xref: /linux/mm/ksm.c (revision bd734481e172b4827af09c9ab06c51d2ab7201e6)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Memory merging support.
4   *
5   * This code enables dynamic sharing of identical pages found in different
6   * memory areas, even if they are not shared by fork()
7   *
8   * Copyright (C) 2008-2009 Red Hat, Inc.
9   * Authors:
10   *	Izik Eidus
11   *	Andrea Arcangeli
12   *	Chris Wright
13   *	Hugh Dickins
14   */
15  
16  #include <linux/errno.h>
17  #include <linux/mm.h>
18  #include <linux/mm_inline.h>
19  #include <linux/fs.h>
20  #include <linux/mman.h>
21  #include <linux/sched.h>
22  #include <linux/sched/mm.h>
23  #include <linux/sched/coredump.h>
24  #include <linux/rwsem.h>
25  #include <linux/pagemap.h>
26  #include <linux/rmap.h>
27  #include <linux/spinlock.h>
28  #include <linux/xxhash.h>
29  #include <linux/delay.h>
30  #include <linux/kthread.h>
31  #include <linux/wait.h>
32  #include <linux/slab.h>
33  #include <linux/rbtree.h>
34  #include <linux/memory.h>
35  #include <linux/mmu_notifier.h>
36  #include <linux/swap.h>
37  #include <linux/ksm.h>
38  #include <linux/hashtable.h>
39  #include <linux/freezer.h>
40  #include <linux/oom.h>
41  #include <linux/numa.h>
42  
43  #include <asm/tlbflush.h>
44  #include "internal.h"
45  
46  #ifdef CONFIG_NUMA
47  #define NUMA(x)		(x)
48  #define DO_NUMA(x)	do { (x); } while (0)
49  #else
50  #define NUMA(x)		(0)
51  #define DO_NUMA(x)	do { } while (0)
52  #endif
53  
54  /**
55   * DOC: Overview
56   *
57   * A few notes about the KSM scanning process,
58   * to make it easier to understand the data structures below:
59   *
60   * In order to reduce excessive scanning, KSM sorts the memory pages by their
61   * contents into a data structure that holds pointers to the pages' locations.
62   *
63   * Since the contents of the pages may change at any moment, KSM cannot just
64   * insert the pages into a normal sorted tree and expect it to find anything.
65   * Therefore KSM uses two data structures - the stable and the unstable tree.
66   *
67   * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68   * by their contents.  Because each such page is write-protected, searching on
69   * this tree is fully assured to be working (except when pages are unmapped),
70   * and therefore this tree is called the stable tree.
71   *
72   * The stable tree node includes information required for reverse
73   * mapping from a KSM page to virtual addresses that map this page.
74   *
75   * In order to avoid large latencies of the rmap walks on KSM pages,
76   * KSM maintains two types of nodes in the stable tree:
77   *
78   * * the regular nodes that keep the reverse mapping structures in a
79   *   linked list
80   * * the "chains" that link nodes ("dups") that represent the same
81   *   write protected memory content, but each "dup" corresponds to a
82   *   different KSM page copy of that content
83   *
84   * Internally, the regular nodes, "dups" and "chains" are represented
85   * using the same struct stable_node structure.
86   *
87   * In addition to the stable tree, KSM uses a second data structure called the
88   * unstable tree: this tree holds pointers to pages which have been found to
89   * be "unchanged for a period of time".  The unstable tree sorts these pages
90   * by their contents, but since they are not write-protected, KSM cannot rely
91   * upon the unstable tree to work correctly - the unstable tree is liable to
92   * be corrupted as its contents are modified, and so it is called unstable.
93   *
94   * KSM solves this problem by several techniques:
95   *
96   * 1) The unstable tree is flushed every time KSM completes scanning all
97   *    memory areas, and then the tree is rebuilt again from the beginning.
98   * 2) KSM will only insert into the unstable tree, pages whose hash value
99   *    has not changed since the previous scan of all memory areas.
100   * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101   *    colors of the nodes and not on their contents, assuring that even when
102   *    the tree gets "corrupted" it won't get out of balance, so scanning time
103   *    remains the same (also, searching and inserting nodes in an rbtree uses
104   *    the same algorithm, so we have no overhead when we flush and rebuild).
105   * 4) KSM never flushes the stable tree, which means that even if it were to
106   *    take 10 attempts to find a page in the unstable tree, once it is found,
107   *    it is secured in the stable tree.  (When we scan a new page, we first
108   *    compare it against the stable tree, and then against the unstable tree.)
109   *
110   * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111   * stable trees and multiple unstable trees: one of each for each NUMA node.
112   */
113  
114  /**
115   * struct mm_slot - ksm information per mm that is being scanned
116   * @link: link to the mm_slots hash list
117   * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118   * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119   * @mm: the mm that this information is valid for
120   */
121  struct mm_slot {
122  	struct hlist_node link;
123  	struct list_head mm_list;
124  	struct rmap_item *rmap_list;
125  	struct mm_struct *mm;
126  };
127  
128  /**
129   * struct ksm_scan - cursor for scanning
130   * @mm_slot: the current mm_slot we are scanning
131   * @address: the next address inside that to be scanned
132   * @rmap_list: link to the next rmap to be scanned in the rmap_list
133   * @seqnr: count of completed full scans (needed when removing unstable node)
134   *
135   * There is only the one ksm_scan instance of this cursor structure.
136   */
137  struct ksm_scan {
138  	struct mm_slot *mm_slot;
139  	unsigned long address;
140  	struct rmap_item **rmap_list;
141  	unsigned long seqnr;
142  };
143  
144  /**
145   * struct stable_node - node of the stable rbtree
146   * @node: rb node of this ksm page in the stable tree
147   * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148   * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149   * @list: linked into migrate_nodes, pending placement in the proper node tree
150   * @hlist: hlist head of rmap_items using this ksm page
151   * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152   * @chain_prune_time: time of the last full garbage collection
153   * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154   * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155   */
156  struct stable_node {
157  	union {
158  		struct rb_node node;	/* when node of stable tree */
159  		struct {		/* when listed for migration */
160  			struct list_head *head;
161  			struct {
162  				struct hlist_node hlist_dup;
163  				struct list_head list;
164  			};
165  		};
166  	};
167  	struct hlist_head hlist;
168  	union {
169  		unsigned long kpfn;
170  		unsigned long chain_prune_time;
171  	};
172  	/*
173  	 * STABLE_NODE_CHAIN can be any negative number in
174  	 * rmap_hlist_len negative range, but better not -1 to be able
175  	 * to reliably detect underflows.
176  	 */
177  #define STABLE_NODE_CHAIN -1024
178  	int rmap_hlist_len;
179  #ifdef CONFIG_NUMA
180  	int nid;
181  #endif
182  };
183  
184  /**
185   * struct rmap_item - reverse mapping item for virtual addresses
186   * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187   * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188   * @nid: NUMA node id of unstable tree in which linked (may not match page)
189   * @mm: the memory structure this rmap_item is pointing into
190   * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191   * @oldchecksum: previous checksum of the page at that virtual address
192   * @node: rb node of this rmap_item in the unstable tree
193   * @head: pointer to stable_node heading this list in the stable tree
194   * @hlist: link into hlist of rmap_items hanging off that stable_node
195   */
196  struct rmap_item {
197  	struct rmap_item *rmap_list;
198  	union {
199  		struct anon_vma *anon_vma;	/* when stable */
200  #ifdef CONFIG_NUMA
201  		int nid;		/* when node of unstable tree */
202  #endif
203  	};
204  	struct mm_struct *mm;
205  	unsigned long address;		/* + low bits used for flags below */
206  	unsigned int oldchecksum;	/* when unstable */
207  	union {
208  		struct rb_node node;	/* when node of unstable tree */
209  		struct {		/* when listed from stable tree */
210  			struct stable_node *head;
211  			struct hlist_node hlist;
212  		};
213  	};
214  };
215  
216  #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
217  #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
218  #define STABLE_FLAG	0x200	/* is listed from the stable tree */
219  
220  /* The stable and unstable tree heads */
221  static struct rb_root one_stable_tree[1] = { RB_ROOT };
222  static struct rb_root one_unstable_tree[1] = { RB_ROOT };
223  static struct rb_root *root_stable_tree = one_stable_tree;
224  static struct rb_root *root_unstable_tree = one_unstable_tree;
225  
226  /* Recently migrated nodes of stable tree, pending proper placement */
227  static LIST_HEAD(migrate_nodes);
228  #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
229  
230  #define MM_SLOTS_HASH_BITS 10
231  static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
232  
233  static struct mm_slot ksm_mm_head = {
234  	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
235  };
236  static struct ksm_scan ksm_scan = {
237  	.mm_slot = &ksm_mm_head,
238  };
239  
240  static struct kmem_cache *rmap_item_cache;
241  static struct kmem_cache *stable_node_cache;
242  static struct kmem_cache *mm_slot_cache;
243  
244  /* The number of nodes in the stable tree */
245  static unsigned long ksm_pages_shared;
246  
247  /* The number of page slots additionally sharing those nodes */
248  static unsigned long ksm_pages_sharing;
249  
250  /* The number of nodes in the unstable tree */
251  static unsigned long ksm_pages_unshared;
252  
253  /* The number of rmap_items in use: to calculate pages_volatile */
254  static unsigned long ksm_rmap_items;
255  
256  /* The number of stable_node chains */
257  static unsigned long ksm_stable_node_chains;
258  
259  /* The number of stable_node dups linked to the stable_node chains */
260  static unsigned long ksm_stable_node_dups;
261  
262  /* Delay in pruning stale stable_node_dups in the stable_node_chains */
263  static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
264  
265  /* Maximum number of page slots sharing a stable node */
266  static int ksm_max_page_sharing = 256;
267  
268  /* Number of pages ksmd should scan in one batch */
269  static unsigned int ksm_thread_pages_to_scan = 100;
270  
271  /* Milliseconds ksmd should sleep between batches */
272  static unsigned int ksm_thread_sleep_millisecs = 20;
273  
274  /* Checksum of an empty (zeroed) page */
275  static unsigned int zero_checksum __read_mostly;
276  
277  /* Whether to merge empty (zeroed) pages with actual zero pages */
278  static bool ksm_use_zero_pages __read_mostly;
279  
280  #ifdef CONFIG_NUMA
281  /* Zeroed when merging across nodes is not allowed */
282  static unsigned int ksm_merge_across_nodes = 1;
283  static int ksm_nr_node_ids = 1;
284  #else
285  #define ksm_merge_across_nodes	1U
286  #define ksm_nr_node_ids		1
287  #endif
288  
289  #define KSM_RUN_STOP	0
290  #define KSM_RUN_MERGE	1
291  #define KSM_RUN_UNMERGE	2
292  #define KSM_RUN_OFFLINE	4
293  static unsigned long ksm_run = KSM_RUN_STOP;
294  static void wait_while_offlining(void);
295  
296  static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
297  static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
298  static DEFINE_MUTEX(ksm_thread_mutex);
299  static DEFINE_SPINLOCK(ksm_mmlist_lock);
300  
301  #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
302  		sizeof(struct __struct), __alignof__(struct __struct),\
303  		(__flags), NULL)
304  
305  static int __init ksm_slab_init(void)
306  {
307  	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
308  	if (!rmap_item_cache)
309  		goto out;
310  
311  	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
312  	if (!stable_node_cache)
313  		goto out_free1;
314  
315  	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
316  	if (!mm_slot_cache)
317  		goto out_free2;
318  
319  	return 0;
320  
321  out_free2:
322  	kmem_cache_destroy(stable_node_cache);
323  out_free1:
324  	kmem_cache_destroy(rmap_item_cache);
325  out:
326  	return -ENOMEM;
327  }
328  
329  static void __init ksm_slab_free(void)
330  {
331  	kmem_cache_destroy(mm_slot_cache);
332  	kmem_cache_destroy(stable_node_cache);
333  	kmem_cache_destroy(rmap_item_cache);
334  	mm_slot_cache = NULL;
335  }
336  
337  static __always_inline bool is_stable_node_chain(struct stable_node *chain)
338  {
339  	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
340  }
341  
342  static __always_inline bool is_stable_node_dup(struct stable_node *dup)
343  {
344  	return dup->head == STABLE_NODE_DUP_HEAD;
345  }
346  
347  static inline void stable_node_chain_add_dup(struct stable_node *dup,
348  					     struct stable_node *chain)
349  {
350  	VM_BUG_ON(is_stable_node_dup(dup));
351  	dup->head = STABLE_NODE_DUP_HEAD;
352  	VM_BUG_ON(!is_stable_node_chain(chain));
353  	hlist_add_head(&dup->hlist_dup, &chain->hlist);
354  	ksm_stable_node_dups++;
355  }
356  
357  static inline void __stable_node_dup_del(struct stable_node *dup)
358  {
359  	VM_BUG_ON(!is_stable_node_dup(dup));
360  	hlist_del(&dup->hlist_dup);
361  	ksm_stable_node_dups--;
362  }
363  
364  static inline void stable_node_dup_del(struct stable_node *dup)
365  {
366  	VM_BUG_ON(is_stable_node_chain(dup));
367  	if (is_stable_node_dup(dup))
368  		__stable_node_dup_del(dup);
369  	else
370  		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
371  #ifdef CONFIG_DEBUG_VM
372  	dup->head = NULL;
373  #endif
374  }
375  
376  static inline struct rmap_item *alloc_rmap_item(void)
377  {
378  	struct rmap_item *rmap_item;
379  
380  	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
381  						__GFP_NORETRY | __GFP_NOWARN);
382  	if (rmap_item)
383  		ksm_rmap_items++;
384  	return rmap_item;
385  }
386  
387  static inline void free_rmap_item(struct rmap_item *rmap_item)
388  {
389  	ksm_rmap_items--;
390  	rmap_item->mm = NULL;	/* debug safety */
391  	kmem_cache_free(rmap_item_cache, rmap_item);
392  }
393  
394  static inline struct stable_node *alloc_stable_node(void)
395  {
396  	/*
397  	 * The allocation can take too long with GFP_KERNEL when memory is under
398  	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
399  	 * grants access to memory reserves, helping to avoid this problem.
