node of identical content if found,
1642  * NULL otherwise.
1643  */
1644 static struct page *stable_tree_search(struct page *page)
1645 {
1646 	int nid;
1647 	struct rb_root *root;
1648 	struct rb_node **new;
1649 	struct rb_node *parent;
1650 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1651 	struct ksm_stable_node *page_node;
1652 
1653 	page_node = page_stable_node(page);
1654 	if (page_node && page_node->head != &migrate_nodes) {
1655 		/* ksm page forked */
1656 		get_page(page);
1657 		return page;
1658 	}
1659 
1660 	nid = get_kpfn_nid(page_to_pfn(page));
1661 	root = root_stable_tree + nid;
1662 again:
1663 	new = &root->rb_node;
1664 	parent = NULL;
1665 
1666 	while (*new) {
1667 		struct page *tree_page;
1668 		int ret;
1669 
1670 		cond_resched();
1671 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1672 		stable_node_any = NULL;
1673 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1674 		/*
1675 		 * NOTE: stable_node may have been freed by
1676 		 * chain_prune() if the returned stable_node_dup is
1677 		 * not NULL. stable_node_dup may have been inserted in
1678 		 * the rbtree instead as a regular stable_node (in
1679 		 * order to collapse the stable_node chain if a single
1680 		 * stable_node dup was found in it). In such case the
1681 		 * stable_node is overwritten by the callee to point
1682 		 * to the stable_node_dup that was collapsed in the
1683 		 * stable rbtree and stable_node will be equal to
1684 		 * stable_node_dup like if the chain never existed.
1685 		 */
1686 		if (!stable_node_dup) {
1687 			/*
1688 			 * Either all stable_node dups were full in
1689 			 * this stable_node chain, or this chain was
1690 			 * empty and should be rb_erased.
1691 			 */
1692 			stable_node_any = stable_node_dup_any(stable_node,
1693 							      root);
1694 			if (!stable_node_any) {
1695 				/* rb_erase just run */
1696 				goto again;
1697 			}
1698 			/*
1699 			 * Take any of the stable_node dups page of
1700 			 * this stable_node chain to let the tree walk
1701 			 * continue. All KSM pages belonging to the
1702 			 * stable_node dups in a stable_node chain
1703 			 * have the same content and they're
1704 			 * write protected at all times. Any will work
1705 			 * fine to continue the walk.
1706 			 */
1707 			tree_page = get_ksm_page(stable_node_any,
1708 						 GET_KSM_PAGE_NOLOCK);
1709 		}
1710 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1711 		if (!tree_page) {
1712 			/*
1713 			 * If we walked over a stale stable_node,
1714 			 * get_ksm_page() will call rb_erase() and it
1715 			 * may rebalance the tree from under us. So
1716 			 * restart the search from scratch. Returning
1717 			 * NULL would be safe too, but we'd generate
1718 			 * false negative insertions just because some
1719 			 * stable_node was stale.
1720 			 */
1721 			goto again;
1722 		}
1723 
1724 		ret = memcmp_pages(page, tree_page);
1725 		put_page(tree_page);
1726 
1727 		parent = *new;
1728 		if (ret < 0)
1729 			new = &parent->rb_left;
1730 		else if (ret > 0)
1731 			new = &parent->rb_right;
1732 		else {
1733 			if (page_node) {
1734 				VM_BUG_ON(page_node->head != &migrate_nodes);
1735 				/*
1736 				 * Test if the migrated page should be merged
1737 				 * into a stable node dup. If the mapcount is
1738 				 * 1 we can migrate it with another KSM page
1739 				 * without adding it to the chain.
1740 				 */
1741 				if (page_mapcount(page) > 1)
1742 					goto chain_append;
1743 			}
1744 
1745 			if (!stable_node_dup) {
1746 				/*
1747 				 * If the stable_node is a chain and
1748 				 * we got a payload match in memcmp
1749 				 * but we cannot merge the scanned
1750 				 * page in any of the existing
1751 				 * stable_node dups because they're
1752 				 * all full, we need to wait the
1753 				 * scanned page to find itself a match
1754 				 * in the unstable tree to create a
1755 				 * brand new KSM page to add later to
1756 				 * the dups of this stable_node.
1757 				 */
1758 				return NULL;
1759 			}
1760 
1761 			/*
1762 			 * Lock and unlock the stable_node's page (which
1763 			 * might already have been migrated) so that page
1764 			 * migration is sure to notice its raised count.
1765 			 * It would be more elegant to return stable_node
1766 			 * than kpage, but that involves more changes.
1767 			 */
1768 			tree_page = get_ksm_page(stable_node_dup,
1769 						 GET_KSM_PAGE_TRYLOCK);
1770 
1771 			if (PTR_ERR(tree_page) == -EBUSY)
1772 				return ERR_PTR(-EBUSY);
1773 
1774 			if (unlikely(!tree_page))
1775 				/*
1776 				 * The tree may have been rebalanced,
1777 				 * so re-evaluate parent and new.
1778 				 */
1779 				goto again;
1780 			unlock_page(tree_page);
1781 
1782 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1783 			    NUMA(stable_node_dup->nid)) {
1784 				put_page(tree_page);
1785 				goto replace;
1786 			}
1787 			return tree_page;
1788 		}
1789 	}
1790 
1791 	if (!page_node)
1792 		return NULL;
1793 
1794 	list_del(&page_node->list);
1795 	DO_NUMA(page_node->nid = nid);
1796 	rb_link_node(&page_node->node, parent, new);
1797 	rb_insert_color(&page_node->node, root);
1798 out:
1799 	if (is_page_sharing_candidate(page_node)) {
1800 		get_page(page);
1801 		return page;
1802 	} else
1803 		return NULL;
1804 
1805 replace:
1806 	/*
1807 	 * If stable_node was a chain and chain_prune collapsed it,
1808 	 * stable_node has been updated to be the new regular
1809 	 * stable_node. A collapse of the chain is indistinguishable
1810 	 * from the case there was no chain in the stable
1811 	 * rbtree. Otherwise stable_node is the chain and
1812 	 * stable_node_dup is the dup to replace.
1813 	 */
1814 	if (stable_node_dup == stable_node) {
1815 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1816 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1817 		/* there is no chain */
1818 		if (page_node) {
1819 			VM_BUG_ON(page_node->head != &migrate_nodes);
1820 			list_del(&page_node->list);
1821 			DO_NUMA(page_node->nid = nid);
1822 			rb_replace_node(&stable_node_dup->node,
1823 					&page_node->node,
1824 					root);
1825 			if (is_page_sharing_candidate(page_node))
1826 				get_page(page);
1827 			else
1828 				page = NULL;
1829 		} else {
1830 			rb_erase(&stable_node_dup->node, root);
1831 			page = NULL;
1832 		}
1833 	} else {
1834 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1835 		__stable_node_dup_del(stable_node_dup);
1836 		if (page_node) {
1837 			VM_BUG_ON(page_node->head != &migrate_nodes);
1838 			list_del(&page_node->list);
1839 			DO_NUMA(page_node->nid = nid);
1840 			stable_node_chain_add_dup(page_node, stable_node);
1841 			if (is_page_sharing_candidate(page_node))
1842 				get_page(page);
1843 			else
1844 				page = NULL;
1845 		} else {
1846 			page = NULL;
1847 		}
1848 	}
1849 	stable_node_dup->head = &migrate_nodes;
1850 	list_add(&stable_node_dup->list, stable_node_dup->head);
1851 	return page;
1852 
1853 chain_append:
1854 	/* stable_node_dup could be null if it reached the limit */
1855 	if (!stable_node_dup)
1856 		stable_node_dup = stable_node_any;
1857 	/*
1858 	 * If stable_node was a chain and chain_prune collapsed it,
1859 	 * stable_node has been updated to be the new regular
1860 	 * stable_node. A collapse of the chain is indistinguishable
1861 	 * from the case there was no chain in the stable
1862 	 * rbtree. Otherwise stable_node is the chain and
1863 	 * stable_node_dup is the dup to replace.
1864 	 */
1865 	if (stable_node_dup == stable_node) {
1866 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1867 		/* chain is missing so create it */
1868 		stable_node = alloc_stable_node_chain(stable_node_dup,
1869 						      root);
1870 		if (!stable_node)
1871 			return NULL;
1872 	}
1873 	/*
1874 	 * Add this stable_node dup that was
1875 	 * migrated to the stable_node chain
1876 	 * of the current nid for this page
1877 	 * content.
