xref: /linux/mm/ksm.c (revision bde5d79d00255db609fe9d859eef8c7b6d38b137)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/rwsem.h>
26 #include <linux/pagemap.h>
27 #include <linux/rmap.h>
28 #include <linux/spinlock.h>
29 #include <linux/xxhash.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/wait.h>
33 #include <linux/slab.h>
34 #include <linux/rbtree.h>
35 #include <linux/memory.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/swap.h>
38 #include <linux/ksm.h>
39 #include <linux/hashtable.h>
40 #include <linux/freezer.h>
41 #include <linux/oom.h>
42 #include <linux/numa.h>
43 #include <linux/pagewalk.h>
44 
45 #include <asm/tlbflush.h>
46 #include "internal.h"
47 #include "mm_slot.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/ksm.h>
51 
52 #ifdef CONFIG_NUMA
53 #define NUMA(x)		(x)
54 #define DO_NUMA(x)	do { (x); } while (0)
55 #else
56 #define NUMA(x)		(0)
57 #define DO_NUMA(x)	do { } while (0)
58 #endif
59 
60 typedef u8 rmap_age_t;
61 
62 /**
63  * DOC: Overview
64  *
65  * A few notes about the KSM scanning process,
66  * to make it easier to understand the data structures below:
67  *
68  * In order to reduce excessive scanning, KSM sorts the memory pages by their
69  * contents into a data structure that holds pointers to the pages' locations.
70  *
71  * Since the contents of the pages may change at any moment, KSM cannot just
72  * insert the pages into a normal sorted tree and expect it to find anything.
73  * Therefore KSM uses two data structures - the stable and the unstable tree.
74  *
75  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
76  * by their contents.  Because each such page is write-protected, searching on
77  * this tree is fully assured to be working (except when pages are unmapped),
78  * and therefore this tree is called the stable tree.
79  *
80  * The stable tree node includes information required for reverse
81  * mapping from a KSM page to virtual addresses that map this page.
82  *
83  * In order to avoid large latencies of the rmap walks on KSM pages,
84  * KSM maintains two types of nodes in the stable tree:
85  *
86  * * the regular nodes that keep the reverse mapping structures in a
87  *   linked list
88  * * the "chains" that link nodes ("dups") that represent the same
89  *   write protected memory content, but each "dup" corresponds to a
90  *   different KSM page copy of that content
91  *
92  * Internally, the regular nodes, "dups" and "chains" are represented
93  * using the same struct ksm_stable_node structure.
94  *
95  * In addition to the stable tree, KSM uses a second data structure called the
96  * unstable tree: this tree holds pointers to pages which have been found to
97  * be "unchanged for a period of time".  The unstable tree sorts these pages
98  * by their contents, but since they are not write-protected, KSM cannot rely
99  * upon the unstable tree to work correctly - the unstable tree is liable to
100  * be corrupted as its contents are modified, and so it is called unstable.
101  *
102  * KSM solves this problem by several techniques:
103  *
104  * 1) The unstable tree is flushed every time KSM completes scanning all
105  *    memory areas, and then the tree is rebuilt again from the beginning.
106  * 2) KSM will only insert into the unstable tree, pages whose hash value
107  *    has not changed since the previous scan of all memory areas.
108  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
109  *    colors of the nodes and not on their contents, assuring that even when
110  *    the tree gets "corrupted" it won't get out of balance, so scanning time
111  *    remains the same (also, searching and inserting nodes in an rbtree uses
112  *    the same algorithm, so we have no overhead when we flush and rebuild).
113  * 4) KSM never flushes the stable tree, which means that even if it were to
114  *    take 10 attempts to find a page in the unstable tree, once it is found,
115  *    it is secured in the stable tree.  (When we scan a new page, we first
116  *    compare it against the stable tree, and then against the unstable tree.)
117  *
118  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
119  * stable trees and multiple unstable trees: one of each for each NUMA node.
120  */
121 
122 /**
123  * struct ksm_mm_slot - ksm information per mm that is being scanned
124  * @slot: hash lookup from mm to mm_slot
125  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
126  */
127 struct ksm_mm_slot {
128 	struct mm_slot slot;
129 	struct ksm_rmap_item *rmap_list;
130 };
131 
132 /**
133  * struct ksm_scan - cursor for scanning
134  * @mm_slot: the current mm_slot we are scanning
135  * @address: the next address inside that to be scanned
136  * @rmap_list: link to the next rmap to be scanned in the rmap_list
137  * @seqnr: count of completed full scans (needed when removing unstable node)
138  *
139  * There is only the one ksm_scan instance of this cursor structure.
140  */
141 struct ksm_scan {
142 	struct ksm_mm_slot *mm_slot;
143 	unsigned long address;
144 	struct ksm_rmap_item **rmap_list;
145 	unsigned long seqnr;
146 };
147 
148 /**
149  * struct ksm_stable_node - node of the stable rbtree
150  * @node: rb node of this ksm page in the stable tree
151  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
152  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
153  * @list: linked into migrate_nodes, pending placement in the proper node tree
154  * @hlist: hlist head of rmap_items using this ksm page
155  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
156  * @chain_prune_time: time of the last full garbage collection
157  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
158  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
159  */
160 struct ksm_stable_node {
161 	union {
162 		struct rb_node node;	/* when node of stable tree */
163 		struct {		/* when listed for migration */
164 			struct list_head *head;
165 			struct {
166 				struct hlist_node hlist_dup;
167 				struct list_head list;
168 			};
169 		};
170 	};
171 	struct hlist_head hlist;
172 	union {
173 		unsigned long kpfn;
174 		unsigned long chain_prune_time;
175 	};
176 	/*
177 	 * STABLE_NODE_CHAIN can be any negative number in
178 	 * rmap_hlist_len negative range, but better not -1 to be able
179 	 * to reliably detect underflows.
180 	 */
181 #define STABLE_NODE_CHAIN -1024
182 	int rmap_hlist_len;
183 #ifdef CONFIG_NUMA
184 	int nid;
185 #endif
186 };
187 
188 /**
189  * struct ksm_rmap_item - reverse mapping item for virtual addresses
190  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
191  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
192  * @nid: NUMA node id of unstable tree in which linked (may not match page)
193  * @mm: the memory structure this rmap_item is pointing into
194  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
195  * @oldchecksum: previous checksum of the page at that virtual address
196  * @node: rb node of this rmap_item in the unstable tree
197  * @head: pointer to stable_node heading this list in the stable tree
198  * @hlist: link into hlist of rmap_items hanging off that stable_node
199  * @age: number of scan iterations since creation
200  * @remaining_skips: how many scans to skip
201  */
202 struct ksm_rmap_item {
203 	struct ksm_rmap_item *rmap_list;
204 	union {
205 		struct anon_vma *anon_vma;	/* when stable */
206 #ifdef CONFIG_NUMA
207 		int nid;		/* when node of unstable tree */
208 #endif
209 	};
210 	struct mm_struct *mm;
211 	unsigned long address;		/* + low bits used for flags below */
212 	unsigned int oldchecksum;	/* when unstable */
213 	rmap_age_t age;
214 	rmap_age_t remaining_skips;
215 	union {
216 		struct rb_node node;	/* when node of unstable tree */
217 		struct {		/* when listed from stable tree */
218 			struct ksm_stable_node *head;
219 			struct hlist_node hlist;
220 		};
221 	};
222 };
223 
224 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
225 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
226 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
227 
228 /* The stable and unstable tree heads */
229 static struct rb_root one_stable_tree[1] = { RB_ROOT };
230 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
231 static struct rb_root *root_stable_tree = one_stable_tree;
232 static struct rb_root *root_unstable_tree = one_unstable_tree;
233 
234 /* Recently migrated nodes of stable tree, pending proper placement */
235 static LIST_HEAD(migrate_nodes);
236 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
237 
238 #define MM_SLOTS_HASH_BITS 10
239 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
240 
241 static struct ksm_mm_slot ksm_mm_head = {
242 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
243 };
244 static struct ksm_scan ksm_scan = {
245 	.mm_slot = &ksm_mm_head,
246 };
247 
248 static struct kmem_cache *rmap_item_cache;
249 static struct kmem_cache *stable_node_cache;
250 static struct kmem_cache *mm_slot_cache;
251 
252 /* Default number of pages to scan per batch */
253 #define DEFAULT_PAGES_TO_SCAN 100
254 
255 /* The number of pages scanned */
256 static unsigned long ksm_pages_scanned;
257 
258 /* The number of nodes in the stable tree */
259 static unsigned long ksm_pages_shared;
260 
261 /* The number of page slots additionally sharing those nodes */
262 static unsigned long ksm_pages_sharing;
263 
264 /* The number of nodes in the unstable tree */
265 static unsigned long ksm_pages_unshared;
266 
267 /* The number of rmap_items in use: to calculate pages_volatile */
268 static unsigned long ksm_rmap_items;
269 
270 /* The number of stable_node chains */
271 static unsigned long ksm_stable_node_chains;
272 
273 /* The number of stable_node dups linked to the stable_node chains */
274 static unsigned long ksm_stable_node_dups;
275 
276 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
277 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
278 
279 /* Maximum number of page slots sharing a stable node */
280 static int ksm_max_page_sharing = 256;
281 
282 /* Number of pages ksmd should scan in one batch */
283 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
284 
285 /* Milliseconds ksmd should sleep between batches */
286 static unsigned int ksm_thread_sleep_millisecs = 20;
287 
288 /* Checksum of an empty (zeroed) page */
289 static unsigned int zero_checksum __read_mostly;
290 
291 /* Whether to merge empty (zeroed) pages with actual zero pages */
292 static bool ksm_use_zero_pages __read_mostly;
293 
294 /* Skip pages that couldn't be de-duplicated previously */
295 /* Default to true at least temporarily, for testing */
296 static bool ksm_smart_scan = true;
297 
298 /* The number of zero pages which is placed by KSM */
299 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
300 
301 /* The number of pages that have been skipped due to "smart scanning" */
302 static unsigned long ksm_pages_skipped;
303 
304 /* Don't scan more than max pages per batch. */
305 static unsigned long ksm_advisor_max_pages_to_scan = 30000;
306 
307 /* Min CPU for scanning pages per scan */
308 #define KSM_ADVISOR_MIN_CPU 10
309 
310 /* Max CPU for scanning pages per scan */
311 static unsigned int ksm_advisor_max_cpu =  70;
312 
313 /* Target scan time in seconds to analyze all KSM candidate pages. */
314 static unsigned long ksm_advisor_target_scan_time = 200;
315 
316 /* Exponentially weighted moving average. */
317 #define EWMA_WEIGHT 30
318 
319 /**
320  * struct advisor_ctx - metadata for KSM advisor
321  * @start_scan: start time of the current scan
322  * @scan_time: scan time of previous scan
323  * @change: change in percent to pages_to_scan parameter
324  * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
325  */
326 struct advisor_ctx {
327 	ktime_t start_scan;
328 	unsigned long scan_time;
329 	unsigned long change;
330 	unsigned long long cpu_time;
331 };
332 static struct advisor_ctx advisor_ctx;
333 
334 /* Define different advisor's */
335 enum ksm_advisor_type {
336 	KSM_ADVISOR_NONE,
337 	KSM_ADVISOR_SCAN_TIME,
338 };
339 static enum ksm_advisor_type ksm_advisor;
340 
341 #ifdef CONFIG_SYSFS
342 /*
343  * Only called through the sysfs control interface:
344  */
345 
346 /* At least scan this many pages per batch. */
347 static unsigned long ksm_advisor_min_pages_to_scan = 500;
348 
349 static void set_advisor_defaults(void)
350 {
351 	if (ksm_advisor == KSM_ADVISOR_NONE) {
352 		ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
353 	} else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
354 		advisor_ctx = (const struct advisor_ctx){ 0 };
355 		ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
356 	}
357 }
358 #endif /* CONFIG_SYSFS */
359 
360 static inline void advisor_start_scan(void)
361 {
362 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
363 		advisor_ctx.start_scan = ktime_get();
364 }
365 
366 /*
367  * Use previous scan time if available, otherwise use current scan time as an
368  * approximation for the previous scan time.
369  */
370 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
371 					   unsigned long scan_time)
372 {
373 	return ctx->scan_time ? ctx->scan_time : scan_time;
374 }
375 
376 /* Calculate exponential weighted moving average */
377 static unsigned long ewma(unsigned long prev, unsigned long curr)
378 {
379 	return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
380 }
381 
382 /*
383  * The scan time advisor is based on the current scan rate and the target
384  * scan rate.
385  *
386  *      new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
387  *
388  * To avoid perturbations it calculates a change factor of previous changes.
389  * A new change factor is calculated for each iteration and it uses an
390  * exponentially weighted moving average. The new pages_to_scan value is
391  * multiplied with that change factor:
392  *
393  *      new_pages_to_scan *= change facor
394  *
395  * The new_pages_to_scan value is limited by the cpu min and max values. It
396  * calculates the cpu percent for the last scan and calculates the new
397  * estimated cpu percent cost for the next scan. That value is capped by the
398  * cpu min and max setting.
399  *
400  * In addition the new pages_to_scan value is capped by the max and min
401  * limits.