400  	 */
401  	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
402  }
403  
404  static inline void free_stable_node(struct stable_node *stable_node)
405  {
406  	VM_BUG_ON(stable_node->rmap_hlist_len &&
407  		  !is_stable_node_chain(stable_node));
408  	kmem_cache_free(stable_node_cache, stable_node);
409  }
410  
411  static inline struct mm_slot *alloc_mm_slot(void)
412  {
413  	if (!mm_slot_cache)	/* initialization failed */
414  		return NULL;
415  	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
416  }
417  
418  static inline void free_mm_slot(struct mm_slot *mm_slot)
419  {
420  	kmem_cache_free(mm_slot_cache, mm_slot);
421  }
422  
423  static struct mm_slot *get_mm_slot(struct mm_struct *mm)
424  {
425  	struct mm_slot *slot;
426  
427  	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
428  		if (slot->mm == mm)
429  			return slot;
430  
431  	return NULL;
432  }
433  
434  static void insert_to_mm_slots_hash(struct mm_struct *mm,
435  				    struct mm_slot *mm_slot)
436  {
437  	mm_slot->mm = mm;
438  	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
439  }
440  
441  /*
442   * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
443   * page tables after it has passed through ksm_exit() - which, if necessary,
444   * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
445   * a special flag: they can just back out as soon as mm_users goes to zero.
446   * ksm_test_exit() is used throughout to make this test for exit: in some
447   * places for correctness, in some places just to avoid unnecessary work.
448   */
449  static inline bool ksm_test_exit(struct mm_struct *mm)
450  {
451  	return atomic_read(&mm->mm_users) == 0;
452  }
453  
454  /*
455   * We use break_ksm to break COW on a ksm page: it's a stripped down
456   *
457   *	if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
458   *		put_page(page);
459   *
460   * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
461   * in case the application has unmapped and remapped mm,addr meanwhile.
462   * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
463   * mmap of /dev/mem, where we would not want to touch it.
464   *
465   * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
466   * of the process that owns 'vma'.  We also do not want to enforce
467   * protection keys here anyway.
468   */
469  static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
470  {
471  	struct page *page;
472  	vm_fault_t ret = 0;
473  
474  	do {
475  		cond_resched();
476  		page = follow_page(vma, addr,
477  				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
478  		if (IS_ERR_OR_NULL(page))
479  			break;
480  		if (PageKsm(page))
481  			ret = handle_mm_fault(vma, addr,
482  					      FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
483  					      NULL);
484  		else
485  			ret = VM_FAULT_WRITE;
486  		put_page(page);
487  	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
488  	/*
489  	 * We must loop because handle_mm_fault() may back out if there's
490  	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
491  	 *
492  	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493  	 * COW has been broken, even if the vma does not permit VM_WRITE;
494  	 * but note that a concurrent fault might break PageKsm for us.
495  	 *
496  	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497  	 * backing file, which also invalidates anonymous pages: that's
498  	 * okay, that truncation will have unmapped the PageKsm for us.
499  	 *
500  	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501  	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502  	 * current task has TIF_MEMDIE set, and will be OOM killed on return
503  	 * to user; and ksmd, having no mm, would never be chosen for that.
504  	 *
505  	 * But if the mm is in a limited mem_cgroup, then the fault may fail
506  	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507  	 * even ksmd can fail in this way - though it's usually breaking ksm
508  	 * just to undo a merge it made a moment before, so unlikely to oom.
509  	 *
510  	 * That's a pity: we might therefore have more kernel pages allocated
511  	 * than we're counting as nodes in the stable tree; but ksm_do_scan
512  	 * will retry to break_cow on each pass, so should recover the page
513  	 * in due course.  The important thing is to not let VM_MERGEABLE
514  	 * be cleared while any such pages might remain in the area.
515  	 */
516  	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
517  }
518  
519  static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520  		unsigned long addr)
521  {
522  	struct vm_area_struct *vma;
523  	if (ksm_test_exit(mm))
524  		return NULL;
525  	vma = vma_lookup(mm, addr);
526  	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
527  		return NULL;
528  	return vma;
529  }
530  
531  static void break_cow(struct rmap_item *rmap_item)
532  {
533  	struct mm_struct *mm = rmap_item->mm;
534  	unsigned long addr = rmap_item->address;
535  	struct vm_area_struct *vma;
536  
537  	/*
538  	 * It is not an accident that whenever we want to break COW
539  	 * to undo, we also need to drop a reference to the anon_vma.
540  	 */
541  	put_anon_vma(rmap_item->anon_vma);
542  
543  	mmap_read_lock(mm);
544  	vma = find_mergeable_vma(mm, addr);
545  	if (vma)
546  		break_ksm(vma, addr);
547  	mmap_read_unlock(mm);
548  }
549  
550  static struct page *get_mergeable_page(struct rmap_item *rmap_item)
551  {
552  	struct mm_struct *mm = rmap_item->mm;
553  	unsigned long addr = rmap_item->address;
554  	struct vm_area_struct *vma;
555  	struct page *page;
556  
557  	mmap_read_lock(mm);
558  	vma = find_mergeable_vma(mm, addr);
559  	if (!vma)
560  		goto out;
561  
562  	page = follow_page(vma, addr, FOLL_GET);
563  	if (IS_ERR_OR_NULL(page))
564  		goto out;
565  	if (PageAnon(page)) {
566  		flush_anon_page(vma, page, addr);
567  		flush_dcache_page(page);
568  	} else {
569  		put_page(page);
570  out:
571  		page = NULL;
572  	}
573  	mmap_read_unlock(mm);
574  	return page;
575  }
576  
577  /*
578   * This helper is used for getting right index into array of tree roots.
579   * When merge_across_nodes knob is set to 1, there are only two rb-trees for
580   * stable and unstable pages from all nodes with roots in index 0. Otherwise,
581   * every node has its own stable and unstable tree.
582   */
583  static inline int get_kpfn_nid(unsigned long kpfn)
584  {
585  	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
586  }
587  
588  static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
589  						   struct rb_root *root)
590  {
591  	struct stable_node *chain = alloc_stable_node();
592  	VM_BUG_ON(is_stable_node_chain(dup));
593  	if (likely(chain)) {
594  		INIT_HLIST_HEAD(&chain->hlist);
595  		chain->chain_prune_time = jiffies;
596  		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
597  #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
598  		chain->nid = NUMA_NO_NODE; /* debug */
599  #endif
600  		ksm_stable_node_chains++;
601  
602  		/*
603  		 * Put the stable node chain in the first dimension of
604  		 * the stable tree and at the same time remove the old
605  		 * stable node.
606  		 */
607  		rb_replace_node(&dup->node, &chain->node, root);
608  
609  		/*
610  		 * Move the old stable node to the second dimension
611  		 * queued in the hlist_dup. The invariant is that all
612  		 * dup stable_nodes in the chain->hlist point to pages
613  		 * that are write protected and have the exact same
614  		 * content.
615  		 */
616  		stable_node_chain_add_dup(dup, chain);
617  	}
618  	return chain;
619  }
620  
621  static inline void free_stable_node_chain(struct stable_node *chain,
622  					  struct rb_root *root)
623  {
624  	rb_erase(&chain->node, root);
625  	free_stable_node(chain);
626  	ksm_stable_node_chains--;
627  }
628  
629  static void remove_node_from_stable_tree(struct stable_node *stable_node)
630  {
631  	struct rmap_item *rmap_item;
632  
633  	/* check it's not STABLE_NODE_CHAIN or negative */
634  	BUG_ON(stable_node->rmap_hlist_len < 0);
635  
636  	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
637  		if (rmap_item->hlist.next)
638  			ksm_pages_sharing--;
639  		else
640  			ksm_pages_shared--;
641  
642  		rmap_item->mm->ksm_merging_pages--;
643  
644  		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645  		stable_node->rmap_hlist_len--;
646  		put_anon_vma(rmap_item->anon_vma);
647  		rmap_item->address &= PAGE_MASK;
648  		cond_resched();
649  	}
650  
651  	/*
652  	 * We need the second aligned pointer of the migrate_nodes
653  	 * list_head to stay clear from the rb_parent_color union
654  	 * (aligned and different than any node) and also different
655  	 * from &migrate_nodes. This will verify that future list.h changes
656  	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
657  	 */
658  	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
659  	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
660  
661  	if (stable_node->head == &migrate_nodes)
662  		list_del(&stable_node->list);
663  	else
664  		stable_node_dup_del(stable_node);
665  	free_stable_node(stable_node);
666  }
667  
668  enum get_ksm_page_flags {
669  	GET_KSM_PAGE_NOLOCK,
670  	GET_KSM_PAGE_LOCK,
671  	GET_KSM_PAGE_TRYLOCK
672  };
673  
674  /*
675   * get_ksm_page: checks if the page indicated by the stable node
676   * is still its ksm page, despite having held no reference to it.
677   * In which case we can trust the content of the page, and it
678   * returns the gotten page; but if the page has now been zapped,
679   * remove the stale node from the stable tree and return NULL.
680   * But beware, the stable node's page might be being migrated.
681   *
682   * You would expect the stable_node to hold a reference to the ksm page.
683   * But if it increments the page's count, swapping out has to wait for
684   * ksmd to come around again before it can free the page, which may take
685   * seconds or even minutes: much too unresponsive.  So instead we use a
686   * "keyhole reference": access to the ksm page from the stable node peeps
687   * out through its keyhole to see if that page still holds the right key,
688   * pointing back to this stable node.  This relies on freeing a PageAnon
689   * page to reset its page->mapping to NULL, and relies on no other use of
690   * a page to put something that might look like our key in page->mapping.
691   * is on its way to being freed; but it is an anomaly to bear in mind.
692   */
693  static struct page *get_ksm_page(struct stable_node *stable_node,
694  				 enum get_ksm_page_flags flags)
695  {
696  	struct page *page;
697  	void *expected_mapping;
698  	unsigned long kpfn;
699  
700  	expected_mapping = (void *)((unsigned long)stable_node |
701  					PAGE_MAPPING_KSM);
702  again:
703  	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
704  	page = pfn_to_page(kpfn);
705  	if (READ_ONCE(page->mapping) != expected_mapping)
706  		goto stale;
707  
708  	/*
709  	 * We cannot do anything with the page while its refcount is 0.
710  	 * Usually 0 means free, or tail of a higher-order page: in which
711  	 * case this node is no longer referenced, and should be freed;
712  	 * however, it might mean that the page is under page_ref_freeze().
713  	 * The __remove_mapping() case is easy, again the node is now stale;
714  	 * the same is in reuse_ksm_page() case; but if page is swapcache
715  	 * in migrate_page_move_mapping(), it might still be our page,
716  	 * in which case it's essential to keep the node.
717  	 */
718  	while (!get_page_unless_zero(page)) {
719  		/*
720  		 * Another check for page->mapping != expected_mapping would
721  		 * work here too.  We have chosen the !PageSwapCache test to
722  		 * optimize the common case, when the page is or is about to
723  		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
724  		 * in the ref_freeze section of __remove_mapping(); but Anon
725  		 * page->mapping reset to NULL later, in free_pages_prepare().
726  		 */
727  		if (!PageSwapCache(page))
728  			goto stale;
729  		cpu_relax();
730  	}
731  
732  	if (READ_ONCE(page->mapping) != expected_mapping) {
733  		put_page(page);
734  		goto stale;
735  	}
736  
737  	if (flags == GET_KSM_PAGE_TRYLOCK) {
738  		if (!trylock_page(page)) {
739  			put_page(page);
740  			return ERR_PTR(-EBUSY);
741  		}
742  	} else if (flags == GET_KSM_PAGE_LOCK)
743  		lock_page(page);
744  
745  	if (flags != GET_KSM_PAGE_NOLOCK) {
746  		if (READ_ONCE(page->mapping) != expected_mapping) {
747  			unlock_page(page);
748  			put_page(page);
749  			goto stale;
750  		}
751  	}
752  	return page;
753  
754  stale:
755  	/*
756  	 * We come here from above when page->mapping or !PageSwapCache
757  	 * suggests that the node is stale; but it might be under migration.
758  	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
759  	 * before checking whether node->kpfn has been changed.
760  	 */
761  	smp_rmb();
762  	if (READ_ONCE(stable_node->kpfn) != kpfn)
763  		goto again;
764  	remove_node_from_stable_tree(stable_node);
765  	return NULL;
766  }
767  
768  /*
769   * Removing rmap_item from stable or unstable tree.
770   * This function will clean the information from the stable/unstable tree.
771   */
772  static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
773  {
774  	if (rmap_item->address & STABLE_FLAG) {
775  		struct stable_node *stable_node;
776  		struct page *page;
777  
778  		stable_node = rmap_item->head;
779  		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
780  		if (!page)
781  			goto out;
782  
783  		hlist_del(&rmap_item->hlist);
784  		unlock_page(page);
785  		put_page(page);
786  
787  		if (!hlist_empty(&stable_node->hlist))
788  			ksm_pages_sharing--;
789  		else
790  			ksm_pages_shared--;
791  
792  		rmap_item->mm->ksm_merging_pages--;
793  
794  		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
795  		stable_node->rmap_hlist_len--;
796  
797  		put_anon_vma(rmap_item->anon_vma);
798  		rmap_item->head = NULL;
799  		rmap_item->address &= PAGE_MASK;
800  
801  	} else if (rmap_item->address & UNSTABLE_FLAG) {
802  		unsigned char age;
803  		/*
804  		 * Usually ksmd can and must skip the rb_erase, because
805  		 * root_unstable_tree was already reset to RB_ROOT.
806  		 * But be careful when an mm is exiting: do the rb_erase
807  		 * if this rmap_item was inserted by this scan, rather
808  		 * than left over from before.