1878 	 */
1879 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1880 	VM_BUG_ON(page_node->head != &migrate_nodes);
1881 	list_del(&page_node->list);
1882 	DO_NUMA(page_node->nid = nid);
1883 	stable_node_chain_add_dup(page_node, stable_node);
1884 	goto out;
1885 }
1886 
1887 /*
1888  * stable_tree_insert - insert stable tree node pointing to new ksm page
1889  * into the stable tree.
1890  *
1891  * This function returns the stable tree node just allocated on success,
1892  * NULL otherwise.
1893  */
1894 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1895 {
1896 	int nid;
1897 	unsigned long kpfn;
1898 	struct rb_root *root;
1899 	struct rb_node **new;
1900 	struct rb_node *parent;
1901 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1902 	bool need_chain = false;
1903 
1904 	kpfn = page_to_pfn(kpage);
1905 	nid = get_kpfn_nid(kpfn);
1906 	root = root_stable_tree + nid;
1907 again:
1908 	parent = NULL;
1909 	new = &root->rb_node;
1910 
1911 	while (*new) {
1912 		struct page *tree_page;
1913 		int ret;
1914 
1915 		cond_resched();
1916 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1917 		stable_node_any = NULL;
1918 		tree_page = chain(&stable_node_dup, stable_node, root);
1919 		if (!stable_node_dup) {
1920 			/*
1921 			 * Either all stable_node dups were full in
1922 			 * this stable_node chain, or this chain was
1923 			 * empty and should be rb_erased.
1924 			 */
1925 			stable_node_any = stable_node_dup_any(stable_node,
1926 							      root);
1927 			if (!stable_node_any) {
1928 				/* rb_erase just run */
1929 				goto again;
1930 			}
1931 			/*
1932 			 * Take any of the stable_node dups page of
1933 			 * this stable_node chain to let the tree walk
1934 			 * continue. All KSM pages belonging to the
1935 			 * stable_node dups in a stable_node chain
1936 			 * have the same content and they're
1937 			 * write protected at all times. Any will work
1938 			 * fine to continue the walk.
1939 			 */
1940 			tree_page = get_ksm_page(stable_node_any,
1941 						 GET_KSM_PAGE_NOLOCK);
1942 		}
1943 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1944 		if (!tree_page) {
1945 			/*
1946 			 * If we walked over a stale stable_node,
1947 			 * get_ksm_page() will call rb_erase() and it
1948 			 * may rebalance the tree from under us. So
1949 			 * restart the search from scratch. Returning
1950 			 * NULL would be safe too, but we'd generate
1951 			 * false negative insertions just because some
1952 			 * stable_node was stale.
1953 			 */
1954 			goto again;
1955 		}
1956 
1957 		ret = memcmp_pages(kpage, tree_page);
1958 		put_page(tree_page);
1959 
1960 		parent = *new;
1961 		if (ret < 0)
1962 			new = &parent->rb_left;
1963 		else if (ret > 0)
1964 			new = &parent->rb_right;
1965 		else {
1966 			need_chain = true;
1967 			break;
1968 		}
1969 	}
1970 
1971 	stable_node_dup = alloc_stable_node();
1972 	if (!stable_node_dup)
1973 		return NULL;
1974 
1975 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1976 	stable_node_dup->kpfn = kpfn;
1977 	set_page_stable_node(kpage, stable_node_dup);
1978 	stable_node_dup->rmap_hlist_len = 0;
1979 	DO_NUMA(stable_node_dup->nid = nid);
1980 	if (!need_chain) {
1981 		rb_link_node(&stable_node_dup->node, parent, new);
1982 		rb_insert_color(&stable_node_dup->node, root);
1983 	} else {
1984 		if (!is_stable_node_chain(stable_node)) {
1985 			struct ksm_stable_node *orig = stable_node;
1986 			/* chain is missing so create it */
1987 			stable_node = alloc_stable_node_chain(orig, root);
1988 			if (!stable_node) {
1989 				free_stable_node(stable_node_dup);
1990 				return NULL;
1991 			}
1992 		}
1993 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1994 	}
1995 
1996 	return stable_node_dup;
1997 }
1998 
1999 /*
2000  * unstable_tree_search_insert - search for identical page,
2001  * else insert rmap_item into the unstable tree.
2002  *
2003  * This function searches for a page in the unstable tree identical to the
2004  * page currently being scanned; and if no identical page is found in the
2005  * tree, we insert rmap_item as a new object into the unstable tree.
2006  *
2007  * This function returns pointer to rmap_item found to be identical
2008  * to the currently scanned page, NULL otherwise.
2009  *
2010  * This function does both searching and inserting, because they share
2011  * the same walking algorithm in an rbtree.
2012  */
2013 static
2014 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2015 					      struct page *page,
2016 					      struct page **tree_pagep)
2017 {
2018 	struct rb_node **new;
2019 	struct rb_root *root;
2020 	struct rb_node *parent = NULL;
2021 	int nid;
2022 
2023 	nid = get_kpfn_nid(page_to_pfn(page));
2024 	root = root_unstable_tree + nid;
2025 	new = &root->rb_node;
2026 
2027 	while (*new) {
2028 		struct ksm_rmap_item *tree_rmap_item;
2029 		struct page *tree_page;
2030 		int ret;
2031 
2032 		cond_resched();
2033 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2034 		tree_page = get_mergeable_page(tree_rmap_item);
2035 		if (!tree_page)
2036 			return NULL;
2037 
2038 		/*
2039 		 * Don't substitute a ksm page for a forked page.
2040 		 */
2041 		if (page == tree_page) {
2042 			put_page(tree_page);
2043 			return NULL;
2044 		}
2045 
2046 		ret = memcmp_pages(page, tree_page);
2047 
2048 		parent = *new;
2049 		if (ret < 0) {
2050 			put_page(tree_page);
2051 			new = &parent->rb_left;
2052 		} else if (ret > 0) {
2053 			put_page(tree_page);
2054 			new = &parent->rb_right;
2055 		} else if (!ksm_merge_across_nodes &&
2056 			   page_to_nid(tree_page) != nid) {
2057 			/*
2058 			 * If tree_page has been migrated to another NUMA node,
2059 			 * it will be flushed out and put in the right unstable
2060 			 * tree next time: only merge with it when across_nodes.
2061 			 */
2062 			put_page(tree_page);
2063 			return NULL;
2064 		} else {
2065 			*tree_pagep = tree_page;
2066 			return tree_rmap_item;
2067 		}
2068 	}
2069 
2070 	rmap_item->address |= UNSTABLE_FLAG;
2071 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2072 	DO_NUMA(rmap_item->nid = nid);
2073 	rb_link_node(&rmap_item->node, parent, new);
2074 	rb_insert_color(&rmap_item->node, root);
2075 
2076 	ksm_pages_unshared++;
2077 	return NULL;
2078 }
2079 
2080 /*
2081  * stable_tree_append - add another rmap_item to the linked list of
2082  * rmap_items hanging off a given node of the stable tree, all sharing
2083  * the same ksm page.
2084  */
2085 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2086 			       struct ksm_stable_node *stable_node,
2087 			       bool max_page_sharing_bypass)
2088 {
2089 	/*
2090 	 * rmap won't find this mapping if we don't insert the
2091 	 * rmap_item in the right stable_node
2092 	 * duplicate. page_migration could break later if rmap breaks,
2093 	 * so we can as well crash here. We really need to check for
2094 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2095 	 * for other negative values as an underflow if detected here
2096 	 * for the first time (and not when decreasing rmap_hlist_len)
2097 	 * would be sign of memory corruption in the stable_node.
2098 	 */
2099 	BUG_ON(stable_node->rmap_hlist_len < 0);
2100 
2101 	stable_node->rmap_hlist_len++;
2102 	if (!max_page_sharing_bypass)
2103 		/* possibly non fatal but unexpected overflow, only warn */
2104 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2105 			     ksm_max_page_sharing);
2106 
2107 	rmap_item->head = stable_node;
2108 	rmap_item->address |= STABLE_FLAG;
2109 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2110 
2111 	if (rmap_item->hlist.next)
2112 		ksm_pages_sharing++;
2113 	else
2114 		ksm_pages_shared++;
2115 
2116 	rmap_item->mm->ksm_merging_pages++;
2117 }
2118 
2119 /*
2120  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2121  * if not, compare checksum to previous and if it's the same, see if page can
2122  * be inserted into the unstable tree, or merged with a page already there and
2123  * both transferred to the stable tree.