402  */
403 static void scan_time_advisor(void)
404 {
405 	unsigned int cpu_percent;
406 	unsigned long cpu_time;
407 	unsigned long cpu_time_diff;
408 	unsigned long cpu_time_diff_ms;
409 	unsigned long pages;
410 	unsigned long per_page_cost;
411 	unsigned long factor;
412 	unsigned long change;
413 	unsigned long last_scan_time;
414 	unsigned long scan_time;
415 
416 	/* Convert scan time to seconds */
417 	scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
418 			    MSEC_PER_SEC);
419 	scan_time = scan_time ? scan_time : 1;
420 
421 	/* Calculate CPU consumption of ksmd background thread */
422 	cpu_time = task_sched_runtime(current);
423 	cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
424 	cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
425 
426 	cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
427 	cpu_percent = cpu_percent ? cpu_percent : 1;
428 	last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
429 
430 	/* Calculate scan time as percentage of target scan time */
431 	factor = ksm_advisor_target_scan_time * 100 / scan_time;
432 	factor = factor ? factor : 1;
433 
434 	/*
435 	 * Calculate scan time as percentage of last scan time and use
436 	 * exponentially weighted average to smooth it
437 	 */
438 	change = scan_time * 100 / last_scan_time;
439 	change = change ? change : 1;
440 	change = ewma(advisor_ctx.change, change);
441 
442 	/* Calculate new scan rate based on target scan rate. */
443 	pages = ksm_thread_pages_to_scan * 100 / factor;
444 	/* Update pages_to_scan by weighted change percentage. */
445 	pages = pages * change / 100;
446 
447 	/* Cap new pages_to_scan value */
448 	per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
449 	per_page_cost = per_page_cost ? per_page_cost : 1;
450 
451 	pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
452 	pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
453 	pages = min(pages, ksm_advisor_max_pages_to_scan);
454 
455 	/* Update advisor context */
456 	advisor_ctx.change = change;
457 	advisor_ctx.scan_time = scan_time;
458 	advisor_ctx.cpu_time = cpu_time;
459 
460 	ksm_thread_pages_to_scan = pages;
461 	trace_ksm_advisor(scan_time, pages, cpu_percent);
462 }
463 
464 static void advisor_stop_scan(void)
465 {
466 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
467 		scan_time_advisor();
468 }
469 
470 #ifdef CONFIG_NUMA
471 /* Zeroed when merging across nodes is not allowed */
472 static unsigned int ksm_merge_across_nodes = 1;
473 static int ksm_nr_node_ids = 1;
474 #else
475 #define ksm_merge_across_nodes	1U
476 #define ksm_nr_node_ids		1
477 #endif
478 
479 #define KSM_RUN_STOP	0
480 #define KSM_RUN_MERGE	1
481 #define KSM_RUN_UNMERGE	2
482 #define KSM_RUN_OFFLINE	4
483 static unsigned long ksm_run = KSM_RUN_STOP;
484 static void wait_while_offlining(void);
485 
486 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
487 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
488 static DEFINE_MUTEX(ksm_thread_mutex);
489 static DEFINE_SPINLOCK(ksm_mmlist_lock);
490 
491 static int __init ksm_slab_init(void)
492 {
493 	rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0);
494 	if (!rmap_item_cache)
495 		goto out;
496 
497 	stable_node_cache = KMEM_CACHE(ksm_stable_node, 0);
498 	if (!stable_node_cache)
499 		goto out_free1;
500 
501 	mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0);
502 	if (!mm_slot_cache)
503 		goto out_free2;
504 
505 	return 0;
506 
507 out_free2:
508 	kmem_cache_destroy(stable_node_cache);
509 out_free1:
510 	kmem_cache_destroy(rmap_item_cache);
511 out:
512 	return -ENOMEM;
513 }
514 
515 static void __init ksm_slab_free(void)
516 {
517 	kmem_cache_destroy(mm_slot_cache);
518 	kmem_cache_destroy(stable_node_cache);
519 	kmem_cache_destroy(rmap_item_cache);
520 	mm_slot_cache = NULL;
521 }
522 
523 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
524 {
525 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
526 }
527 
528 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
529 {
530 	return dup->head == STABLE_NODE_DUP_HEAD;
531 }
532 
533 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
534 					     struct ksm_stable_node *chain)
535 {
536 	VM_BUG_ON(is_stable_node_dup(dup));
537 	dup->head = STABLE_NODE_DUP_HEAD;
538 	VM_BUG_ON(!is_stable_node_chain(chain));
539 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
540 	ksm_stable_node_dups++;
541 }
542 
543 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
544 {
545 	VM_BUG_ON(!is_stable_node_dup(dup));
546 	hlist_del(&dup->hlist_dup);
547 	ksm_stable_node_dups--;
548 }
549 
550 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
551 {
552 	VM_BUG_ON(is_stable_node_chain(dup));
553 	if (is_stable_node_dup(dup))
554 		__stable_node_dup_del(dup);
555 	else
556 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
557 #ifdef CONFIG_DEBUG_VM
558 	dup->head = NULL;
559 #endif
560 }
561 
562 static inline struct ksm_rmap_item *alloc_rmap_item(void)
563 {
564 	struct ksm_rmap_item *rmap_item;
565 
566 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
567 						__GFP_NORETRY | __GFP_NOWARN);
568 	if (rmap_item)
569 		ksm_rmap_items++;
570 	return rmap_item;
571 }
572 
573 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
574 {
575 	ksm_rmap_items--;
576 	rmap_item->mm->ksm_rmap_items--;
577 	rmap_item->mm = NULL;	/* debug safety */
578 	kmem_cache_free(rmap_item_cache, rmap_item);
579 }
580 
581 static inline struct ksm_stable_node *alloc_stable_node(void)
582 {
583 	/*
584 	 * The allocation can take too long with GFP_KERNEL when memory is under
585 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
586 	 * grants access to memory reserves, helping to avoid this problem.
587 	 */
588 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
589 }
590 
591 static inline void free_stable_node(struct ksm_stable_node *stable_node)
592 {
593 	VM_BUG_ON(stable_node->rmap_hlist_len &&
594 		  !is_stable_node_chain(stable_node));
595 	kmem_cache_free(stable_node_cache, stable_node);
596 }
597 
598 /*
599  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
600  * page tables after it has passed through ksm_exit() - which, if necessary,
601  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
602  * a special flag: they can just back out as soon as mm_users goes to zero.
603  * ksm_test_exit() is used throughout to make this test for exit: in some
604  * places for correctness, in some places just to avoid unnecessary work.
605  */
606 static inline bool ksm_test_exit(struct mm_struct *mm)
607 {
608 	return atomic_read(&mm->mm_users) == 0;
609 }
610 
611 /*
612  * We use break_ksm to break COW on a ksm page by triggering unsharing,
613  * such that the ksm page will get replaced by an exclusive anonymous page.
614  *
615  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
616  * in case the application has unmapped and remapped mm,addr meanwhile.
617  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
618  * mmap of /dev/mem, where we would not want to touch it.
619  *
620  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
621  * of the process that owns 'vma'.  We also do not want to enforce
622  * protection keys here anyway.
623  */
624 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
625 {
626 	vm_fault_t ret = 0;
627 
628 	if (lock_vma)
629 		vma_start_write(vma);
630 
631 	do {
632 		bool ksm_page = false;
633 		struct folio_walk fw;
634 		struct folio *folio;
635 
636 		cond_resched();
637 		folio = folio_walk_start(&fw, vma, addr,
638 					 FW_MIGRATION | FW_ZEROPAGE);
639 		if (folio) {
640 			/* Small folio implies FW_LEVEL_PTE. */
641 			if (!folio_test_large(folio) &&
642 			    (folio_test_ksm(folio) || is_ksm_zero_pte(fw.pte)))
643 				ksm_page = true;
644 			folio_walk_end(&fw, vma);
645 		}
646 
647 		if (!ksm_page)
648 			return 0;
649 		ret = handle_mm_fault(vma, addr,
650 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
651 				      NULL);
652 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
653 	/*
654 	 * We must loop until we no longer find a KSM page because
655 	 * handle_mm_fault() may back out if there's any difficulty e.g. if
656 	 * pte accessed bit gets updated concurrently.
657 	 *
658 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
659 	 * backing file, which also invalidates anonymous pages: that's
660 	 * okay, that truncation will have unmapped the PageKsm for us.
661 	 *
662 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
663 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
664 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
665 	 * to user; and ksmd, having no mm, would never be chosen for that.
666 	 *
667 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
668 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
669 	 * even ksmd can fail in this way - though it's usually breaking ksm
670 	 * just to undo a merge it made a moment before, so unlikely to oom.
671 	 *
672 	 * That's a pity: we might therefore have more kernel pages allocated
673 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
674 	 * will retry to break_cow on each pass, so should recover the page
675 	 * in due course.  The important thing is to not let VM_MERGEABLE
676 	 * be cleared while any such pages might remain in the area.
677 	 */
678 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
679 }
680 
681 static bool vma_ksm_compatible(struct vm_area_struct *vma)
682 {
683 	if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
684 			     VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
685 			     VM_MIXEDMAP| VM_DROPPABLE))
686 		return false;		/* just ignore the advice */
687 
688 	if (vma_is_dax(vma))
689 		return false;
690 
691 #ifdef VM_SAO
692 	if (vma->vm_flags & VM_SAO)
693 		return false;
694 #endif
695 #ifdef VM_SPARC_ADI
696 	if (vma->vm_flags & VM_SPARC_ADI)
697 		return false;
698 #endif
699 
700 	return true;
701 }
702 
703 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
704 		unsigned long addr)
705 {
706 	struct vm_area_struct *vma;
707 	if (ksm_test_exit(mm))
708 		return NULL;
709 	vma = vma_lookup(mm, addr);
710 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
711 		return NULL;
712 	return vma;
713 }
714 
715 static void break_cow(struct ksm_rmap_item *rmap_item)
716 {
717 	struct mm_struct *mm = rmap_item->mm;
718 	unsigned long addr = rmap_item->address;
719 	struct vm_area_struct *vma;
720 
721 	/*
722 	 * It is not an accident that whenever we want to break COW
723 	 * to undo, we also need to drop a reference to the anon_vma.
724 	 */
725 	put_anon_vma(rmap_item->anon_vma);
726 
727 	mmap_read_lock(mm);
728 	vma = find_mergeable_vma(mm, addr);
729 	if (vma)
730 		break_ksm(vma, addr, false);
731 	mmap_read_unlock(mm);
732 }
733 
734 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
735 {
736 	struct mm_struct *mm = rmap_item->mm;
737 	unsigned long addr = rmap_item->address;
738 	struct vm_area_struct *vma;
739 	struct page *page = NULL;
740 	struct folio_walk fw;
741 	struct folio *folio;
742 
743 	mmap_read_lock(mm);
744 	vma = find_mergeable_vma(mm, addr);
745 	if (!vma)
746 		goto out;
747 
748 	folio = folio_walk_start(&fw, vma, addr, 0);
749 	if (folio) {
750 		if (!folio_is_zone_device(folio) &&
751 		    folio_test_anon(folio)) {
752 			folio_get(folio);
753 			page = fw.page;
754 		}
755 		folio_walk_end(&fw, vma);
756 	}
757 out:
758 	if (page) {
759 		flush_anon_page(vma, page, addr);
760 		flush_dcache_page(page);
761 	}
762 	mmap_read_unlock(mm);
763 	return page;
764 }
765 
766 /*
767  * This helper is used for getting right index into array of tree roots.
768  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
769  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
770  * every node has its own stable and unstable tree.
771  */
772 static inline int get_kpfn_nid(unsigned long kpfn)
773 {
774 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
775 }
776 
777 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
778 						   struct rb_root *root)
779 {
780 	struct ksm_stable_node *chain = alloc_stable_node();
781 	VM_BUG_ON(is_stable_node_chain(dup));
782 	if (likely(chain)) {
783 		INIT_HLIST_HEAD(&chain->hlist);
784 		chain->chain_prune_time = jiffies;
785 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
786 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
787 		chain->nid = NUMA_NO_NODE; /* debug */
788 #endif
789 		ksm_stable_node_chains++;
790 
791 		/*
792 		 * Put the stable node chain in the first dimension of
793 		 * the stable tree and at the same time remove the old
794 		 * stable node.
795 		 */
796 		rb_replace_node(&dup->node, &chain->node, root);
797 
798 		/*
799 		 * Move the old stable node to the second dimension
800 		 * queued in the hlist_dup. The invariant is that all
801 		 * dup stable_nodes in the chain->hlist point to pages
802 		 * that are write protected and have the exact same
803 		 * content.
804 		 */
805 		stable_node_chain_add_dup(dup, chain);
806 	}
807 	return chain;
808 }
809 
810 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
811 					  struct rb_root *root)
812 {
813 	rb_erase(&chain->node, root);
814 	free_stable_node(chain);
815 	ksm_stable_node_chains--;
816 }
817 
818 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
819 {
820 	struct ksm_rmap_item *rmap_item;
821 
822 	/* check it's not STABLE_NODE_CHAIN or negative */
823 	BUG_ON(stable_node->rmap_hlist_len < 0);
824 
825 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
826 		if (rmap_item->hlist.next) {
827 			ksm_pages_sharing--;
828 			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
829 		} else {
830 			ksm_pages_shared--;
831 		}
832 
833 		rmap_item->mm->ksm_merging_pages--;
834 
835 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
836 		stable_node->rmap_hlist_len--;
837 		put_anon_vma(rmap_item->anon_vma);
838 		rmap_item->address &= PAGE_MASK;
839 		cond_resched();
840 	}
841 
842 	/*
843 	 * We need the second aligned pointer of the migrate_nodes
844 	 * list_head to stay clear from the rb_parent_color union
845 	 * (aligned and different than any node) and also different
846 	 * from &migrate_nodes. This will verify that future list.h changes
847 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
848 	 */
849 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
850 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
851 
852 	trace_ksm_remove_ksm_page(stable_node->kpfn);
853 	if (stable_node->head == &migrate_nodes)
854 		list_del(&stable_node->list);
855 	else
856 		stable_node_dup_del(stable_node);
857 	free_stable_node(stable_node);
858 }
859 
860 enum ksm_get_folio_flags {
861 	KSM_GET_FOLIO_NOLOCK,
862 	KSM_GET_FOLIO_LOCK,
863 	KSM_GET_FOLIO_TRYLOCK
864 };
865 
866 /*
867  * ksm_get_folio: checks if the page indicated by the stable node
868  * is still its ksm page, despite having held no reference to it.
869  * In which case we can trust the content of the page, and it
870  * returns the gotten page; but if the page has now been zapped,
871  * remove the stale node from the stable tree and return NULL.
872  * But beware, the stable node's page might be being migrated.
873  *
874  * You would expect the stable_node to hold a reference to the ksm page.
875  * But if it increments the page's count, swapping out has to wait for
876  * ksmd to come around again before it can free the page, which may take
877  * seconds or even minutes: much too unresponsive.  So instead we use a
878  * "keyhole reference": access to the ksm page from the stable node peeps
879  * out through its keyhole to see if that page still holds the right key,
880  * pointing back to this stable node.  This relies on freeing a PageAnon
881  * page to reset its page->mapping to NULL, and relies on no other use of
882  * a page to put something that might look like our key in page->mapping.
883  * is on its way to being freed; but it is an anomaly to bear in mind.
884  */
885 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
886 				 enum ksm_get_folio_flags flags)
887 {
888 	struct folio *folio;
889 	void *expected_mapping;
890 	unsigned long kpfn;
891 
892 	expected_mapping = (void *)((unsigned long)stable_node |
893 					PAGE_MAPPING_KSM);
894 again:
895 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
896 	folio = pfn_folio(kpfn);
897 	if (READ_ONCE(folio->mapping) != expected_mapping)
898 		goto stale;
899 
900 	/*
901 	 * We cannot do anything with the page while its refcount is 0.
902 	 * Usually 0 means free, or tail of a higher-order page: in which
903 	 * case this node is no longer referenced, and should be freed;
904 	 * however, it might mean that the page is under page_ref_freeze().
905 	 * The __remove_mapping() case is easy, again the node is now stale;
906 	 * the same is in reuse_ksm_page() case; but if page is swapcache
907 	 * in folio_migrate_mapping(), it might still be our page,
908 	 * in which case it's essential to keep the node.
909 	 */
910 	while (!folio_try_get(folio)) {
911 		/*
912 		 * Another check for folio->mapping != expected_mapping
913 		 * would work here too.  We have chosen to test the
914 		 * swapcache flag to optimize the common case, when the
915 		 * folio is or is about to be freed: the swapcache flag
916 		 * is cleared (under spin_lock_irq) in the ref_freeze
917 		 * section of __remove_mapping(); but anon folio->mapping
918 		 * is reset to NULL later, in free_pages_prepare().
919 		 */
920 		if (!folio_test_swapcache(folio))
921 			goto stale;
922 		cpu_relax();
923 	}
924 
925 	if (READ_ONCE(folio->mapping) != expected_mapping) {
926 		folio_put(folio);
927 		goto stale;
928 	}
929 
930 	if (flags == KSM_GET_FOLIO_TRYLOCK) {
931 		if (!folio_trylock(folio)) {
932 			folio_put(folio);
933 			return ERR_PTR(-EBUSY);
934 		}
935 	} else if (flags == KSM_GET_FOLIO_LOCK)
936 		folio_lock(folio);
937 
938 	if (flags != KSM_GET_FOLIO_NOLOCK) {
939 		if (READ_ONCE(folio->mapping) != expected_mapping) {
940 			folio_unlock(folio);
941 			folio_put(folio);
942 			goto stale;
943 		}
944 	}
945 	return folio;
946 
947 stale:
948 	/*
949 	 * We come here from above when folio->mapping or the swapcache flag
950 	 * suggests that the node is stale; but it might be under migration.
951 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
952 	 * before checking whether node->kpfn has been changed.
953 	 */
954 	smp_rmb();
955 	if (READ_ONCE(stable_node->kpfn) != kpfn)
956 		goto again;
957 	remove_node_from_stable_tree(stable_node);
958 	return NULL;
959 }
960 
961 /*
962  * Removing rmap_item from stable or unstable tree.
963  * This function will clean the information from the stable/unstable tree.