809  		 */
810  		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
811  		BUG_ON(age > 1);
812  		if (!age)
813  			rb_erase(&rmap_item->node,
814  				 root_unstable_tree + NUMA(rmap_item->nid));
815  		ksm_pages_unshared--;
816  		rmap_item->address &= PAGE_MASK;
817  	}
818  out:
819  	cond_resched();		/* we're called from many long loops */
820  }
821  
822  static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
823  {
824  	while (*rmap_list) {
825  		struct rmap_item *rmap_item = *rmap_list;
826  		*rmap_list = rmap_item->rmap_list;
827  		remove_rmap_item_from_tree(rmap_item);
828  		free_rmap_item(rmap_item);
829  	}
830  }
831  
832  /*
833   * Though it's very tempting to unmerge rmap_items from stable tree rather
834   * than check every pte of a given vma, the locking doesn't quite work for
835   * that - an rmap_item is assigned to the stable tree after inserting ksm
836   * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
837   * rmap_items from parent to child at fork time (so as not to waste time
838   * if exit comes before the next scan reaches it).
839   *
840   * Similarly, although we'd like to remove rmap_items (so updating counts
841   * and freeing memory) when unmerging an area, it's easier to leave that
842   * to the next pass of ksmd - consider, for example, how ksmd might be
843   * in cmp_and_merge_page on one of the rmap_items we would be removing.
844   */
845  static int unmerge_ksm_pages(struct vm_area_struct *vma,
846  			     unsigned long start, unsigned long end)
847  {
848  	unsigned long addr;
849  	int err = 0;
850  
851  	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
852  		if (ksm_test_exit(vma->vm_mm))
853  			break;
854  		if (signal_pending(current))
855  			err = -ERESTARTSYS;
856  		else
857  			err = break_ksm(vma, addr);
858  	}
859  	return err;
860  }
861  
862  static inline struct stable_node *folio_stable_node(struct folio *folio)
863  {
864  	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
865  }
866  
867  static inline struct stable_node *page_stable_node(struct page *page)
868  {
869  	return folio_stable_node(page_folio(page));
870  }
871  
872  static inline void set_page_stable_node(struct page *page,
873  					struct stable_node *stable_node)
874  {
875  	VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
876  	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
877  }
878  
879  #ifdef CONFIG_SYSFS
880  /*
881   * Only called through the sysfs control interface:
882   */
883  static int remove_stable_node(struct stable_node *stable_node)
884  {
885  	struct page *page;
886  	int err;
887  
888  	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
889  	if (!page) {
890  		/*
891  		 * get_ksm_page did remove_node_from_stable_tree itself.
892  		 */
893  		return 0;
894  	}
895  
896  	/*
897  	 * Page could be still mapped if this races with __mmput() running in
898  	 * between ksm_exit() and exit_mmap(). Just refuse to let
899  	 * merge_across_nodes/max_page_sharing be switched.
900  	 */
901  	err = -EBUSY;
902  	if (!page_mapped(page)) {
903  		/*
904  		 * The stable node did not yet appear stale to get_ksm_page(),
905  		 * since that allows for an unmapped ksm page to be recognized
906  		 * right up until it is freed; but the node is safe to remove.
907  		 * This page might be in a pagevec waiting to be freed,
908  		 * or it might be PageSwapCache (perhaps under writeback),
909  		 * or it might have been removed from swapcache a moment ago.
910  		 */
911  		set_page_stable_node(page, NULL);
912  		remove_node_from_stable_tree(stable_node);
913  		err = 0;
914  	}
915  
916  	unlock_page(page);
917  	put_page(page);
918  	return err;
919  }
920  
921  static int remove_stable_node_chain(struct stable_node *stable_node,
922  				    struct rb_root *root)
923  {
924  	struct stable_node *dup;
925  	struct hlist_node *hlist_safe;
926  
927  	if (!is_stable_node_chain(stable_node)) {
928  		VM_BUG_ON(is_stable_node_dup(stable_node));
929  		if (remove_stable_node(stable_node))
930  			return true;
931  		else
932  			return false;
933  	}
934  
935  	hlist_for_each_entry_safe(dup, hlist_safe,
936  				  &stable_node->hlist, hlist_dup) {
937  		VM_BUG_ON(!is_stable_node_dup(dup));
938  		if (remove_stable_node(dup))
939  			return true;
940  	}
941  	BUG_ON(!hlist_empty(&stable_node->hlist));
942  	free_stable_node_chain(stable_node, root);
943  	return false;
944  }
945  
946  static int remove_all_stable_nodes(void)
947  {
948  	struct stable_node *stable_node, *next;
949  	int nid;
950  	int err = 0;
951  
952  	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
953  		while (root_stable_tree[nid].rb_node) {
954  			stable_node = rb_entry(root_stable_tree[nid].rb_node,
955  						struct stable_node, node);
956  			if (remove_stable_node_chain(stable_node,
957  						     root_stable_tree + nid)) {
958  				err = -EBUSY;
959  				break;	/* proceed to next nid */
960  			}
961  			cond_resched();
962  		}
963  	}
964  	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
965  		if (remove_stable_node(stable_node))
966  			err = -EBUSY;
967  		cond_resched();
968  	}
969  	return err;
970  }
971  
972  static int unmerge_and_remove_all_rmap_items(void)
973  {
974  	struct mm_slot *mm_slot;
975  	struct mm_struct *mm;
976  	struct vm_area_struct *vma;
977  	int err = 0;
978  
979  	spin_lock(&ksm_mmlist_lock);
980  	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
981  						struct mm_slot, mm_list);
982  	spin_unlock(&ksm_mmlist_lock);
983  
984  	for (mm_slot = ksm_scan.mm_slot;
985  			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
986  		mm = mm_slot->mm;
987  		mmap_read_lock(mm);
988  		for (vma = mm->mmap; vma; vma = vma->vm_next) {
989  			if (ksm_test_exit(mm))
990  				break;
991  			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
992  				continue;
993  			err = unmerge_ksm_pages(vma,
994  						vma->vm_start, vma->vm_end);
995  			if (err)
996  				goto error;
997  		}
998  
999  		remove_trailing_rmap_items(&mm_slot->rmap_list);
1000  		mmap_read_unlock(mm);
1001  
1002  		spin_lock(&ksm_mmlist_lock);
1003  		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
1004  						struct mm_slot, mm_list);
1005  		if (ksm_test_exit(mm)) {
1006  			hash_del(&mm_slot->link);
1007  			list_del(&mm_slot->mm_list);
1008  			spin_unlock(&ksm_mmlist_lock);
1009  
1010  			free_mm_slot(mm_slot);
1011  			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1012  			mmdrop(mm);
1013  		} else
1014  			spin_unlock(&ksm_mmlist_lock);
1015  	}
1016  
1017  	/* Clean up stable nodes, but don't worry if some are still busy */
1018  	remove_all_stable_nodes();
1019  	ksm_scan.seqnr = 0;
1020  	return 0;
1021  
1022  error:
1023  	mmap_read_unlock(mm);
1024  	spin_lock(&ksm_mmlist_lock);
1025  	ksm_scan.mm_slot = &ksm_mm_head;
1026  	spin_unlock(&ksm_mmlist_lock);
1027  	return err;
1028  }
1029  #endif /* CONFIG_SYSFS */
1030  
1031  static u32 calc_checksum(struct page *page)
1032  {
1033  	u32 checksum;
1034  	void *addr = kmap_atomic(page);
1035  	checksum = xxhash(addr, PAGE_SIZE, 0);
1036  	kunmap_atomic(addr);
1037  	return checksum;
1038  }
1039  
1040  static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1041  			      pte_t *orig_pte)
1042  {
1043  	struct mm_struct *mm = vma->vm_mm;
1044  	DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1045  	int swapped;
1046  	int err = -EFAULT;
1047  	struct mmu_notifier_range range;
1048  	bool anon_exclusive;
1049  
1050  	pvmw.address = page_address_in_vma(page, vma);
1051  	if (pvmw.address == -EFAULT)
1052  		goto out;
1053  
1054  	BUG_ON(PageTransCompound(page));
1055  
1056  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1057  				pvmw.address,
1058  				pvmw.address + PAGE_SIZE);
1059  	mmu_notifier_invalidate_range_start(&range);
1060  
1061  	if (!page_vma_mapped_walk(&pvmw))
1062  		goto out_mn;
1063  	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1064  		goto out_unlock;
1065  
1066  	anon_exclusive = PageAnonExclusive(page);
1067  	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1068  	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1069  	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1070  		pte_t entry;
1071  
1072  		swapped = PageSwapCache(page);
1073  		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1074  		/*
1075  		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1076  		 * take any lock, therefore the check that we are going to make
1077  		 * with the pagecount against the mapcount is racy and
1078  		 * O_DIRECT can happen right after the check.
1079  		 * So we clear the pte and flush the tlb before the check
1080  		 * this assure us that no O_DIRECT can happen after the check
1081  		 * or in the middle of the check.
1082  		 *
1083  		 * No need to notify as we are downgrading page table to read
1084  		 * only not changing it to point to a new page.
1085  		 *
1086  		 * See Documentation/vm/mmu_notifier.rst
1087  		 */
1088  		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1089  		/*
1090  		 * Check that no O_DIRECT or similar I/O is in progress on the
1091  		 * page
1092  		 */
1093  		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1094  			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1095  			goto out_unlock;
1096  		}
1097  
1098  		if (anon_exclusive && page_try_share_anon_rmap(page)) {
1099  			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1100  			goto out_unlock;
1101  		}
1102  
1103  		if (pte_dirty(entry))
1104  			set_page_dirty(page);
1105  
1106  		if (pte_protnone(entry))
1107  			entry = pte_mkclean(pte_clear_savedwrite(entry));
1108  		else
1109  			entry = pte_mkclean(pte_wrprotect(entry));
1110  		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1111  	}
1112  	*orig_pte = *pvmw.pte;
1113  	err = 0;
1114  
1115  out_unlock:
1116  	page_vma_mapped_walk_done(&pvmw);
1117  out_mn:
1118  	mmu_notifier_invalidate_range_end(&range);
1119  out:
1120  	return err;
1121  }
1122  
1123  /**
1124   * replace_page - replace page in vma by new ksm page
1125   * @vma:      vma that holds the pte pointing to page
1126   * @page:     the page we are replacing by kpage
1127   * @kpage:    the ksm page we replace page by
1128   * @orig_pte: the original value of the pte
1129   *
1130   * Returns 0 on success, -EFAULT on failure.
1131   */
1132  static int replace_page(struct vm_area_struct *vma, struct page *page,
1133  			struct page *kpage, pte_t orig_pte)
1134  {
1135  	struct mm_struct *mm = vma->vm_mm;
1136  	pmd_t *pmd;
1137  	pte_t *ptep;
1138  	pte_t newpte;
1139  	spinlock_t *ptl;
1140  	unsigned long addr;
1141  	int err = -EFAULT;
1142  	struct mmu_notifier_range range;
1143  
1144  	addr = page_address_in_vma(page, vma);
1145  	if (addr == -EFAULT)
1146  		goto out;
1147  
1148  	pmd = mm_find_pmd(mm, addr);
1149  	if (!pmd)
1150  		goto out;
1151  
1152  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1153  				addr + PAGE_SIZE);
1154  	mmu_notifier_invalidate_range_start(&range);
1155  
1156  	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1157  	if (!pte_same(*ptep, orig_pte)) {
1158  		pte_unmap_unlock(ptep, ptl);
1159  		goto out_mn;
1160  	}
1161  	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1162  	VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1163  
1164  	/*
1165  	 * No need to check ksm_use_zero_pages here: we can only have a
1166  	 * zero_page here if ksm_use_zero_pages was enabled already.
1167  	 */
1168  	if (!is_zero_pfn(page_to_pfn(kpage))) {
1169  		get_page(kpage);
1170  		page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1171  		newpte = mk_pte(kpage, vma->vm_page_prot);
1172  	} else {
1173  		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1174  					       vma->vm_page_prot));
1175  		/*
1176  		 * We're replacing an anonymous page with a zero page, which is
1177  		 * not anonymous. We need to do proper accounting otherwise we
1178  		 * will get wrong values in /proc, and a BUG message in dmesg
1179  		 * when tearing down the mm.
1180  		 */
1181  		dec_mm_counter(mm, MM_ANONPAGES);
1182  	}
1183  
1184  	flush_cache_page(vma, addr, pte_pfn(*ptep));
1185  	/*
1186  	 * No need to notify as we are replacing a read only page with another
1187  	 * read only page with the same content.
1188  	 *
1189  	 * See Documentation/vm/mmu_notifier.rst
1190  	 */
1191  	ptep_clear_flush(vma, addr, ptep);
1192  	set_pte_at_notify(mm, addr, ptep, newpte);
1193  
1194  	page_remove_rmap(page, vma, false);
1195  	if (!page_mapped(page))
1196  		try_to_free_swap(page);
1197  	put_page(page);
1198  
1199  	pte_unmap_unlock(ptep, ptl);
1200  	err = 0;
1201  out_mn:
1202  	mmu_notifier_invalidate_range_end(&range);
1203  out:
1204  	return err;
1205  }
1206  
1207  /*
1208   * try_to_merge_one_page - take two pages and merge them into one
1209   * @vma: the vma that holds the pte pointing to page
1210   * @page: the PageAnon page that we want to replace with kpage
1211   * @kpage: the PageKsm page that we want to map instead of page,
1212   *         or NULL the first time when we want to use page as kpage.
1213   *
1214   * This function returns 0 if the pages were merged, -EFAULT otherwise.