2124  *
2125  * @page: the page that we are searching identical page to.
2126  * @rmap_item: the reverse mapping into the virtual address of this page
2127  */
2128 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2129 {
2130 	struct mm_struct *mm = rmap_item->mm;
2131 	struct ksm_rmap_item *tree_rmap_item;
2132 	struct page *tree_page = NULL;
2133 	struct ksm_stable_node *stable_node;
2134 	struct page *kpage;
2135 	unsigned int checksum;
2136 	int err;
2137 	bool max_page_sharing_bypass = false;
2138 
2139 	stable_node = page_stable_node(page);
2140 	if (stable_node) {
2141 		if (stable_node->head != &migrate_nodes &&
2142 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2143 		    NUMA(stable_node->nid)) {
2144 			stable_node_dup_del(stable_node);
2145 			stable_node->head = &migrate_nodes;
2146 			list_add(&stable_node->list, stable_node->head);
2147 		}
2148 		if (stable_node->head != &migrate_nodes &&
2149 		    rmap_item->head == stable_node)
2150 			return;
2151 		/*
2152 		 * If it's a KSM fork, allow it to go over the sharing limit
2153 		 * without warnings.
2154 		 */
2155 		if (!is_page_sharing_candidate(stable_node))
2156 			max_page_sharing_bypass = true;
2157 	}
2158 
2159 	/* We first start with searching the page inside the stable tree */
2160 	kpage = stable_tree_search(page);
2161 	if (kpage == page && rmap_item->head == stable_node) {
2162 		put_page(kpage);
2163 		return;
2164 	}
2165 
2166 	remove_rmap_item_from_tree(rmap_item);
2167 
2168 	if (kpage) {
2169 		if (PTR_ERR(kpage) == -EBUSY)
2170 			return;
2171 
2172 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2173 		if (!err) {
2174 			/*
2175 			 * The page was successfully merged:
2176 			 * add its rmap_item to the stable tree.
2177 			 */
2178 			lock_page(kpage);
2179 			stable_tree_append(rmap_item, page_stable_node(kpage),
2180 					   max_page_sharing_bypass);
2181 			unlock_page(kpage);
2182 		}
2183 		put_page(kpage);
2184 		return;
2185 	}
2186 
2187 	/*
2188 	 * If the hash value of the page has changed from the last time
2189 	 * we calculated it, this page is changing frequently: therefore we
2190 	 * don't want to insert it in the unstable tree, and we don't want
2191 	 * to waste our time searching for something identical to it there.
2192 	 */
2193 	checksum = calc_checksum(page);
2194 	if (rmap_item->oldchecksum != checksum) {
2195 		rmap_item->oldchecksum = checksum;
2196 		return;
2197 	}
2198 
2199 	/*
2200 	 * Same checksum as an empty page. We attempt to merge it with the
2201 	 * appropriate zero page if the user enabled this via sysfs.
2202 	 */
2203 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2204 		struct vm_area_struct *vma;
2205 
2206 		mmap_read_lock(mm);
2207 		vma = find_mergeable_vma(mm, rmap_item->address);
2208 		if (vma) {
2209 			err = try_to_merge_one_page(vma, page,
2210 					ZERO_PAGE(rmap_item->address));
2211 			trace_ksm_merge_one_page(
2212 				page_to_pfn(ZERO_PAGE(rmap_item->address)),
2213 				rmap_item, mm, err);
2214 		} else {
2215 			/*
2216 			 * If the vma is out of date, we do not need to
2217 			 * continue.
2218 			 */
2219 			err = 0;
2220 		}
2221 		mmap_read_unlock(mm);
2222 		/*
2223 		 * In case of failure, the page was not really empty, so we
2224 		 * need to continue. Otherwise we're done.
2225 		 */
2226 		if (!err)
2227 			return;
2228 	}
2229 	tree_rmap_item =
2230 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2231 	if (tree_rmap_item) {
2232 		bool split;
2233 
2234 		kpage = try_to_merge_two_pages(rmap_item, page,
2235 						tree_rmap_item, tree_page);
2236 		/*
2237 		 * If both pages we tried to merge belong to the same compound
2238 		 * page, then we actually ended up increasing the reference
2239 		 * count of the same compound page twice, and split_huge_page
2240 		 * failed.
2241 		 * Here we set a flag if that happened, and we use it later to
2242 		 * try split_huge_page again. Since we call put_page right
2243 		 * afterwards, the reference count will be correct and
2244 		 * split_huge_page should succeed.
2245 		 */
2246 		split = PageTransCompound(page)
2247 			&& compound_head(page) == compound_head(tree_page);
2248 		put_page(tree_page);
2249 		if (kpage) {
2250 			/*
2251 			 * The pages were successfully merged: insert new
2252 			 * node in the stable tree and add both rmap_items.
2253 			 */
2254 			lock_page(kpage);
2255 			stable_node = stable_tree_insert(kpage);
2256 			if (stable_node) {
2257 				stable_tree_append(tree_rmap_item, stable_node,
2258 						   false);
2259 				stable_tree_append(rmap_item, stable_node,
2260 						   false);
2261 			}
2262 			unlock_page(kpage);
2263 
2264 			/*
2265 			 * If we fail to insert the page into the stable tree,
2266 			 * we will have 2 virtual addresses that are pointing
2267 			 * to a ksm page left outside the stable tree,
2268 			 * in which case we need to break_cow on both.
2269 			 */
2270 			if (!stable_node) {
2271 				break_cow(tree_rmap_item);
2272 				break_cow(rmap_item);
2273 			}
2274 		} else if (split) {
2275 			/*
2276 			 * We are here if we tried to merge two pages and
2277 			 * failed because they both belonged to the same
2278 			 * compound page. We will split the page now, but no
2279 			 * merging will take place.
2280 			 * We do not want to add the cost of a full lock; if
2281 			 * the page is locked, it is better to skip it and
2282 			 * perhaps try again later.
2283 			 */
2284 			if (!trylock_page(page))
2285 				return;
2286 			split_huge_page(page);
2287 			unlock_page(page);
2288 		}
2289 	}
2290 }
2291 
2292 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2293 					    struct ksm_rmap_item **rmap_list,
2294 					    unsigned long addr)
2295 {
2296 	struct ksm_rmap_item *rmap_item;
2297 
2298 	while (*rmap_list) {
2299 		rmap_item = *rmap_list;
2300 		if ((rmap_item->address & PAGE_MASK) == addr)
2301 			return rmap_item;
2302 		if (rmap_item->address > addr)
2303 			break;
2304 		*rmap_list = rmap_item->rmap_list;
2305 		remove_rmap_item_from_tree(rmap_item);
2306 		free_rmap_item(rmap_item);
2307 	}
2308 
2309 	rmap_item = alloc_rmap_item();
2310 	if (rmap_item) {
2311 		/* It has already been zeroed */
2312 		rmap_item->mm = mm_slot->slot.mm;
2313 		rmap_item->mm->ksm_rmap_items++;
2314 		rmap_item->address = addr;
2315 		rmap_item->rmap_list = *rmap_list;
2316 		*rmap_list = rmap_item;
2317 	}
2318 	return rmap_item;
2319 }
2320 
2321 /*
2322  * Calculate skip age for the ksm page age. The age determines how often
2323  * de-duplicating has already been tried unsuccessfully. If the age is
2324  * smaller, the scanning of this page is skipped for less scans.
2325  *
2326  * @age: rmap_item age of page
2327  */
2328 static unsigned int skip_age(rmap_age_t age)
2329 {
2330 	if (age <= 3)
2331 		return 1;
2332 	if (age <= 5)
2333 		return 2;
2334 	if (age <= 8)
2335 		return 4;
2336 
2337 	return 8;
2338 }
2339 
2340 /*
2341  * Determines if a page should be skipped for the current scan.
2342  *
2343  * @page: page to check
2344  * @rmap_item: associated rmap_item of page
2345  */
2346 static bool should_skip_rmap_item(struct page *page,
2347 				  struct ksm_rmap_item *rmap_item)
2348 {
2349 	rmap_age_t age;
2350 
2351 	if (!ksm_smart_scan)
2352 		return false;
2353 
2354 	/*
2355 	 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2356 	 * will essentially ignore them, but we still have to process them
2357 	 * properly.