964  */
965 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
966 {
967 	if (rmap_item->address & STABLE_FLAG) {
968 		struct ksm_stable_node *stable_node;
969 		struct folio *folio;
970 
971 		stable_node = rmap_item->head;
972 		folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
973 		if (!folio)
974 			goto out;
975 
976 		hlist_del(&rmap_item->hlist);
977 		folio_unlock(folio);
978 		folio_put(folio);
979 
980 		if (!hlist_empty(&stable_node->hlist))
981 			ksm_pages_sharing--;
982 		else
983 			ksm_pages_shared--;
984 
985 		rmap_item->mm->ksm_merging_pages--;
986 
987 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
988 		stable_node->rmap_hlist_len--;
989 
990 		put_anon_vma(rmap_item->anon_vma);
991 		rmap_item->head = NULL;
992 		rmap_item->address &= PAGE_MASK;
993 
994 	} else if (rmap_item->address & UNSTABLE_FLAG) {
995 		unsigned char age;
996 		/*
997 		 * Usually ksmd can and must skip the rb_erase, because
998 		 * root_unstable_tree was already reset to RB_ROOT.
999 		 * But be careful when an mm is exiting: do the rb_erase
1000 		 * if this rmap_item was inserted by this scan, rather
1001 		 * than left over from before.
1002 		 */
1003 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1004 		BUG_ON(age > 1);
1005 		if (!age)
1006 			rb_erase(&rmap_item->node,
1007 				 root_unstable_tree + NUMA(rmap_item->nid));
1008 		ksm_pages_unshared--;
1009 		rmap_item->address &= PAGE_MASK;
1010 	}
1011 out:
1012 	cond_resched();		/* we're called from many long loops */
1013 }
1014 
1015 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1016 {
1017 	while (*rmap_list) {
1018 		struct ksm_rmap_item *rmap_item = *rmap_list;
1019 		*rmap_list = rmap_item->rmap_list;
1020 		remove_rmap_item_from_tree(rmap_item);
1021 		free_rmap_item(rmap_item);
1022 	}
1023 }
1024 
1025 /*
1026  * Though it's very tempting to unmerge rmap_items from stable tree rather
1027  * than check every pte of a given vma, the locking doesn't quite work for
1028  * that - an rmap_item is assigned to the stable tree after inserting ksm
1029  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
1030  * rmap_items from parent to child at fork time (so as not to waste time
1031  * if exit comes before the next scan reaches it).
1032  *
1033  * Similarly, although we'd like to remove rmap_items (so updating counts
1034  * and freeing memory) when unmerging an area, it's easier to leave that
1035  * to the next pass of ksmd - consider, for example, how ksmd might be
1036  * in cmp_and_merge_page on one of the rmap_items we would be removing.
1037  */
1038 static int unmerge_ksm_pages(struct vm_area_struct *vma,
1039 			     unsigned long start, unsigned long end, bool lock_vma)
1040 {
1041 	unsigned long addr;
1042 	int err = 0;
1043 
1044 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1045 		if (ksm_test_exit(vma->vm_mm))
1046 			break;
1047 		if (signal_pending(current))
1048 			err = -ERESTARTSYS;
1049 		else
1050 			err = break_ksm(vma, addr, lock_vma);
1051 	}
1052 	return err;
1053 }
1054 
1055 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
1056 {
1057 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1058 }
1059 
1060 static inline struct ksm_stable_node *page_stable_node(struct page *page)
1061 {
1062 	return folio_stable_node(page_folio(page));
1063 }
1064 
1065 static inline void folio_set_stable_node(struct folio *folio,
1066 					 struct ksm_stable_node *stable_node)
1067 {
1068 	VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1069 	folio->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
1070 }
1071 
1072 #ifdef CONFIG_SYSFS
1073 /*
1074  * Only called through the sysfs control interface:
1075  */
1076 static int remove_stable_node(struct ksm_stable_node *stable_node)
1077 {
1078 	struct folio *folio;
1079 	int err;
1080 
1081 	folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1082 	if (!folio) {
1083 		/*
1084 		 * ksm_get_folio did remove_node_from_stable_tree itself.
1085 		 */
1086 		return 0;
1087 	}
1088 
1089 	/*
1090 	 * Page could be still mapped if this races with __mmput() running in
1091 	 * between ksm_exit() and exit_mmap(). Just refuse to let
1092 	 * merge_across_nodes/max_page_sharing be switched.
1093 	 */
1094 	err = -EBUSY;
1095 	if (!folio_mapped(folio)) {
1096 		/*
1097 		 * The stable node did not yet appear stale to ksm_get_folio(),
1098 		 * since that allows for an unmapped ksm folio to be recognized
1099 		 * right up until it is freed; but the node is safe to remove.
1100 		 * This folio might be in an LRU cache waiting to be freed,
1101 		 * or it might be in the swapcache (perhaps under writeback),
1102 		 * or it might have been removed from swapcache a moment ago.
1103 		 */
1104 		folio_set_stable_node(folio, NULL);
1105 		remove_node_from_stable_tree(stable_node);
1106 		err = 0;
1107 	}
1108 
1109 	folio_unlock(folio);
1110 	folio_put(folio);
1111 	return err;
1112 }
1113 
1114 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1115 				    struct rb_root *root)
1116 {
1117 	struct ksm_stable_node *dup;
1118 	struct hlist_node *hlist_safe;
1119 
1120 	if (!is_stable_node_chain(stable_node)) {
1121 		VM_BUG_ON(is_stable_node_dup(stable_node));
1122 		if (remove_stable_node(stable_node))
1123 			return true;
1124 		else
1125 			return false;
1126 	}
1127 
1128 	hlist_for_each_entry_safe(dup, hlist_safe,
1129 				  &stable_node->hlist, hlist_dup) {
1130 		VM_BUG_ON(!is_stable_node_dup(dup));
1131 		if (remove_stable_node(dup))
1132 			return true;
1133 	}
1134 	BUG_ON(!hlist_empty(&stable_node->hlist));
1135 	free_stable_node_chain(stable_node, root);
1136 	return false;
1137 }
1138 
1139 static int remove_all_stable_nodes(void)
1140 {
1141 	struct ksm_stable_node *stable_node, *next;
1142 	int nid;
1143 	int err = 0;
1144 
1145 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1146 		while (root_stable_tree[nid].rb_node) {
1147 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
1148 						struct ksm_stable_node, node);
1149 			if (remove_stable_node_chain(stable_node,
1150 						     root_stable_tree + nid)) {
1151 				err = -EBUSY;
1152 				break;	/* proceed to next nid */
1153 			}
1154 			cond_resched();
1155 		}
1156 	}
1157 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1158 		if (remove_stable_node(stable_node))
1159 			err = -EBUSY;
1160 		cond_resched();
1161 	}
1162 	return err;
1163 }
1164 
1165 static int unmerge_and_remove_all_rmap_items(void)
1166 {
1167 	struct ksm_mm_slot *mm_slot;
1168 	struct mm_slot *slot;
1169 	struct mm_struct *mm;
1170 	struct vm_area_struct *vma;
1171 	int err = 0;
1172 
1173 	spin_lock(&ksm_mmlist_lock);
1174 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1175 			  struct mm_slot, mm_node);
1176 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1177 	spin_unlock(&ksm_mmlist_lock);
1178 
1179 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1180 	     mm_slot = ksm_scan.mm_slot) {
1181 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1182 
1183 		mm = mm_slot->slot.mm;
1184 		mmap_read_lock(mm);
1185 
1186 		/*
1187 		 * Exit right away if mm is exiting to avoid lockdep issue in
1188 		 * the maple tree
1189 		 */
1190 		if (ksm_test_exit(mm))
1191 			goto mm_exiting;
1192 
1193 		for_each_vma(vmi, vma) {
1194 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1195 				continue;
1196 			err = unmerge_ksm_pages(vma,
1197 						vma->vm_start, vma->vm_end, false);
1198 			if (err)
1199 				goto error;
1200 		}
1201 
1202 mm_exiting:
1203 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1204 		mmap_read_unlock(mm);
1205 
1206 		spin_lock(&ksm_mmlist_lock);
1207 		slot = list_entry(mm_slot->slot.mm_node.next,
1208 				  struct mm_slot, mm_node);
1209 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1210 		if (ksm_test_exit(mm)) {
1211 			hash_del(&mm_slot->slot.hash);
1212 			list_del(&mm_slot->slot.mm_node);
1213 			spin_unlock(&ksm_mmlist_lock);
1214 
1215 			mm_slot_free(mm_slot_cache, mm_slot);
1216 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1217 			clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1218 			mmdrop(mm);
1219 		} else
1220 			spin_unlock(&ksm_mmlist_lock);
1221 	}
1222 
1223 	/* Clean up stable nodes, but don't worry if some are still busy */
1224 	remove_all_stable_nodes();
1225 	ksm_scan.seqnr = 0;
1226 	return 0;
1227 
1228 error:
1229 	mmap_read_unlock(mm);
1230 	spin_lock(&ksm_mmlist_lock);
1231 	ksm_scan.mm_slot = &ksm_mm_head;
1232 	spin_unlock(&ksm_mmlist_lock);
1233 	return err;
1234 }
1235 #endif /* CONFIG_SYSFS */
1236 
1237 static u32 calc_checksum(struct page *page)
1238 {
1239 	u32 checksum;
1240 	void *addr = kmap_local_page(page);
1241 	checksum = xxhash(addr, PAGE_SIZE, 0);
1242 	kunmap_local(addr);
1243 	return checksum;
1244 }
1245 
1246 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1247 			      pte_t *orig_pte)
1248 {
1249 	struct mm_struct *mm = vma->vm_mm;
1250 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
1251 	int swapped;
1252 	int err = -EFAULT;
1253 	struct mmu_notifier_range range;
1254 	bool anon_exclusive;
1255 	pte_t entry;
1256 
1257 	if (WARN_ON_ONCE(folio_test_large(folio)))
1258 		return err;
1259 
1260 	pvmw.address = page_address_in_vma(&folio->page, vma);
1261 	if (pvmw.address == -EFAULT)
1262 		goto out;
1263 
1264 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1265 				pvmw.address + PAGE_SIZE);
1266 	mmu_notifier_invalidate_range_start(&range);
1267 
1268 	if (!page_vma_mapped_walk(&pvmw))
1269 		goto out_mn;
1270 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1271 		goto out_unlock;
1272 
1273 	anon_exclusive = PageAnonExclusive(&folio->page);
1274 	entry = ptep_get(pvmw.pte);
1275 	if (pte_write(entry) || pte_dirty(entry) ||
1276 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1277 		swapped = folio_test_swapcache(folio);
1278 		flush_cache_page(vma, pvmw.address, folio_pfn(folio));
1279 		/*
1280 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1281 		 * take any lock, therefore the check that we are going to make
1282 		 * with the pagecount against the mapcount is racy and
1283 		 * O_DIRECT can happen right after the check.
1284 		 * So we clear the pte and flush the tlb before the check
1285 		 * this assure us that no O_DIRECT can happen after the check
1286 		 * or in the middle of the check.
1287 		 *
1288 		 * No need to notify as we are downgrading page table to read
1289 		 * only not changing it to point to a new page.
1290 		 *
1291 		 * See Documentation/mm/mmu_notifier.rst
1292 		 */
1293 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1294 		/*
1295 		 * Check that no O_DIRECT or similar I/O is in progress on the
1296 		 * page
1297 		 */
1298 		if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1299 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1300 			goto out_unlock;
1301 		}
1302 
1303 		/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1304 		if (anon_exclusive &&
1305 		    folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1306 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1307 			goto out_unlock;
1308 		}
1309 
1310 		if (pte_dirty(entry))
1311 			folio_mark_dirty(folio);
1312 		entry = pte_mkclean(entry);
1313 
1314 		if (pte_write(entry))
1315 			entry = pte_wrprotect(entry);
1316 
1317 		set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1318 	}
1319 	*orig_pte = entry;
1320 	err = 0;
1321 
1322 out_unlock:
1323 	page_vma_mapped_walk_done(&pvmw);
1324 out_mn:
1325 	mmu_notifier_invalidate_range_end(&range);
1326 out:
1327 	return err;
1328 }
1329 
1330 /**
1331  * replace_page - replace page in vma by new ksm page
1332  * @vma:      vma that holds the pte pointing to page
1333  * @page:     the page we are replacing by kpage
1334  * @kpage:    the ksm page we replace page by
1335  * @orig_pte: the original value of the pte
1336  *
1337  * Returns 0 on success, -EFAULT on failure.
1338  */
1339 static int replace_page(struct vm_area_struct *vma, struct page *page,
1340 			struct page *kpage, pte_t orig_pte)
1341 {
1342 	struct folio *kfolio = page_folio(kpage);
1343 	struct mm_struct *mm = vma->vm_mm;
1344 	struct folio *folio;
1345 	pmd_t *pmd;
1346 	pmd_t pmde;
1347 	pte_t *ptep;
1348 	pte_t newpte;
1349 	spinlock_t *ptl;
1350 	unsigned long addr;
1351 	int err = -EFAULT;
1352 	struct mmu_notifier_range range;
1353 
1354 	addr = page_address_in_vma(page, vma);
1355 	if (addr == -EFAULT)
1356 		goto out;
1357 
1358 	pmd = mm_find_pmd(mm, addr);
1359 	if (!pmd)
1360 		goto out;
1361 	/*
1362 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1363 	 * without holding anon_vma lock for write.  So when looking for a
1364 	 * genuine pmde (in which to find pte), test present and !THP together.
1365 	 */
1366 	pmde = pmdp_get_lockless(pmd);
1367 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1368 		goto out;
1369 
1370 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1371 				addr + PAGE_SIZE);
1372 	mmu_notifier_invalidate_range_start(&range);
1373 
1374 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1375 	if (!ptep)
1376 		goto out_mn;
1377 	if (!pte_same(ptep_get(ptep), orig_pte)) {
1378 		pte_unmap_unlock(ptep, ptl);
1379 		goto out_mn;
1380 	}
1381 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1382 	VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1383 			kfolio);
1384 
1385 	/*
1386 	 * No need to check ksm_use_zero_pages here: we can only have a
1387 	 * zero_page here if ksm_use_zero_pages was enabled already.
1388 	 */
1389 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1390 		folio_get(kfolio);
1391 		folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1392 		newpte = mk_pte(kpage, vma->vm_page_prot);
1393 	} else {
1394 		/*
1395 		 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1396 		 * we can easily track all KSM-placed zero pages by checking if
1397 		 * the dirty bit in zero page's PTE is set.
1398 		 */
1399 		newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1400 		ksm_map_zero_page(mm);
1401 		/*
1402 		 * We're replacing an anonymous page with a zero page, which is
1403 		 * not anonymous. We need to do proper accounting otherwise we
1404 		 * will get wrong values in /proc, and a BUG message in dmesg
1405 		 * when tearing down the mm.
1406 		 */
1407 		dec_mm_counter(mm, MM_ANONPAGES);
1408 	}
1409 
1410 	flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1411 	/*
1412 	 * No need to notify as we are replacing a read only page with another
1413 	 * read only page with the same content.
1414 	 *
1415 	 * See Documentation/mm/mmu_notifier.rst
1416 	 */
1417 	ptep_clear_flush(vma, addr, ptep);
1418 	set_pte_at(mm, addr, ptep, newpte);
1419 
1420 	folio = page_folio(page);
1421 	folio_remove_rmap_pte(folio, page, vma);
1422 	if (!folio_mapped(folio))
1423 		folio_free_swap(folio);
1424 	folio_put(folio);
1425 
1426 	pte_unmap_unlock(ptep, ptl);
1427 	err = 0;
1428 out_mn:
1429 	mmu_notifier_invalidate_range_end(&range);
1430 out:
1431 	return err;
1432 }
1433 
1434 /*
1435  * try_to_merge_one_page - take two pages and merge them into one
1436  * @vma: the vma that holds the pte pointing to page
1437  * @page: the PageAnon page that we want to replace with kpage
1438  * @kpage: the PageKsm page that we want to map instead of page,
1439  *         or NULL the first time when we want to use page as kpage.