1215   */
1216  static int try_to_merge_one_page(struct vm_area_struct *vma,
1217  				 struct page *page, struct page *kpage)
1218  {
1219  	pte_t orig_pte = __pte(0);
1220  	int err = -EFAULT;
1221  
1222  	if (page == kpage)			/* ksm page forked */
1223  		return 0;
1224  
1225  	if (!PageAnon(page))
1226  		goto out;
1227  
1228  	/*
1229  	 * We need the page lock to read a stable PageSwapCache in
1230  	 * write_protect_page().  We use trylock_page() instead of
1231  	 * lock_page() because we don't want to wait here - we
1232  	 * prefer to continue scanning and merging different pages,
1233  	 * then come back to this page when it is unlocked.
1234  	 */
1235  	if (!trylock_page(page))
1236  		goto out;
1237  
1238  	if (PageTransCompound(page)) {
1239  		if (split_huge_page(page))
1240  			goto out_unlock;
1241  	}
1242  
1243  	/*
1244  	 * If this anonymous page is mapped only here, its pte may need
1245  	 * to be write-protected.  If it's mapped elsewhere, all of its
1246  	 * ptes are necessarily already write-protected.  But in either
1247  	 * case, we need to lock and check page_count is not raised.
1248  	 */
1249  	if (write_protect_page(vma, page, &orig_pte) == 0) {
1250  		if (!kpage) {
1251  			/*
1252  			 * While we hold page lock, upgrade page from
1253  			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1254  			 * stable_tree_insert() will update stable_node.
1255  			 */
1256  			set_page_stable_node(page, NULL);
1257  			mark_page_accessed(page);
1258  			/*
1259  			 * Page reclaim just frees a clean page with no dirty
1260  			 * ptes: make sure that the ksm page would be swapped.
1261  			 */
1262  			if (!PageDirty(page))
1263  				SetPageDirty(page);
1264  			err = 0;
1265  		} else if (pages_identical(page, kpage))
1266  			err = replace_page(vma, page, kpage, orig_pte);
1267  	}
1268  
1269  out_unlock:
1270  	unlock_page(page);
1271  out:
1272  	return err;
1273  }
1274  
1275  /*
1276   * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1277   * but no new kernel page is allocated: kpage must already be a ksm page.
1278   *
1279   * This function returns 0 if the pages were merged, -EFAULT otherwise.
1280   */
1281  static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1282  				      struct page *page, struct page *kpage)
1283  {
1284  	struct mm_struct *mm = rmap_item->mm;
1285  	struct vm_area_struct *vma;
1286  	int err = -EFAULT;
1287  
1288  	mmap_read_lock(mm);
1289  	vma = find_mergeable_vma(mm, rmap_item->address);
1290  	if (!vma)
1291  		goto out;
1292  
1293  	err = try_to_merge_one_page(vma, page, kpage);
1294  	if (err)
1295  		goto out;
1296  
1297  	/* Unstable nid is in union with stable anon_vma: remove first */
1298  	remove_rmap_item_from_tree(rmap_item);
1299  
1300  	/* Must get reference to anon_vma while still holding mmap_lock */
1301  	rmap_item->anon_vma = vma->anon_vma;
1302  	get_anon_vma(vma->anon_vma);
1303  out:
1304  	mmap_read_unlock(mm);
1305  	return err;
1306  }
1307  
1308  /*
1309   * try_to_merge_two_pages - take two identical pages and prepare them
1310   * to be merged into one page.
1311   *
1312   * This function returns the kpage if we successfully merged two identical
1313   * pages into one ksm page, NULL otherwise.
1314   *
1315   * Note that this function upgrades page to ksm page: if one of the pages
1316   * is already a ksm page, try_to_merge_with_ksm_page should be used.
1317   */
1318  static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1319  					   struct page *page,
1320  					   struct rmap_item *tree_rmap_item,
1321  					   struct page *tree_page)
1322  {
1323  	int err;
1324  
1325  	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1326  	if (!err) {
1327  		err = try_to_merge_with_ksm_page(tree_rmap_item,
1328  							tree_page, page);
1329  		/*
1330  		 * If that fails, we have a ksm page with only one pte
1331  		 * pointing to it: so break it.
1332  		 */
1333  		if (err)
1334  			break_cow(rmap_item);
1335  	}
1336  	return err ? NULL : page;
1337  }
1338  
1339  static __always_inline
1340  bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1341  {
1342  	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1343  	/*
1344  	 * Check that at least one mapping still exists, otherwise
1345  	 * there's no much point to merge and share with this
1346  	 * stable_node, as the underlying tree_page of the other
1347  	 * sharer is going to be freed soon.
1348  	 */
1349  	return stable_node->rmap_hlist_len &&
1350  		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1351  }
1352  
1353  static __always_inline
1354  bool is_page_sharing_candidate(struct stable_node *stable_node)
1355  {
1356  	return __is_page_sharing_candidate(stable_node, 0);
1357  }
1358  
1359  static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1360  				    struct stable_node **_stable_node,
1361  				    struct rb_root *root,
1362  				    bool prune_stale_stable_nodes)
1363  {
1364  	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1365  	struct hlist_node *hlist_safe;
1366  	struct page *_tree_page, *tree_page = NULL;
1367  	int nr = 0;
1368  	int found_rmap_hlist_len;
1369  
1370  	if (!prune_stale_stable_nodes ||
1371  	    time_before(jiffies, stable_node->chain_prune_time +
1372  			msecs_to_jiffies(
1373  				ksm_stable_node_chains_prune_millisecs)))
1374  		prune_stale_stable_nodes = false;
1375  	else
1376  		stable_node->chain_prune_time = jiffies;
1377  
1378  	hlist_for_each_entry_safe(dup, hlist_safe,
1379  				  &stable_node->hlist, hlist_dup) {
1380  		cond_resched();
1381  		/*
1382  		 * We must walk all stable_node_dup to prune the stale
1383  		 * stable nodes during lookup.
1384  		 *
1385  		 * get_ksm_page can drop the nodes from the
1386  		 * stable_node->hlist if they point to freed pages
1387  		 * (that's why we do a _safe walk). The "dup"
1388  		 * stable_node parameter itself will be freed from
1389  		 * under us if it returns NULL.
1390  		 */
1391  		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1392  		if (!_tree_page)
1393  			continue;
1394  		nr += 1;
1395  		if (is_page_sharing_candidate(dup)) {
1396  			if (!found ||
1397  			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1398  				if (found)
1399  					put_page(tree_page);
1400  				found = dup;
1401  				found_rmap_hlist_len = found->rmap_hlist_len;
1402  				tree_page = _tree_page;
1403  
1404  				/* skip put_page for found dup */
1405  				if (!prune_stale_stable_nodes)
1406  					break;
1407  				continue;
1408  			}
1409  		}
1410  		put_page(_tree_page);
1411  	}
1412  
1413  	if (found) {
1414  		/*
1415  		 * nr is counting all dups in the chain only if
1416  		 * prune_stale_stable_nodes is true, otherwise we may
1417  		 * break the loop at nr == 1 even if there are
1418  		 * multiple entries.
1419  		 */
1420  		if (prune_stale_stable_nodes && nr == 1) {
1421  			/*
1422  			 * If there's not just one entry it would
1423  			 * corrupt memory, better BUG_ON. In KSM
1424  			 * context with no lock held it's not even
1425  			 * fatal.
1426  			 */
1427  			BUG_ON(stable_node->hlist.first->next);
1428  
1429  			/*
1430  			 * There's just one entry and it is below the
1431  			 * deduplication limit so drop the chain.
1432  			 */
1433  			rb_replace_node(&stable_node->node, &found->node,
1434  					root);
1435  			free_stable_node(stable_node);
1436  			ksm_stable_node_chains--;
1437  			ksm_stable_node_dups--;
1438  			/*
1439  			 * NOTE: the caller depends on the stable_node
1440  			 * to be equal to stable_node_dup if the chain
1441  			 * was collapsed.
1442  			 */
1443  			*_stable_node = found;
1444  			/*
1445  			 * Just for robustness, as stable_node is
1446  			 * otherwise left as a stable pointer, the
1447  			 * compiler shall optimize it away at build
1448  			 * time.
1449  			 */
1450  			stable_node = NULL;
1451  		} else if (stable_node->hlist.first != &found->hlist_dup &&
1452  			   __is_page_sharing_candidate(found, 1)) {
1453  			/*
1454  			 * If the found stable_node dup can accept one
1455  			 * more future merge (in addition to the one
1456  			 * that is underway) and is not at the head of
1457  			 * the chain, put it there so next search will
1458  			 * be quicker in the !prune_stale_stable_nodes
1459  			 * case.
1460  			 *
1461  			 * NOTE: it would be inaccurate to use nr > 1
1462  			 * instead of checking the hlist.first pointer
1463  			 * directly, because in the
1464  			 * prune_stale_stable_nodes case "nr" isn't
1465  			 * the position of the found dup in the chain,
1466  			 * but the total number of dups in the chain.
1467  			 */
1468  			hlist_del(&found->hlist_dup);
1469  			hlist_add_head(&found->hlist_dup,
1470  				       &stable_node->hlist);
1471  		}
1472  	}
1473  
1474  	*_stable_node_dup = found;
1475  	return tree_page;
1476  }
1477  
1478  static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1479  					       struct rb_root *root)
1480  {
1481  	if (!is_stable_node_chain(stable_node))
1482  		return stable_node;
1483  	if (hlist_empty(&stable_node->hlist)) {
1484  		free_stable_node_chain(stable_node, root);
1485  		return NULL;
1486  	}
1487  	return hlist_entry(stable_node->hlist.first,
1488  			   typeof(*stable_node), hlist_dup);
1489  }
1490  
1491  /*
1492   * Like for get_ksm_page, this function can free the *_stable_node and
1493   * *_stable_node_dup if the returned tree_page is NULL.
1494   *
1495   * It can also free and overwrite *_stable_node with the found
1496   * stable_node_dup if the chain is collapsed (in which case
1497   * *_stable_node will be equal to *_stable_node_dup like if the chain
1498   * never existed). It's up to the caller to verify tree_page is not
1499   * NULL before dereferencing *_stable_node or *_stable_node_dup.
1500   *
1501   * *_stable_node_dup is really a second output parameter of this
1502   * function and will be overwritten in all cases, the caller doesn't
1503   * need to initialize it.
1504   */
1505  static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1506  					struct stable_node **_stable_node,
1507  					struct rb_root *root,
1508  					bool prune_stale_stable_nodes)
1509  {
1510  	struct stable_node *stable_node = *_stable_node;
1511  	if (!is_stable_node_chain(stable_node)) {
1512  		if (is_page_sharing_candidate(stable_node)) {
1513  			*_stable_node_dup = stable_node;
1514  			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1515  		}
1516  		/*
1517  		 * _stable_node_dup set to NULL means the stable_node
1518  		 * reached the ksm_max_page_sharing limit.
1519  		 */
1520  		*_stable_node_dup = NULL;
1521  		return NULL;
1522  	}
1523  	return stable_node_dup(_stable_node_dup, _stable_node, root,
1524  			       prune_stale_stable_nodes);
1525  }
1526  
1527  static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1528  						struct stable_node **s_n,
1529  						struct rb_root *root)
1530  {
1531  	return __stable_node_chain(s_n_d, s_n, root, true);
1532  }
1533  
1534  static __always_inline struct page *chain(struct stable_node **s_n_d,
1535  					  struct stable_node *s_n,
1536  					  struct rb_root *root)
1537  {
1538  	struct stable_node *old_stable_node = s_n;
1539  	struct page *tree_page;
1540  
1541  	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1542  	/* not pruning dups so s_n cannot have changed */
1543  	VM_BUG_ON(s_n != old_stable_node);
1544  	return tree_page;
1545  }
1546  
1547  /*
1548   * stable_tree_search - search for page inside the stable tree
1549   *
1550   * This function checks if there is a page inside the stable tree
1551   * with identical content to the page that we are scanning right now.
1552   *
1553   * This function returns the stable tree node of identical content if found,
1554   * NULL otherwise.
1555   */
1556  static struct page *stable_tree_search(struct page *page)
1557  {
1558  	int nid;
1559  	struct rb_root *root;
1560  	struct rb_node **new;
1561  	struct rb_node *parent;
1562  	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1563  	struct stable_node *page_node;
1564  
1565  	page_node = page_stable_node(page);
1566  	if (page_node && page_node->head != &migrate_nodes) {
1567  		/* ksm page forked */
1568  		get_page(page);
1569  		return page;
1570  	}
1571  
1572  	nid = get_kpfn_nid(page_to_pfn(page));
1573  	root = root_stable_tree + nid;
1574  again:
1575  	new = &root->rb_node;
1576  	parent = NULL;
1577  
1578  	while (*new) {
1579  		struct page *tree_page;
1580  		int ret;
1581  
1582  		cond_resched();
1583  		stable_node = rb_entry(*new, struct stable_node, node);
1584  		stable_node_any = NULL;
1585  		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1586  		/*
1587  		 * NOTE: stable_node may have been freed by
1588  		 * chain_prune() if the returned stable_node_dup is
1589  		 * not NULL. stable_node_dup may have been inserted in
1590  		 * the rbtree instead as a regular stable_node (in
1591  		 * order to collapse the stable_node chain if a single
1592  		 * stable_node dup was found in it). In such case the
1593  		 * stable_node is overwritten by the callee to point
1594  		 * to the stable_node_dup that was collapsed in the
1595  		 * stable rbtree and stable_node will be equal to
1596  		 * stable_node_dup like if the chain never existed.
1597  		 */
1598  		if (!stable_node_dup) {
1599  			/*
1600  			 * Either all stable_node dups were full in
1601  			 * this stable_node chain, or this chain was
1602  			 * empty and should be rb_erased.
1603  			 */
1604  			stable_node_any = stable_node_dup_any(stable_node,
1605  							      root);
1606  			if (!stable_node_any) {
1607  				/* rb_erase just run */
1608  				goto again;
1609  			}
1610  			/*
1611  			 * Take any of the stable_node dups page of
1612  			 * this stable_node chain to let the tree walk
1613  			 * continue. All KSM pages belonging to the
1614  			 * stable_node dups in a stable_node chain
1615  			 * have the same content and they're
1616  			 * write protected at all times. Any will work
1617  			 * fine to continue the walk.