2358 	 */
2359 	if (PageKsm(page))
2360 		return false;
2361 
2362 	age = rmap_item->age;
2363 	if (age != U8_MAX)
2364 		rmap_item->age++;
2365 
2366 	/*
2367 	 * Smaller ages are not skipped, they need to get a chance to go
2368 	 * through the different phases of the KSM merging.
2369 	 */
2370 	if (age < 3)
2371 		return false;
2372 
2373 	/*
2374 	 * Are we still allowed to skip? If not, then don't skip it
2375 	 * and determine how much more often we are allowed to skip next.
2376 	 */
2377 	if (!rmap_item->remaining_skips) {
2378 		rmap_item->remaining_skips = skip_age(age);
2379 		return false;
2380 	}
2381 
2382 	/* Skip this page */
2383 	ksm_pages_skipped++;
2384 	rmap_item->remaining_skips--;
2385 	remove_rmap_item_from_tree(rmap_item);
2386 	return true;
2387 }
2388 
2389 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2390 {
2391 	struct mm_struct *mm;
2392 	struct ksm_mm_slot *mm_slot;
2393 	struct mm_slot *slot;
2394 	struct vm_area_struct *vma;
2395 	struct ksm_rmap_item *rmap_item;
2396 	struct vma_iterator vmi;
2397 	int nid;
2398 
2399 	if (list_empty(&ksm_mm_head.slot.mm_node))
2400 		return NULL;
2401 
2402 	mm_slot = ksm_scan.mm_slot;
2403 	if (mm_slot == &ksm_mm_head) {
2404 		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2405 
2406 		/*
2407 		 * A number of pages can hang around indefinitely in per-cpu
2408 		 * LRU cache, raised page count preventing write_protect_page
2409 		 * from merging them.  Though it doesn't really matter much,
2410 		 * it is puzzling to see some stuck in pages_volatile until
2411 		 * other activity jostles them out, and they also prevented
2412 		 * LTP's KSM test from succeeding deterministically; so drain
2413 		 * them here (here rather than on entry to ksm_do_scan(),
2414 		 * so we don't IPI too often when pages_to_scan is set low).
2415 		 */
2416 		lru_add_drain_all();
2417 
2418 		/*
2419 		 * Whereas stale stable_nodes on the stable_tree itself
2420 		 * get pruned in the regular course of stable_tree_search(),
2421 		 * those moved out to the migrate_nodes list can accumulate:
2422 		 * so prune them once before each full scan.
2423 		 */
2424 		if (!ksm_merge_across_nodes) {
2425 			struct ksm_stable_node *stable_node, *next;
2426 			struct page *page;
2427 
2428 			list_for_each_entry_safe(stable_node, next,
2429 						 &migrate_nodes, list) {
2430 				page = get_ksm_page(stable_node,
2431 						    GET_KSM_PAGE_NOLOCK);
2432 				if (page)
2433 					put_page(page);
2434 				cond_resched();
2435 			}
2436 		}
2437 
2438 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2439 			root_unstable_tree[nid] = RB_ROOT;
2440 
2441 		spin_lock(&ksm_mmlist_lock);
2442 		slot = list_entry(mm_slot->slot.mm_node.next,
2443 				  struct mm_slot, mm_node);
2444 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2445 		ksm_scan.mm_slot = mm_slot;
2446 		spin_unlock(&ksm_mmlist_lock);
2447 		/*
2448 		 * Although we tested list_empty() above, a racing __ksm_exit
2449 		 * of the last mm on the list may have removed it since then.
2450 		 */
2451 		if (mm_slot == &ksm_mm_head)
2452 			return NULL;
2453 next_mm:
2454 		ksm_scan.address = 0;
2455 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2456 	}
2457 
2458 	slot = &mm_slot->slot;
2459 	mm = slot->mm;
2460 	vma_iter_init(&vmi, mm, ksm_scan.address);
2461 
2462 	mmap_read_lock(mm);
2463 	if (ksm_test_exit(mm))
2464 		goto no_vmas;
2465 
2466 	for_each_vma(vmi, vma) {
2467 		if (!(vma->vm_flags & VM_MERGEABLE))
2468 			continue;
2469 		if (ksm_scan.address < vma->vm_start)
2470 			ksm_scan.address = vma->vm_start;
2471 		if (!vma->anon_vma)
2472 			ksm_scan.address = vma->vm_end;
2473 
2474 		while (ksm_scan.address < vma->vm_end) {
2475 			if (ksm_test_exit(mm))
2476 				break;
2477 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2478 			if (IS_ERR_OR_NULL(*page)) {
2479 				ksm_scan.address += PAGE_SIZE;
2480 				cond_resched();
2481 				continue;
2482 			}
2483 			if (is_zone_device_page(*page))
2484 				goto next_page;
2485 			if (PageAnon(*page)) {
2486 				flush_anon_page(vma, *page, ksm_scan.address);
2487 				flush_dcache_page(*page);
2488 				rmap_item = get_next_rmap_item(mm_slot,
2489 					ksm_scan.rmap_list, ksm_scan.address);
2490 				if (rmap_item) {
2491 					ksm_scan.rmap_list =
2492 							&rmap_item->rmap_list;
2493 
2494 					if (should_skip_rmap_item(*page, rmap_item))
2495 						goto next_page;
2496 
2497 					ksm_scan.address += PAGE_SIZE;
2498 				} else
2499 					put_page(*page);
2500 				mmap_read_unlock(mm);
2501 				return rmap_item;
2502 			}
2503 next_page:
2504 			put_page(*page);
2505 			ksm_scan.address += PAGE_SIZE;
2506 			cond_resched();
2507 		}
2508 	}
2509 
2510 	if (ksm_test_exit(mm)) {
2511 no_vmas:
2512 		ksm_scan.address = 0;
2513 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2514 	}
2515 	/*
2516 	 * Nuke all the rmap_items that are above this current rmap:
2517 	 * because there were no VM_MERGEABLE vmas with such addresses.
2518 	 */
2519 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2520 
2521 	spin_lock(&ksm_mmlist_lock);
2522 	slot = list_entry(mm_slot->slot.mm_node.next,
2523 			  struct mm_slot, mm_node);
2524 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2525 	if (ksm_scan.address == 0) {
2526 		/*
2527 		 * We've completed a full scan of all vmas, holding mmap_lock
2528 		 * throughout, and found no VM_MERGEABLE: so do the same as
2529 		 * __ksm_exit does to remove this mm from all our lists now.
2530 		 * This applies either when cleaning up after __ksm_exit
2531 		 * (but beware: we can reach here even before __ksm_exit),
2532 		 * or when all VM_MERGEABLE areas have been unmapped (and
2533 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2534 		 */
2535 		hash_del(&mm_slot->slot.hash);
2536 		list_del(&mm_slot->slot.mm_node);
2537 		spin_unlock(&ksm_mmlist_lock);
2538 
2539 		mm_slot_free(mm_slot_cache, mm_slot);
2540 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2541 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2542 		mmap_read_unlock(mm);
2543 		mmdrop(mm);
2544 	} else {
2545 		mmap_read_unlock(mm);
2546 		/*
2547 		 * mmap_read_unlock(mm) first because after
2548 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2549 		 * already have been freed under us by __ksm_exit()
2550 		 * because the "mm_slot" is still hashed and
2551 		 * ksm_scan.mm_slot doesn't point to it anymore.
2552 		 */
2553 		spin_unlock(&ksm_mmlist_lock);
2554 	}
2555 
2556 	/* Repeat until we've completed scanning the whole list */
2557 	mm_slot = ksm_scan.mm_slot;
2558 	if (mm_slot != &ksm_mm_head)
2559 		goto next_mm;
2560 
2561 	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2562 	ksm_scan.seqnr++;
2563 	return NULL;
2564 }
2565 
2566 /**
2567  * ksm_do_scan  - the ksm scanner main worker function.
2568  * @scan_npages:  number of pages we want to scan before we return.