1440  *
1441  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1442  */
1443 static int try_to_merge_one_page(struct vm_area_struct *vma,
1444 				 struct page *page, struct page *kpage)
1445 {
1446 	pte_t orig_pte = __pte(0);
1447 	int err = -EFAULT;
1448 
1449 	if (page == kpage)			/* ksm page forked */
1450 		return 0;
1451 
1452 	if (!PageAnon(page))
1453 		goto out;
1454 
1455 	/*
1456 	 * We need the folio lock to read a stable swapcache flag in
1457 	 * write_protect_page().  We use trylock_page() instead of
1458 	 * lock_page() because we don't want to wait here - we
1459 	 * prefer to continue scanning and merging different pages,
1460 	 * then come back to this page when it is unlocked.
1461 	 */
1462 	if (!trylock_page(page))
1463 		goto out;
1464 
1465 	if (PageTransCompound(page)) {
1466 		if (split_huge_page(page))
1467 			goto out_unlock;
1468 	}
1469 
1470 	/*
1471 	 * If this anonymous page is mapped only here, its pte may need
1472 	 * to be write-protected.  If it's mapped elsewhere, all of its
1473 	 * ptes are necessarily already write-protected.  But in either
1474 	 * case, we need to lock and check page_count is not raised.
1475 	 */
1476 	if (write_protect_page(vma, page_folio(page), &orig_pte) == 0) {
1477 		if (!kpage) {
1478 			/*
1479 			 * While we hold page lock, upgrade page from
1480 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1481 			 * stable_tree_insert() will update stable_node.
1482 			 */
1483 			folio_set_stable_node(page_folio(page), NULL);
1484 			mark_page_accessed(page);
1485 			/*
1486 			 * Page reclaim just frees a clean page with no dirty
1487 			 * ptes: make sure that the ksm page would be swapped.
1488 			 */
1489 			if (!PageDirty(page))
1490 				SetPageDirty(page);
1491 			err = 0;
1492 		} else if (pages_identical(page, kpage))
1493 			err = replace_page(vma, page, kpage, orig_pte);
1494 	}
1495 
1496 out_unlock:
1497 	unlock_page(page);
1498 out:
1499 	return err;
1500 }
1501 
1502 /*
1503  * This function returns 0 if the pages were merged or if they are
1504  * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise.
1505  */
1506 static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item,
1507 				       struct page *page)
1508 {
1509 	struct mm_struct *mm = rmap_item->mm;
1510 	int err = -EFAULT;
1511 
1512 	/*
1513 	 * Same checksum as an empty page. We attempt to merge it with the
1514 	 * appropriate zero page if the user enabled this via sysfs.
1515 	 */
1516 	if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) {
1517 		struct vm_area_struct *vma;
1518 
1519 		mmap_read_lock(mm);
1520 		vma = find_mergeable_vma(mm, rmap_item->address);
1521 		if (vma) {
1522 			err = try_to_merge_one_page(vma, page,
1523 					ZERO_PAGE(rmap_item->address));
1524 			trace_ksm_merge_one_page(
1525 				page_to_pfn(ZERO_PAGE(rmap_item->address)),
1526 				rmap_item, mm, err);
1527 		} else {
1528 			/*
1529 			 * If the vma is out of date, we do not need to
1530 			 * continue.
1531 			 */
1532 			err = 0;
1533 		}
1534 		mmap_read_unlock(mm);
1535 	}
1536 
1537 	return err;
1538 }
1539 
1540 /*
1541  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1542  * but no new kernel page is allocated: kpage must already be a ksm page.
1543  *
1544  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1545  */
1546 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1547 				      struct page *page, struct page *kpage)
1548 {
1549 	struct mm_struct *mm = rmap_item->mm;
1550 	struct vm_area_struct *vma;
1551 	int err = -EFAULT;
1552 
1553 	mmap_read_lock(mm);
1554 	vma = find_mergeable_vma(mm, rmap_item->address);
1555 	if (!vma)
1556 		goto out;
1557 
1558 	err = try_to_merge_one_page(vma, page, kpage);
1559 	if (err)
1560 		goto out;
1561 
1562 	/* Unstable nid is in union with stable anon_vma: remove first */
1563 	remove_rmap_item_from_tree(rmap_item);
1564 
1565 	/* Must get reference to anon_vma while still holding mmap_lock */
1566 	rmap_item->anon_vma = vma->anon_vma;
1567 	get_anon_vma(vma->anon_vma);
1568 out:
1569 	mmap_read_unlock(mm);
1570 	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1571 				rmap_item, mm, err);
1572 	return err;
1573 }
1574 
1575 /*
1576  * try_to_merge_two_pages - take two identical pages and prepare them
1577  * to be merged into one page.
1578  *
1579  * This function returns the kpage if we successfully merged two identical
1580  * pages into one ksm page, NULL otherwise.
1581  *
1582  * Note that this function upgrades page to ksm page: if one of the pages
1583  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1584  */
1585 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1586 					   struct page *page,
1587 					   struct ksm_rmap_item *tree_rmap_item,
1588 					   struct page *tree_page)
1589 {
1590 	int err;
1591 
1592 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1593 	if (!err) {
1594 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1595 							tree_page, page);
1596 		/*
1597 		 * If that fails, we have a ksm page with only one pte
1598 		 * pointing to it: so break it.
1599 		 */
1600 		if (err)
1601 			break_cow(rmap_item);
1602 	}
1603 	return err ? NULL : page;
1604 }
1605 
1606 static __always_inline
1607 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1608 {
1609 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1610 	/*
1611 	 * Check that at least one mapping still exists, otherwise
1612 	 * there's no much point to merge and share with this
1613 	 * stable_node, as the underlying tree_page of the other
1614 	 * sharer is going to be freed soon.
1615 	 */
1616 	return stable_node->rmap_hlist_len &&
1617 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1618 }
1619 
1620 static __always_inline
1621 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1622 {
1623 	return __is_page_sharing_candidate(stable_node, 0);
1624 }
1625 
1626 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1627 				     struct ksm_stable_node **_stable_node,
1628 				     struct rb_root *root,
1629 				     bool prune_stale_stable_nodes)
1630 {
1631 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1632 	struct hlist_node *hlist_safe;
1633 	struct folio *folio, *tree_folio = NULL;
1634 	int found_rmap_hlist_len;
1635 
1636 	if (!prune_stale_stable_nodes ||
1637 	    time_before(jiffies, stable_node->chain_prune_time +
1638 			msecs_to_jiffies(
1639 				ksm_stable_node_chains_prune_millisecs)))
1640 		prune_stale_stable_nodes = false;
1641 	else
1642 		stable_node->chain_prune_time = jiffies;
1643 
1644 	hlist_for_each_entry_safe(dup, hlist_safe,
1645 				  &stable_node->hlist, hlist_dup) {
1646 		cond_resched();
1647 		/*
1648 		 * We must walk all stable_node_dup to prune the stale
1649 		 * stable nodes during lookup.
1650 		 *
1651 		 * ksm_get_folio can drop the nodes from the
1652 		 * stable_node->hlist if they point to freed pages
1653 		 * (that's why we do a _safe walk). The "dup"
1654 		 * stable_node parameter itself will be freed from
1655 		 * under us if it returns NULL.
1656 		 */
1657 		folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
1658 		if (!folio)
1659 			continue;
1660 		/* Pick the best candidate if possible. */
1661 		if (!found || (is_page_sharing_candidate(dup) &&
1662 		    (!is_page_sharing_candidate(found) ||
1663 		     dup->rmap_hlist_len > found_rmap_hlist_len))) {
1664 			if (found)
1665 				folio_put(tree_folio);
1666 			found = dup;
1667 			found_rmap_hlist_len = found->rmap_hlist_len;
1668 			tree_folio = folio;
1669 			/* skip put_page for found candidate */
1670 			if (!prune_stale_stable_nodes &&
1671 			    is_page_sharing_candidate(found))
1672 				break;
1673 			continue;
1674 		}
1675 		folio_put(folio);
1676 	}
1677 
1678 	if (found) {
1679 		if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) {
1680 			/*
1681 			 * If there's not just one entry it would
1682 			 * corrupt memory, better BUG_ON. In KSM
1683 			 * context with no lock held it's not even
1684 			 * fatal.
1685 			 */
1686 			BUG_ON(stable_node->hlist.first->next);
1687 
1688 			/*
1689 			 * There's just one entry and it is below the
1690 			 * deduplication limit so drop the chain.
1691 			 */
1692 			rb_replace_node(&stable_node->node, &found->node,
1693 					root);
1694 			free_stable_node(stable_node);
1695 			ksm_stable_node_chains--;
1696 			ksm_stable_node_dups--;
1697 			/*
1698 			 * NOTE: the caller depends on the stable_node
1699 			 * to be equal to stable_node_dup if the chain
1700 			 * was collapsed.
1701 			 */
1702 			*_stable_node = found;
1703 			/*
1704 			 * Just for robustness, as stable_node is
1705 			 * otherwise left as a stable pointer, the
1706 			 * compiler shall optimize it away at build
1707 			 * time.
1708 			 */
1709 			stable_node = NULL;
1710 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1711 			   __is_page_sharing_candidate(found, 1)) {
1712 			/*
1713 			 * If the found stable_node dup can accept one
1714 			 * more future merge (in addition to the one
1715 			 * that is underway) and is not at the head of
1716 			 * the chain, put it there so next search will
1717 			 * be quicker in the !prune_stale_stable_nodes
1718 			 * case.
1719 			 *
1720 			 * NOTE: it would be inaccurate to use nr > 1
1721 			 * instead of checking the hlist.first pointer
1722 			 * directly, because in the
1723 			 * prune_stale_stable_nodes case "nr" isn't
1724 			 * the position of the found dup in the chain,
1725 			 * but the total number of dups in the chain.
1726 			 */
1727 			hlist_del(&found->hlist_dup);
1728 			hlist_add_head(&found->hlist_dup,
1729 				       &stable_node->hlist);
1730 		}
1731 	} else {
1732 		/* Its hlist must be empty if no one found. */
1733 		free_stable_node_chain(stable_node, root);
1734 	}
1735 
1736 	*_stable_node_dup = found;
1737 	return tree_folio;
1738 }
1739 
1740 /*
1741  * Like for ksm_get_folio, this function can free the *_stable_node and
1742  * *_stable_node_dup if the returned tree_page is NULL.
1743  *
1744  * It can also free and overwrite *_stable_node with the found
1745  * stable_node_dup if the chain is collapsed (in which case
1746  * *_stable_node will be equal to *_stable_node_dup like if the chain
1747  * never existed). It's up to the caller to verify tree_page is not
1748  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1749  *
1750  * *_stable_node_dup is really a second output parameter of this
1751  * function and will be overwritten in all cases, the caller doesn't
1752  * need to initialize it.
1753  */
1754 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1755 					 struct ksm_stable_node **_stable_node,
1756 					 struct rb_root *root,
1757 					 bool prune_stale_stable_nodes)
1758 {
1759 	struct ksm_stable_node *stable_node = *_stable_node;
1760 
1761 	if (!is_stable_node_chain(stable_node)) {
1762 		*_stable_node_dup = stable_node;
1763 		return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
1764 	}
1765 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1766 			       prune_stale_stable_nodes);
1767 }
1768 
1769 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1770 						 struct ksm_stable_node **s_n,
1771 						 struct rb_root *root)
1772 {
1773 	return __stable_node_chain(s_n_d, s_n, root, true);
1774 }
1775 
1776 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1777 					   struct ksm_stable_node **s_n,
1778 					   struct rb_root *root)
1779 {
1780 	return __stable_node_chain(s_n_d, s_n, root, false);
1781 }
1782 
1783 /*
1784  * stable_tree_search - search for page inside the stable tree
1785  *
1786  * This function checks if there is a page inside the stable tree
1787  * with identical content to the page that we are scanning right now.
1788  *
1789  * This function returns the stable tree node of identical content if found,
1790  * NULL otherwise.
1791  */
1792 static struct page *stable_tree_search(struct page *page)
1793 {
1794 	int nid;
1795 	struct rb_root *root;
1796 	struct rb_node **new;
1797 	struct rb_node *parent;
1798 	struct ksm_stable_node *stable_node, *stable_node_dup;
1799 	struct ksm_stable_node *page_node;
1800 	struct folio *folio;
1801 
1802 	folio = page_folio(page);
1803 	page_node = folio_stable_node(folio);
1804 	if (page_node && page_node->head != &migrate_nodes) {
1805 		/* ksm page forked */
1806 		folio_get(folio);
1807 		return &folio->page;
1808 	}
1809 
1810 	nid = get_kpfn_nid(folio_pfn(folio));
1811 	root = root_stable_tree + nid;
1812 again:
1813 	new = &root->rb_node;
1814 	parent = NULL;
1815 
1816 	while (*new) {
1817 		struct folio *tree_folio;
1818 		int ret;
1819 
1820 		cond_resched();
1821 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1822 		tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
1823 		if (!tree_folio) {
1824 			/*
1825 			 * If we walked over a stale stable_node,
1826 			 * ksm_get_folio() will call rb_erase() and it
1827 			 * may rebalance the tree from under us. So
1828 			 * restart the search from scratch. Returning
1829 			 * NULL would be safe too, but we'd generate
1830 			 * false negative insertions just because some
1831 			 * stable_node was stale.
1832 			 */
1833 			goto again;
1834 		}
1835 
1836 		ret = memcmp_pages(page, &tree_folio->page);
1837 		folio_put(tree_folio);
1838 
1839 		parent = *new;
1840 		if (ret < 0)
1841 			new = &parent->rb_left;
1842 		else if (ret > 0)
1843 			new = &parent->rb_right;
1844 		else {
1845 			if (page_node) {
1846 				VM_BUG_ON(page_node->head != &migrate_nodes);
1847 				/*
1848 				 * If the mapcount of our migrated KSM folio is
1849 				 * at most 1, we can merge it with another
1850 				 * KSM folio where we know that we have space
1851 				 * for one more mapping without exceeding the
1852 				 * ksm_max_page_sharing limit: see
1853 				 * chain_prune(). This way, we can avoid adding
1854 				 * this stable node to the chain.
1855 				 */
1856 				if (folio_mapcount(folio) > 1)
1857 					goto chain_append;
1858 			}
1859 
1860 			if (!is_page_sharing_candidate(stable_node_dup)) {
1861 				/*
1862 				 * If the stable_node is a chain and
1863 				 * we got a payload match in memcmp
1864 				 * but we cannot merge the scanned
1865 				 * page in any of the existing
1866 				 * stable_node dups because they're
1867 				 * all full, we need to wait the
1868 				 * scanned page to find itself a match
1869 				 * in the unstable tree to create a
1870 				 * brand new KSM page to add later to
1871 				 * the dups of this stable_node.
1872 				 */
1873 				return NULL;
1874 			}
1875 
1876 			/*
1877 			 * Lock and unlock the stable_node's page (which
1878 			 * might already have been migrated) so that page
1879 			 * migration is sure to notice its raised count.
1880 			 * It would be more elegant to return stable_node
1881 			 * than kpage, but that involves more changes.
1882 			 */
1883 			tree_folio = ksm_get_folio(stable_node_dup,
1884 						   KSM_GET_FOLIO_TRYLOCK);
1885 
1886 			if (PTR_ERR(tree_folio) == -EBUSY)
1887 				return ERR_PTR(-EBUSY);
1888 
1889 			if (unlikely(!tree_folio))
1890 				/*
1891 				 * The tree may have been rebalanced,
1892 				 * so re-evaluate parent and new.
1893 				 */
1894 				goto again;
1895 			folio_unlock(tree_folio);
1896 
1897 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1898 			    NUMA(stable_node_dup->nid)) {
1899 				folio_put(tree_folio);
1900 				goto replace;
1901 			}
1902 			return &tree_folio->page;
1903 		}
1904 	}
1905 
1906 	if (!page_node)
1907 		return NULL;
1908 
1909 	list_del(&page_node->list);
1910 	DO_NUMA(page_node->nid = nid);
1911 	rb_link_node(&page_node->node, parent, new);
1912 	rb_insert_color(&page_node->node, root);
1913 out:
1914 	if (is_page_sharing_candidate(page_node)) {
1915 		folio_get(folio);
1916 		return &folio->page;
1917 	} else
1918 		return NULL;
1919 
1920 replace:
1921 	/*
1922 	 * If stable_node was a chain and chain_prune collapsed it,
1923 	 * stable_node has been updated to be the new regular
1924 	 * stable_node. A collapse of the chain is indistinguishable
1925 	 * from the case there was no chain in the stable
1926 	 * rbtree. Otherwise stable_node is the chain and
1927 	 * stable_node_dup is the dup to replace.