1618  			 */
1619  			tree_page = get_ksm_page(stable_node_any,
1620  						 GET_KSM_PAGE_NOLOCK);
1621  		}
1622  		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1623  		if (!tree_page) {
1624  			/*
1625  			 * If we walked over a stale stable_node,
1626  			 * get_ksm_page() will call rb_erase() and it
1627  			 * may rebalance the tree from under us. So
1628  			 * restart the search from scratch. Returning
1629  			 * NULL would be safe too, but we'd generate
1630  			 * false negative insertions just because some
1631  			 * stable_node was stale.
1632  			 */
1633  			goto again;
1634  		}
1635  
1636  		ret = memcmp_pages(page, tree_page);
1637  		put_page(tree_page);
1638  
1639  		parent = *new;
1640  		if (ret < 0)
1641  			new = &parent->rb_left;
1642  		else if (ret > 0)
1643  			new = &parent->rb_right;
1644  		else {
1645  			if (page_node) {
1646  				VM_BUG_ON(page_node->head != &migrate_nodes);
1647  				/*
1648  				 * Test if the migrated page should be merged
1649  				 * into a stable node dup. If the mapcount is
1650  				 * 1 we can migrate it with another KSM page
1651  				 * without adding it to the chain.
1652  				 */
1653  				if (page_mapcount(page) > 1)
1654  					goto chain_append;
1655  			}
1656  
1657  			if (!stable_node_dup) {
1658  				/*
1659  				 * If the stable_node is a chain and
1660  				 * we got a payload match in memcmp
1661  				 * but we cannot merge the scanned
1662  				 * page in any of the existing
1663  				 * stable_node dups because they're
1664  				 * all full, we need to wait the
1665  				 * scanned page to find itself a match
1666  				 * in the unstable tree to create a
1667  				 * brand new KSM page to add later to
1668  				 * the dups of this stable_node.
1669  				 */
1670  				return NULL;
1671  			}
1672  
1673  			/*
1674  			 * Lock and unlock the stable_node's page (which
1675  			 * might already have been migrated) so that page
1676  			 * migration is sure to notice its raised count.
1677  			 * It would be more elegant to return stable_node
1678  			 * than kpage, but that involves more changes.
1679  			 */
1680  			tree_page = get_ksm_page(stable_node_dup,
1681  						 GET_KSM_PAGE_TRYLOCK);
1682  
1683  			if (PTR_ERR(tree_page) == -EBUSY)
1684  				return ERR_PTR(-EBUSY);
1685  
1686  			if (unlikely(!tree_page))
1687  				/*
1688  				 * The tree may have been rebalanced,
1689  				 * so re-evaluate parent and new.
1690  				 */
1691  				goto again;
1692  			unlock_page(tree_page);
1693  
1694  			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1695  			    NUMA(stable_node_dup->nid)) {
1696  				put_page(tree_page);
1697  				goto replace;
1698  			}
1699  			return tree_page;
1700  		}
1701  	}
1702  
1703  	if (!page_node)
1704  		return NULL;
1705  
1706  	list_del(&page_node->list);
1707  	DO_NUMA(page_node->nid = nid);
1708  	rb_link_node(&page_node->node, parent, new);
1709  	rb_insert_color(&page_node->node, root);
1710  out:
1711  	if (is_page_sharing_candidate(page_node)) {
1712  		get_page(page);
1713  		return page;
1714  	} else
1715  		return NULL;
1716  
1717  replace:
1718  	/*
1719  	 * If stable_node was a chain and chain_prune collapsed it,
1720  	 * stable_node has been updated to be the new regular
1721  	 * stable_node. A collapse of the chain is indistinguishable
1722  	 * from the case there was no chain in the stable
1723  	 * rbtree. Otherwise stable_node is the chain and
1724  	 * stable_node_dup is the dup to replace.
1725  	 */
1726  	if (stable_node_dup == stable_node) {
1727  		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1728  		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1729  		/* there is no chain */
1730  		if (page_node) {
1731  			VM_BUG_ON(page_node->head != &migrate_nodes);
1732  			list_del(&page_node->list);
1733  			DO_NUMA(page_node->nid = nid);
1734  			rb_replace_node(&stable_node_dup->node,
1735  					&page_node->node,
1736  					root);
1737  			if (is_page_sharing_candidate(page_node))
1738  				get_page(page);
1739  			else
1740  				page = NULL;
1741  		} else {
1742  			rb_erase(&stable_node_dup->node, root);
1743  			page = NULL;
1744  		}
1745  	} else {
1746  		VM_BUG_ON(!is_stable_node_chain(stable_node));
1747  		__stable_node_dup_del(stable_node_dup);
1748  		if (page_node) {
1749  			VM_BUG_ON(page_node->head != &migrate_nodes);
1750  			list_del(&page_node->list);
1751  			DO_NUMA(page_node->nid = nid);
1752  			stable_node_chain_add_dup(page_node, stable_node);
1753  			if (is_page_sharing_candidate(page_node))
1754  				get_page(page);
1755  			else
1756  				page = NULL;
1757  		} else {
1758  			page = NULL;
1759  		}
1760  	}
1761  	stable_node_dup->head = &migrate_nodes;
1762  	list_add(&stable_node_dup->list, stable_node_dup->head);
1763  	return page;
1764  
1765  chain_append:
1766  	/* stable_node_dup could be null if it reached the limit */
1767  	if (!stable_node_dup)
1768  		stable_node_dup = stable_node_any;
1769  	/*
1770  	 * If stable_node was a chain and chain_prune collapsed it,
1771  	 * stable_node has been updated to be the new regular
1772  	 * stable_node. A collapse of the chain is indistinguishable
1773  	 * from the case there was no chain in the stable
1774  	 * rbtree. Otherwise stable_node is the chain and
1775  	 * stable_node_dup is the dup to replace.
1776  	 */
1777  	if (stable_node_dup == stable_node) {
1778  		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1779  		/* chain is missing so create it */
1780  		stable_node = alloc_stable_node_chain(stable_node_dup,
1781  						      root);
1782  		if (!stable_node)
1783  			return NULL;
1784  	}
1785  	/*
1786  	 * Add this stable_node dup that was
1787  	 * migrated to the stable_node chain
1788  	 * of the current nid for this page
1789  	 * content.
1790  	 */
1791  	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1792  	VM_BUG_ON(page_node->head != &migrate_nodes);
1793  	list_del(&page_node->list);
1794  	DO_NUMA(page_node->nid = nid);
1795  	stable_node_chain_add_dup(page_node, stable_node);
1796  	goto out;
1797  }
1798  
1799  /*
1800   * stable_tree_insert - insert stable tree node pointing to new ksm page
1801   * into the stable tree.
1802   *
1803   * This function returns the stable tree node just allocated on success,
1804   * NULL otherwise.
1805   */
1806  static struct stable_node *stable_tree_insert(struct page *kpage)
1807  {
1808  	int nid;
1809  	unsigned long kpfn;
1810  	struct rb_root *root;
1811  	struct rb_node **new;
1812  	struct rb_node *parent;
1813  	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1814  	bool need_chain = false;
1815  
1816  	kpfn = page_to_pfn(kpage);
1817  	nid = get_kpfn_nid(kpfn);
1818  	root = root_stable_tree + nid;
1819  again:
1820  	parent = NULL;
1821  	new = &root->rb_node;
1822  
1823  	while (*new) {
1824  		struct page *tree_page;
1825  		int ret;
1826  
1827  		cond_resched();
1828  		stable_node = rb_entry(*new, struct stable_node, node);
1829  		stable_node_any = NULL;
1830  		tree_page = chain(&stable_node_dup, stable_node, root);
1831  		if (!stable_node_dup) {
1832  			/*
1833  			 * Either all stable_node dups were full in
1834  			 * this stable_node chain, or this chain was
1835  			 * empty and should be rb_erased.
1836  			 */
1837  			stable_node_any = stable_node_dup_any(stable_node,
1838  							      root);
1839  			if (!stable_node_any) {
1840  				/* rb_erase just run */
1841  				goto again;
1842  			}
1843  			/*
1844  			 * Take any of the stable_node dups page of
1845  			 * this stable_node chain to let the tree walk
1846  			 * continue. All KSM pages belonging to the
1847  			 * stable_node dups in a stable_node chain
1848  			 * have the same content and they're
1849  			 * write protected at all times. Any will work
1850  			 * fine to continue the walk.
1851  			 */
1852  			tree_page = get_ksm_page(stable_node_any,
1853  						 GET_KSM_PAGE_NOLOCK);
1854  		}
1855  		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1856  		if (!tree_page) {
1857  			/*
1858  			 * If we walked over a stale stable_node,
1859  			 * get_ksm_page() will call rb_erase() and it
1860  			 * may rebalance the tree from under us. So
1861  			 * restart the search from scratch. Returning
1862  			 * NULL would be safe too, but we'd generate
1863  			 * false negative insertions just because some
1864  			 * stable_node was stale.
1865  			 */
1866  			goto again;
1867  		}
1868  
1869  		ret = memcmp_pages(kpage, tree_page);
1870  		put_page(tree_page);
1871  
1872  		parent = *new;
1873  		if (ret < 0)
1874  			new = &parent->rb_left;
1875  		else if (ret > 0)
1876  			new = &parent->rb_right;
1877  		else {
1878  			need_chain = true;
1879  			break;
1880  		}
1881  	}
1882  
1883  	stable_node_dup = alloc_stable_node();
1884  	if (!stable_node_dup)
1885  		return NULL;
1886  
1887  	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1888  	stable_node_dup->kpfn = kpfn;
1889  	set_page_stable_node(kpage, stable_node_dup);
1890  	stable_node_dup->rmap_hlist_len = 0;
1891  	DO_NUMA(stable_node_dup->nid = nid);
1892  	if (!need_chain) {
1893  		rb_link_node(&stable_node_dup->node, parent, new);
1894  		rb_insert_color(&stable_node_dup->node, root);
1895  	} else {
1896  		if (!is_stable_node_chain(stable_node)) {
1897  			struct stable_node *orig = stable_node;
1898  			/* chain is missing so create it */
1899  			stable_node = alloc_stable_node_chain(orig, root);
1900  			if (!stable_node) {
1901  				free_stable_node(stable_node_dup);
1902  				return NULL;
1903  			}
1904  		}
1905  		stable_node_chain_add_dup(stable_node_dup, stable_node);
1906  	}
1907  
1908  	return stable_node_dup;
1909  }
1910  
1911  /*
1912   * unstable_tree_search_insert - search for identical page,
1913   * else insert rmap_item into the unstable tree.
1914   *
1915   * This function searches for a page in the unstable tree identical to the
1916   * page currently being scanned; and if no identical page is found in the
1917   * tree, we insert rmap_item as a new object into the unstable tree.
1918   *
1919   * This function returns pointer to rmap_item found to be identical
1920   * to the currently scanned page, NULL otherwise.
1921   *
1922   * This function does both searching and inserting, because they share
1923   * the same walking algorithm in an rbtree.
1924   */
1925  static
1926  struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1927  					      struct page *page,
1928  					      struct page **tree_pagep)
1929  {
1930  	struct rb_node **new;
1931  	struct rb_root *root;
1932  	struct rb_node *parent = NULL;
1933  	int nid;
1934  
1935  	nid = get_kpfn_nid(page_to_pfn(page));
1936  	root = root_unstable_tree + nid;
1937  	new = &root->rb_node;
1938  
1939  	while (*new) {
1940  		struct rmap_item *tree_rmap_item;
1941  		struct page *tree_page;
1942  		int ret;
1943  
1944  		cond_resched();
1945  		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1946  		tree_page = get_mergeable_page(tree_rmap_item);
1947  		if (!tree_page)
1948  			return NULL;
1949  
1950  		/*
1951  		 * Don't substitute a ksm page for a forked page.
1952  		 */
1953  		if (page == tree_page) {
1954  			put_page(tree_page);
1955  			return NULL;
1956  		}
1957  
1958  		ret = memcmp_pages(page, tree_page);
1959  
1960  		parent = *new;
1961  		if (ret < 0) {
1962  			put_page(tree_page);
1963  			new = &parent->rb_left;
1964  		} else if (ret > 0) {
1965  			put_page(tree_page);
1966  			new = &parent->rb_right;
1967  		} else if (!ksm_merge_across_nodes &&
1968  			   page_to_nid(tree_page) != nid) {
1969  			/*
1970  			 * If tree_page has been migrated to another NUMA node,
1971  			 * it will be flushed out and put in the right unstable
1972  			 * tree next time: only merge with it when across_nodes.
1973  			 */
1974  			put_page(tree_page);
1975  			return NULL;
1976  		} else {
1977  			*tree_pagep = tree_page;
1978  			return tree_rmap_item;
1979  		}
1980  	}
1981  
1982  	rmap_item->address |= UNSTABLE_FLAG;
1983  	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1984  	DO_NUMA(rmap_item->nid = nid);
1985  	rb_link_node(&rmap_item->node, parent, new);
1986  	rb_insert_color(&rmap_item->node, root);
1987  
1988  	ksm_pages_unshared++;
1989  	return NULL;
1990  }
1991  
1992  /*
1993   * stable_tree_append - add another rmap_item to the linked list of
1994   * rmap_items hanging off a given node of the stable tree, all sharing
1995   * the same ksm page.
1996   */
1997  static void stable_tree_append(struct rmap_item *rmap_item,
1998  			       struct stable_node *stable_node,
1999  			       bool max_page_sharing_bypass)
2000  {
2001  	/*
2002  	 * rmap won't find this mapping if we don't insert the
2003  	 * rmap_item in the right stable_node
2004  	 * duplicate. page_migration could break later if rmap breaks,
2005  	 * so we can as well crash here. We really need to check for
2006  	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2007  	 * for other negative values as an underflow if detected here
2008  	 * for the first time (and not when decreasing rmap_hlist_len)
2009  	 * would be sign of memory corruption in the stable_node.