2569  */
2570 static void ksm_do_scan(unsigned int scan_npages)
2571 {
2572 	struct ksm_rmap_item *rmap_item;
2573 	struct page *page;
2574 	unsigned int npages = scan_npages;
2575 
2576 	while (npages-- && likely(!freezing(current))) {
2577 		cond_resched();
2578 		rmap_item = scan_get_next_rmap_item(&page);
2579 		if (!rmap_item)
2580 			return;
2581 		cmp_and_merge_page(page, rmap_item);
2582 		put_page(page);
2583 	}
2584 
2585 	ksm_pages_scanned += scan_npages - npages;
2586 }
2587 
2588 static int ksmd_should_run(void)
2589 {
2590 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2591 }
2592 
2593 static int ksm_scan_thread(void *nothing)
2594 {
2595 	unsigned int sleep_ms;
2596 
2597 	set_freezable();
2598 	set_user_nice(current, 5);
2599 
2600 	while (!kthread_should_stop()) {
2601 		mutex_lock(&ksm_thread_mutex);
2602 		wait_while_offlining();
2603 		if (ksmd_should_run())
2604 			ksm_do_scan(ksm_thread_pages_to_scan);
2605 		mutex_unlock(&ksm_thread_mutex);
2606 
2607 		try_to_freeze();
2608 
2609 		if (ksmd_should_run()) {
2610 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2611 			wait_event_interruptible_timeout(ksm_iter_wait,
2612 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2613 				msecs_to_jiffies(sleep_ms));
2614 		} else {
2615 			wait_event_freezable(ksm_thread_wait,
2616 				ksmd_should_run() || kthread_should_stop());
2617 		}
2618 	}
2619 	return 0;
2620 }
2621 
2622 static void __ksm_add_vma(struct vm_area_struct *vma)
2623 {
2624 	unsigned long vm_flags = vma->vm_flags;
2625 
2626 	if (vm_flags & VM_MERGEABLE)
2627 		return;
2628 
2629 	if (vma_ksm_compatible(vma))
2630 		vm_flags_set(vma, VM_MERGEABLE);
2631 }
2632 
2633 static int __ksm_del_vma(struct vm_area_struct *vma)
2634 {
2635 	int err;
2636 
2637 	if (!(vma->vm_flags & VM_MERGEABLE))
2638 		return 0;
2639 
2640 	if (vma->anon_vma) {
2641 		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2642 		if (err)
2643 			return err;
2644 	}
2645 
2646 	vm_flags_clear(vma, VM_MERGEABLE);
2647 	return 0;
2648 }
2649 /**
2650  * ksm_add_vma - Mark vma as mergeable if compatible
2651  *
2652  * @vma:  Pointer to vma
2653  */
2654 void ksm_add_vma(struct vm_area_struct *vma)
2655 {
2656 	struct mm_struct *mm = vma->vm_mm;
2657 
2658 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2659 		__ksm_add_vma(vma);
2660 }
2661 
2662 static void ksm_add_vmas(struct mm_struct *mm)
2663 {
2664 	struct vm_area_struct *vma;
2665 
2666 	VMA_ITERATOR(vmi, mm, 0);
2667 	for_each_vma(vmi, vma)
2668 		__ksm_add_vma(vma);
2669 }
2670 
2671 static int ksm_del_vmas(struct mm_struct *mm)
2672 {
2673 	struct vm_area_struct *vma;
2674 	int err;
2675 
2676 	VMA_ITERATOR(vmi, mm, 0);
2677 	for_each_vma(vmi, vma) {
2678 		err = __ksm_del_vma(vma);
2679 		if (err)
2680 			return err;
2681 	}
2682 	return 0;
2683 }
2684 
2685 /**
2686  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2687  *                        compatible VMA's
2688  *
2689  * @mm:  Pointer to mm
2690  *
2691  * Returns 0 on success, otherwise error code
2692  */
2693 int ksm_enable_merge_any(struct mm_struct *mm)
2694 {
2695 	int err;
2696 
2697 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2698 		return 0;
2699 
2700 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2701 		err = __ksm_enter(mm);
2702 		if (err)
2703 			return err;
2704 	}
2705 
2706 	set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2707 	ksm_add_vmas(mm);
2708 
2709 	return 0;
2710 }
2711 
2712 /**
2713  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2714  *			   previously enabled via ksm_enable_merge_any().
2715  *
2716  * Disabling merging implies unmerging any merged pages, like setting
2717  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2718  * merging on all compatible VMA's remains enabled.
2719  *
2720  * @mm: Pointer to mm
2721  *
2722  * Returns 0 on success, otherwise error code
2723  */
2724 int ksm_disable_merge_any(struct mm_struct *mm)
2725 {
2726 	int err;
2727 
2728 	if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2729 		return 0;
2730 
2731 	err = ksm_del_vmas(mm);
2732 	if (err) {
2733 		ksm_add_vmas(mm);
2734 		return err;
2735 	}
2736 
2737 	clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2738 	return 0;
2739 }
2740 
2741 int ksm_disable(struct mm_struct *mm)
2742 {
2743 	mmap_assert_write_locked(mm);
2744 
2745 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2746 		return 0;
2747 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2748 		return ksm_disable_merge_any(mm);
2749 	return ksm_del_vmas(mm);
2750 }
2751 
2752 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2753 		unsigned long end, int advice, unsigned long *vm_flags)
2754 {
2755 	struct mm_struct *mm = vma->vm_mm;
2756 	int err;
2757 
2758 	switch (advice) {
2759 	case MADV_MERGEABLE:
2760 		if (vma->vm_flags & VM_MERGEABLE)
2761 			return 0;
2762 		if (!vma_ksm_compatible(vma))
2763 			return 0;
2764 
2765 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2766 			err = __ksm_enter(mm);
2767 			if (err)
2768 				return err;
2769 		}
2770 
2771 		*vm_flags |= VM_MERGEABLE;
2772 		break;
2773 
2774 	case MADV_UNMERGEABLE:
2775 		if (!(*vm_flags & VM_MERGEABLE))
2776 			return 0;		/* just ignore the advice */
2777 
2778 		if (vma->anon_vma) {
2779 			err = unmerge_ksm_pages(vma, start, end, true);
2780 			if (err)
2781 				return err;
2782 		}
2783 
2784 		*vm_flags &= ~VM_MERGEABLE;
2785 		break;
2786 	}
2787 
2788 	return 0;
2789 }
2790 EXPORT_SYMBOL_GPL(ksm_madvise);
2791 
2792 int __ksm_enter(struct mm_struct *mm)
2793 {
2794 	struct ksm_mm_slot *mm_slot;
2795 	struct mm_slot *slot;
2796 	int needs_wakeup;
2797 
2798 	mm_slot = mm_slot_alloc(mm_slot_cache);
2799 	if (!mm_slot)
2800 		return -ENOMEM;
2801 
2802 	slot = &mm_slot->slot;
2803 
2804 	/* Check ksm_run too?  Would need tighter locking */
2805 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2806 
2807 	spin_lock(&ksm_mmlist_lock);
2808 	mm_slot_insert(mm_slots_hash, mm, slot);
2809 	/*
2810 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2811 	 * insert just behind the scanning cursor, to let the area settle
2812 	 * down a little; when fork is followed by immediate exec, we don't
2813 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2814 	 *
2815 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2816 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2817 	 * missed: then we might as well insert at the end of the list.
2818 	 */
2819 	if (ksm_run & KSM_RUN_UNMERGE)
2820 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2821 	else
2822 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2823 	spin_unlock(&ksm_mmlist_lock);
2824 
2825 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2826 	mmgrab(mm);
2827 
2828 	if (needs_wakeup)
2829 		wake_up_interruptible(&ksm_thread_wait);
2830 
2831 	trace_ksm_enter(mm);
2832 	return 0;
2833 }
2834 
2835 void __ksm_exit(struct mm_struct *mm)
2836 {
2837 	struct ksm_mm_slot *mm_slot;
2838 	struct mm_slot *slot;
2839 	int easy_to_free = 0;
2840 
2841 	/*
2842 	 * This process is exiting: if it's straightforward (as is the
2843 	 * case when ksmd was never running), free mm_slot immediately.