1928 	 */
1929 	if (stable_node_dup == stable_node) {
1930 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1931 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1932 		/* there is no chain */
1933 		if (page_node) {
1934 			VM_BUG_ON(page_node->head != &migrate_nodes);
1935 			list_del(&page_node->list);
1936 			DO_NUMA(page_node->nid = nid);
1937 			rb_replace_node(&stable_node_dup->node,
1938 					&page_node->node,
1939 					root);
1940 			if (is_page_sharing_candidate(page_node))
1941 				folio_get(folio);
1942 			else
1943 				folio = NULL;
1944 		} else {
1945 			rb_erase(&stable_node_dup->node, root);
1946 			folio = NULL;
1947 		}
1948 	} else {
1949 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1950 		__stable_node_dup_del(stable_node_dup);
1951 		if (page_node) {
1952 			VM_BUG_ON(page_node->head != &migrate_nodes);
1953 			list_del(&page_node->list);
1954 			DO_NUMA(page_node->nid = nid);
1955 			stable_node_chain_add_dup(page_node, stable_node);
1956 			if (is_page_sharing_candidate(page_node))
1957 				folio_get(folio);
1958 			else
1959 				folio = NULL;
1960 		} else {
1961 			folio = NULL;
1962 		}
1963 	}
1964 	stable_node_dup->head = &migrate_nodes;
1965 	list_add(&stable_node_dup->list, stable_node_dup->head);
1966 	return &folio->page;
1967 
1968 chain_append:
1969 	/*
1970 	 * If stable_node was a chain and chain_prune collapsed it,
1971 	 * stable_node has been updated to be the new regular
1972 	 * stable_node. A collapse of the chain is indistinguishable
1973 	 * from the case there was no chain in the stable
1974 	 * rbtree. Otherwise stable_node is the chain and
1975 	 * stable_node_dup is the dup to replace.
1976 	 */
1977 	if (stable_node_dup == stable_node) {
1978 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1979 		/* chain is missing so create it */
1980 		stable_node = alloc_stable_node_chain(stable_node_dup,
1981 						      root);
1982 		if (!stable_node)
1983 			return NULL;
1984 	}
1985 	/*
1986 	 * Add this stable_node dup that was
1987 	 * migrated to the stable_node chain
1988 	 * of the current nid for this page
1989 	 * content.
1990 	 */
1991 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1992 	VM_BUG_ON(page_node->head != &migrate_nodes);
1993 	list_del(&page_node->list);
1994 	DO_NUMA(page_node->nid = nid);
1995 	stable_node_chain_add_dup(page_node, stable_node);
1996 	goto out;
1997 }
1998 
1999 /*
2000  * stable_tree_insert - insert stable tree node pointing to new ksm page
2001  * into the stable tree.
2002  *
2003  * This function returns the stable tree node just allocated on success,
2004  * NULL otherwise.
2005  */
2006 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
2007 {
2008 	int nid;
2009 	unsigned long kpfn;
2010 	struct rb_root *root;
2011 	struct rb_node **new;
2012 	struct rb_node *parent;
2013 	struct ksm_stable_node *stable_node, *stable_node_dup;
2014 	bool need_chain = false;
2015 
2016 	kpfn = folio_pfn(kfolio);
2017 	nid = get_kpfn_nid(kpfn);
2018 	root = root_stable_tree + nid;
2019 again:
2020 	parent = NULL;
2021 	new = &root->rb_node;
2022 
2023 	while (*new) {
2024 		struct folio *tree_folio;
2025 		int ret;
2026 
2027 		cond_resched();
2028 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
2029 		tree_folio = chain(&stable_node_dup, &stable_node, root);
2030 		if (!tree_folio) {
2031 			/*
2032 			 * If we walked over a stale stable_node,
2033 			 * ksm_get_folio() will call rb_erase() and it
2034 			 * may rebalance the tree from under us. So
2035 			 * restart the search from scratch. Returning
2036 			 * NULL would be safe too, but we'd generate
2037 			 * false negative insertions just because some
2038 			 * stable_node was stale.
2039 			 */
2040 			goto again;
2041 		}
2042 
2043 		ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2044 		folio_put(tree_folio);
2045 
2046 		parent = *new;
2047 		if (ret < 0)
2048 			new = &parent->rb_left;
2049 		else if (ret > 0)
2050 			new = &parent->rb_right;
2051 		else {
2052 			need_chain = true;
2053 			break;
2054 		}
2055 	}
2056 
2057 	stable_node_dup = alloc_stable_node();
2058 	if (!stable_node_dup)
2059 		return NULL;
2060 
2061 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
2062 	stable_node_dup->kpfn = kpfn;
2063 	stable_node_dup->rmap_hlist_len = 0;
2064 	DO_NUMA(stable_node_dup->nid = nid);
2065 	if (!need_chain) {
2066 		rb_link_node(&stable_node_dup->node, parent, new);
2067 		rb_insert_color(&stable_node_dup->node, root);
2068 	} else {
2069 		if (!is_stable_node_chain(stable_node)) {
2070 			struct ksm_stable_node *orig = stable_node;
2071 			/* chain is missing so create it */
2072 			stable_node = alloc_stable_node_chain(orig, root);
2073 			if (!stable_node) {
2074 				free_stable_node(stable_node_dup);
2075 				return NULL;
2076 			}
2077 		}
2078 		stable_node_chain_add_dup(stable_node_dup, stable_node);
2079 	}
2080 
2081 	folio_set_stable_node(kfolio, stable_node_dup);
2082 
2083 	return stable_node_dup;
2084 }
2085 
2086 /*
2087  * unstable_tree_search_insert - search for identical page,
2088  * else insert rmap_item into the unstable tree.
2089  *
2090  * This function searches for a page in the unstable tree identical to the
2091  * page currently being scanned; and if no identical page is found in the
2092  * tree, we insert rmap_item as a new object into the unstable tree.
2093  *
2094  * This function returns pointer to rmap_item found to be identical
2095  * to the currently scanned page, NULL otherwise.
2096  *
2097  * This function does both searching and inserting, because they share
2098  * the same walking algorithm in an rbtree.
2099  */
2100 static
2101 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2102 					      struct page *page,
2103 					      struct page **tree_pagep)
2104 {
2105 	struct rb_node **new;
2106 	struct rb_root *root;
2107 	struct rb_node *parent = NULL;
2108 	int nid;
2109 
2110 	nid = get_kpfn_nid(page_to_pfn(page));
2111 	root = root_unstable_tree + nid;
2112 	new = &root->rb_node;
2113 
2114 	while (*new) {
2115 		struct ksm_rmap_item *tree_rmap_item;
2116 		struct page *tree_page;
2117 		int ret;
2118 
2119 		cond_resched();
2120 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2121 		tree_page = get_mergeable_page(tree_rmap_item);
2122 		if (!tree_page)
2123 			return NULL;
2124 
2125 		/*
2126 		 * Don't substitute a ksm page for a forked page.
2127 		 */
2128 		if (page == tree_page) {
2129 			put_page(tree_page);
2130 			return NULL;
2131 		}
2132 
2133 		ret = memcmp_pages(page, tree_page);
2134 
2135 		parent = *new;
2136 		if (ret < 0) {
2137 			put_page(tree_page);
2138 			new = &parent->rb_left;
2139 		} else if (ret > 0) {
2140 			put_page(tree_page);
2141 			new = &parent->rb_right;
2142 		} else if (!ksm_merge_across_nodes &&
2143 			   page_to_nid(tree_page) != nid) {
2144 			/*
2145 			 * If tree_page has been migrated to another NUMA node,
2146 			 * it will be flushed out and put in the right unstable
2147 			 * tree next time: only merge with it when across_nodes.
2148 			 */
2149 			put_page(tree_page);
2150 			return NULL;
2151 		} else {
2152 			*tree_pagep = tree_page;
2153 			return tree_rmap_item;
2154 		}
2155 	}
2156 
2157 	rmap_item->address |= UNSTABLE_FLAG;
2158 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2159 	DO_NUMA(rmap_item->nid = nid);
2160 	rb_link_node(&rmap_item->node, parent, new);
2161 	rb_insert_color(&rmap_item->node, root);
2162 
2163 	ksm_pages_unshared++;
2164 	return NULL;
2165 }
2166 
2167 /*
2168  * stable_tree_append - add another rmap_item to the linked list of
2169  * rmap_items hanging off a given node of the stable tree, all sharing
2170  * the same ksm page.
2171  */
2172 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2173 			       struct ksm_stable_node *stable_node,
2174 			       bool max_page_sharing_bypass)
2175 {
2176 	/*
2177 	 * rmap won't find this mapping if we don't insert the
2178 	 * rmap_item in the right stable_node
2179 	 * duplicate. page_migration could break later if rmap breaks,
2180 	 * so we can as well crash here. We really need to check for
2181 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2182 	 * for other negative values as an underflow if detected here
2183 	 * for the first time (and not when decreasing rmap_hlist_len)
2184 	 * would be sign of memory corruption in the stable_node.
2185 	 */
2186 	BUG_ON(stable_node->rmap_hlist_len < 0);
2187 
2188 	stable_node->rmap_hlist_len++;
2189 	if (!max_page_sharing_bypass)
2190 		/* possibly non fatal but unexpected overflow, only warn */
2191 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2192 			     ksm_max_page_sharing);
2193 
2194 	rmap_item->head = stable_node;
2195 	rmap_item->address |= STABLE_FLAG;
2196 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2197 
2198 	if (rmap_item->hlist.next)
2199 		ksm_pages_sharing++;
2200 	else
2201 		ksm_pages_shared++;
2202 
2203 	rmap_item->mm->ksm_merging_pages++;
2204 }
2205 
2206 /*
2207  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2208  * if not, compare checksum to previous and if it's the same, see if page can
2209  * be inserted into the unstable tree, or merged with a page already there and
2210  * both transferred to the stable tree.
2211  *
2212  * @page: the page that we are searching identical page to.
2213  * @rmap_item: the reverse mapping into the virtual address of this page
2214  */
2215 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2216 {
2217 	struct ksm_rmap_item *tree_rmap_item;
2218 	struct page *tree_page = NULL;
2219 	struct ksm_stable_node *stable_node;
2220 	struct page *kpage;
2221 	unsigned int checksum;
2222 	int err;
2223 	bool max_page_sharing_bypass = false;
2224 
2225 	stable_node = page_stable_node(page);
2226 	if (stable_node) {
2227 		if (stable_node->head != &migrate_nodes &&
2228 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2229 		    NUMA(stable_node->nid)) {
2230 			stable_node_dup_del(stable_node);
2231 			stable_node->head = &migrate_nodes;
2232 			list_add(&stable_node->list, stable_node->head);
2233 		}
2234 		if (stable_node->head != &migrate_nodes &&
2235 		    rmap_item->head == stable_node)
2236 			return;
2237 		/*
2238 		 * If it's a KSM fork, allow it to go over the sharing limit
2239 		 * without warnings.
2240 		 */
2241 		if (!is_page_sharing_candidate(stable_node))
2242 			max_page_sharing_bypass = true;
2243 	} else {
2244 		remove_rmap_item_from_tree(rmap_item);
2245 
2246 		/*
2247 		 * If the hash value of the page has changed from the last time
2248 		 * we calculated it, this page is changing frequently: therefore we
2249 		 * don't want to insert it in the unstable tree, and we don't want
2250 		 * to waste our time searching for something identical to it there.
2251 		 */
2252 		checksum = calc_checksum(page);
2253 		if (rmap_item->oldchecksum != checksum) {
2254 			rmap_item->oldchecksum = checksum;
2255 			return;
2256 		}
2257 
2258 		if (!try_to_merge_with_zero_page(rmap_item, page))
2259 			return;
2260 	}
2261 
2262 	/* We first start with searching the page inside the stable tree */
2263 	kpage = stable_tree_search(page);
2264 	if (kpage == page && rmap_item->head == stable_node) {
2265 		put_page(kpage);
2266 		return;
2267 	}
2268 
2269 	remove_rmap_item_from_tree(rmap_item);
2270 
2271 	if (kpage) {
2272 		if (PTR_ERR(kpage) == -EBUSY)
2273 			return;
2274 
2275 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2276 		if (!err) {
2277 			/*
2278 			 * The page was successfully merged:
2279 			 * add its rmap_item to the stable tree.
2280 			 */
2281 			lock_page(kpage);
2282 			stable_tree_append(rmap_item, page_stable_node(kpage),
2283 					   max_page_sharing_bypass);
2284 			unlock_page(kpage);
2285 		}
2286 		put_page(kpage);
2287 		return;
2288 	}
2289 
2290 	tree_rmap_item =
2291 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2292 	if (tree_rmap_item) {
2293 		bool split;
2294 
2295 		kpage = try_to_merge_two_pages(rmap_item, page,
2296 						tree_rmap_item, tree_page);
2297 		/*
2298 		 * If both pages we tried to merge belong to the same compound
2299 		 * page, then we actually ended up increasing the reference
2300 		 * count of the same compound page twice, and split_huge_page
2301 		 * failed.
2302 		 * Here we set a flag if that happened, and we use it later to
2303 		 * try split_huge_page again. Since we call put_page right
2304 		 * afterwards, the reference count will be correct and
2305 		 * split_huge_page should succeed.
2306 		 */
2307 		split = PageTransCompound(page)
2308 			&& compound_head(page) == compound_head(tree_page);
2309 		put_page(tree_page);
2310 		if (kpage) {
2311 			/*
2312 			 * The pages were successfully merged: insert new
2313 			 * node in the stable tree and add both rmap_items.
2314 			 */
2315 			lock_page(kpage);
2316 			stable_node = stable_tree_insert(page_folio(kpage));
2317 			if (stable_node) {
2318 				stable_tree_append(tree_rmap_item, stable_node,
2319 						   false);
2320 				stable_tree_append(rmap_item, stable_node,
2321 						   false);
2322 			}
2323 			unlock_page(kpage);
2324 
2325 			/*
2326 			 * If we fail to insert the page into the stable tree,
2327 			 * we will have 2 virtual addresses that are pointing
2328 			 * to a ksm page left outside the stable tree,
2329 			 * in which case we need to break_cow on both.
2330 			 */
2331 			if (!stable_node) {
2332 				break_cow(tree_rmap_item);
2333 				break_cow(rmap_item);
2334 			}
2335 		} else if (split) {
2336 			/*
2337 			 * We are here if we tried to merge two pages and
2338 			 * failed because they both belonged to the same
2339 			 * compound page. We will split the page now, but no
2340 			 * merging will take place.
2341 			 * We do not want to add the cost of a full lock; if
2342 			 * the page is locked, it is better to skip it and
2343 			 * perhaps try again later.