2010  	 */
2011  	BUG_ON(stable_node->rmap_hlist_len < 0);
2012  
2013  	stable_node->rmap_hlist_len++;
2014  	if (!max_page_sharing_bypass)
2015  		/* possibly non fatal but unexpected overflow, only warn */
2016  		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2017  			     ksm_max_page_sharing);
2018  
2019  	rmap_item->head = stable_node;
2020  	rmap_item->address |= STABLE_FLAG;
2021  	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2022  
2023  	if (rmap_item->hlist.next)
2024  		ksm_pages_sharing++;
2025  	else
2026  		ksm_pages_shared++;
2027  
2028  	rmap_item->mm->ksm_merging_pages++;
2029  }
2030  
2031  /*
2032   * cmp_and_merge_page - first see if page can be merged into the stable tree;
2033   * if not, compare checksum to previous and if it's the same, see if page can
2034   * be inserted into the unstable tree, or merged with a page already there and
2035   * both transferred to the stable tree.
2036   *
2037   * @page: the page that we are searching identical page to.
2038   * @rmap_item: the reverse mapping into the virtual address of this page
2039   */
2040  static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2041  {
2042  	struct mm_struct *mm = rmap_item->mm;
2043  	struct rmap_item *tree_rmap_item;
2044  	struct page *tree_page = NULL;
2045  	struct stable_node *stable_node;
2046  	struct page *kpage;
2047  	unsigned int checksum;
2048  	int err;
2049  	bool max_page_sharing_bypass = false;
2050  
2051  	stable_node = page_stable_node(page);
2052  	if (stable_node) {
2053  		if (stable_node->head != &migrate_nodes &&
2054  		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2055  		    NUMA(stable_node->nid)) {
2056  			stable_node_dup_del(stable_node);
2057  			stable_node->head = &migrate_nodes;
2058  			list_add(&stable_node->list, stable_node->head);
2059  		}
2060  		if (stable_node->head != &migrate_nodes &&
2061  		    rmap_item->head == stable_node)
2062  			return;
2063  		/*
2064  		 * If it's a KSM fork, allow it to go over the sharing limit
2065  		 * without warnings.
2066  		 */
2067  		if (!is_page_sharing_candidate(stable_node))
2068  			max_page_sharing_bypass = true;
2069  	}
2070  
2071  	/* We first start with searching the page inside the stable tree */
2072  	kpage = stable_tree_search(page);
2073  	if (kpage == page && rmap_item->head == stable_node) {
2074  		put_page(kpage);
2075  		return;
2076  	}
2077  
2078  	remove_rmap_item_from_tree(rmap_item);
2079  
2080  	if (kpage) {
2081  		if (PTR_ERR(kpage) == -EBUSY)
2082  			return;
2083  
2084  		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2085  		if (!err) {
2086  			/*
2087  			 * The page was successfully merged:
2088  			 * add its rmap_item to the stable tree.
2089  			 */
2090  			lock_page(kpage);
2091  			stable_tree_append(rmap_item, page_stable_node(kpage),
2092  					   max_page_sharing_bypass);
2093  			unlock_page(kpage);
2094  		}
2095  		put_page(kpage);
2096  		return;
2097  	}
2098  
2099  	/*
2100  	 * If the hash value of the page has changed from the last time
2101  	 * we calculated it, this page is changing frequently: therefore we
2102  	 * don't want to insert it in the unstable tree, and we don't want
2103  	 * to waste our time searching for something identical to it there.
2104  	 */
2105  	checksum = calc_checksum(page);
2106  	if (rmap_item->oldchecksum != checksum) {
2107  		rmap_item->oldchecksum = checksum;
2108  		return;
2109  	}
2110  
2111  	/*
2112  	 * Same checksum as an empty page. We attempt to merge it with the
2113  	 * appropriate zero page if the user enabled this via sysfs.
2114  	 */
2115  	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2116  		struct vm_area_struct *vma;
2117  
2118  		mmap_read_lock(mm);
2119  		vma = find_mergeable_vma(mm, rmap_item->address);
2120  		if (vma) {
2121  			err = try_to_merge_one_page(vma, page,
2122  					ZERO_PAGE(rmap_item->address));
2123  		} else {
2124  			/*
2125  			 * If the vma is out of date, we do not need to
2126  			 * continue.
2127  			 */
2128  			err = 0;
2129  		}
2130  		mmap_read_unlock(mm);
2131  		/*
2132  		 * In case of failure, the page was not really empty, so we
2133  		 * need to continue. Otherwise we're done.
2134  		 */
2135  		if (!err)
2136  			return;
2137  	}
2138  	tree_rmap_item =
2139  		unstable_tree_search_insert(rmap_item, page, &tree_page);
2140  	if (tree_rmap_item) {
2141  		bool split;
2142  
2143  		kpage = try_to_merge_two_pages(rmap_item, page,
2144  						tree_rmap_item, tree_page);
2145  		/*
2146  		 * If both pages we tried to merge belong to the same compound
2147  		 * page, then we actually ended up increasing the reference
2148  		 * count of the same compound page twice, and split_huge_page
2149  		 * failed.
2150  		 * Here we set a flag if that happened, and we use it later to
2151  		 * try split_huge_page again. Since we call put_page right
2152  		 * afterwards, the reference count will be correct and
2153  		 * split_huge_page should succeed.
2154  		 */
2155  		split = PageTransCompound(page)
2156  			&& compound_head(page) == compound_head(tree_page);
2157  		put_page(tree_page);
2158  		if (kpage) {
2159  			/*
2160  			 * The pages were successfully merged: insert new
2161  			 * node in the stable tree and add both rmap_items.
2162  			 */
2163  			lock_page(kpage);
2164  			stable_node = stable_tree_insert(kpage);
2165  			if (stable_node) {
2166  				stable_tree_append(tree_rmap_item, stable_node,
2167  						   false);
2168  				stable_tree_append(rmap_item, stable_node,
2169  						   false);
2170  			}
2171  			unlock_page(kpage);
2172  
2173  			/*
2174  			 * If we fail to insert the page into the stable tree,
2175  			 * we will have 2 virtual addresses that are pointing
2176  			 * to a ksm page left outside the stable tree,
2177  			 * in which case we need to break_cow on both.
2178  			 */
2179  			if (!stable_node) {
2180  				break_cow(tree_rmap_item);
2181  				break_cow(rmap_item);
2182  			}
2183  		} else if (split) {
2184  			/*
2185  			 * We are here if we tried to merge two pages and
2186  			 * failed because they both belonged to the same
2187  			 * compound page. We will split the page now, but no
2188  			 * merging will take place.
2189  			 * We do not want to add the cost of a full lock; if
2190  			 * the page is locked, it is better to skip it and
2191  			 * perhaps try again later.
2192  			 */
2193  			if (!trylock_page(page))
2194  				return;
2195  			split_huge_page(page);
2196  			unlock_page(page);
2197  		}
2198  	}
2199  }
2200  
2201  static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2202  					    struct rmap_item **rmap_list,
2203  					    unsigned long addr)
2204  {
2205  	struct rmap_item *rmap_item;
2206  
2207  	while (*rmap_list) {
2208  		rmap_item = *rmap_list;
2209  		if ((rmap_item->address & PAGE_MASK) == addr)
2210  			return rmap_item;
2211  		if (rmap_item->address > addr)
2212  			break;
2213  		*rmap_list = rmap_item->rmap_list;
2214  		remove_rmap_item_from_tree(rmap_item);
2215  		free_rmap_item(rmap_item);
2216  	}
2217  
2218  	rmap_item = alloc_rmap_item();
2219  	if (rmap_item) {
2220  		/* It has already been zeroed */
2221  		rmap_item->mm = mm_slot->mm;
2222  		rmap_item->address = addr;
2223  		rmap_item->rmap_list = *rmap_list;
2224  		*rmap_list = rmap_item;
2225  	}
2226  	return rmap_item;
2227  }
2228  
2229  static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2230  {
2231  	struct mm_struct *mm;
2232  	struct mm_slot *slot;
2233  	struct vm_area_struct *vma;
2234  	struct rmap_item *rmap_item;
2235  	int nid;
2236  
2237  	if (list_empty(&ksm_mm_head.mm_list))
2238  		return NULL;
2239  
2240  	slot = ksm_scan.mm_slot;
2241  	if (slot == &ksm_mm_head) {
2242  		/*
2243  		 * A number of pages can hang around indefinitely on per-cpu
2244  		 * pagevecs, raised page count preventing write_protect_page
2245  		 * from merging them.  Though it doesn't really matter much,
2246  		 * it is puzzling to see some stuck in pages_volatile until
2247  		 * other activity jostles them out, and they also prevented
2248  		 * LTP's KSM test from succeeding deterministically; so drain
2249  		 * them here (here rather than on entry to ksm_do_scan(),
2250  		 * so we don't IPI too often when pages_to_scan is set low).
2251  		 */
2252  		lru_add_drain_all();
2253  
2254  		/*
2255  		 * Whereas stale stable_nodes on the stable_tree itself
2256  		 * get pruned in the regular course of stable_tree_search(),
2257  		 * those moved out to the migrate_nodes list can accumulate:
2258  		 * so prune them once before each full scan.
2259  		 */
2260  		if (!ksm_merge_across_nodes) {
2261  			struct stable_node *stable_node, *next;
2262  			struct page *page;
2263  
2264  			list_for_each_entry_safe(stable_node, next,
2265  						 &migrate_nodes, list) {
2266  				page = get_ksm_page(stable_node,
2267  						    GET_KSM_PAGE_NOLOCK);
2268  				if (page)
2269  					put_page(page);
2270  				cond_resched();
2271  			}
2272  		}
2273  
2274  		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2275  			root_unstable_tree[nid] = RB_ROOT;
2276  
2277  		spin_lock(&ksm_mmlist_lock);
2278  		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2279  		ksm_scan.mm_slot = slot;
2280  		spin_unlock(&ksm_mmlist_lock);
2281  		/*
2282  		 * Although we tested list_empty() above, a racing __ksm_exit
2283  		 * of the last mm on the list may have removed it since then.
2284  		 */
2285  		if (slot == &ksm_mm_head)
2286  			return NULL;
2287  next_mm:
2288  		ksm_scan.address = 0;
2289  		ksm_scan.rmap_list = &slot->rmap_list;
2290  	}
2291  
2292  	mm = slot->mm;
2293  	mmap_read_lock(mm);
2294  	if (ksm_test_exit(mm))
2295  		vma = NULL;
2296  	else
2297  		vma = find_vma(mm, ksm_scan.address);
2298  
2299  	for (; vma; vma = vma->vm_next) {
2300  		if (!(vma->vm_flags & VM_MERGEABLE))
2301  			continue;
2302  		if (ksm_scan.address < vma->vm_start)
2303  			ksm_scan.address = vma->vm_start;
2304  		if (!vma->anon_vma)
2305  			ksm_scan.address = vma->vm_end;
2306  
2307  		while (ksm_scan.address < vma->vm_end) {
2308  			if (ksm_test_exit(mm))
2309  				break;
2310  			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2311  			if (IS_ERR_OR_NULL(*page)) {
2312  				ksm_scan.address += PAGE_SIZE;
2313  				cond_resched();
2314  				continue;
2315  			}
2316  			if (PageAnon(*page)) {
2317  				flush_anon_page(vma, *page, ksm_scan.address);
2318  				flush_dcache_page(*page);
2319  				rmap_item = get_next_rmap_item(slot,
2320  					ksm_scan.rmap_list, ksm_scan.address);
2321  				if (rmap_item) {
2322  					ksm_scan.rmap_list =
2323  							&rmap_item->rmap_list;
2324  					ksm_scan.address += PAGE_SIZE;
2325  				} else
2326  					put_page(*page);
2327  				mmap_read_unlock(mm);
2328  				return rmap_item;
2329  			}
2330  			put_page(*page);
2331  			ksm_scan.address += PAGE_SIZE;
2332  			cond_resched();
2333  		}
2334  	}
2335  
2336  	if (ksm_test_exit(mm)) {
2337  		ksm_scan.address = 0;
2338  		ksm_scan.rmap_list = &slot->rmap_list;
2339  	}
2340  	/*
2341  	 * Nuke all the rmap_items that are above this current rmap:
2342  	 * because there were no VM_MERGEABLE vmas with such addresses.
2343  	 */
2344  	remove_trailing_rmap_items(ksm_scan.rmap_list);
2345  
2346  	spin_lock(&ksm_mmlist_lock);
2347  	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2348  						struct mm_slot, mm_list);
2349  	if (ksm_scan.address == 0) {
2350  		/*
2351  		 * We've completed a full scan of all vmas, holding mmap_lock
2352  		 * throughout, and found no VM_MERGEABLE: so do the same as
2353  		 * __ksm_exit does to remove this mm from all our lists now.
2354  		 * This applies either when cleaning up after __ksm_exit
2355  		 * (but beware: we can reach here even before __ksm_exit),
2356  		 * or when all VM_MERGEABLE areas have been unmapped (and
2357  		 * mmap_lock then protects against race with MADV_MERGEABLE).
2358  		 */
2359  		hash_del(&slot->link);
2360  		list_del(&slot->mm_list);
2361  		spin_unlock(&ksm_mmlist_lock);
2362  
2363  		free_mm_slot(slot);
2364  		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2365  		mmap_read_unlock(mm);
2366  		mmdrop(mm);
2367  	} else {
2368  		mmap_read_unlock(mm);
2369  		/*
2370  		 * mmap_read_unlock(mm) first because after
2371  		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2372  		 * already have been freed under us by __ksm_exit()
2373  		 * because the "mm_slot" is still hashed and
2374  		 * ksm_scan.mm_slot doesn't point to it anymore.