2844 	 * But if it's at the cursor or has rmap_items linked to it, use
2845 	 * mmap_lock to synchronize with any break_cows before pagetables
2846 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2847 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2848 	 */
2849 
2850 	spin_lock(&ksm_mmlist_lock);
2851 	slot = mm_slot_lookup(mm_slots_hash, mm);
2852 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2853 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2854 		if (!mm_slot->rmap_list) {
2855 			hash_del(&slot->hash);
2856 			list_del(&slot->mm_node);
2857 			easy_to_free = 1;
2858 		} else {
2859 			list_move(&slot->mm_node,
2860 				  &ksm_scan.mm_slot->slot.mm_node);
2861 		}
2862 	}
2863 	spin_unlock(&ksm_mmlist_lock);
2864 
2865 	if (easy_to_free) {
2866 		mm_slot_free(mm_slot_cache, mm_slot);
2867 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2868 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2869 		mmdrop(mm);
2870 	} else if (mm_slot) {
2871 		mmap_write_lock(mm);
2872 		mmap_write_unlock(mm);
2873 	}
2874 
2875 	trace_ksm_exit(mm);
2876 }
2877 
2878 struct page *ksm_might_need_to_copy(struct page *page,
2879 			struct vm_area_struct *vma, unsigned long address)
2880 {
2881 	struct folio *folio = page_folio(page);
2882 	struct anon_vma *anon_vma = folio_anon_vma(folio);
2883 	struct page *new_page;
2884 
2885 	if (PageKsm(page)) {
2886 		if (page_stable_node(page) &&
2887 		    !(ksm_run & KSM_RUN_UNMERGE))
2888 			return page;	/* no need to copy it */
2889 	} else if (!anon_vma) {
2890 		return page;		/* no need to copy it */
2891 	} else if (page->index == linear_page_index(vma, address) &&
2892 			anon_vma->root == vma->anon_vma->root) {
2893 		return page;		/* still no need to copy it */
2894 	}
2895 	if (PageHWPoison(page))
2896 		return ERR_PTR(-EHWPOISON);
2897 	if (!PageUptodate(page))
2898 		return page;		/* let do_swap_page report the error */
2899 
2900 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2901 	if (new_page &&
2902 	    mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2903 		put_page(new_page);
2904 		new_page = NULL;
2905 	}
2906 	if (new_page) {
2907 		if (copy_mc_user_highpage(new_page, page, address, vma)) {
2908 			put_page(new_page);
2909 			memory_failure_queue(page_to_pfn(page), 0);
2910 			return ERR_PTR(-EHWPOISON);
2911 		}
2912 		SetPageDirty(new_page);
2913 		__SetPageUptodate(new_page);
2914 		__SetPageLocked(new_page);
2915 #ifdef CONFIG_SWAP
2916 		count_vm_event(KSM_SWPIN_COPY);
2917 #endif
2918 	}
2919 
2920 	return new_page;
2921 }
2922 
2923 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2924 {
2925 	struct ksm_stable_node *stable_node;
2926 	struct ksm_rmap_item *rmap_item;
2927 	int search_new_forks = 0;
2928 
2929 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2930 
2931 	/*
2932 	 * Rely on the page lock to protect against concurrent modifications
2933 	 * to that page's node of the stable tree.
2934 	 */
2935 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2936 
2937 	stable_node = folio_stable_node(folio);
2938 	if (!stable_node)
2939 		return;
2940 again:
2941 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2942 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2943 		struct anon_vma_chain *vmac;
2944 		struct vm_area_struct *vma;
2945 
2946 		cond_resched();
2947 		if (!anon_vma_trylock_read(anon_vma)) {
2948 			if (rwc->try_lock) {
2949 				rwc->contended = true;
2950 				return;
2951 			}
2952 			anon_vma_lock_read(anon_vma);
2953 		}
2954 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2955 					       0, ULONG_MAX) {
2956 			unsigned long addr;
2957 
2958 			cond_resched();
2959 			vma = vmac->vma;
2960 
2961 			/* Ignore the stable/unstable/sqnr flags */
2962 			addr = rmap_item->address & PAGE_MASK;
2963 
2964 			if (addr < vma->vm_start || addr >= vma->vm_end)
2965 				continue;
2966 			/*
2967 			 * Initially we examine only the vma which covers this
2968 			 * rmap_item; but later, if there is still work to do,
2969 			 * we examine covering vmas in other mms: in case they
2970 			 * were forked from the original since ksmd passed.
2971 			 */
2972 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2973 				continue;
2974 
2975 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2976 				continue;
2977 
2978 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2979 				anon_vma_unlock_read(anon_vma);
2980 				return;
2981 			}
2982 			if (rwc->done && rwc->done(folio)) {
2983 				anon_vma_unlock_read(anon_vma);
2984 				return;
2985 			}
2986 		}
2987 		anon_vma_unlock_read(anon_vma);
2988 	}
2989 	if (!search_new_forks++)
2990 		goto again;
2991 }
2992 
2993 #ifdef CONFIG_MEMORY_FAILURE
2994 /*
2995  * Collect processes when the error hit an ksm page.
2996  */
2997 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2998 		       int force_early)
2999 {
3000 	struct ksm_stable_node *stable_node;
3001 	struct ksm_rmap_item *rmap_item;
3002 	struct folio *folio = page_folio(page);
3003 	struct vm_area_struct *vma;
3004 	struct task_struct *tsk;
3005 
3006 	stable_node = folio_stable_node(folio);
3007 	if (!stable_node)
3008 		return;
3009 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3010 		struct anon_vma *av = rmap_item->anon_vma;
3011 
3012 		anon_vma_lock_read(av);
3013 		rcu_read_lock();
3014 		for_each_process(tsk) {
3015 			struct anon_vma_chain *vmac;
3016 			unsigned long addr;
3017 			struct task_struct *t =
3018 				task_early_kill(tsk, force_early);
3019 			if (!t)
3020 				continue;
3021 			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3022 						       ULONG_MAX)
3023 			{
3024 				vma = vmac->vma;
3025 				if (vma->vm_mm == t->mm) {
3026 					addr = rmap_item->address & PAGE_MASK;
3027 					add_to_kill_ksm(t, page, vma, to_kill,
3028 							addr);
3029 				}
3030 			}
3031 		}
3032 		rcu_read_unlock();
3033 		anon_vma_unlock_read(av);
3034 	}
3035 }
3036 #endif
3037 
3038 #ifdef CONFIG_MIGRATION
3039 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3040 {
3041 	struct ksm_stable_node *stable_node;
3042 
3043 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3044 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3045 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3046 
3047 	stable_node = folio_stable_node(folio);
3048 	if (stable_node) {
3049 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3050 		stable_node->kpfn = folio_pfn(newfolio);
3051 		/*
3052 		 * newfolio->mapping was set in advance; now we need smp_wmb()
3053 		 * to make sure that the new stable_node->kpfn is visible
3054 		 * to get_ksm_page() before it can see that folio->mapping
3055 		 * has gone stale (or that folio_test_swapcache has been cleared).
3056 		 */
3057 		smp_wmb();
3058 		set_page_stable_node(&folio->page, NULL);
3059 	}
3060 }
3061 #endif /* CONFIG_MIGRATION */
3062 
3063 #ifdef CONFIG_MEMORY_HOTREMOVE
3064 static void wait_while_offlining(void)
3065 {
3066 	while (ksm_run & KSM_RUN_OFFLINE) {
3067 		mutex_unlock(&ksm_thread_mutex);
3068 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3069 			    TASK_UNINTERRUPTIBLE);
3070 		mutex_lock(&ksm_thread_mutex);
3071 	}
3072 }
3073 
3074 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3075 					 unsigned long start_pfn,
3076 					 unsigned long end_pfn)
3077 {
3078 	if (stable_node->kpfn >= start_pfn &&
3079 	    stable_node->kpfn < end_pfn) {
3080 		/*
3081 		 * Don't get_ksm_page, page has already gone:
3082 		 * which is why we keep kpfn instead of page*
3083 		 */
3084 		remove_node_from_stable_tree(stable_node);
3085 		return true;
3086 	}
3087 	return false;
3088 }
3089 
3090 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3091 					   unsigned long start_pfn,
3092 					   unsigned long end_pfn,
3093 					   struct rb_root *root)
3094 {
3095 	struct ksm_stable_node *dup;
3096 	struct hlist_node *hlist_safe;
3097 
3098 	if (!is_stable_node_chain(stable_node)) {
3099 		VM_BUG_ON(is_stable_node_dup(stable_node));
3100 		return stable_node_dup_remove_range(stable_node, start_pfn,
3101 						    end_pfn);
3102 	}
3103 
3104 	hlist_for_each_entry_safe(dup, hlist_safe,
3105 				  &stable_node->hlist, hlist_dup) {
3106 		VM_BUG_ON(!is_stable_node_dup(dup));
3107 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3108 	}
3109 	if (hlist_empty(&stable_node->hlist)) {
3110 		free_stable_node_chain(stable_node, root);
3111 		return true; /* notify caller that tree was rebalanced */
3112 	} else
3113 		return false;
3114 }
3115 
3116 static void ksm_check_stable_tree(unsigned long start_pfn,
3117 				  unsigned long end_pfn)
3118 {
3119 	struct ksm_stable_node *stable_node, *next;
3120 	struct rb_node *node;
3121 	int nid;
3122 
3123 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3124 		node = rb_first(root_stable_tree + nid);
3125 		while (node) {
3126 			stable_node = rb_entry(node, struct ksm_stable_node, node);
3127 			if (stable_node_chain_remove_range(stable_node,
3128 							   start_pfn, end_pfn,
3129 							   root_stable_tree +
3130 							   nid))
3131 				node = rb_first(root_stable_tree + nid);
3132 			else
3133 				node = rb_next(node);
3134 			cond_resched();
3135 		}
3136 	}
3137 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3138 		if (stable_node->kpfn >= start_pfn &&
3139 		    stable_node->kpfn < end_pfn)
3140 			remove_node_from_stable_tree(stable_node);
3141 		cond_resched();
3142 	}
3143 }
3144 
3145 static int ksm_memory_callback(struct notifier_block *self,
3146 			       unsigned long action, void *arg)
3147 {
3148 	struct memory_notify *mn = arg;
3149 
3150 	switch (action) {
3151 	case MEM_GOING_OFFLINE:
3152 		/*
3153 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3154 		 * and remove_all_stable_nodes() while memory is going offline:
3155 		 * it is unsafe for them to touch the stable tree at this time.