2344 			 */
2345 			if (!trylock_page(page))
2346 				return;
2347 			split_huge_page(page);
2348 			unlock_page(page);
2349 		}
2350 	}
2351 }
2352 
2353 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2354 					    struct ksm_rmap_item **rmap_list,
2355 					    unsigned long addr)
2356 {
2357 	struct ksm_rmap_item *rmap_item;
2358 
2359 	while (*rmap_list) {
2360 		rmap_item = *rmap_list;
2361 		if ((rmap_item->address & PAGE_MASK) == addr)
2362 			return rmap_item;
2363 		if (rmap_item->address > addr)
2364 			break;
2365 		*rmap_list = rmap_item->rmap_list;
2366 		remove_rmap_item_from_tree(rmap_item);
2367 		free_rmap_item(rmap_item);
2368 	}
2369 
2370 	rmap_item = alloc_rmap_item();
2371 	if (rmap_item) {
2372 		/* It has already been zeroed */
2373 		rmap_item->mm = mm_slot->slot.mm;
2374 		rmap_item->mm->ksm_rmap_items++;
2375 		rmap_item->address = addr;
2376 		rmap_item->rmap_list = *rmap_list;
2377 		*rmap_list = rmap_item;
2378 	}
2379 	return rmap_item;
2380 }
2381 
2382 /*
2383  * Calculate skip age for the ksm page age. The age determines how often
2384  * de-duplicating has already been tried unsuccessfully. If the age is
2385  * smaller, the scanning of this page is skipped for less scans.
2386  *
2387  * @age: rmap_item age of page
2388  */
2389 static unsigned int skip_age(rmap_age_t age)
2390 {
2391 	if (age <= 3)
2392 		return 1;
2393 	if (age <= 5)
2394 		return 2;
2395 	if (age <= 8)
2396 		return 4;
2397 
2398 	return 8;
2399 }
2400 
2401 /*
2402  * Determines if a page should be skipped for the current scan.
2403  *
2404  * @page: page to check
2405  * @rmap_item: associated rmap_item of page
2406  */
2407 static bool should_skip_rmap_item(struct page *page,
2408 				  struct ksm_rmap_item *rmap_item)
2409 {
2410 	rmap_age_t age;
2411 
2412 	if (!ksm_smart_scan)
2413 		return false;
2414 
2415 	/*
2416 	 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2417 	 * will essentially ignore them, but we still have to process them
2418 	 * properly.
2419 	 */
2420 	if (PageKsm(page))
2421 		return false;
2422 
2423 	age = rmap_item->age;
2424 	if (age != U8_MAX)
2425 		rmap_item->age++;
2426 
2427 	/*
2428 	 * Smaller ages are not skipped, they need to get a chance to go
2429 	 * through the different phases of the KSM merging.
2430 	 */
2431 	if (age < 3)
2432 		return false;
2433 
2434 	/*
2435 	 * Are we still allowed to skip? If not, then don't skip it
2436 	 * and determine how much more often we are allowed to skip next.
2437 	 */
2438 	if (!rmap_item->remaining_skips) {
2439 		rmap_item->remaining_skips = skip_age(age);
2440 		return false;
2441 	}
2442 
2443 	/* Skip this page */
2444 	ksm_pages_skipped++;
2445 	rmap_item->remaining_skips--;
2446 	remove_rmap_item_from_tree(rmap_item);
2447 	return true;
2448 }
2449 
2450 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2451 {
2452 	struct mm_struct *mm;
2453 	struct ksm_mm_slot *mm_slot;
2454 	struct mm_slot *slot;
2455 	struct vm_area_struct *vma;
2456 	struct ksm_rmap_item *rmap_item;
2457 	struct vma_iterator vmi;
2458 	int nid;
2459 
2460 	if (list_empty(&ksm_mm_head.slot.mm_node))
2461 		return NULL;
2462 
2463 	mm_slot = ksm_scan.mm_slot;
2464 	if (mm_slot == &ksm_mm_head) {
2465 		advisor_start_scan();
2466 		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2467 
2468 		/*
2469 		 * A number of pages can hang around indefinitely in per-cpu
2470 		 * LRU cache, raised page count preventing write_protect_page
2471 		 * from merging them.  Though it doesn't really matter much,
2472 		 * it is puzzling to see some stuck in pages_volatile until
2473 		 * other activity jostles them out, and they also prevented
2474 		 * LTP's KSM test from succeeding deterministically; so drain
2475 		 * them here (here rather than on entry to ksm_do_scan(),
2476 		 * so we don't IPI too often when pages_to_scan is set low).
2477 		 */
2478 		lru_add_drain_all();
2479 
2480 		/*
2481 		 * Whereas stale stable_nodes on the stable_tree itself
2482 		 * get pruned in the regular course of stable_tree_search(),
2483 		 * those moved out to the migrate_nodes list can accumulate:
2484 		 * so prune them once before each full scan.
2485 		 */
2486 		if (!ksm_merge_across_nodes) {
2487 			struct ksm_stable_node *stable_node, *next;
2488 			struct folio *folio;
2489 
2490 			list_for_each_entry_safe(stable_node, next,
2491 						 &migrate_nodes, list) {
2492 				folio = ksm_get_folio(stable_node,
2493 						      KSM_GET_FOLIO_NOLOCK);
2494 				if (folio)
2495 					folio_put(folio);
2496 				cond_resched();
2497 			}
2498 		}
2499 
2500 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2501 			root_unstable_tree[nid] = RB_ROOT;
2502 
2503 		spin_lock(&ksm_mmlist_lock);
2504 		slot = list_entry(mm_slot->slot.mm_node.next,
2505 				  struct mm_slot, mm_node);
2506 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2507 		ksm_scan.mm_slot = mm_slot;
2508 		spin_unlock(&ksm_mmlist_lock);
2509 		/*
2510 		 * Although we tested list_empty() above, a racing __ksm_exit
2511 		 * of the last mm on the list may have removed it since then.
2512 		 */
2513 		if (mm_slot == &ksm_mm_head)
2514 			return NULL;
2515 next_mm:
2516 		ksm_scan.address = 0;
2517 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2518 	}
2519 
2520 	slot = &mm_slot->slot;
2521 	mm = slot->mm;
2522 	vma_iter_init(&vmi, mm, ksm_scan.address);
2523 
2524 	mmap_read_lock(mm);
2525 	if (ksm_test_exit(mm))
2526 		goto no_vmas;
2527 
2528 	for_each_vma(vmi, vma) {
2529 		if (!(vma->vm_flags & VM_MERGEABLE))
2530 			continue;
2531 		if (ksm_scan.address < vma->vm_start)
2532 			ksm_scan.address = vma->vm_start;
2533 		if (!vma->anon_vma)
2534 			ksm_scan.address = vma->vm_end;
2535 
2536 		while (ksm_scan.address < vma->vm_end) {
2537 			struct page *tmp_page = NULL;
2538 			struct folio_walk fw;
2539 			struct folio *folio;
2540 
2541 			if (ksm_test_exit(mm))
2542 				break;
2543 
2544 			folio = folio_walk_start(&fw, vma, ksm_scan.address, 0);
2545 			if (folio) {
2546 				if (!folio_is_zone_device(folio) &&
2547 				     folio_test_anon(folio)) {
2548 					folio_get(folio);
2549 					tmp_page = fw.page;
2550 				}
2551 				folio_walk_end(&fw, vma);
2552 			}
2553 
2554 			if (tmp_page) {
2555 				flush_anon_page(vma, tmp_page, ksm_scan.address);
2556 				flush_dcache_page(tmp_page);
2557 				rmap_item = get_next_rmap_item(mm_slot,
2558 					ksm_scan.rmap_list, ksm_scan.address);
2559 				if (rmap_item) {
2560 					ksm_scan.rmap_list =
2561 							&rmap_item->rmap_list;
2562 
2563 					if (should_skip_rmap_item(tmp_page, rmap_item)) {
2564 						folio_put(folio);
2565 						goto next_page;
2566 					}
2567 
2568 					ksm_scan.address += PAGE_SIZE;
2569 					*page = tmp_page;
2570 				} else {
2571 					folio_put(folio);
2572 				}
2573 				mmap_read_unlock(mm);
2574 				return rmap_item;
2575 			}
2576 next_page:
2577 			ksm_scan.address += PAGE_SIZE;
2578 			cond_resched();
2579 		}
2580 	}
2581 
2582 	if (ksm_test_exit(mm)) {
2583 no_vmas:
2584 		ksm_scan.address = 0;
2585 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2586 	}
2587 	/*
2588 	 * Nuke all the rmap_items that are above this current rmap:
2589 	 * because there were no VM_MERGEABLE vmas with such addresses.
2590 	 */
2591 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2592 
2593 	spin_lock(&ksm_mmlist_lock);
2594 	slot = list_entry(mm_slot->slot.mm_node.next,
2595 			  struct mm_slot, mm_node);
2596 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2597 	if (ksm_scan.address == 0) {
2598 		/*
2599 		 * We've completed a full scan of all vmas, holding mmap_lock
2600 		 * throughout, and found no VM_MERGEABLE: so do the same as
2601 		 * __ksm_exit does to remove this mm from all our lists now.
2602 		 * This applies either when cleaning up after __ksm_exit
2603 		 * (but beware: we can reach here even before __ksm_exit),
2604 		 * or when all VM_MERGEABLE areas have been unmapped (and
2605 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2606 		 */
2607 		hash_del(&mm_slot->slot.hash);
2608 		list_del(&mm_slot->slot.mm_node);
2609 		spin_unlock(&ksm_mmlist_lock);
2610 
2611 		mm_slot_free(mm_slot_cache, mm_slot);
2612 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2613 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2614 		mmap_read_unlock(mm);
2615 		mmdrop(mm);
2616 	} else {
2617 		mmap_read_unlock(mm);
2618 		/*
2619 		 * mmap_read_unlock(mm) first because after
2620 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2621 		 * already have been freed under us by __ksm_exit()
2622 		 * because the "mm_slot" is still hashed and
2623 		 * ksm_scan.mm_slot doesn't point to it anymore.
2624 		 */
2625 		spin_unlock(&ksm_mmlist_lock);
2626 	}
2627 
2628 	/* Repeat until we've completed scanning the whole list */
2629 	mm_slot = ksm_scan.mm_slot;
2630 	if (mm_slot != &ksm_mm_head)
2631 		goto next_mm;
2632 
2633 	advisor_stop_scan();
2634 
2635 	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2636 	ksm_scan.seqnr++;
2637 	return NULL;
2638 }
2639 
2640 /**
2641  * ksm_do_scan  - the ksm scanner main worker function.
2642  * @scan_npages:  number of pages we want to scan before we return.
2643  */
2644 static void ksm_do_scan(unsigned int scan_npages)
2645 {
2646 	struct ksm_rmap_item *rmap_item;
2647 	struct page *page;
2648 
2649 	while (scan_npages-- && likely(!freezing(current))) {
2650 		cond_resched();
2651 		rmap_item = scan_get_next_rmap_item(&page);
2652 		if (!rmap_item)
2653 			return;
2654 		cmp_and_merge_page(page, rmap_item);
2655 		put_page(page);
2656 		ksm_pages_scanned++;
2657 	}
2658 }
2659 
2660 static int ksmd_should_run(void)
2661 {
2662 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2663 }
2664 
2665 static int ksm_scan_thread(void *nothing)
2666 {
2667 	unsigned int sleep_ms;
2668 
2669 	set_freezable();
2670 	set_user_nice(current, 5);
2671 
2672 	while (!kthread_should_stop()) {
2673 		mutex_lock(&ksm_thread_mutex);
2674 		wait_while_offlining();
2675 		if (ksmd_should_run())
2676 			ksm_do_scan(ksm_thread_pages_to_scan);
2677 		mutex_unlock(&ksm_thread_mutex);
2678 
2679 		if (ksmd_should_run()) {
2680 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2681 			wait_event_freezable_timeout(ksm_iter_wait,
2682 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2683 				msecs_to_jiffies(sleep_ms));
2684 		} else {
2685 			wait_event_freezable(ksm_thread_wait,
2686 				ksmd_should_run() || kthread_should_stop());
2687 		}
2688 	}
2689 	return 0;
2690 }
2691 
2692 static void __ksm_add_vma(struct vm_area_struct *vma)
2693 {
2694 	unsigned long vm_flags = vma->vm_flags;
2695 
2696 	if (vm_flags & VM_MERGEABLE)
2697 		return;
2698 
2699 	if (vma_ksm_compatible(vma))
2700 		vm_flags_set(vma, VM_MERGEABLE);
2701 }
2702 
2703 static int __ksm_del_vma(struct vm_area_struct *vma)
2704 {
2705 	int err;
2706 
2707 	if (!(vma->vm_flags & VM_MERGEABLE))
2708 		return 0;
2709 
2710 	if (vma->anon_vma) {
2711 		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2712 		if (err)
2713 			return err;
2714 	}
2715 
2716 	vm_flags_clear(vma, VM_MERGEABLE);
2717 	return 0;
2718 }
2719 /**
2720  * ksm_add_vma - Mark vma as mergeable if compatible
2721  *
2722  * @vma:  Pointer to vma
2723  */
2724 void ksm_add_vma(struct vm_area_struct *vma)
2725 {
2726 	struct mm_struct *mm = vma->vm_mm;
2727 
2728 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2729 		__ksm_add_vma(vma);
2730 }
2731 
2732 static void ksm_add_vmas(struct mm_struct *mm)
2733 {
2734 	struct vm_area_struct *vma;
2735 
2736 	VMA_ITERATOR(vmi, mm, 0);
2737 	for_each_vma(vmi, vma)
2738 		__ksm_add_vma(vma);
2739 }
2740 
2741 static int ksm_del_vmas(struct mm_struct *mm)
2742 {
2743 	struct vm_area_struct *vma;
2744 	int err;
2745 
2746 	VMA_ITERATOR(vmi, mm, 0);
2747 	for_each_vma(vmi, vma) {
2748 		err = __ksm_del_vma(vma);
2749 		if (err)
2750 			return err;
2751 	}
2752 	return 0;
2753 }
2754 
2755 /**
2756  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2757  *                        compatible VMA's
2758  *
2759  * @mm:  Pointer to mm
2760  *
2761  * Returns 0 on success, otherwise error code
2762  */
2763 int ksm_enable_merge_any(struct mm_struct *mm)
2764 {
2765 	int err;
2766 
2767 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2768 		return 0;
2769 
2770 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2771 		err = __ksm_enter(mm);
2772 		if (err)
2773 			return err;
2774 	}
2775 
2776 	set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2777 	ksm_add_vmas(mm);
2778 
2779 	return 0;
2780 }
2781 
2782 /**
2783  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2784  *			   previously enabled via ksm_enable_merge_any().
2785  *
2786  * Disabling merging implies unmerging any merged pages, like setting
2787  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2788  * merging on all compatible VMA's remains enabled.
2789  *
2790  * @mm: Pointer to mm
2791  *
2792  * Returns 0 on success, otherwise error code
2793  */
2794 int ksm_disable_merge_any(struct mm_struct *mm)
2795 {
2796 	int err;
2797 
2798 	if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2799 		return 0;
2800 
2801 	err = ksm_del_vmas(mm);
2802 	if (err) {
2803 		ksm_add_vmas(mm);
2804 		return err;
2805 	}
2806 
2807 	clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2808 	return 0;
2809 }
2810 
2811 int ksm_disable(struct mm_struct *mm)
2812 {
2813 	mmap_assert_write_locked(mm);
2814 
2815 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2816 		return 0;
2817 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2818 		return ksm_disable_merge_any(mm);
2819 	return ksm_del_vmas(mm);
2820 }
2821 
2822 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2823 		unsigned long end, int advice, unsigned long *vm_flags)
2824 {
2825 	struct mm_struct *mm = vma->vm_mm;
2826 	int err;
2827 
2828 	switch (advice) {
2829 	case MADV_MERGEABLE:
2830 		if (vma->vm_flags & VM_MERGEABLE)
2831 			return 0;
2832 		if (!vma_ksm_compatible(vma))
2833 			return 0;
2834 
2835 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2836 			err = __ksm_enter(mm);
2837 			if (err)
2838 				return err;
2839 		}
2840 
2841 		*vm_flags |= VM_MERGEABLE;
2842 		break;
2843 
2844 	case MADV_UNMERGEABLE:
2845 		if (!(*vm_flags & VM_MERGEABLE))
2846 			return 0;		/* just ignore the advice */
2847 
2848 		if (vma->anon_vma) {
2849 			err = unmerge_ksm_pages(vma, start, end, true);
2850 			if (err)
2851 				return err;
2852 		}
2853 
2854 		*vm_flags &= ~VM_MERGEABLE;
2855 		break;
2856 	}
2857 
2858 	return 0;
2859 }
2860 EXPORT_SYMBOL_GPL(ksm_madvise);
2861 
2862 int __ksm_enter(struct mm_struct *mm)
2863 {
2864 	struct ksm_mm_slot *mm_slot;
2865 	struct mm_slot *slot;
2866 	int needs_wakeup;
2867 
2868 	mm_slot = mm_slot_alloc(mm_slot_cache);
2869 	if (!mm_slot)
2870 		return -ENOMEM;
2871 
2872 	slot = &mm_slot->slot;
2873 
2874 	/* Check ksm_run too?  Would need tighter locking */
2875 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2876 
2877 	spin_lock(&ksm_mmlist_lock);
2878 	mm_slot_insert(mm_slots_hash, mm, slot);
2879 	/*
2880 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2881 	 * insert just behind the scanning cursor, to let the area settle
2882 	 * down a little; when fork is followed by immediate exec, we don't
2883 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2884 	 *
2885 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2886 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2887 	 * missed: then we might as well insert at the end of the list.