2375  		 */
2376  		spin_unlock(&ksm_mmlist_lock);
2377  	}
2378  
2379  	/* Repeat until we've completed scanning the whole list */
2380  	slot = ksm_scan.mm_slot;
2381  	if (slot != &ksm_mm_head)
2382  		goto next_mm;
2383  
2384  	ksm_scan.seqnr++;
2385  	return NULL;
2386  }
2387  
2388  /**
2389   * ksm_do_scan  - the ksm scanner main worker function.
2390   * @scan_npages:  number of pages we want to scan before we return.
2391   */
2392  static void ksm_do_scan(unsigned int scan_npages)
2393  {
2394  	struct rmap_item *rmap_item;
2395  	struct page *page;
2396  
2397  	while (scan_npages-- && likely(!freezing(current))) {
2398  		cond_resched();
2399  		rmap_item = scan_get_next_rmap_item(&page);
2400  		if (!rmap_item)
2401  			return;
2402  		cmp_and_merge_page(page, rmap_item);
2403  		put_page(page);
2404  	}
2405  }
2406  
2407  static int ksmd_should_run(void)
2408  {
2409  	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2410  }
2411  
2412  static int ksm_scan_thread(void *nothing)
2413  {
2414  	unsigned int sleep_ms;
2415  
2416  	set_freezable();
2417  	set_user_nice(current, 5);
2418  
2419  	while (!kthread_should_stop()) {
2420  		mutex_lock(&ksm_thread_mutex);
2421  		wait_while_offlining();
2422  		if (ksmd_should_run())
2423  			ksm_do_scan(ksm_thread_pages_to_scan);
2424  		mutex_unlock(&ksm_thread_mutex);
2425  
2426  		try_to_freeze();
2427  
2428  		if (ksmd_should_run()) {
2429  			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2430  			wait_event_interruptible_timeout(ksm_iter_wait,
2431  				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2432  				msecs_to_jiffies(sleep_ms));
2433  		} else {
2434  			wait_event_freezable(ksm_thread_wait,
2435  				ksmd_should_run() || kthread_should_stop());
2436  		}
2437  	}
2438  	return 0;
2439  }
2440  
2441  int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2442  		unsigned long end, int advice, unsigned long *vm_flags)
2443  {
2444  	struct mm_struct *mm = vma->vm_mm;
2445  	int err;
2446  
2447  	switch (advice) {
2448  	case MADV_MERGEABLE:
2449  		/*
2450  		 * Be somewhat over-protective for now!
2451  		 */
2452  		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2453  				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2454  				 VM_HUGETLB | VM_MIXEDMAP))
2455  			return 0;		/* just ignore the advice */
2456  
2457  		if (vma_is_dax(vma))
2458  			return 0;
2459  
2460  #ifdef VM_SAO
2461  		if (*vm_flags & VM_SAO)
2462  			return 0;
2463  #endif
2464  #ifdef VM_SPARC_ADI
2465  		if (*vm_flags & VM_SPARC_ADI)
2466  			return 0;
2467  #endif
2468  
2469  		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2470  			err = __ksm_enter(mm);
2471  			if (err)
2472  				return err;
2473  		}
2474  
2475  		*vm_flags |= VM_MERGEABLE;
2476  		break;
2477  
2478  	case MADV_UNMERGEABLE:
2479  		if (!(*vm_flags & VM_MERGEABLE))
2480  			return 0;		/* just ignore the advice */
2481  
2482  		if (vma->anon_vma) {
2483  			err = unmerge_ksm_pages(vma, start, end);
2484  			if (err)
2485  				return err;
2486  		}
2487  
2488  		*vm_flags &= ~VM_MERGEABLE;
2489  		break;
2490  	}
2491  
2492  	return 0;
2493  }
2494  EXPORT_SYMBOL_GPL(ksm_madvise);
2495  
2496  int __ksm_enter(struct mm_struct *mm)
2497  {
2498  	struct mm_slot *mm_slot;
2499  	int needs_wakeup;
2500  
2501  	mm_slot = alloc_mm_slot();
2502  	if (!mm_slot)
2503  		return -ENOMEM;
2504  
2505  	/* Check ksm_run too?  Would need tighter locking */
2506  	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2507  
2508  	spin_lock(&ksm_mmlist_lock);
2509  	insert_to_mm_slots_hash(mm, mm_slot);
2510  	/*
2511  	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2512  	 * insert just behind the scanning cursor, to let the area settle
2513  	 * down a little; when fork is followed by immediate exec, we don't
2514  	 * want ksmd to waste time setting up and tearing down an rmap_list.
2515  	 *
2516  	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2517  	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2518  	 * missed: then we might as well insert at the end of the list.
2519  	 */
2520  	if (ksm_run & KSM_RUN_UNMERGE)
2521  		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2522  	else
2523  		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2524  	spin_unlock(&ksm_mmlist_lock);
2525  
2526  	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2527  	mmgrab(mm);
2528  
2529  	if (needs_wakeup)
2530  		wake_up_interruptible(&ksm_thread_wait);
2531  
2532  	return 0;
2533  }
2534  
2535  void __ksm_exit(struct mm_struct *mm)
2536  {
2537  	struct mm_slot *mm_slot;
2538  	int easy_to_free = 0;
2539  
2540  	/*
2541  	 * This process is exiting: if it's straightforward (as is the
2542  	 * case when ksmd was never running), free mm_slot immediately.
2543  	 * But if it's at the cursor or has rmap_items linked to it, use
2544  	 * mmap_lock to synchronize with any break_cows before pagetables
2545  	 * are freed, and leave the mm_slot on the list for ksmd to free.
2546  	 * Beware: ksm may already have noticed it exiting and freed the slot.
2547  	 */
2548  
2549  	spin_lock(&ksm_mmlist_lock);
2550  	mm_slot = get_mm_slot(mm);
2551  	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2552  		if (!mm_slot->rmap_list) {
2553  			hash_del(&mm_slot->link);
2554  			list_del(&mm_slot->mm_list);
2555  			easy_to_free = 1;
2556  		} else {
2557  			list_move(&mm_slot->mm_list,
2558  				  &ksm_scan.mm_slot->mm_list);
2559  		}
2560  	}
2561  	spin_unlock(&ksm_mmlist_lock);
2562  
2563  	if (easy_to_free) {
2564  		free_mm_slot(mm_slot);
2565  		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2566  		mmdrop(mm);
2567  	} else if (mm_slot) {
2568  		mmap_write_lock(mm);
2569  		mmap_write_unlock(mm);
2570  	}
2571  }
2572  
2573  struct page *ksm_might_need_to_copy(struct page *page,
2574  			struct vm_area_struct *vma, unsigned long address)
2575  {
2576  	struct folio *folio = page_folio(page);
2577  	struct anon_vma *anon_vma = folio_anon_vma(folio);
2578  	struct page *new_page;
2579  
2580  	if (PageKsm(page)) {
2581  		if (page_stable_node(page) &&
2582  		    !(ksm_run & KSM_RUN_UNMERGE))
2583  			return page;	/* no need to copy it */
2584  	} else if (!anon_vma) {
2585  		return page;		/* no need to copy it */
2586  	} else if (page->index == linear_page_index(vma, address) &&
2587  			anon_vma->root == vma->anon_vma->root) {
2588  		return page;		/* still no need to copy it */
2589  	}
2590  	if (!PageUptodate(page))
2591  		return page;		/* let do_swap_page report the error */
2592  
2593  	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2594  	if (new_page &&
2595  	    mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2596  		put_page(new_page);
2597  		new_page = NULL;
2598  	}
2599  	if (new_page) {
2600  		copy_user_highpage(new_page, page, address, vma);
2601  
2602  		SetPageDirty(new_page);
2603  		__SetPageUptodate(new_page);
2604  		__SetPageLocked(new_page);
2605  #ifdef CONFIG_SWAP
2606  		count_vm_event(KSM_SWPIN_COPY);
2607  #endif
2608  	}
2609  
2610  	return new_page;
2611  }
2612  
2613  void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2614  {
2615  	struct stable_node *stable_node;
2616  	struct rmap_item *rmap_item;
2617  	int search_new_forks = 0;
2618  
2619  	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2620  
2621  	/*
2622  	 * Rely on the page lock to protect against concurrent modifications
2623  	 * to that page's node of the stable tree.
2624  	 */
2625  	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2626  
2627  	stable_node = folio_stable_node(folio);
2628  	if (!stable_node)
2629  		return;
2630  again:
2631  	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2632  		struct anon_vma *anon_vma = rmap_item->anon_vma;
2633  		struct anon_vma_chain *vmac;
2634  		struct vm_area_struct *vma;
2635  
2636  		cond_resched();
2637  		if (!anon_vma_trylock_read(anon_vma)) {
2638  			if (rwc->try_lock) {
2639  				rwc->contended = true;
2640  				return;
2641  			}
2642  			anon_vma_lock_read(anon_vma);
2643  		}
2644  		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2645  					       0, ULONG_MAX) {
2646  			unsigned long addr;
2647  
2648  			cond_resched();
2649  			vma = vmac->vma;
2650  
2651  			/* Ignore the stable/unstable/sqnr flags */
2652  			addr = rmap_item->address & PAGE_MASK;
2653  
2654  			if (addr < vma->vm_start || addr >= vma->vm_end)
2655  				continue;
2656  			/*
2657  			 * Initially we examine only the vma which covers this
2658  			 * rmap_item; but later, if there is still work to do,
2659  			 * we examine covering vmas in other mms: in case they
2660  			 * were forked from the original since ksmd passed.
2661  			 */
2662  			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2663  				continue;
2664  
2665  			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2666  				continue;
2667  
2668  			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2669  				anon_vma_unlock_read(anon_vma);
2670  				return;
2671  			}
2672  			if (rwc->done && rwc->done(folio)) {
2673  				anon_vma_unlock_read(anon_vma);
2674  				return;
2675  			}
2676  		}
2677  		anon_vma_unlock_read(anon_vma);
2678  	}
2679  	if (!search_new_forks++)
2680  		goto again;
2681  }
2682  
2683  #ifdef CONFIG_MIGRATION
2684  void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2685  {
2686  	struct stable_node *stable_node;
2687  
2688  	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2689  	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2690  	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2691  
2692  	stable_node = folio_stable_node(folio);
2693  	if (stable_node) {
2694  		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2695  		stable_node->kpfn = folio_pfn(newfolio);
2696  		/*
2697  		 * newfolio->mapping was set in advance; now we need smp_wmb()
2698  		 * to make sure that the new stable_node->kpfn is visible
2699  		 * to get_ksm_page() before it can see that folio->mapping
2700  		 * has gone stale (or that folio_test_swapcache has been cleared).
2701  		 */
2702  		smp_wmb();
2703  		set_page_stable_node(&folio->page, NULL);
2704  	}
2705  }
2706  #endif /* CONFIG_MIGRATION */
2707  
2708  #ifdef CONFIG_MEMORY_HOTREMOVE
2709  static void wait_while_offlining(void)
2710  {
2711  	while (ksm_run & KSM_RUN_OFFLINE) {
2712  		mutex_unlock(&ksm_thread_mutex);
2713  		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2714  			    TASK_UNINTERRUPTIBLE);
2715  		mutex_lock(&ksm_thread_mutex);
2716  	}
2717  }
2718  
2719  static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2720  					 unsigned long start_pfn,
2721  					 unsigned long end_pfn)
2722  {
2723  	if (stable_node->kpfn >= start_pfn &&
2724  	    stable_node->kpfn < end_pfn) {
2725  		/*
2726  		 * Don't get_ksm_page, page has already gone:
2727  		 * which is why we keep kpfn instead of page*
2728  		 */
2729  		remove_node_from_stable_tree(stable_node);
2730  		return true;
2731  	}
2732  	return false;
2733  }
2734  
2735  static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2736  					   unsigned long start_pfn,
2737  					   unsigned long end_pfn,
2738  					   struct rb_root *root)
2739  {
2740  	struct stable_node *dup;
2741  	struct hlist_node *hlist_safe;
2742  
2743  	if (!is_stable_node_chain(stable_node)) {
2744  		VM_BUG_ON(is_stable_node_dup(stable_node));
2745  		return stable_node_dup_remove_range(stable_node, start_pfn,
2746  						    end_pfn);
2747  	}
2748  
2749  	hlist_for_each_entry_safe(dup, hlist_safe,
2750  				  &stable_node->hlist, hlist_dup) {
2751  		VM_BUG_ON(!is_stable_node_dup(dup));
2752  		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2753  	}
2754  	if (hlist_empty(&stable_node->hlist)) {
2755  		free_stable_node_chain(stable_node, root);
2756  		return true; /* notify caller that tree was rebalanced */
2757  	} else
2758  		return false;
2759  }
2760  
2761  static void ksm_check_stable_tree(unsigned long start_pfn,
2762  				  unsigned long end_pfn)
2763  {
2764  	struct stable_node *stable_node, *next;
2765  	struct rb_node *node;
2766  	int nid;
2767  
2768  	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2769  		node = rb_first(root_stable_tree + nid);
2770  		while (node) {
2771  			stable_node = rb_entry(node, struct stable_node, node);
2772  			if (stable_node_chain_remove_range(stable_node,
2773  							   start_pfn, end_pfn,
2774  							   root_stable_tree +
2775  							   nid))
2776  				node = rb_first(root_stable_tree + nid);
2777  			else
2778  				node = rb_next(node);
2779  			cond_resched();
2780  		}
2781  	}
2782  	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2783  		if (stable_node->kpfn >= start_pfn &&
2784  		    stable_node->kpfn < end_pfn)
2785  			remove_node_from_stable_tree(stable_node);
2786  		cond_resched();
2787  	}
2788  }
2789  
2790  static int ksm_memory_callback(struct notifier_block *self,
2791  			       unsigned long action, void *arg)
2792  {
2793  	struct memory_notify *mn = arg;
2794  
2795  	switch (action) {
2796  	case MEM_GOING_OFFLINE:
2797  		/*
2798  		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2799  		 * and remove_all_stable_nodes() while memory is going offline:
2800  		 * it is unsafe for them to touch the stable tree at this time.