3156 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
3157 		 * which do not need the ksm_thread_mutex are all safe.
3158 		 */
3159 		mutex_lock(&ksm_thread_mutex);
3160 		ksm_run |= KSM_RUN_OFFLINE;
3161 		mutex_unlock(&ksm_thread_mutex);
3162 		break;
3163 
3164 	case MEM_OFFLINE:
3165 		/*
3166 		 * Most of the work is done by page migration; but there might
3167 		 * be a few stable_nodes left over, still pointing to struct
3168 		 * pages which have been offlined: prune those from the tree,
3169 		 * otherwise get_ksm_page() might later try to access a
3170 		 * non-existent struct page.
3171 		 */
3172 		ksm_check_stable_tree(mn->start_pfn,
3173 				      mn->start_pfn + mn->nr_pages);
3174 		fallthrough;
3175 	case MEM_CANCEL_OFFLINE:
3176 		mutex_lock(&ksm_thread_mutex);
3177 		ksm_run &= ~KSM_RUN_OFFLINE;
3178 		mutex_unlock(&ksm_thread_mutex);
3179 
3180 		smp_mb();	/* wake_up_bit advises this */
3181 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3182 		break;
3183 	}
3184 	return NOTIFY_OK;
3185 }
3186 #else
3187 static void wait_while_offlining(void)
3188 {
3189 }
3190 #endif /* CONFIG_MEMORY_HOTREMOVE */
3191 
3192 #ifdef CONFIG_PROC_FS
3193 long ksm_process_profit(struct mm_struct *mm)
3194 {
3195 	return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE -
3196 		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3197 }
3198 #endif /* CONFIG_PROC_FS */
3199 
3200 #ifdef CONFIG_SYSFS
3201 /*
3202  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3203  */
3204 
3205 #define KSM_ATTR_RO(_name) \
3206 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3207 #define KSM_ATTR(_name) \
3208 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3209 
3210 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3211 				    struct kobj_attribute *attr, char *buf)
3212 {
3213 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3214 }
3215 
3216 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3217 				     struct kobj_attribute *attr,
3218 				     const char *buf, size_t count)
3219 {
3220 	unsigned int msecs;
3221 	int err;
3222 
3223 	err = kstrtouint(buf, 10, &msecs);
3224 	if (err)
3225 		return -EINVAL;
3226 
3227 	ksm_thread_sleep_millisecs = msecs;
3228 	wake_up_interruptible(&ksm_iter_wait);
3229 
3230 	return count;
3231 }
3232 KSM_ATTR(sleep_millisecs);
3233 
3234 static ssize_t pages_to_scan_show(struct kobject *kobj,
3235 				  struct kobj_attribute *attr, char *buf)
3236 {
3237 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3238 }
3239 
3240 static ssize_t pages_to_scan_store(struct kobject *kobj,
3241 				   struct kobj_attribute *attr,
3242 				   const char *buf, size_t count)
3243 {
3244 	unsigned int nr_pages;
3245 	int err;
3246 
3247 	err = kstrtouint(buf, 10, &nr_pages);
3248 	if (err)
3249 		return -EINVAL;
3250 
3251 	ksm_thread_pages_to_scan = nr_pages;
3252 
3253 	return count;
3254 }
3255 KSM_ATTR(pages_to_scan);
3256 
3257 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3258 			char *buf)
3259 {
3260 	return sysfs_emit(buf, "%lu\n", ksm_run);
3261 }
3262 
3263 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3264 			 const char *buf, size_t count)
3265 {
3266 	unsigned int flags;
3267 	int err;
3268 
3269 	err = kstrtouint(buf, 10, &flags);
3270 	if (err)
3271 		return -EINVAL;
3272 	if (flags > KSM_RUN_UNMERGE)
3273 		return -EINVAL;
3274 
3275 	/*
3276 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3277 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3278 	 * breaking COW to free the pages_shared (but leaves mm_slots
3279 	 * on the list for when ksmd may be set running again).
3280 	 */
3281 
3282 	mutex_lock(&ksm_thread_mutex);
3283 	wait_while_offlining();
3284 	if (ksm_run != flags) {
3285 		ksm_run = flags;
3286 		if (flags & KSM_RUN_UNMERGE) {
3287 			set_current_oom_origin();
3288 			err = unmerge_and_remove_all_rmap_items();
3289 			clear_current_oom_origin();
3290 			if (err) {
3291 				ksm_run = KSM_RUN_STOP;
3292 				count = err;
3293 			}
3294 		}
3295 	}
3296 	mutex_unlock(&ksm_thread_mutex);
3297 
3298 	if (flags & KSM_RUN_MERGE)
3299 		wake_up_interruptible(&ksm_thread_wait);
3300 
3301 	return count;
3302 }
3303 KSM_ATTR(run);
3304 
3305 #ifdef CONFIG_NUMA
3306 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3307 				       struct kobj_attribute *attr, char *buf)
3308 {
3309 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3310 }
3311 
3312 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3313 				   struct kobj_attribute *attr,
3314 				   const char *buf, size_t count)
3315 {
3316 	int err;
3317 	unsigned long knob;
3318 
3319 	err = kstrtoul(buf, 10, &knob);
3320 	if (err)
3321 		return err;
3322 	if (knob > 1)
3323 		return -EINVAL;
3324 
3325 	mutex_lock(&ksm_thread_mutex);
3326 	wait_while_offlining();
3327 	if (ksm_merge_across_nodes != knob) {
3328 		if (ksm_pages_shared || remove_all_stable_nodes())
3329 			err = -EBUSY;
3330 		else if (root_stable_tree == one_stable_tree) {
3331 			struct rb_root *buf;
3332 			/*
3333 			 * This is the first time that we switch away from the
3334 			 * default of merging across nodes: must now allocate
3335 			 * a buffer to hold as many roots as may be needed.
3336 			 * Allocate stable and unstable together:
3337 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3338 			 */
3339 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3340 				      GFP_KERNEL);
3341 			/* Let us assume that RB_ROOT is NULL is zero */
3342 			if (!buf)
3343 				err = -ENOMEM;
3344 			else {
3345 				root_stable_tree = buf;
3346 				root_unstable_tree = buf + nr_node_ids;
3347 				/* Stable tree is empty but not the unstable */
3348 				root_unstable_tree[0] = one_unstable_tree[0];
3349 			}
3350 		}
3351 		if (!err) {
3352 			ksm_merge_across_nodes = knob;
3353 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3354 		}
3355 	}
3356 	mutex_unlock(&ksm_thread_mutex);
3357 
3358 	return err ? err : count;
3359 }
3360 KSM_ATTR(merge_across_nodes);
3361 #endif
3362 
3363 static ssize_t use_zero_pages_show(struct kobject *kobj,
3364 				   struct kobj_attribute *attr, char *buf)
3365 {
3366 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3367 }
3368 static ssize_t use_zero_pages_store(struct kobject *kobj,
3369 				   struct kobj_attribute *attr,
3370 				   const char *buf, size_t count)
3371 {
3372 	int err;
3373 	bool value;
3374 
3375 	err = kstrtobool(buf, &value);
3376 	if (err)
3377 		return -EINVAL;
3378 
3379 	ksm_use_zero_pages = value;
3380 
3381 	return count;
3382 }
3383 KSM_ATTR(use_zero_pages);
3384 
3385 static ssize_t max_page_sharing_show(struct kobject *kobj,
3386 				     struct kobj_attribute *attr, char *buf)
3387 {
3388 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3389 }
3390 
3391 static ssize_t max_page_sharing_store(struct kobject *kobj,
3392 				      struct kobj_attribute *attr,
3393 				      const char *buf, size_t count)
3394 {
3395 	int err;
3396 	int knob;
3397 
3398 	err = kstrtoint(buf, 10, &knob);
3399 	if (err)
3400 		return err;
3401 	/*
3402 	 * When a KSM page is created it is shared by 2 mappings. This
3403 	 * being a signed comparison, it implicitly verifies it's not
3404 	 * negative.