2888 	 */
2889 	if (ksm_run & KSM_RUN_UNMERGE)
2890 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2891 	else
2892 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2893 	spin_unlock(&ksm_mmlist_lock);
2894 
2895 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2896 	mmgrab(mm);
2897 
2898 	if (needs_wakeup)
2899 		wake_up_interruptible(&ksm_thread_wait);
2900 
2901 	trace_ksm_enter(mm);
2902 	return 0;
2903 }
2904 
2905 void __ksm_exit(struct mm_struct *mm)
2906 {
2907 	struct ksm_mm_slot *mm_slot;
2908 	struct mm_slot *slot;
2909 	int easy_to_free = 0;
2910 
2911 	/*
2912 	 * This process is exiting: if it's straightforward (as is the
2913 	 * case when ksmd was never running), free mm_slot immediately.
2914 	 * But if it's at the cursor or has rmap_items linked to it, use
2915 	 * mmap_lock to synchronize with any break_cows before pagetables
2916 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2917 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2918 	 */
2919 
2920 	spin_lock(&ksm_mmlist_lock);
2921 	slot = mm_slot_lookup(mm_slots_hash, mm);
2922 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2923 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2924 		if (!mm_slot->rmap_list) {
2925 			hash_del(&slot->hash);
2926 			list_del(&slot->mm_node);
2927 			easy_to_free = 1;
2928 		} else {
2929 			list_move(&slot->mm_node,
2930 				  &ksm_scan.mm_slot->slot.mm_node);
2931 		}
2932 	}
2933 	spin_unlock(&ksm_mmlist_lock);
2934 
2935 	if (easy_to_free) {
2936 		mm_slot_free(mm_slot_cache, mm_slot);
2937 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2938 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2939 		mmdrop(mm);
2940 	} else if (mm_slot) {
2941 		mmap_write_lock(mm);
2942 		mmap_write_unlock(mm);
2943 	}
2944 
2945 	trace_ksm_exit(mm);
2946 }
2947 
2948 struct folio *ksm_might_need_to_copy(struct folio *folio,
2949 			struct vm_area_struct *vma, unsigned long addr)
2950 {
2951 	struct page *page = folio_page(folio, 0);
2952 	struct anon_vma *anon_vma = folio_anon_vma(folio);
2953 	struct folio *new_folio;
2954 
2955 	if (folio_test_large(folio))
2956 		return folio;
2957 
2958 	if (folio_test_ksm(folio)) {
2959 		if (folio_stable_node(folio) &&
2960 		    !(ksm_run & KSM_RUN_UNMERGE))
2961 			return folio;	/* no need to copy it */
2962 	} else if (!anon_vma) {
2963 		return folio;		/* no need to copy it */
2964 	} else if (folio->index == linear_page_index(vma, addr) &&
2965 			anon_vma->root == vma->anon_vma->root) {
2966 		return folio;		/* still no need to copy it */
2967 	}
2968 	if (PageHWPoison(page))
2969 		return ERR_PTR(-EHWPOISON);
2970 	if (!folio_test_uptodate(folio))
2971 		return folio;		/* let do_swap_page report the error */
2972 
2973 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
2974 	if (new_folio &&
2975 	    mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
2976 		folio_put(new_folio);
2977 		new_folio = NULL;
2978 	}
2979 	if (new_folio) {
2980 		if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
2981 								addr, vma)) {
2982 			folio_put(new_folio);
2983 			return ERR_PTR(-EHWPOISON);
2984 		}
2985 		folio_set_dirty(new_folio);
2986 		__folio_mark_uptodate(new_folio);
2987 		__folio_set_locked(new_folio);
2988 #ifdef CONFIG_SWAP
2989 		count_vm_event(KSM_SWPIN_COPY);
2990 #endif
2991 	}
2992 
2993 	return new_folio;
2994 }
2995 
2996 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2997 {
2998 	struct ksm_stable_node *stable_node;
2999 	struct ksm_rmap_item *rmap_item;
3000 	int search_new_forks = 0;
3001 
3002 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3003 
3004 	/*
3005 	 * Rely on the page lock to protect against concurrent modifications
3006 	 * to that page's node of the stable tree.
3007 	 */
3008 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3009 
3010 	stable_node = folio_stable_node(folio);
3011 	if (!stable_node)
3012 		return;
3013 again:
3014 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3015 		struct anon_vma *anon_vma = rmap_item->anon_vma;
3016 		struct anon_vma_chain *vmac;
3017 		struct vm_area_struct *vma;
3018 
3019 		cond_resched();
3020 		if (!anon_vma_trylock_read(anon_vma)) {
3021 			if (rwc->try_lock) {
3022 				rwc->contended = true;
3023 				return;
3024 			}
3025 			anon_vma_lock_read(anon_vma);
3026 		}
3027 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3028 					       0, ULONG_MAX) {
3029 			unsigned long addr;
3030 
3031 			cond_resched();
3032 			vma = vmac->vma;
3033 
3034 			/* Ignore the stable/unstable/sqnr flags */
3035 			addr = rmap_item->address & PAGE_MASK;
3036 
3037 			if (addr < vma->vm_start || addr >= vma->vm_end)
3038 				continue;
3039 			/*
3040 			 * Initially we examine only the vma which covers this
3041 			 * rmap_item; but later, if there is still work to do,
3042 			 * we examine covering vmas in other mms: in case they
3043 			 * were forked from the original since ksmd passed.
3044 			 */
3045 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3046 				continue;
3047 
3048 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3049 				continue;
3050 
3051 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3052 				anon_vma_unlock_read(anon_vma);
3053 				return;
3054 			}
3055 			if (rwc->done && rwc->done(folio)) {
3056 				anon_vma_unlock_read(anon_vma);
3057 				return;
3058 			}
3059 		}
3060 		anon_vma_unlock_read(anon_vma);
3061 	}
3062 	if (!search_new_forks++)
3063 		goto again;
3064 }
3065 
3066 #ifdef CONFIG_MEMORY_FAILURE
3067 /*
3068  * Collect processes when the error hit an ksm page.
3069  */
3070 void collect_procs_ksm(struct folio *folio, struct page *page,
3071 		struct list_head *to_kill, int force_early)
3072 {
3073 	struct ksm_stable_node *stable_node;
3074 	struct ksm_rmap_item *rmap_item;
3075 	struct vm_area_struct *vma;
3076 	struct task_struct *tsk;
3077 
3078 	stable_node = folio_stable_node(folio);
3079 	if (!stable_node)
3080 		return;
3081 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3082 		struct anon_vma *av = rmap_item->anon_vma;
3083 
3084 		anon_vma_lock_read(av);
3085 		rcu_read_lock();
3086 		for_each_process(tsk) {
3087 			struct anon_vma_chain *vmac;
3088 			unsigned long addr;
3089 			struct task_struct *t =
3090 				task_early_kill(tsk, force_early);
3091 			if (!t)
3092 				continue;
3093 			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3094 						       ULONG_MAX)
3095 			{
3096 				vma = vmac->vma;
3097 				if (vma->vm_mm == t->mm) {
3098 					addr = rmap_item->address & PAGE_MASK;
3099 					add_to_kill_ksm(t, page, vma, to_kill,
3100 							addr);
3101 				}
3102 			}
3103 		}
3104 		rcu_read_unlock();
3105 		anon_vma_unlock_read(av);
3106 	}
3107 }
3108 #endif
3109 
3110 #ifdef CONFIG_MIGRATION
3111 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3112 {
3113 	struct ksm_stable_node *stable_node;
3114 
3115 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3116 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3117 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3118 
3119 	stable_node = folio_stable_node(folio);
3120 	if (stable_node) {
3121 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3122 		stable_node->kpfn = folio_pfn(newfolio);
3123 		/*
3124 		 * newfolio->mapping was set in advance; now we need smp_wmb()
3125 		 * to make sure that the new stable_node->kpfn is visible
3126 		 * to ksm_get_folio() before it can see that folio->mapping
3127 		 * has gone stale (or that the swapcache flag has been cleared).
3128 		 */
3129 		smp_wmb();
3130 		folio_set_stable_node(folio, NULL);
3131 	}
3132 }
3133 #endif /* CONFIG_MIGRATION */
3134 
3135 #ifdef CONFIG_MEMORY_HOTREMOVE
3136 static void wait_while_offlining(void)
3137 {
3138 	while (ksm_run & KSM_RUN_OFFLINE) {
3139 		mutex_unlock(&ksm_thread_mutex);
3140 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3141 			    TASK_UNINTERRUPTIBLE);
3142 		mutex_lock(&ksm_thread_mutex);
3143 	}
3144 }
3145 
3146 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3147 					 unsigned long start_pfn,
3148 					 unsigned long end_pfn)
3149 {
3150 	if (stable_node->kpfn >= start_pfn &&
3151 	    stable_node->kpfn < end_pfn) {
3152 		/*
3153 		 * Don't ksm_get_folio, page has already gone:
3154 		 * which is why we keep kpfn instead of page*
3155 		 */
3156 		remove_node_from_stable_tree(stable_node);
3157 		return true;
3158 	}
3159 	return false;
3160 }
3161 
3162 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3163 					   unsigned long start_pfn,
3164 					   unsigned long end_pfn,
3165 					   struct rb_root *root)
3166 {
3167 	struct ksm_stable_node *dup;
3168 	struct hlist_node *hlist_safe;
3169 
3170 	if (!is_stable_node_chain(stable_node)) {
3171 		VM_BUG_ON(is_stable_node_dup(stable_node));
3172 		return stable_node_dup_remove_range(stable_node, start_pfn,
3173 						    end_pfn);
3174 	}
3175 
3176 	hlist_for_each_entry_safe(dup, hlist_safe,
3177 				  &stable_node->hlist, hlist_dup) {
3178 		VM_BUG_ON(!is_stable_node_dup(dup));
3179 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3180 	}
3181 	if (hlist_empty(&stable_node->hlist)) {
3182 		free_stable_node_chain(stable_node, root);
3183 		return true; /* notify caller that tree was rebalanced */
3184 	} else
3185 		return false;
3186 }
3187 
3188 static void ksm_check_stable_tree(unsigned long start_pfn,
3189 				  unsigned long end_pfn)
3190 {
3191 	struct ksm_stable_node *stable_node, *next;
3192 	struct rb_node *node;
3193 	int nid;
3194 
3195 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3196 		node = rb_first(root_stable_tree + nid);
3197 		while (node) {
3198 			stable_node = rb_entry(node, struct ksm_stable_node, node);
3199 			if (stable_node_chain_remove_range(stable_node,
3200 							   start_pfn, end_pfn,
3201 							   root_stable_tree +
3202 							   nid))
3203 				node = rb_first(root_stable_tree + nid);
3204 			else
3205 				node = rb_next(node);
3206 			cond_resched();
3207 		}
3208 	}
3209 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3210 		if (stable_node->kpfn >= start_pfn &&
3211 		    stable_node->kpfn < end_pfn)
3212 			remove_node_from_stable_tree(stable_node);
3213 		cond_resched();
3214 	}
3215 }
3216 
3217 static int ksm_memory_callback(struct notifier_block *self,
3218 			       unsigned long action, void *arg)
3219 {
3220 	struct memory_notify *mn = arg;
3221 
3222 	switch (action) {
3223 	case MEM_GOING_OFFLINE:
3224 		/*
3225 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3226 		 * and remove_all_stable_nodes() while memory is going offline:
3227 		 * it is unsafe for them to touch the stable tree at this time.
3228 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
3229 		 * which do not need the ksm_thread_mutex are all safe.
3230 		 */
3231 		mutex_lock(&ksm_thread_mutex);
3232 		ksm_run |= KSM_RUN_OFFLINE;
3233 		mutex_unlock(&ksm_thread_mutex);
3234 		break;
3235 
3236 	case MEM_OFFLINE:
3237 		/*
3238 		 * Most of the work is done by page migration; but there might
3239 		 * be a few stable_nodes left over, still pointing to struct
3240 		 * pages which have been offlined: prune those from the tree,
3241 		 * otherwise ksm_get_folio() might later try to access a
3242 		 * non-existent struct page.
3243 		 */
3244 		ksm_check_stable_tree(mn->start_pfn,
3245 				      mn->start_pfn + mn->nr_pages);
3246 		fallthrough;
3247 	case MEM_CANCEL_OFFLINE:
3248 		mutex_lock(&ksm_thread_mutex);
3249 		ksm_run &= ~KSM_RUN_OFFLINE;
3250 		mutex_unlock(&ksm_thread_mutex);
3251 
3252 		smp_mb();	/* wake_up_bit advises this */
3253 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3254 		break;
3255 	}
3256 	return NOTIFY_OK;
3257 }
3258 #else
3259 static void wait_while_offlining(void)
3260 {
3261 }
3262 #endif /* CONFIG_MEMORY_HOTREMOVE */
3263 
3264 #ifdef CONFIG_PROC_FS
3265 long ksm_process_profit(struct mm_struct *mm)
3266 {
3267 	return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
3268 		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3269 }
3270 #endif /* CONFIG_PROC_FS */
3271 
3272 #ifdef CONFIG_SYSFS
3273 /*
3274  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3275  */
3276 
3277 #define KSM_ATTR_RO(_name) \
3278 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3279 #define KSM_ATTR(_name) \
3280 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3281 
3282 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3283 				    struct kobj_attribute *attr, char *buf)
3284 {
3285 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3286 }
3287 
3288 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3289 				     struct kobj_attribute *attr,
3290 				     const char *buf, size_t count)
3291 {
3292 	unsigned int msecs;
3293 	int err;
3294 
3295 	err = kstrtouint(buf, 10, &msecs);
3296 	if (err)
3297 		return -EINVAL;
3298 
3299 	ksm_thread_sleep_millisecs = msecs;
3300 	wake_up_interruptible(&ksm_iter_wait);
3301 
3302 	return count;
3303 }
3304 KSM_ATTR(sleep_millisecs);
3305 
3306 static ssize_t pages_to_scan_show(struct kobject *kobj,
3307 				  struct kobj_attribute *attr, char *buf)
3308 {
3309 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3310 }
3311 
3312 static ssize_t pages_to_scan_store(struct kobject *kobj,
3313 				   struct kobj_attribute *attr,
3314 				   const char *buf, size_t count)
3315 {
3316 	unsigned int nr_pages;
3317 	int err;
3318 
3319 	if (ksm_advisor != KSM_ADVISOR_NONE)
3320 		return -EINVAL;
3321 
3322 	err = kstrtouint(buf, 10, &nr_pages);
3323 	if (err)
3324 		return -EINVAL;
3325 
3326 	ksm_thread_pages_to_scan = nr_pages;
3327 
3328 	return count;
3329 }
3330 KSM_ATTR(pages_to_scan);
3331 
3332 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3333 			char *buf)
3334 {
3335 	return sysfs_emit(buf, "%lu\n", ksm_run);
3336 }
3337 
3338 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3339 			 const char *buf, size_t count)
3340 {
3341 	unsigned int flags;
3342 	int err;
3343 
3344 	err = kstrtouint(buf, 10, &flags);
3345 	if (err)
3346 		return -EINVAL;
3347 	if (flags > KSM_RUN_UNMERGE)
3348 		return -EINVAL;
3349 
3350 	/*
3351 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3352 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3353 	 * breaking COW to free the pages_shared (but leaves mm_slots
3354 	 * on the list for when ksmd may be set running again).