2801  		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2802  		 * which do not need the ksm_thread_mutex are all safe.
2803  		 */
2804  		mutex_lock(&ksm_thread_mutex);
2805  		ksm_run |= KSM_RUN_OFFLINE;
2806  		mutex_unlock(&ksm_thread_mutex);
2807  		break;
2808  
2809  	case MEM_OFFLINE:
2810  		/*
2811  		 * Most of the work is done by page migration; but there might
2812  		 * be a few stable_nodes left over, still pointing to struct
2813  		 * pages which have been offlined: prune those from the tree,
2814  		 * otherwise get_ksm_page() might later try to access a
2815  		 * non-existent struct page.
2816  		 */
2817  		ksm_check_stable_tree(mn->start_pfn,
2818  				      mn->start_pfn + mn->nr_pages);
2819  		fallthrough;
2820  	case MEM_CANCEL_OFFLINE:
2821  		mutex_lock(&ksm_thread_mutex);
2822  		ksm_run &= ~KSM_RUN_OFFLINE;
2823  		mutex_unlock(&ksm_thread_mutex);
2824  
2825  		smp_mb();	/* wake_up_bit advises this */
2826  		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2827  		break;
2828  	}
2829  	return NOTIFY_OK;
2830  }
2831  #else
2832  static void wait_while_offlining(void)
2833  {
2834  }
2835  #endif /* CONFIG_MEMORY_HOTREMOVE */
2836  
2837  #ifdef CONFIG_SYSFS
2838  /*
2839   * This all compiles without CONFIG_SYSFS, but is a waste of space.
2840   */
2841  
2842  #define KSM_ATTR_RO(_name) \
2843  	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2844  #define KSM_ATTR(_name) \
2845  	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
2846  
2847  static ssize_t sleep_millisecs_show(struct kobject *kobj,
2848  				    struct kobj_attribute *attr, char *buf)
2849  {
2850  	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2851  }
2852  
2853  static ssize_t sleep_millisecs_store(struct kobject *kobj,
2854  				     struct kobj_attribute *attr,
2855  				     const char *buf, size_t count)
2856  {
2857  	unsigned int msecs;
2858  	int err;
2859  
2860  	err = kstrtouint(buf, 10, &msecs);
2861  	if (err)
2862  		return -EINVAL;
2863  
2864  	ksm_thread_sleep_millisecs = msecs;
2865  	wake_up_interruptible(&ksm_iter_wait);
2866  
2867  	return count;
2868  }
2869  KSM_ATTR(sleep_millisecs);
2870  
2871  static ssize_t pages_to_scan_show(struct kobject *kobj,
2872  				  struct kobj_attribute *attr, char *buf)
2873  {
2874  	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2875  }
2876  
2877  static ssize_t pages_to_scan_store(struct kobject *kobj,
2878  				   struct kobj_attribute *attr,
2879  				   const char *buf, size_t count)
2880  {
2881  	unsigned int nr_pages;
2882  	int err;
2883  
2884  	err = kstrtouint(buf, 10, &nr_pages);
2885  	if (err)
2886  		return -EINVAL;
2887  
2888  	ksm_thread_pages_to_scan = nr_pages;
2889  
2890  	return count;
2891  }
2892  KSM_ATTR(pages_to_scan);
2893  
2894  static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2895  			char *buf)
2896  {
2897  	return sysfs_emit(buf, "%lu\n", ksm_run);
2898  }
2899  
2900  static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2901  			 const char *buf, size_t count)
2902  {
2903  	unsigned int flags;
2904  	int err;
2905  
2906  	err = kstrtouint(buf, 10, &flags);
2907  	if (err)
2908  		return -EINVAL;
2909  	if (flags > KSM_RUN_UNMERGE)
2910  		return -EINVAL;
2911  
2912  	/*
2913  	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2914  	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2915  	 * breaking COW to free the pages_shared (but leaves mm_slots
2916  	 * on the list for when ksmd may be set running again).
2917  	 */
2918  
2919  	mutex_lock(&ksm_thread_mutex);
2920  	wait_while_offlining();
2921  	if (ksm_run != flags) {
2922  		ksm_run = flags;
2923  		if (flags & KSM_RUN_UNMERGE) {
2924  			set_current_oom_origin();
2925  			err = unmerge_and_remove_all_rmap_items();
2926  			clear_current_oom_origin();
2927  			if (err) {
2928  				ksm_run = KSM_RUN_STOP;
2929  				count = err;
2930  			}
2931  		}
2932  	}
2933  	mutex_unlock(&ksm_thread_mutex);
2934  
2935  	if (flags & KSM_RUN_MERGE)
2936  		wake_up_interruptible(&ksm_thread_wait);
2937  
2938  	return count;
2939  }
2940  KSM_ATTR(run);
2941  
2942  #ifdef CONFIG_NUMA
2943  static ssize_t merge_across_nodes_show(struct kobject *kobj,
2944  				       struct kobj_attribute *attr, char *buf)
2945  {
2946  	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2947  }
2948  
2949  static ssize_t merge_across_nodes_store(struct kobject *kobj,
2950  				   struct kobj_attribute *attr,
2951  				   const char *buf, size_t count)
2952  {
2953  	int err;
2954  	unsigned long knob;
2955  
2956  	err = kstrtoul(buf, 10, &knob);
2957  	if (err)
2958  		return err;
2959  	if (knob > 1)
2960  		return -EINVAL;
2961  
2962  	mutex_lock(&ksm_thread_mutex);
2963  	wait_while_offlining();
2964  	if (ksm_merge_across_nodes != knob) {
2965  		if (ksm_pages_shared || remove_all_stable_nodes())
2966  			err = -EBUSY;
2967  		else if (root_stable_tree == one_stable_tree) {
2968  			struct rb_root *buf;
2969  			/*
2970  			 * This is the first time that we switch away from the
2971  			 * default of merging across nodes: must now allocate
2972  			 * a buffer to hold as many roots as may be needed.
2973  			 * Allocate stable and unstable together:
2974  			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2975  			 */
2976  			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2977  				      GFP_KERNEL);
2978  			/* Let us assume that RB_ROOT is NULL is zero */
2979  			if (!buf)
2980  				err = -ENOMEM;
2981  			else {
2982  				root_stable_tree = buf;
2983  				root_unstable_tree = buf + nr_node_ids;
2984  				/* Stable tree is empty but not the unstable */
2985  				root_unstable_tree[0] = one_unstable_tree[0];
2986  			}
2987  		}
2988  		if (!err) {
2989  			ksm_merge_across_nodes = knob;
2990  			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2991  		}
2992  	}
2993  	mutex_unlock(&ksm_thread_mutex);
2994  
2995  	return err ? err : count;
2996  }
2997  KSM_ATTR(merge_across_nodes);
2998  #endif
2999  
3000  static ssize_t use_zero_pages_show(struct kobject *kobj,
3001  				   struct kobj_attribute *attr, char *buf)
3002  {
3003  	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3004  }
3005  static ssize_t use_zero_pages_store(struct kobject *kobj,
3006  				   struct kobj_attribute *attr,
3007  				   const char *buf, size_t count)
3008  {
3009  	int err;
3010  	bool value;
3011  
3012  	err = kstrtobool(buf, &value);
3013  	if (err)
3014  		return -EINVAL;
3015  
3016  	ksm_use_zero_pages = value;
3017  
3018  	return count;
3019  }
3020  KSM_ATTR(use_zero_pages);
3021  
3022  static ssize_t max_page_sharing_show(struct kobject *kobj,
3023  				     struct kobj_attribute *attr, char *buf)
3024  {
3025  	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3026  }
3027  
3028  static ssize_t max_page_sharing_store(struct kobject *kobj,
3029  				      struct kobj_attribute *attr,
3030  				      const char *buf, size_t count)
3031  {
3032  	int err;
3033  	int knob;
3034  
3035  	err = kstrtoint(buf, 10, &knob);
3036  	if (err)
3037  		return err;
3038  	/*
3039  	 * When a KSM page is created it is shared by 2 mappings. This
3040  	 * being a signed comparison, it implicitly verifies it's not
3041  	 * negative.
3042  	 */
3043  	if (knob < 2)
3044  		return -EINVAL;
3045  
3046  	if (READ_ONCE(ksm_max_page_sharing) == knob)
3047  		return count;
3048  
3049  	mutex_lock(&ksm_thread_mutex);
3050  	wait_while_offlining();
3051  	if (ksm_max_page_sharing != knob) {
3052  		if (ksm_pages_shared || remove_all_stable_nodes())
3053  			err = -EBUSY;
3054  		else
3055  			ksm_max_page_sharing = knob;
3056  	}
3057  	mutex_unlock(&ksm_thread_mutex);
3058  
3059  	return err ? err : count;
3060  }
3061  KSM_ATTR(max_page_sharing);
3062  
3063  static ssize_t pages_shared_show(struct kobject *kobj,
3064  				 struct kobj_attribute *attr, char *buf)
3065  {
3066  	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3067  }
3068  KSM_ATTR_RO(pages_shared);
3069  
3070  static ssize_t pages_sharing_show(struct kobject *kobj,
3071  				  struct kobj_attribute *attr, char *buf)
3072  {
3073  	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3074  }
3075  KSM_ATTR_RO(pages_sharing);
3076  
3077  static ssize_t pages_unshared_show(struct kobject *kobj,
3078  				   struct kobj_attribute *attr, char *buf)
3079  {
3080  	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3081  }
3082  KSM_ATTR_RO(pages_unshared);
3083  
3084  static ssize_t pages_volatile_show(struct kobject *kobj,
3085  				   struct kobj_attribute *attr, char *buf)
3086  {
3087  	long ksm_pages_volatile;
3088  
3089  	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3090  				- ksm_pages_sharing - ksm_pages_unshared;
3091  	/*
3092  	 * It was not worth any locking to calculate that statistic,
3093  	 * but it might therefore sometimes be negative: conceal that.
3094  	 */
3095  	if (ksm_pages_volatile < 0)
3096  		ksm_pages_volatile = 0;
3097  	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3098  }
3099  KSM_ATTR_RO(pages_volatile);
3100  
3101  static ssize_t stable_node_dups_show(struct kobject *kobj,
3102  				     struct kobj_attribute *attr, char *buf)
3103  {
3104  	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3105  }
3106  KSM_ATTR_RO(stable_node_dups);
3107  
3108  static ssize_t stable_node_chains_show(struct kobject *kobj,
3109  				       struct kobj_attribute *attr, char *buf)
3110  {
3111  	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3112  }
3113  KSM_ATTR_RO(stable_node_chains);
3114  
3115  static ssize_t
3116  stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3117  					struct kobj_attribute *attr,
3118  					char *buf)
3119  {
3120  	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3121  }
3122  
3123  static ssize_t
3124  stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3125  					 struct kobj_attribute *attr,
3126  					 const char *buf, size_t count)
3127  {
3128  	unsigned int msecs;
3129  	int err;
3130  
3131  	err = kstrtouint(buf, 10, &msecs);
3132  	if (err)
3133  		return -EINVAL;
3134  
3135  	ksm_stable_node_chains_prune_millisecs = msecs;
3136  
3137  	return count;
3138  }
3139  KSM_ATTR(stable_node_chains_prune_millisecs);
3140  
3141  static ssize_t full_scans_show(struct kobject *kobj,
3142  			       struct kobj_attribute *attr, char *buf)
3143  {
3144  	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3145  }
3146  KSM_ATTR_RO(full_scans);
3147  
3148  static struct attribute *ksm_attrs[] = {
3149  	&sleep_millisecs_attr.attr,
3150  	&pages_to_scan_attr.attr,
3151  	&run_attr.attr,
3152  	&pages_shared_attr.attr,
3153  	&pages_sharing_attr.attr,
3154  	&pages_unshared_attr.attr,
3155  	&pages_volatile_attr.attr,
3156  	&full_scans_attr.attr,
3157  #ifdef CONFIG_NUMA
3158  	&merge_across_nodes_attr.attr,
3159  #endif
3160  	&max_page_sharing_attr.attr,
3161  	&stable_node_chains_attr.attr,
3162  	&stable_node_dups_attr.attr,
3163  	&stable_node_chains_prune_millisecs_attr.attr,
3164  	&use_zero_pages_attr.attr,
3165  	NULL,
3166  };
3167  
3168  static const struct attribute_group ksm_attr_group = {
3169  	.attrs = ksm_attrs,
3170  	.name = "ksm",
3171  };
3172  #endif /* CONFIG_SYSFS */
3173  
3174  static int __init ksm_init(void)
3175  {
3176  	struct task_struct *ksm_thread;
3177  	int err;
3178  
3179  	/* The correct value depends on page size and endianness */
3180  	zero_checksum = calc_checksum(ZERO_PAGE(0));
3181  	/* Default to false for backwards compatibility */
3182  	ksm_use_zero_pages = false;
3183  
3184  	err = ksm_slab_init();
3185  	if (err)
3186  		goto out;
3187  
3188  	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3189  	if (IS_ERR(ksm_thread)) {
3190  		pr_err("ksm: creating kthread failed\n");
3191  		err = PTR_ERR(ksm_thread);
3192  		goto out_free;
3193  	}
3194  
3195  #ifdef CONFIG_SYSFS
3196  	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3197  	if (err) {
3198  		pr_err("ksm: register sysfs failed\n");
3199  		kthread_stop(ksm_thread);
3200  		goto out_free;
3201  	}
3202  #else
3203  	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3204  
3205  #endif /* CONFIG_SYSFS */
3206  
3207  #ifdef CONFIG_MEMORY_HOTREMOVE
3208  	/* There is no significance to this priority 100 */
3209  	hotplug_memory_notifier(ksm_memory_callback, 100);
3210  #endif
3211  	return 0;
3212  
3213  out_free:
3214  	ksm_slab_free();
3215  out:
3216  	return err;
3217  }
3218  subsys_initcall(ksm_init);
3219