3405 	 */
3406 	if (knob < 2)
3407 		return -EINVAL;
3408 
3409 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3410 		return count;
3411 
3412 	mutex_lock(&ksm_thread_mutex);
3413 	wait_while_offlining();
3414 	if (ksm_max_page_sharing != knob) {
3415 		if (ksm_pages_shared || remove_all_stable_nodes())
3416 			err = -EBUSY;
3417 		else
3418 			ksm_max_page_sharing = knob;
3419 	}
3420 	mutex_unlock(&ksm_thread_mutex);
3421 
3422 	return err ? err : count;
3423 }
3424 KSM_ATTR(max_page_sharing);
3425 
3426 static ssize_t pages_scanned_show(struct kobject *kobj,
3427 				  struct kobj_attribute *attr, char *buf)
3428 {
3429 	return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3430 }
3431 KSM_ATTR_RO(pages_scanned);
3432 
3433 static ssize_t pages_shared_show(struct kobject *kobj,
3434 				 struct kobj_attribute *attr, char *buf)
3435 {
3436 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3437 }
3438 KSM_ATTR_RO(pages_shared);
3439 
3440 static ssize_t pages_sharing_show(struct kobject *kobj,
3441 				  struct kobj_attribute *attr, char *buf)
3442 {
3443 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3444 }
3445 KSM_ATTR_RO(pages_sharing);
3446 
3447 static ssize_t pages_unshared_show(struct kobject *kobj,
3448 				   struct kobj_attribute *attr, char *buf)
3449 {
3450 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3451 }
3452 KSM_ATTR_RO(pages_unshared);
3453 
3454 static ssize_t pages_volatile_show(struct kobject *kobj,
3455 				   struct kobj_attribute *attr, char *buf)
3456 {
3457 	long ksm_pages_volatile;
3458 
3459 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3460 				- ksm_pages_sharing - ksm_pages_unshared;
3461 	/*
3462 	 * It was not worth any locking to calculate that statistic,
3463 	 * but it might therefore sometimes be negative: conceal that.
3464 	 */
3465 	if (ksm_pages_volatile < 0)
3466 		ksm_pages_volatile = 0;
3467 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3468 }
3469 KSM_ATTR_RO(pages_volatile);
3470 
3471 static ssize_t pages_skipped_show(struct kobject *kobj,
3472 				  struct kobj_attribute *attr, char *buf)
3473 {
3474 	return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3475 }
3476 KSM_ATTR_RO(pages_skipped);
3477 
3478 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3479 				struct kobj_attribute *attr, char *buf)
3480 {
3481 	return sysfs_emit(buf, "%ld\n", ksm_zero_pages);
3482 }
3483 KSM_ATTR_RO(ksm_zero_pages);
3484 
3485 static ssize_t general_profit_show(struct kobject *kobj,
3486 				   struct kobj_attribute *attr, char *buf)
3487 {
3488 	long general_profit;
3489 
3490 	general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE -
3491 				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3492 
3493 	return sysfs_emit(buf, "%ld\n", general_profit);
3494 }
3495 KSM_ATTR_RO(general_profit);
3496 
3497 static ssize_t stable_node_dups_show(struct kobject *kobj,
3498 				     struct kobj_attribute *attr, char *buf)
3499 {
3500 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3501 }
3502 KSM_ATTR_RO(stable_node_dups);
3503 
3504 static ssize_t stable_node_chains_show(struct kobject *kobj,
3505 				       struct kobj_attribute *attr, char *buf)
3506 {
3507 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3508 }
3509 KSM_ATTR_RO(stable_node_chains);
3510 
3511 static ssize_t
3512 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3513 					struct kobj_attribute *attr,
3514 					char *buf)
3515 {
3516 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3517 }
3518 
3519 static ssize_t
3520 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3521 					 struct kobj_attribute *attr,
3522 					 const char *buf, size_t count)
3523 {
3524 	unsigned int msecs;
3525 	int err;
3526 
3527 	err = kstrtouint(buf, 10, &msecs);
3528 	if (err)
3529 		return -EINVAL;
3530 
3531 	ksm_stable_node_chains_prune_millisecs = msecs;
3532 
3533 	return count;
3534 }
3535 KSM_ATTR(stable_node_chains_prune_millisecs);
3536 
3537 static ssize_t full_scans_show(struct kobject *kobj,
3538 			       struct kobj_attribute *attr, char *buf)
3539 {
3540 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3541 }
3542 KSM_ATTR_RO(full_scans);
3543 
3544 static ssize_t smart_scan_show(struct kobject *kobj,
3545 			       struct kobj_attribute *attr, char *buf)
3546 {
3547 	return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3548 }
3549 
3550 static ssize_t smart_scan_store(struct kobject *kobj,
3551 				struct kobj_attribute *attr,
3552 				const char *buf, size_t count)
3553 {
3554 	int err;
3555 	bool value;
3556 
3557 	err = kstrtobool(buf, &value);
3558 	if (err)
3559 		return -EINVAL;
3560 
3561 	ksm_smart_scan = value;
3562 	return count;
3563 }
3564 KSM_ATTR(smart_scan);
3565 
3566 static struct attribute *ksm_attrs[] = {
3567 	&sleep_millisecs_attr.attr,
3568 	&pages_to_scan_attr.attr,
3569 	&run_attr.attr,
3570 	&pages_scanned_attr.attr,
3571 	&pages_shared_attr.attr,
3572 	&pages_sharing_attr.attr,
3573 	&pages_unshared_attr.attr,
3574 	&pages_volatile_attr.attr,
3575 	&pages_skipped_attr.attr,
3576 	&ksm_zero_pages_attr.attr,
3577 	&full_scans_attr.attr,
3578 #ifdef CONFIG_NUMA
3579 	&merge_across_nodes_attr.attr,
3580 #endif
3581 	&max_page_sharing_attr.attr,
3582 	&stable_node_chains_attr.attr,
3583 	&stable_node_dups_attr.attr,
3584 	&stable_node_chains_prune_millisecs_attr.attr,
3585 	&use_zero_pages_attr.attr,
3586 	&general_profit_attr.attr,
3587 	&smart_scan_attr.attr,
3588 	NULL,
3589 };
3590 
3591 static const struct attribute_group ksm_attr_group = {
3592 	.attrs = ksm_attrs,
3593 	.name = "ksm",
3594 };
3595 #endif /* CONFIG_SYSFS */
3596 
3597 static int __init ksm_init(void)
3598 {
3599 	struct task_struct *ksm_thread;
3600 	int err;
3601 
3602 	/* The correct value depends on page size and endianness */
3603 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3604 	/* Default to false for backwards compatibility */
3605 	ksm_use_zero_pages = false;
3606 
3607 	err = ksm_slab_init();
3608 	if (err)
3609 		goto out;
3610 
3611 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3612 	if (IS_ERR(ksm_thread)) {
3613 		pr_err("ksm: creating kthread failed\n");
3614 		err = PTR_ERR(ksm_thread);
3615 		goto out_free;
3616 	}
3617 
3618 #ifdef CONFIG_SYSFS
3619 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3620 	if (err) {
3621 		pr_err("ksm: register sysfs failed\n");
3622 		kthread_stop(ksm_thread);
3623 		goto out_free;
3624 	}
3625 #else
3626 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3627 
3628 #endif /* CONFIG_SYSFS */
3629 
3630 #ifdef CONFIG_MEMORY_HOTREMOVE
3631 	/* There is no significance to this priority 100 */
3632 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3633 #endif
3634 	return 0;
3635 
3636 out_free:
3637 	ksm_slab_free();
3638 out:
3639 	return err;
3640 }
3641 subsys_initcall(ksm_init);
3642