3355 	 */
3356 
3357 	mutex_lock(&ksm_thread_mutex);
3358 	wait_while_offlining();
3359 	if (ksm_run != flags) {
3360 		ksm_run = flags;
3361 		if (flags & KSM_RUN_UNMERGE) {
3362 			set_current_oom_origin();
3363 			err = unmerge_and_remove_all_rmap_items();
3364 			clear_current_oom_origin();
3365 			if (err) {
3366 				ksm_run = KSM_RUN_STOP;
3367 				count = err;
3368 			}
3369 		}
3370 	}
3371 	mutex_unlock(&ksm_thread_mutex);
3372 
3373 	if (flags & KSM_RUN_MERGE)
3374 		wake_up_interruptible(&ksm_thread_wait);
3375 
3376 	return count;
3377 }
3378 KSM_ATTR(run);
3379 
3380 #ifdef CONFIG_NUMA
3381 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3382 				       struct kobj_attribute *attr, char *buf)
3383 {
3384 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3385 }
3386 
3387 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3388 				   struct kobj_attribute *attr,
3389 				   const char *buf, size_t count)
3390 {
3391 	int err;
3392 	unsigned long knob;
3393 
3394 	err = kstrtoul(buf, 10, &knob);
3395 	if (err)
3396 		return err;
3397 	if (knob > 1)
3398 		return -EINVAL;
3399 
3400 	mutex_lock(&ksm_thread_mutex);
3401 	wait_while_offlining();
3402 	if (ksm_merge_across_nodes != knob) {
3403 		if (ksm_pages_shared || remove_all_stable_nodes())
3404 			err = -EBUSY;
3405 		else if (root_stable_tree == one_stable_tree) {
3406 			struct rb_root *buf;
3407 			/*
3408 			 * This is the first time that we switch away from the
3409 			 * default of merging across nodes: must now allocate
3410 			 * a buffer to hold as many roots as may be needed.
3411 			 * Allocate stable and unstable together:
3412 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3413 			 */
3414 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3415 				      GFP_KERNEL);
3416 			/* Let us assume that RB_ROOT is NULL is zero */
3417 			if (!buf)
3418 				err = -ENOMEM;
3419 			else {
3420 				root_stable_tree = buf;
3421 				root_unstable_tree = buf + nr_node_ids;
3422 				/* Stable tree is empty but not the unstable */
3423 				root_unstable_tree[0] = one_unstable_tree[0];
3424 			}
3425 		}
3426 		if (!err) {
3427 			ksm_merge_across_nodes = knob;
3428 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3429 		}
3430 	}
3431 	mutex_unlock(&ksm_thread_mutex);
3432 
3433 	return err ? err : count;
3434 }
3435 KSM_ATTR(merge_across_nodes);
3436 #endif
3437 
3438 static ssize_t use_zero_pages_show(struct kobject *kobj,
3439 				   struct kobj_attribute *attr, char *buf)
3440 {
3441 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3442 }
3443 static ssize_t use_zero_pages_store(struct kobject *kobj,
3444 				   struct kobj_attribute *attr,
3445 				   const char *buf, size_t count)
3446 {
3447 	int err;
3448 	bool value;
3449 
3450 	err = kstrtobool(buf, &value);
3451 	if (err)
3452 		return -EINVAL;
3453 
3454 	ksm_use_zero_pages = value;
3455 
3456 	return count;
3457 }
3458 KSM_ATTR(use_zero_pages);
3459 
3460 static ssize_t max_page_sharing_show(struct kobject *kobj,
3461 				     struct kobj_attribute *attr, char *buf)
3462 {
3463 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3464 }
3465 
3466 static ssize_t max_page_sharing_store(struct kobject *kobj,
3467 				      struct kobj_attribute *attr,
3468 				      const char *buf, size_t count)
3469 {
3470 	int err;
3471 	int knob;
3472 
3473 	err = kstrtoint(buf, 10, &knob);
3474 	if (err)
3475 		return err;
3476 	/*
3477 	 * When a KSM page is created it is shared by 2 mappings. This
3478 	 * being a signed comparison, it implicitly verifies it's not
3479 	 * negative.
3480 	 */
3481 	if (knob < 2)
3482 		return -EINVAL;
3483 
3484 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3485 		return count;
3486 
3487 	mutex_lock(&ksm_thread_mutex);
3488 	wait_while_offlining();
3489 	if (ksm_max_page_sharing != knob) {
3490 		if (ksm_pages_shared || remove_all_stable_nodes())
3491 			err = -EBUSY;
3492 		else
3493 			ksm_max_page_sharing = knob;
3494 	}
3495 	mutex_unlock(&ksm_thread_mutex);
3496 
3497 	return err ? err : count;
3498 }
3499 KSM_ATTR(max_page_sharing);
3500 
3501 static ssize_t pages_scanned_show(struct kobject *kobj,
3502 				  struct kobj_attribute *attr, char *buf)
3503 {
3504 	return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3505 }
3506 KSM_ATTR_RO(pages_scanned);
3507 
3508 static ssize_t pages_shared_show(struct kobject *kobj,
3509 				 struct kobj_attribute *attr, char *buf)
3510 {
3511 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3512 }
3513 KSM_ATTR_RO(pages_shared);
3514 
3515 static ssize_t pages_sharing_show(struct kobject *kobj,
3516 				  struct kobj_attribute *attr, char *buf)
3517 {
3518 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3519 }
3520 KSM_ATTR_RO(pages_sharing);
3521 
3522 static ssize_t pages_unshared_show(struct kobject *kobj,
3523 				   struct kobj_attribute *attr, char *buf)
3524 {
3525 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3526 }
3527 KSM_ATTR_RO(pages_unshared);
3528 
3529 static ssize_t pages_volatile_show(struct kobject *kobj,
3530 				   struct kobj_attribute *attr, char *buf)
3531 {
3532 	long ksm_pages_volatile;
3533 
3534 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3535 				- ksm_pages_sharing - ksm_pages_unshared;
3536 	/*
3537 	 * It was not worth any locking to calculate that statistic,
3538 	 * but it might therefore sometimes be negative: conceal that.
3539 	 */
3540 	if (ksm_pages_volatile < 0)
3541 		ksm_pages_volatile = 0;
3542 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3543 }
3544 KSM_ATTR_RO(pages_volatile);
3545 
3546 static ssize_t pages_skipped_show(struct kobject *kobj,
3547 				  struct kobj_attribute *attr, char *buf)
3548 {
3549 	return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3550 }
3551 KSM_ATTR_RO(pages_skipped);
3552 
3553 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3554 				struct kobj_attribute *attr, char *buf)
3555 {
3556 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
3557 }
3558 KSM_ATTR_RO(ksm_zero_pages);
3559 
3560 static ssize_t general_profit_show(struct kobject *kobj,
3561 				   struct kobj_attribute *attr, char *buf)
3562 {
3563 	long general_profit;
3564 
3565 	general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
3566 				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3567 
3568 	return sysfs_emit(buf, "%ld\n", general_profit);
3569 }
3570 KSM_ATTR_RO(general_profit);
3571 
3572 static ssize_t stable_node_dups_show(struct kobject *kobj,
3573 				     struct kobj_attribute *attr, char *buf)
3574 {
3575 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3576 }
3577 KSM_ATTR_RO(stable_node_dups);
3578 
3579 static ssize_t stable_node_chains_show(struct kobject *kobj,
3580 				       struct kobj_attribute *attr, char *buf)
3581 {
3582 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3583 }
3584 KSM_ATTR_RO(stable_node_chains);
3585 
3586 static ssize_t
3587 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3588 					struct kobj_attribute *attr,
3589 					char *buf)
3590 {
3591 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3592 }
3593 
3594 static ssize_t
3595 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3596 					 struct kobj_attribute *attr,
3597 					 const char *buf, size_t count)
3598 {
3599 	unsigned int msecs;
3600 	int err;
3601 
3602 	err = kstrtouint(buf, 10, &msecs);
3603 	if (err)
3604 		return -EINVAL;
3605 
3606 	ksm_stable_node_chains_prune_millisecs = msecs;
3607 
3608 	return count;
3609 }
3610 KSM_ATTR(stable_node_chains_prune_millisecs);
3611 
3612 static ssize_t full_scans_show(struct kobject *kobj,
3613 			       struct kobj_attribute *attr, char *buf)
3614 {
3615 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3616 }
3617 KSM_ATTR_RO(full_scans);
3618 
3619 static ssize_t smart_scan_show(struct kobject *kobj,
3620 			       struct kobj_attribute *attr, char *buf)
3621 {
3622 	return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3623 }
3624 
3625 static ssize_t smart_scan_store(struct kobject *kobj,
3626 				struct kobj_attribute *attr,
3627 				const char *buf, size_t count)
3628 {
3629 	int err;
3630 	bool value;
3631 
3632 	err = kstrtobool(buf, &value);
3633 	if (err)
3634 		return -EINVAL;
3635 
3636 	ksm_smart_scan = value;
3637 	return count;
3638 }
3639 KSM_ATTR(smart_scan);
3640 
3641 static ssize_t advisor_mode_show(struct kobject *kobj,
3642 				 struct kobj_attribute *attr, char *buf)
3643 {
3644 	const char *output;
3645 
3646 	if (ksm_advisor == KSM_ADVISOR_NONE)
3647 		output = "[none] scan-time";
3648 	else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3649 		output = "none [scan-time]";
3650 
3651 	return sysfs_emit(buf, "%s\n", output);
3652 }
3653 
3654 static ssize_t advisor_mode_store(struct kobject *kobj,
3655 				  struct kobj_attribute *attr, const char *buf,
3656 				  size_t count)
3657 {
3658 	enum ksm_advisor_type curr_advisor = ksm_advisor;
3659 
3660 	if (sysfs_streq("scan-time", buf))
3661 		ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3662 	else if (sysfs_streq("none", buf))
3663 		ksm_advisor = KSM_ADVISOR_NONE;
3664 	else
3665 		return -EINVAL;
3666 
3667 	/* Set advisor default values */
3668 	if (curr_advisor != ksm_advisor)
3669 		set_advisor_defaults();
3670 
3671 	return count;
3672 }
3673 KSM_ATTR(advisor_mode);
3674 
3675 static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3676 				    struct kobj_attribute *attr, char *buf)
3677 {
3678 	return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3679 }
3680 
3681 static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3682 				     struct kobj_attribute *attr,
3683 				     const char *buf, size_t count)
3684 {
3685 	int err;
3686 	unsigned long value;
3687 
3688 	err = kstrtoul(buf, 10, &value);
3689 	if (err)
3690 		return -EINVAL;
3691 
3692 	ksm_advisor_max_cpu = value;
3693 	return count;
3694 }
3695 KSM_ATTR(advisor_max_cpu);
3696 
3697 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3698 					struct kobj_attribute *attr, char *buf)
3699 {
3700 	return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3701 }
3702 
3703 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3704 					struct kobj_attribute *attr,
3705 					const char *buf, size_t count)
3706 {
3707 	int err;
3708 	unsigned long value;
3709 
3710 	err = kstrtoul(buf, 10, &value);
3711 	if (err)
3712 		return -EINVAL;
3713 
3714 	ksm_advisor_min_pages_to_scan = value;
3715 	return count;
3716 }
3717 KSM_ATTR(advisor_min_pages_to_scan);
3718 
3719 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3720 					struct kobj_attribute *attr, char *buf)
3721 {
3722 	return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3723 }
3724 
3725 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3726 					struct kobj_attribute *attr,
3727 					const char *buf, size_t count)
3728 {
3729 	int err;
3730 	unsigned long value;
3731 
3732 	err = kstrtoul(buf, 10, &value);
3733 	if (err)
3734 		return -EINVAL;
3735 
3736 	ksm_advisor_max_pages_to_scan = value;
3737 	return count;
3738 }
3739 KSM_ATTR(advisor_max_pages_to_scan);
3740 
3741 static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3742 					     struct kobj_attribute *attr, char *buf)
3743 {
3744 	return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3745 }
3746 
3747 static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3748 					      struct kobj_attribute *attr,
3749 					      const char *buf, size_t count)
3750 {
3751 	int err;
3752 	unsigned long value;
3753 
3754 	err = kstrtoul(buf, 10, &value);
3755 	if (err)
3756 		return -EINVAL;
3757 	if (value < 1)
3758 		return -EINVAL;
3759 
3760 	ksm_advisor_target_scan_time = value;
3761 	return count;
3762 }
3763 KSM_ATTR(advisor_target_scan_time);
3764 
3765 static struct attribute *ksm_attrs[] = {
3766 	&sleep_millisecs_attr.attr,
3767 	&pages_to_scan_attr.attr,
3768 	&run_attr.attr,
3769 	&pages_scanned_attr.attr,
3770 	&pages_shared_attr.attr,
3771 	&pages_sharing_attr.attr,
3772 	&pages_unshared_attr.attr,
3773 	&pages_volatile_attr.attr,
3774 	&pages_skipped_attr.attr,
3775 	&ksm_zero_pages_attr.attr,
3776 	&full_scans_attr.attr,
3777 #ifdef CONFIG_NUMA
3778 	&merge_across_nodes_attr.attr,
3779 #endif
3780 	&max_page_sharing_attr.attr,
3781 	&stable_node_chains_attr.attr,
3782 	&stable_node_dups_attr.attr,
3783 	&stable_node_chains_prune_millisecs_attr.attr,
3784 	&use_zero_pages_attr.attr,
3785 	&general_profit_attr.attr,
3786 	&smart_scan_attr.attr,
3787 	&advisor_mode_attr.attr,
3788 	&advisor_max_cpu_attr.attr,
3789 	&advisor_min_pages_to_scan_attr.attr,
3790 	&advisor_max_pages_to_scan_attr.attr,
3791 	&advisor_target_scan_time_attr.attr,
3792 	NULL,
3793 };
3794 
3795 static const struct attribute_group ksm_attr_group = {
3796 	.attrs = ksm_attrs,
3797 	.name = "ksm",
3798 };
3799 #endif /* CONFIG_SYSFS */
3800 
3801 static int __init ksm_init(void)
3802 {
3803 	struct task_struct *ksm_thread;
3804 	int err;
3805 
3806 	/* The correct value depends on page size and endianness */
3807 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3808 	/* Default to false for backwards compatibility */
3809 	ksm_use_zero_pages = false;
3810 
3811 	err = ksm_slab_init();
3812 	if (err)
3813 		goto out;
3814 
3815 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3816 	if (IS_ERR(ksm_thread)) {
3817 		pr_err("ksm: creating kthread failed\n");
3818 		err = PTR_ERR(ksm_thread);
3819 		goto out_free;
3820 	}
3821 
3822 #ifdef CONFIG_SYSFS
3823 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3824 	if (err) {
3825 		pr_err("ksm: register sysfs failed\n");
3826 		kthread_stop(ksm_thread);
3827 		goto out_free;
3828 	}
3829 #else
3830 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3831 
3832 #endif /* CONFIG_SYSFS */
3833 
3834 #ifdef CONFIG_MEMORY_HOTREMOVE
3835 	/* There is no significance to this priority 100 */
3836 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3837 #endif
3838 	return 0;
3839 
3840 out_free:
3841 	ksm_slab_free();
3842 out:
3843 	return err;
3844 }
3845 subsys_initcall(ksm_init);
3846